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Abstract. Soil-Vegetation-Atmosphere Transfer Models (SVAT) and Crop Simulation Models
describe physical and physiological processes occurring in crop canopies. Remote sensing data
may be used through assimilation procedures for constraining or driving SVAT and crop mod-
els. These models provide continuous simulation of processes such as evapotranspiration and,
thus, direct means for interpolating evapotranspiration between remote sensing data acquisi-
tions (which is not the case for classical evapotranspiration mapping methods). They also give
access to variables other than evapotranspiration, such as soil moisture and crop production. We
developed the coupling between crop, SVAT and radiative transfer models in order to imple-
ment assimilation procedures in various wavelength domains (solar, thermal and microwave).
Such coupling makes it possible to transfer information from one model to another and then to
use remote sensing information for retrieving model parameters which are not directly related
to remote sensing data (such as soil initial water content, plant growth parameters, physical
properties of soil and so on). Simple assimilation tests are presented to illustrate the main tech-
niques that may be used for monitoring crop processes and evapotranspiration. An application
to a small agricultural area is also performed showing the potential of such techniques for
retrieving evapotranspiration and information on irrigation practices over wheat fields.

Key words: assimilation of data into models, crop simulation model, evapotranspiration,
irrigation, remote sensing, soil-vegetation-atmosphere transfer model

Introduction

Crop models and Soil-Vegetation-Atmosphere Transfer Models (SVAT
models) have been designed for analyzing the interactions between plant



canopy processes and the environment. They give priceless information for
production and yield monitoring, management of water resources, assessment
of water requirements and more recently for carbon cycle studies in relation
with climate research (a short description of some crop models and SVAT
models is given in the next section). The use of such models over large areas
is limited by our ability to provide them with the required input information.
On one hand, it is almost impossible to obtain requisite plant and soil char-
acteristics directly from networks of ground observations. On the other hand,
remote sensing techniques can provide information on plant canopy processes
that may be used for driving or constraining crop and SVAT models over large
areas. These models may be operated without a systematic use of remote sens-
ing data by intrinsically providing the means for interpolating energy and water
fluxes or biomass production between remote sensing data acquisitions. Com-
pared to classical methods for mapping evapotranspiration, based on models
such as SEBAL (Bastiaanssen et al., 1998; Jacob et al., 2002a), the use of crop
or SVAT models makes it possible to continuously monitor evapotranspiration
along the whole crop cycle instead of estimating it for only snapshots derived
from images. This is important since remote sensing data acquisitions may be
infrequent. Moreover, it may be relatively easy to implement procedures to use
data acquired by a large range of remote systems, differing in wavelength do-
mains, acquisition time or geometry. Then, it may be possible to monitor evap-
otranspiration without using thermal infrared remote sensing data, which is not
possible when using classical mapping methods. As a matter of fact, the evo-
lution of crop structure, which may be obtained from reflectance data or radar
data, may be sufficient for simulating evapotranspiration along the crop cycle.
This feature is even enhanced when using dynamic-vegetation models that in-
clude the description of crop growth and its interaction with soil water content.

Remote sensing information on plant canopy processes is not direct be-
cause it results from the interaction of radiation with soil surface and plant
canopy. It is then necessary to use specific radiative transfer models for in-
terpreting these interactions and for relating plant and soil characteristics to
remote sensing signals. These models range from very complex models to sim-
plified approaches based on empirical relationships. For example, numerous
relationships were established between spectral reflectances and LAI (Leaf
Area Index), by means of vegetation indices; they can be used for estimat-
ing LAI that is then fed into crop or SVAT models. Such method, termed
as ‘forcing’ method, has been described for examples by Delécolle et al.
(1992) or Clevers et al. (2002) for driving crop models and by Sellers et al.
(1996b) for driving a SVAT model used as a land surface parameterization in
an atmospheric general circulation model (GCM). It requires that the driving
variables are estimated from remote sensing data with a very fine time reso-
lution, close to the time step of the model (or that they may be interpolated).



However, most of plant and soil characteristics that are required for describ-
ing physical or biological processes cannot be related to remote sensing data
through radiative transfer models (stomatal conductance, phenological pa-
rameters, soil physical parameters, soil moisture in the root zone, specific
leaf area and so on). In order to estimate these ‘hidden’ quantities, it is first
necessary to establish links between crop processes and remote sensing data
by coupling crop, SVAT and radiative transfer models all together (Olioso
et al., 1999a, 2001; Cayrol et al., 2000; Weiss et al., 2001; Verhoef & Bach,
2003), and then, to apply mathematical techniques that make it possible to
integrate remote sensing information into the coupled model. Such techniques
are termed as assimilation techniques. They are widely used in the field of
meteorology, where they have been developed to improve GCM predictions,
in particular for weather forecast, by utilizing as much available observations
as possible (WMO, 1995; Lorenc, 1997; Saunders, 1997). Their use in land
crop and SVAT models is still at its beginning and has mostly been devoted to
hydrologic applications such as river flow and flood forecast (e.g. Ottlé and
Vidal-Madjar 1994; Houser et al., 1998; Reichle et al., 2001; François et al.,
2003).

Until now, most of the studies devoted to assimilation of remote sensing
data into crop models focused on the use of visible and near infrared re-
flectances or radar measurements (e.g. Moulin et al., 1998; Inoue et al., 1998;
Chauki et al., 2000; Clevers et al., 2002; Verhoef & Bach, 2003). Indeed,
these measurements give information on crop structure and biomass seasonal
dynamics. Thermal infrared (TIR) may also provide significant information
on crop processes when water limitations occur, but as the assimilation of
such data into crop model is not straightforward, only few attempts have been
made (Moran et al., 1996; Cayrol et al., 2000; Olioso et al., 2001; Droogers
& Bastiaanssen 2002; Schuurmans et al., 2003). In the case of SVAT mod-
els, as they are based on the resolution of the energy balance equation, the
use of TIR has been investigated in detail by many authors (e.g. Soer, 1980;
Taconet & Vidal-Madjar, 1988; Carlson et al., 1990; Camillo, 1991; Ottlé &
Vidal-Madjar, 1994; Taconet et al., 1995; Olioso et al., 1996b, 1999a). Both
for crop and SVAT models, relatively few studies have analyzed the possible
complementary assimilation of various wavelengths (Camillo, 1991; Bouman,
1992; Ottlé & idal-Madjar, 1994; Clevers & van Leeuwen, 1996; Moran et al.,
1996; Olioso et al., 1999b; Cayrol et al., 2000; Olioso et al., 2001; Droogers
& Bastiaanssen, 2002; Prévot et al., 2003).

In this article, we will present how remote sensing data may be assimilated
into SVAT or crop models with the objective of estimating crop evapotran-
spiration and soil water content. The potential for monitoring at the same
time crop growth and irrigation will also be addressed. In the first part, we
will briefly present crop and SVAT models and how they may be linked to



remote sensing signals. In a second part, various assimilation techniques will
be presented by means of simple examples. Assimilation of reflectances, TIR
and radar remote sensing data into a SVAT model will be compared and the
combination of reflectances and thermal infrared will illustrate the possible
monitoring of crop evapotranspiration and irrigation events at the scale of a
small agricultural area.

Crop simulation models and SVAT models

Crop models describe the main processes that occur during plant growth and
crop production (similar models have also been developed to describe produc-
tivity of natural ecosystems or forest): phenology, photosynthesis, dry matter
production, water processes, nitrogen processes, biomass partitioning, organ
building, and solar radiation absorption. The typical time step of such models
is 1 day, which is in agreement with the time scale of the simulated processes
(crop growth and phenology). SVAT models are mainly used for estimating
evapotranspiration, surface-energy exchanges and water balance components.
Most of the transfer mechanisms (radiative, turbulent and water transfers) and
some physiological processes (stomatal regulation) are described. Their time
resolution is less than 1 h in agreement with the dynamics of atmospheric and
surface processes. Note that this fine time resolution is also interesting when
SVAT models are combined with remote sensing data, which are acquired
instantaneously.

Numerous crop and SVAT models have been developed (e.g. see reviews
by Sinclair & Seligman, 1996; Olioso et al., 1999a). They may have very dif-
ferent complexity levels depending on the quantity and the detail of described
processes. Recent advances in crop modelling make it possible to simulate
a large variety of crops and a large variety of agricultural practices (Brisson
et al., 2003). Specific description or parameterization may be required for
each type of crop, even for models that aim to be generic. Such details are not
available in SVAT models, even if the physical processes that are described
(turbulent exchanges, water uptake) are not specific to plant species. How-
ever, as SVAT models have usually been designed for homogeneous surfaces,
they are often difficult to use for describing heterogeneous systems such as
orchards, vineyards, developing crops or savannah (cases in which they fail
in the calculation of global turbulent exchange coefficients and global sur-
face conductance for the vegetation layer). Another difficulty in the use of
SVAT models results from insufficient detail in the description of the vegeta-
tion phenology. Usually, vegetation dynamic is only considered as an input.
Because of a new interest in the study of CO2 fluxes in climatological and
global change studies, some of the SVAT models have been extended to the
simulation of photosynthesis (Olioso et al., 1996a; Sellers et al., 1996a; Calvet



et al., 1998; Jacobs et al., 2003). The introduction of photosynthesis makes
it possible to simulate biomass production and then evolution of crop struc-
ture such as LAI (such models are sometimes termed interactive-vegetation or
dynamic-vegetation SVAT models). Four models, that have been developed in
France, will be presented in this study: STICS, a crop model, ISBA, a simple
SVAT model, ISBA-Ags, a dynamic-vegetation version of ISBA, and SiSPAT,
a more complex SVAT model.

STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard; in
English Standard mulTIdisciplinary Simulator for Crops) is a crop model
developed in France to simulate a wide range of crops (Brisson et al., 2003).
It simulates crop growth and development as well as soil water and nitrogen
balances driven by daily climatic data. It calculates both agricultural variables
(yield, production quality, water and fertiliser consumption) and environmen-
tal variables (drainage and nitrogen leaching). From a conceptual point of
view, STICS relies essentially on well-known relationships or on simplifica-
tions of existing models. One of the key elements of STICS is its adaptability
to various crops made possible by the choice of generic parameters and op-
tions for both crop physiology and crop techniques. It is a daily time-step crop
model. The data required to run the model include climate, soil (water and
nitrogen initial profiles and permanent characteristics), crop management and
species and varietal parameters. Soil is likened to a sequence of horizontal
layers, each of which is characterised in terms of its water content, mineral
nitrogen content and organic nitrogen content. Soil and crop interact via the
roots, and these roots are defined with respect to root density distribution in
the soil profile (root growth is accounted for). Crop growth is driven by the
plant carbon functioning: solar radiation interception by the foliage and then
transformation into aboveground biomass that is directed to the harvested or-
gans during the final phase of the cycle. According to the plant type, crop
development is driven either by a thermal index or a photothermal index. The
development model is used to (i) make the LAI evolve and (ii) define the har-
vested organ filling phase. Water stress and nitrogen stress, if any, reduce leaf
growth and biomass accumulation, based on stress indices that are calculated
in water and nitrogen balance modules.

The ISBA (Interactions between Soil, Biosphere and Atmosphere) SVAT
model was developed at Météo-France for being implemented as a land sur-
face scheme in atmospheric weather forecast model and GCM (Noilhan &
Mahfouf, 1996). This model solves the surface-energy balance and the soil
water balance with a 5 minute time step. The soil is described by one bulk
reservoir corresponding to the maximum root zone (including a thin surface
layer and regardless to actual root development) as proposed by Deardorff
(1978), the various ‘water and heat transfer coefficients’ depending on soil
texture. Drainage below the root zone has been introduced by Mahfouf and



Noilhan (1996). The main surface variables simulated by ISBA are the surface
temperature, the soil moisture in the root zone, the surface soil moisture and the
energy fluxes. We may note that only one energy balance equation is solved,
but that a separation of soil evaporation and plant transpiration is done on
the basis of the vegetation fraction cover. The stomatal conductance depends
on radiation, temperature, air vapour pressure deficit and soil moisture. ISBA
requires meteorological variables, albedo, minimum stomatal resistance, LAI
and vegetation height as inputs, as well as the soil texture, wilting point and
field capacity.

In the ISBA-Ags version of ISBA (Ags holds for net assimilation and stom-
atal conductance, Calvet et al., 1998), a physiological stomatal resistance
scheme is used to describe photosynthesis and its coupling with stomatal re-
sistance at the leaf level. The computed net vegetation assimilation is used
to feed a simple growth sub-model, and to predict the density of the vege-
tation cover. Compared to ISBA, three main new parameters are introduced
in ISBA-Ags: leaf life expectancy (DE) and effective biomass per unit leaf
area (B/LAI) in the growth sub-model, and a mesophyll conductance (gM).
ISBA-Ags is able to simulate water budget, energy and mass fluxes (CO2,
sensible and latent heat fluxes, etc.) and LAI. Thus, the model is able to adapt
the simulations of vegetation growth in response to changes in the environ-
mental conditions (precipitation distribution, irrigation, water storage in the
root-zone, atmospheric CO2 concentration, etc.) and, in contrast to ISBA,
ISBA-Ags can be considered as an ‘interactive-vegetation SVAT model’
(or dynamic).

SiSPAT (Simple Soil Plant Atmosphere Transfer, Braud et al., 1995) is a
SVAT model with a higher complexity level than ISBA. Coupled transfers
of water and heat in the soil are described in more detail using the approach
of Milly (1982), accounting for the vertical heterogeneity of soil structure
and texture and root distribution. The soil prognostic variables are the vertical
profiles of temperature and soil matrix water potential. This approach requires
more complex information on the soil characteristics, such as retention curves
and unsaturated hydraulic conductivity (for each soil layer). The effect of veg-
etation above the ground is based on the solution of two energy budgets, one
for the ground surface and another one for the vegetation layer. Basic radiative
transfer calculations are done inside the canopy to partition energy between
the soil surface and the vegetation layer (using an attenuation coefficient).
They require the separate prescription of albedo and emissivity values for
the vegetation layer and the soil surface, the latter depending on the surface
soil moisture. Calculation of turbulent heat fluxes follows the scheme used
by Daamen and Simmonds (1994) (conversely to ISBA, no thermal rough-
ness length is used). The circulation of water from the soil to the atmosphere
through the plants and the soil water uptake by the roots follows an electrical



analogue model as proposed by Federer (1979). The stomatal conductance is
described as a function of vapour pressure deficit, leaf temperature, incident
radiation and leaf water potential.

Many of the SVAT models and the crop models were developed, at least
partly, for studying the interactions between water processes and crop produc-
tion. So, they may be useful in irrigation management. For example, they have
been used for studying the effect of different irrigation schedules on water use
efficiency, to give recommendation on effective irrigation water management
strategy, or for helping in decision making (Rinaldi, 2001; Nijbroek et al.,
2003; Panda et al., 2003; Olioso et al., 2005; Guerra et al., 2005). If included
in a spatialized framework, they may also be useful to analyze all the compo-
nents of the water balance for a whole irrigation system, providing substantial
information for water saving opportunities and strategies in irrigated agricul-
ture (Droogers et al., 2000; Ines et al., 2002). In this frame, remote sensing
may give access to the spatial variability and the time variation of information
related either to crop development or crop water status, which may be used for
driving crop and SVAT models (Moran et al., 1996; Droogers & Bastiaanssen,
2002; Duchemin et al., 2002). In the following parts of this article, a modelling
framework for relating remote sensing data to crop and SVAT models will be
presented and assimilation procedures will be tested.

Remote sensing signal models and coupling to crop and SVAT models

Various types of remote sensing data may be used for driving crop and SVAT
models: reflectances, TIR, microwave (active and passive). In order to analyse
the complementary use of these remote sensing data and to implement assim-
ilation procedures, simple radiative transfer models were coupled to STICS
and ISBA-Ags (Figure 1). This was almost direct for simulating reflectances in
the solar domain and backscattering coefficients in the microwave domain. A
Beer–Lambert type model was used for simulating the Normalized Difference
Vegetation Index (NDVI) from simulated LAI. This model was calibrated over
a set of reference simulations by the SAIL canopy reflectance model (Scat-
tering by Arbitrary Inclined Leaves designed by Verhoef 1984) applied to a
large variety of canopies. Background effect of soil moisture was accounted
for. NDVI is a combination of red (r) and near infrared reflectances (nir) that
may be used for quantifying vegetation amount (NDVI = [nir−r ]/[nir+r ]).
In the microwave domain, a water cloud model was used to relate the vege-
tation integrated water content (estimated from LAI or dry biomass) and the
surface soil moisture (0–3 cm) to backscattering coefficients (Wigneron et al.,
1999b). In the case of thermal infrared and microwave emission, the coupling
was more complex, at least for STICS. As this model did not describe the
processes that determine surface temperature and as its daily time step was



Figure 1. Scheme of coupling the different vegetation and radiative transfer models for simulat-
ing remote sensing signals in various wavelength domain. Top graph: coupling the ISBA-Ags
dynamic-vegetation SVAT model to radiative transfer models. Bottom graph: coupling the
STICS crop model to radiative transfer models (the ISBA SVAT model is used for interfacing
STICS to radiative transfer models in the thermal infrared and the passive microwaves).



not compatible with the fast response of these processes, it was necessary to
use ISBA as an interface between STICS and radiative transfer models. For
each simulation day, LAI and vegetation height were transferred from STICS
to ISBA (Figure 1). Surface and root zone soil moistures simulated by STICS
were also transferred to ISBA to be used as initial values for each simulation
days. In the case of ISBA-Ags, the time step was adequate and a direct cou-
pling to radiative transfer models was done. Calculation of TIR brightness
temperature from surface temperature simulated by ISBA or ISBA-Ags was
done by using an emissivity model depending on LAI (adapted from Olioso
1995a) and by accounting for the atmospheric radiation following the proce-
dure described by Olioso (1995b). The microwave emission was simulated
from surface temperature using the model proposed by Wigneron et al. (1995)
using similar inputs as for active microwave simulations (integrated vegeta-
tion water content and surface soil moisture). The SiSPAT model has also
been coupled to the SAIL radiative transfer model and to a simplified ther-
mal model in order to simulate reflectances and thermal infrared signals by
Demarty et al. (2002, 2005). It must be noticed that the simulation of surface
temperature by ISBA requires the use of a roughness length for heat in addition
to the classical roughness length for momentum in aerodynamic equations.
Such parameter was not required in SiSPAT, which was based on a two-layer
energy balance parameterization.

Assimilation techniques

Various techniques have been proposed for assimilating data into crop and
SVAT models (Delécolle et al., 1992; Olioso et al., 1999a; François et al.,
2001). One way consists of estimating model state variables from remote sens-
ing data, and to directly introduce (force) them into the model at occurrences
compatible with the time step of the model. This is called a forcing technique
(Figure 2a). Other methods consist of correcting the course of model dynamic
variables by comparing them to remote sensing measurements (Figure 2a). In
sequential assimilation techniques, the model is updated each time an ob-
servation is available (e.g. Clevers et al., 2002; François et al., 2003). This
observation is usually used for updating model prognostic variables. In vari-
ational assimilation techniques, all of the available observations for a certain
period of time are processed together. They are usually used for retrieving
model parameters or initial values of model variables using model calibration
techniques (or recalibration in Figure 2b), based either on iterative algorithms
(e.g. Wigneron et al., 1999a; Reichle et al., 2001; Nouvellon et al., 2001;
Prévot et al., 2003; Verhoef & Bach, 2003) or stochastic methods (Demarty
et al., 2004 and 2005). Many different types of methodology and mathemati-
cal tools, such as Kalman filter (e.g. Reichle et al., 2003), adjoint model (e.g.



Figure 2. Schematic description of the various assimilation procedures presented in this article.
Top graph: forcing method (dashed line) and correction method (doted lines) that may be used
for implementing sequential assimilation. Bottom graph: recalibration method that may be used
for implementing variational assimilation.



Courtier & Talagrand, 1990) have been developed for implementing assimi-
lation procedures. Many of them have been employed in the fields of dynamic
atmospheric modelling for a long time (in particular applied to numerical
weather forecasts) and to a lesser extent for hydrological modeling. Their use
for assimilating data in SVAT or crop models is just at its beginning (Viovy
et al., 2001; Lauvernet et al., 2002).

In the following sections, after presenting datasets and illustrating model
performances, simple examples of assimilation procedures will be presented
and applied to the assessment of surface processes and evapotranspiration of
a soybean crop. ISBA and ISBA-Ags models will be used in combination
with reflectances, TIR and radar data. A second example will demonstrate the
possible use of reflectances and TIR data to monitor evapotranspiration and
irrigation events over wheat crops within a small agricultural area.

Experimental data

To test the various models and latter the assimilation of remote sensing data
into these models, three experimental datasets were used: two local experi-
ments in Avignon (South of France) on soybean crops (Olioso et al., 1996a,b)
and a regional experiment in a small agricultural area 20 km south of Avignon
performed in the frame of the Alpilles-ReSeDA program (Baret, 2002; Olioso
et al., 2002a).

Soybean experiments

They were conducted in an experimental field at Avignon INRA Research
Center. The crops were grown from the beginning of July (both years) to the
end of October (1989) and to the end of September (1990). In 1989, the crop
received 233 mm of water and the starting soil water content was close to
field capacity. The crop reached a maximum LAI of 5.1. In 1990, the crop
received 123 mm of water and the starting soil water content was also close to
field capacity. The maximum LAI was 3.8. Meteorological data (air temper-
ature, air humidity, wind speed, solar radiation, atmospheric radiation) and
energy balance fluxes were monitored throughout both crop cycles with a
15 min averaging time. Sensible and latent heat flux were obtained from the
Bowen ratio system described by Cellier and Olioso (1993) and from a mono-
dimensional sonic anemometer combined with net radiation and ground heat
flux measurements (Cellier & Olioso, 1993; Ortega-Farias et al., 2004). Both
methods gave very close results (root mean square differences lower than
25 W m−2 for the sensible heat flux and lower than 20 W m−2 for the latent
heat flux). Soil and vegetation parameters (soil moisture, soil water poten-
tial, LAI, canopy height, crop biomass, rooting depth, soil and leaf optical



properties and so on) were monitored with a daily or a weekly time step
(Brisson et al., 1993; Bertuzzi et al., 1994; Taconet et al., 1995; Olioso et al.,
1996a). Soil moisture was measured down to 1.8 m using a neutron probe,
with three replicates, almost every day in 1989 and every 2 or 3 days in
1990. Surface soil moisture was assessed using gravimetric measurements
in three layers (0–0.05 m, 0.05–0.10 m and 0.10–0.20 m). LAI and biomass
were measured from three samples collected on an area of 0.25 m2 at least
every week. Remote sensing data were acquired in the solar, thermal and
microwave domains. Canopy reflectances were measured using CIMEL re-
flectometers held in vertical viewing at a height of 3.5 m, every 3–4 days at
solar noon. Twelve replicates with a sampling size of 0.2 m2 were performed
in the three channels of the SPOT-HRV instrument (green: 500–590 nm; red:
620–680 nm; near infrared: 790–890 nm). The instruments were calibrated
against a halon reference panel following the procedure described by Olioso
et al. (1997). Infrared brightness temperatures were continuously measured
using a thermal radiometer in the 8–14 µm spectral range in vertical view-
ing (Heiman, KT17). The radiometer was set at 3 m high leading to a 6 m2

sampling area. It was calibrated against a black body before and after each
experiment.

In 1989 active microwave measurements at C-band were also performed.
The data were acquired by the scatterometer RAMSES, designed by the Cen-
tre National d’Etudes Spatiales (CNES), which was mounted on the mobile
platform of a crane boom. The antenna height above the soil surface was
19.7 m and the resulting footprint varied from 3 m2 at nadir to 14 m2 at 50◦ of
incidence. The measurements used in this study were made at 5.3 GHz at an
incidence angle of 15◦ (HH polarization) and 23◦ (HH and VV polarization)
at least every 2 days. The last configuration is very close to the configuration
of the radar on board of ERS-1). About 50 independent measurements of
backscattering coefficients were sampled along the 4 to 5 m track and were
averaged. The absolute accuracy of the measurements was estimated to be
about ±1 dB by Bertuzzi et al. (1992).

Alpilles-ReSeDA experiment

The main objective of the ReSeDA project was the use of multisensor and mul-
titemporal observations for monitoring soil and vegetation processes (includ-
ing net primary production, yield, evapotranspiration and so on), in relation
with the atmospheric boundary layer at local and regional scales, by assimi-
lation of remote sensing data into crop simulation models and SVAT models.
The experiment included field measurements, aircraft and satellite data ac-
quisitions, covering the whole growing season of winter and summer crops
(October 1996 to November 1997). The site had an area of 4 km by 5 km and



was located near the Alpilles Hills 20 km South of Avignon. The main crops
were wheat, sunflower, orchards, vegetables and forage. The various ground
data collected were described in detail by Olioso et al. (2002a). Remote sens-
ing data were collected at various wavelength ranges using spaceborne sen-
sors (NOAA-AVHRR, Landsat-ETM+, SPOT-HRV, ERS and RADARSAT)
and airborne sensors (the visible and near-infrared multiangular radiome-
ter POLDER, a thermal infrared camera INFRAMETRICS 760, an airborne
multiangle scatterometer ERASME). The main data used in this study were
obtained from POLDER and INFRAMETRICS airborne sensors (reflectances
and TIR data) and ground measurements (meteorological data and soil mois-
ture data). Both instruments flew on days with clear sky around solar noon,
approximately 1–2 times per month at altitudes of 3000 m and/or 1500 m.
Twenty-seven flight acquisitions were performed between March and Octo-
ber (corresponding to 18 different days). After spatial registration and atmo-
spheric correction, the spatial resolution of the images was 20 m. As both
instruments acquired multi-directional data, specific procedures were used
for generating bi-directional reflectance distribution functions from POLDER
images, and nadir thermal infrared brightness temperature from the INFRA-
METRICS camera. A more detailed description of remote sensing data ac-
quisition procedures, sensor calibrations and data preprocessing was given
by Jacob et al. (2002a, b). The calibration of the INFRAMETRICS camera
included a careful check using thermal brightness temperature measured at
the ground level in several (three to six) fields using Heiman KT15 and KT17
thermal radiometers.

Field measurements of vegetation and soil characteristics were performed
in three wheat and three sunflower fields (see Olioso et al., 2002a,d). Among
them, the characterisation of soil hydrodynamical properties, such as reten-
tion curve and unsaturated hydraulic conductivity, were used in this study for
calculating wilting point and field capacity. Soil moisture and soil water po-
tential were measured every week in the same fields down to 1.4 m with three
replicates, using neutron probe, capacitive probe, and tensiometer (automatic
and manual). Soil moisture measurements were calibrated against gravimetric
measurements in order to be representative of the field scale (Olioso, et al.
2002a). Meteorological data required for running models were acquired using
a meteorological station set near the center of the Alpilles test area.

Some illustrations of the simulations performed with coupled
crop-SVAT-radiative transfer models

Figure 3 presents simulations of evapotranspiration and LAI by STICS, ISBA,
ISBA-Ags and SiSPAT (actually, LAI was used as an input in ISBA and
SiSPAT and not simulated) for the soybean crop in 1990. Information for



Figure 3. Simulation of daily evapotranspiration and LAI using STICS, ISBA, ISBA-Ags and
SiSPAT for a soybean crop in Avignon in 1990. N.B.: LAI is not simulated by ISBA and
SiSPAT, but used as an input. DOY is Day of Year and (∗) represents the measured data.

driving the models was derived from the measured data (meteorological data:
air temperature, air vapor pressure and wind speed measured at around 2-m
above the crop, solar radiation and atmospheric radiation, soil moisture at
the beginning of the simulation, soil physical properties according to model
needs, profiles of root density for SiSPAT, maximum root depth for ISBA
(around 1.5 m)). Despite the differences between models, close results were
usually obtained. It is important to notice that in this case, calibration of the
models were done, either on the experimental data of soil moisture and LAI



for ISBA and ISBA-Ags, or from the parameterization of a more complex
model (SOYGROW) for STICS (Brisson et al., 2003). The calibration meth-
ods differed from one model to another and no attempts were made to unified
them. They were described by Wigneron et al. (1999a) for ISBA, Calvet et al.
(1998) for ISBA-Ags and Braud et al. (2005) for SiSPAT. The main calibrated
parameters were the saturated hydraulic conductivity and the total plant resis-
tance in SiSPAT, the wilting point, the field capacity, the minimum stomatal
resistance, the thermal roughness length in ISBA, the leaf life expectancy
(DE), the effective biomass per unit leaf area (B/LAI) and the mesophyll con-
ductance (gM) in ISBA-Ags. Olioso et al. (2002d) also describe how SiSPAT
and ISBA may be calibrated. We can also notice on Figure 3 that most models,
and particularly SVAT models, had difficulties in simulating the evapotran-
spiration at the beginning of the crop cycle, when LAI was low. No specific
calibration was performed to fix this problem.

Examples of remote sensing data simulations with the coupled model in
the condition of the soybean experiment in 1990 are displayed in Figure 4 (re-
flectances, thermal infrared brightness temperature and microwave backscat-
tering coefficients). They show an overall agreement between measurements
and simulations of reflectances (expressed in terms of NDVI) and maximum
TIR brightness temperature (conversely to SVAT and crop models, no spe-
cific calibrations were performed for the radiative transfer models over the
1990 dataset). The overestimation of NDVI at some periods was actually
linked to the particular leaf movements that occurred as a response to water
stress for this soybean cultivar (Labrador with a very short cycle). Such re-
sponse was not accounted in ISBA-Ags or STICS. Simulations of microwave
backscattering coefficients qualitatively agreed with the data presented by
Wigneron et al. (1999b) for the soybean experiment in 1989. Simulations
of microwave emission are not presented here because that type of data is
not available in operational or expected remote sensing system with a spa-
tial resolution compatible with agricultural applications at the field scale
(pixel size is several hundreds of km2). However, simulations were presented
before by Olioso et al. (2001) on soybean and Wigneron et al. (2002) on
wheat.

Simple examples of assimilation on the soybean experiment
in 1989 dataset

We have shown before that several types of assimilation procedures have been
developed. The three main types, including forcing, sequential and variational
methods, have been applied to ISBA and ISBA-Ags over the 1989 soybean
experiment dataset and are presented here (ISBA and ISBA-Ags being cali-
brated over other experiments). Results are compiled in Table 1.



Figure 4. Simulation of remote sensing data over the soybean 1990 dataset with the coupled
crop-SVAT-radiative transfer models presented in Figure 1 (based either on the ISBA-Ags
SVAT model or the STICS crop model).



Table 1. Performances of ISBA and ISBA-Ags retrieval of evapotranspiration over the soybean
experiment in 1989.

RMSE on ET Bias on ET
(mm d−1) (mm d−1)

Forcing method
LAI forced into ISBA 1.1 −0.7
LAI forced into ISBA-Ags 1.2 −0.5

Sequential assimilation
Sequential-full correction-Avignon calibration 1.0 −0.1
Sequential-full correction-HAPEX calibration 1.4 0.5

Variational assimilation
Initial soil moisture recalibration from TIR 0.8 −0.3
Initial soil moisture recalibration from Radar 0.9 −0.2
Initial soil moisture recalibration from NDVI 1.2 −0.5
Crop growth parameters recalibration from Radar 1.0 0.1

Note. N.B.: measured ET varied between 1 and 8 mm d−1 (and maybe higher for days without
measurements as suggested by model results); very high evapotranspiration rate were obtained
when a very strong and dry wind was blowing (called Mistral).

Forcing method

We estimated LAI from NDVI, and then forced LAI information into ISBA
and ISBA-Ags. The LAI production module in ISBA-Ags was short cut. The
LAI-NDVI model was calibrated before on independent datasets acquired on
soybean in Avignon in 1987 and 1990. It gave very good estimates of LAI on
the 1989 dataset (Figure 5). Simulated evapotranspiration (ET) was in good
agreement with the measurements despite a significant underestimation due to
difficulties at low LAI and during the senescent period (Figure 5 and Table 1).

Sequential assimilation

The LAI estimated from NDVI was used for correcting ISBA-Ags simula-
tions. In this case, the LAI production module was on, and the simulated LAI
was compared to the LAI estimated from NDVI at four dates along the 1989
soybean crop cycle. Basic sequential assimilation procedures were used (Fig-
ure 6): (i) a full correction was done assuming that LAI was estimated with no
error from remote sensing data; LAI simulation was restarted from the remote
sensing values each time they were available; (ii) a half way correction was
done assuming that LAI was both simulated and estimated with some error;
LAI simulation was restarted from the average of the estimated and the simu-
lated values. When the two procedures were applied to ISBA-Ags calibrated
on the 1990 experiment, the use of remote sensing data to correct the time
variation of LAI had only a low effect on LAI values (Figure 6), as well as



Figure 5. Top graph: estimation of soybean LAI temporal profile from NDVI in 1989; compar-
ison to the measured data (o). Bottom graph: simulation of soybean evapotranspiration in 1989
by forcing estimated LAI into ISBA and ISBA-Ags (short cutting the plant growth submodel).
DOE is Day of Experiment (starting at the beginning of the year).

on ET and water reserve simulations (not shown). However, in the case of the
full correction, results on ET were slightly improved (Table 1).

The full correction procedure was also applied to ISBA-Ags calibrated by
Calvet et al. (1998) on the soybean dataset of the HAPEX-MOBILHY ex-
periment in the South-West of France. The calibrated parameters were very
different from those obtained on the 1990 Avignon experiment (Table 2). The
higher values of leaf life expectancy (DE) and effective biomass per unit leaf
area (B/LAI) were responsible for a fast increase and unrealistic values (up to
12) of simulated LAI (Figure 7). Despite that the mesophyll conductance (gM)
was significantly lower, the high LAI generated large increases in evapotran-
spiration and soil water depletion (Figure 7). When correction of the LAI time
course from NDVI was performed (full correction at four dates), water up-



Table 2. ISBA-Ags parameters calibrated on two datasets (from Calvet et al., 1998) and
parameters retrieved from variational assimilation of Radar data in 1989.

Calibration dataset gM (mm s−1) DE (day) B/LAI (g m−2)

HAPEX-MOBILHY 1 250 63
Avignon 1990 2.87 15 25
Crop growth parameters 2.87∗ 17 33

recalibration from Radar

∗In this case, gM was set to the value calibrated in 1990 and not retrieved from Radar data.

Figure 6. Simulated LAI from sequential assimilation of LAI in ISBA-Ags for the soybean
experiment in 1989 (the model was calibrated over the Avignon 1990 dataset). Three correction
levels of the simulations are displayed: full correction (termed ‘Remote Sensing’), no correction
(termed ‘Model’) and half correction. DOE is Day of Experiment (starting at the beginning of
the year).

take was significantly decreased. However, as fast increases of LAI were still
simulated after each correction (DE and B/LAI being still large), evapotranspi-
ration and water depletion were still higher than with the parameters calibrated
on the 1990 Avignon experiment (Figure 7 and Table 1). If the number of re-
mote sensing estimations of LAI was increased (not shown), simulations were
improved since corrections were applied more often, limiting LAI increase
and water uptake. It must be noticed that the large differences between the
two sets of calibrated parameters (Table 2) might be explained by erroneous
measurements performed during the HAPEX-MOBILHY experiment. As a
matter of fact, if variations in calibrated parameters may be expected due to
varietal differences (e.g. length of the crop cycle), they must be in a limited
range. Other calibrations performed on several soybean experiments in Japan



Figure 7. Simulated LAI, soil water reserve and evapotranspiration (ET) from sequential assim-
ilation of LAI into ISBA-Ags for the soybean experiment in 1989. The model was calibrated
using the HAPEX-MOBILHY dataset. Two correction levels are displayed: full correction
(termed ‘Remote Sensing’), no correction (termed ‘Calib(HAPEX)’). Simulation using the cali-
bration over the Avignon 1990 dataset are displayed for comparison (termed ‘Calib(Avignon)’).
The soil water reserve corresponded to a soil layer down to the maximum root depth, 1.5 m in
this case. DOE is Day of Experiment (starting at the beginning of the year).



(Inoue and Olioso, 2004) led to calibrated values rather close to the values
obtained in Avignon. However, it was interesting to show that the use of cor-
rection procedures may significantly improve evapotranspiration simulations
obtained with an ill-calibrated model.

Variational assimilation

We used ISBA-Ags calibrated on the Avignon-1990 dataset and coupled to
the radiative transfer models for simulating remote sensing signals in 1989
(NDVI, TIR, backscattering coefficients). The initial soil water content was
adjusted so that signal simulations fit with the remote sensing measurements.
Indeed, the water content at the beginning of the simulation may be one of the
major unknowns when monitoring crop evapotranspiration and growth from
remote sensing data over an agricultural area. Almost 20 NDVI measurements,
40 TIR measurements and 40 backscattering coefficient measurements were
available during the experiment. RMSE for the different signals were reaching
their lowest values, indicating the best agreement between simulated and mea-
sured signals, for high values of initial water content (NDVI → 0.28 m3 m−3;
Ts → 0.31 m3 m−3; radar → 0.32 m3 m−3), which was in agreement with
the real situation (0.31 m3 m−3). This resulted in almost similar estimations
of evapotranspiration by using TIR or radar measurements (RMSE and Bias
in Table 1, Figure 8). The results obtained from NDVI were less satisfac-
tory. Figure 8 also displays results obtained for LAI, soil water reserve and
evapotranspiration. The differences between the results obtained from TIR
(or radar) data and NDVI data were explained by a faster increase in retrieved
LAI at the beginning of the crop cycle that compensated for the usual under-
estimation of ET at low LAI. From these results, it was apparent that the crop
growth parameters (DE and B/LAI) calibrated on the 1990 dataset were not
fully valid for application to the soybean crop in 1989.

Variational assimilation procedure may also be used for retrieving plant
parameters. Figure 9 illustrates the results obtained on the same soybean
dataset while retrieving crop growth parameters (DE and B/LAI) from radar
measurements (the initial soil moisture being known and the mesophyll con-
ductance set to the value calibrated in 1990). The time variation of LAI was
better simulated and evapotranspiration was satisfactorily retrieved (Table 1
and Figure 9). Once again, nearly similar results were obtained for the three
types of remote sensing data (not shown). Other results obtained by Inoue and
Olioso, 2004 using NDVI on a soybean crop in Japan showed that it was pos-
sible to retrieve CO2 fluxes above the crop, as well as to separate vegetation
transpiration from soil evaporation. In a final step, we tried to determine simul-
taneously initial soil moisture and crop growth parameters. This attempt has
not been successful because of compensations occurring between the various



Figure 8. Simulated LAI, water reserve and evapotranspiration (ET) after retrieving the initial
soil water content from variational assimilation of NDVI, surface temperature (Ts ) or microwave
backscattering coefficients (Radar) into ISBA-Ags for the soybean experiment in 1989 (the
model was calibrated over the Avignon 1990 dataset). DOY is Day of Year.



Figure 9. Simulated LAI, water reserve and evapotranspiration (ET) after retrieving the crop
growth parameters (B/LAI and DE) from variational assimilation of microwave backscattering
coefficients (Radar) into ISBA-Ags for the soybean experiment in 1989. DOY is Day of Year,
(∗) represents the measurements and the solid line the simulations.



parameters: different sets of parameters may lead to similar remote sensing
signals (e.g. a low initial water content, inducing water stress, was counter-
balanced by a higher vegetation growth rate, leading to quite conservative
changes in LAI and water extraction). Olioso et al. (1999a,b) obtained similar
results using a different model and a different assimilation procedure. How-
ever, we hope to break the compensation mechanisms by using a combination
of the remote sensing signals in the different spectral domains.

Application to the monitoring of wheat evapotranspiration
and irrigation events over an agricultural area

Evapotranspiration of wheat crop was monitored using a combination of forc-
ing and variational assimilation of reflectance data and thermal infrared data
into the ISBA model over the Alpilles test site. There were 92 wheat fields
representing 30% of the surface. After a wet winter, these crops experienced
a very dry climate since no rain was recorded between end of January and
end of April. High-water stress was recorded and irrigation was performed in
some fields, which was not usual for the area (Olioso et al., 2002a). Irrigation
consisted only in letting water run over an entire field for 1–3 consecutive
days.

In a first step, reflectance data were used for retrieving LAI by means of
a neural net technique (Weiss et al., 2002) and vegetation height using a cali-
brated relationship between TSAVI vegetation index (Transformed Soil Ad-
justed Vegetation Index) and ground measurements of height in some fields
(Olioso et al., 2002b). Like NDVI, TSAVI combines red and near infrared
reflectances (Baret & Guyot, 1991). It includes information on the soil re-
flectance through the ‘soil line’ concept, so that it is almost insensitive to
soil background effect, even at low LAI. Conversely, NDVI may change if
soil surface reflectance changes due to variations in surface soil moisture or
soil roughness. As energy flux calculation is very sensitive to error on the
determination of vegetation height at low vegetation cover, we preferred to
use TSAVI instead of NDVI. Leaf Area Index and vegetation height were
interpolated daily from January to June 1997 and forced into ISBA. Main
ISBA vegetation parameters were set to standard values for wheat (see Olioso
et al., 2002d): minimum stomatal resistance, rsmin = 50 m s−1; thermal rough-
ness (zoh) as a fraction of momentum roughness (zom), zoh = zom/54; albedo,
α = 0.22; depth of the root zone, drz = 1.40 m. Soil properties were set to
their average values derived for the wheat fields in the central zone of the
Alpilles site (where most of the ground investigation was performed): wilting
point, wwp = 0.240 m3 m−3 and field capacity wfc = 0.366 m3 m−3 (Olioso
et al., 2002d). Initial water content was set to field capacity over the area since
winter was very wet.



In a second step, TIR brightness temperatures simulated by ISBA were
compared to airborne INFRAMETRICS measurements. It appeared that in
most fields, simulated temperatures were higher than measurements, illus-
trating that predicted soil water content was not high enough. Several reasons
might be responsible for this “lack” of water, e.g. (i) water holding by the soil
was higher than prescribed, either because of prescribed field capacity was
too low, or prescribed wilting point was too high; (ii) root depth was larger
than prescribed (1.40 m); (iii) water transfers from the water table occurred;
(iv) irrigation was used.

In a third step, it was possible, for some fields, to notice a drop in measured
brightness temperature between two successive INFRAMETRICS measure-
ments, which was not possible to simulate with ISBA without accounting
for an irrigation event between the two measurements (Figure 10). For fields
where this behaviour was noticed, we derived an irrigation amount by compar-
ison to a field in which we knew that no irrigation was applied (this explains
the differential presentation in Figure 10). Irrigation was identified in several
fields and the derived supplies were larger than 50 mm (Figure 11). This was
in agreement with qualitative ground observations. Model simulations were
then corrected by adding these irrigation supplies to the soil water reserve
(sequential assimilation).

In a fourth step, the global level of simulated temperatures was adjusted
to the INFRAMETRICS measurements (variational assimilation) for each

Figure 10. Temperature difference between wheat field 120 (irrigated) and wheat field 101
(non-irrigated) in the Alpilles area; dashed line: ISBA simulation assuming field 120 is not irri-
gated; solid line: ISBA simulation after introducing irrigation on DO2Y 458. (DO2Y stands for
the number of Days for 2 Years). Asterisks (*) represent the measured temperature differences
thanks to the INFRAMETRICS thermal infrared camera.



Figure 11. 5 km × 5 km maps of irrigation supplies (in mm) in the wheat fields of the Alpilles
test zone as derived by sequential assimilation of differential surface temperatures.

field by decreasing wilting points in order to increase the simulated water
soil reserve (Figure 12). Decreases in wilting point as large as 0.09 m3 m−3

were required in some fields. Large changes occurred in many fields in the
Southern and the Western area of the Alpilles site. This may be in agreement
with the distribution of soil types, soils in these two areas containing less
clay than in the central part. One single determination of wilting point and
field capacity was done in the Western area. It gave values in agreement with
a decrease in wilting point: wwp = 0.146m3 m−3 and wfc = 0.337 m3 m−3

(Olioso et al., 2002a). The spatial adjustment of wilting point made it possible
to derive evapotranspiration maps of wheat fields over the test area. Figure 13
displays the map of integrated evapotranspiration from February to the end
of June 1997.

In a fifth step, we compared derived evapotranspiration to field measure-
ments available in three contrasted fields. Soil moisture and soil water potential
measurements and rain amount were used for deriving the integrated evap-
otranspiration using a soil water balance approach (similar to the one used
in Ortega-Farias et al., 2004) giving 305 mm in a field sown in November
1996, 359 mm in a field also sown in November, but which was irrigated in
early April, and 245 mm in a field sown in February 1997. Averaged evapo-
transpiration obtained from assimilation of remote sensing data on the same
fields and over the same period were 287 mm with a standard deviation (S.D.)



Figure 12. Wilting point variations (in m3 m−3) over the 5 km×5 km Alpilles area as computed
from remote sensing data assimilation (variational assimilation of surface temperature).

Figure 13. 5 km×5 km maps of cumulated evapotranspiration (in mm) of wheat crops between
January and June as derived from assimilation of remote sensing data.



of 40 mm, 345 mm (S.D.= 61 mm) and 195 mm (S.D. = 30 mm), respec-
tively. When compared to ground data, the remote sensing estimates led to a
root mean square difference of 31 mm (which was mainly due to a mean un-
derestimation around 10%). However, standard deviations of remote sensing
estimations were high, which made difficult the comparison to ground data.
The high-field variability was mainly due to the high level of water stress
that affected wheat crops this particular year. No rain occurred for almost
3 months and wheat growth was strongly depressed by water shortage: for
example, maximum LAI observed in each of the three previous fields were
1.5, 2.5 and 1, respectively.

Other comparisons will be made in the future, in particular to evapotran-
spiration maps obtained by Jacob et al. (2002a), Wassenaar et al. (2002) and
Olioso et al. (2002c) over the whole area with various energy balance models,
such as SEBAL or the ‘simplified relationship’. Finally, it is important to no-
tice that if these results were obtained from airborne remote sensing data, we
expect that they would have been almost similar if real satellite data were used.
Main differences concerned the spatial resolution of the TIR sensor, which
was 20 m in our case, and the possibility of deriving accurate surface temper-
ature from TIR data. In this study, TIR airborne data were calibrated with a
lot of care, including the comparison to ground measurements, a procedure
that won’t be available in operational situation. Two ways for overcoming this
difficulty may be investigated in the future: (i) using multispectral TIR sen-
sors which allow accurate atmospheric and emissivity corrections (e.g. Jacob
et al., 2004); (ii) exploiting the spatial variability of images in order to de-
rive quantities which are less sensitive to atmospheric correction as it is done
for example in SEBAL (e.g. the works by Moran et al., 1996; Droogers &
Bastiaanssen, 2002; Schuurmans et al., 2003 suggest to assimilate flux maps
instead of surface temperature maps) or by directly taking advantages of the
spatial variability of temperature in the image as it is partially done in this
study (Figure 10) or in previous works, e.g. by Carlson et al. (1990; Gillies
et al., 1997).

Discussion and conclusion

After introducing some crop and SVAT models, we have presented simple
examples illustrating various types of procedures to assimilate remote sensing
data into these models. We showed that these procedures made it possible to
monitor evapotranspiration, soil moisture, plant growth and in some cases
irrigation events.

The results presented in this article illustrated some of the advantages of
using SVAT or crop models in combination with remote sensing data to derive
evapotranspiration and crop water processes.



1. This approach provides a continuous monitoring of evapotranspiration,
while this may be difficult when using classical evapotranspiration map-
ping methods (such as SEBAL). Allen et al. (2005), have shown that an
extrapolation of evapotranspiration from the day of the satellite image to
days between images was possible by deriving crop coefficients for each
image and combining them to the reference evapotranspiration that is com-
puted every day. It will be interesting to compare such method to the use
of crop or SVAT models, in particular in conditions in which crop coef-
ficients may change rapidly while the period between successive remote
sensing data acquisition is large. The issue of interpolating remote sens-
ing estimation is very important since present remote sensing data with a
spatial resolution fine enough to monitor agricultural fields (Landsat data
for instance) cannot always be obtained with an adequate time frequency.

2. Crop or SVAT models may also be used to monitor evapotranspiration
without utilising TIR remote sensing data, which is not possible when using
classical mapping methods. As shown in Figures 8 and 9, the interaction
between crop growth processes and water processes makes it possible to
use reflectances or radar data even in condition of water stress. It may be
also relatively easy, even if this was not yet fully proved, to combine data
from remote sensing systems with different acquisition frequencies (e.g.
SPOT, Landsat and ERS). As a matter of fact, combination of reflectances
and radar data has been proven to be effective in studies by Bouman (1992),
Clevers and van Leeuwen (1996) and Prévot et al. (2003; note that this study
was done by assimilating data into STICS over some of the wheat fields
of the Alpilles-ReSeDA experiment). The combination of reflectances and
TIR data was illustrated in this article over the Alpilles test site. We will
focus future studies on the analysis of possible synergy between various
remote sensing data for driving SVAT and crop models.

3. Another advantage we find when using SVAT or crop models, comes from
the possible simulation of many processes other than evapotranspiration
(soil water balance, crop growth, crop production) as well as their interac-
tions with crop management practices. For instance, ISBA-Ags provides
simulations of biomass and LAI. STICS, as a crop model, provides simu-
lation of crop phenology, biomass production, LAI and yield components.
It may be used for analysing the relation between yield, irrigation and
nitrogen supply management.

Of course, the use of crop and SVAT models has drawbacks. For instance:
(i) they require the setting of a large number of parameters, not all of them
obtainable by assimilating remote sensing data (ISBA and ISBA-Ags have
around 10 additional parameters; STICS has 10 times more); at the moment
no study has fully assessed that problem and little has been done to understand



the interactions between model parameters, expected simulation accuracy,
availability and accuracy of input data (remote sensing data, ancillary param-
eters, meteorological inputs); (ii) crop and SVAT models require continuous
inputs of meteorological data (at least hourly for SVAT models and daily for
crop models) and may be highly sensitive to the spatial variation of such data
(which may be not the case for model exploiting the spatial variability of
images such as SEBAL); (iii) crop and SVAT models require soil information
(at least field capacity and wilting point) and plant physiological information
(stomatal conductance, response to water stress and so on) which are not easy
to obtain over large areas (even if assimilation of remote sensing data may be
used in some cases); (iv) SVAT and crop models require a large computing
power when applied over large areas (and even larger when using assimilation
procedure).

The results presented in this paper also raised some questions. (i) Most
of the results were obtained by using remote sensing data having a high-
acquisition frequency. The data obtained over soybean in Avignon were avail-
able almost every 2 or 3 days. However, as illustrated by the correction pro-
cedure example (Figures 6 and 7), the use of only very few data was enough
for monitoring crop processes with ISBA-Ags (four acquisitions in almost 3
months in this case). The application presented over the Alpilles test area was
also based on the acquisition of reflectance and TIR data almost every 2–3
weeks. On some fields within the same area, Moulin et al. (2002) and Clevers
et al. (2002) showed that four images acquired over the wheat crop cycle with
the SPOT-HRV instrument made it possible the calibration and the correc-
tion of a crop model and a SVAT model. (ii) Variational assimilation over the
soybean dataset showed that it was not possible to retrieve simultaneously
initial soil moisture and crop growth parameters because of compensations
occurring between these parameters. This problem may be the major draw-
backs for implementing variational assimilation procedures. It may be solved,
at least in some situations, if a careful sensitivity analysis of the assimilation
procedure is done in order to define precisely the parameters that should be
retrieved or if some parameters are known from previous studies as for exam-
ple in Wigneron et al. (2002). Olioso et al. (1999a,b) showed, with another
model, that parameter compensations might be used on purpose for reducing
the number of parameters to retrieve without affecting the accuracy of es-
timated evapotranspiration. Another direction for solving this problem may
be based on stochastic procedures that may be used for retrieving groups of
parameters generating evapotranspiration estimation having similar accuracy
(Demarty et al., 2004 and 2005).

Nowadays, the use of assimilation procedures to drive crop and SVAT
models with remote sensing data is still at its beginning. Many assimilation
techniques have been developed for assimilating meteorological data (and



some remote sensing data) in atmospheric modelling for weather forecast or
for assimilating soil moisture or water flow in hydrological modelling. At the
moment, none of them has been applied with significant results to the analysis
of surface processes. Making use of adequate procedures is one of the first
challenges for developing a quantitative use of remote sensing information in
agricultural and environmental issues in the near future.
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