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Charles A. Kantor,1,2,3 Léonard Boussioux,1,3,5 Brice Rauby3,6 and Hugues Talbot3,4

1KLASS, AI Research (AIR)*, 2MILA, Quebec Artificial Intelligence Institute, Montreal, QC, Canada,
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Abstract

Both theoretical and practical problems in deep learning clas-
sification require solutions for assessing uncertainty predic-
tion but current state-of-the-art methods in this area are com-
putationally expensive. In this paper, we propose a new con-
fidence measure dubbed Over-MAP that utilizes a measure
of overlap between structural attention mechanisms and seg-
mentation methods, that is of particular interest in accurate
fine-grained contexts. We show that this classification confi-
dence increases with the degree of overlap. The associated
confidence and identification tools are conceptually simple,
efficient, and of high practical interest as they allow for weed-
ing out misleading examples in training data. Our measure is
currently deployed in the real-world on widely used platforms
to annotate large-scale data efficiently.

Introduction
The vast majority of deep-learning systems today operate
mostly as black-boxes (Castelvecchi 2016; Achille, Paolini,
and Soatto 2019), meaning that it is difficult to track how and
why such systems make decisions. Reasons for this unfortu-
nate state of affairs include the large number of parameters
in such networks; the considerable amount of data neces-
sary for training these networks; the practical difficulties of
curating the training data to ensure that all relevant cases are
included; sensitivity to noise, poor annotations and adversar-
ial attacks (Jin, Dundar, and Culurciello 2015); variation in
input; and much more.

Besides, deep-learning and, more generally, AI systems
operate in an uncertain world that is very different from
the policed variability introduced in most benchmarks. As a
trivial example, systems trained on ImageNet can only rec-
ognize elements within the thousand of its training classes.
While performance may be excellent within that set, it falls
to zero for any class element missing in the training set.
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Contribution
For deep networks to become truly useful, they need to come
with some metric that tells the user how confident in their
predictions they are (Osband 2016). In this way, if a network
is given as input something that they have never trained on,
they might reply that the input is unknown (Blundell et al.
2015). In short, these networks need to be aware of what
they do not know (Nalisnick et al. 2018). If the input is cor-
rupted, ambiguous or noisy, the network should also reply
that it is hesitant to conclude. This ought to be done without
training the network on every possible contingency, which
is impossible by definition (Kendall and Gal 2017).

Reporting confidence and uncertainty is critical in many
systems. For example, diagnostic systems require knowing
how reliable a reported classification is (De Fauw et al.
2018). This is even more so the case of fine-grained clas-
sification since reliable classification must often rely on tiny
details (Soni, Shah, and Moore 2020).

In this work, we advance a new confidence measure called
Over-MAP that utilizes structural attention mechanisms, vi-
sual explanations from deep networks and segmentation
methods, of particular interest to accurate fine-grained clas-
sification. We apply our methodology for real-world prob-
lems starting with large scale crowdsourced and collected
data. Also of practical interest in the field of medical imag-
ing, we specifically applied our uncertainty prediction tool
in the context of wildlife analytics. Our deep learning meth-
ods offer opportunities for population monitoring. We de-
veloped accurate computer vision algorithms and proposed
fine-grained classification innovations, now in deployment
process on global platforms, to encourage the model to fo-
cus on areas of an image that are salient for identification.

Related Work
Deep Neural Networks often provide good estimators for
prediction tasks; however, producing a reliable, stable and
trustworthy result is complicated and sometimes elusive. Es-
tablishing trust and explainability, the latter being a net-
work’s capacity to explain its results, is a way forward.
In fine-grained classification, the problem is compounded
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by the small differences between classes (Soni, Shah, and
Moore 2020), making uncertainty more challenging to esti-
mate and report.

Additive Features Attributions Lundberg and Lee
(2017) point out that in the choice of a compromise between
accuracy and explainability, the former often wins out be-
cause it is more easily quantifiable. Conversely, an accurate
result that cannot be explained is often considered suspi-
cious in critical domains like medical imaging. To address
this problem, the authors present a unified framework for in-
terpreting predictions by identifying a new class of additive
feature importance measures and theoretical results showing
a unique solution in this class with a set of desirable proper-
ties.

Using Predictive Distribution Information Koh and
Liang (2017) use influence functions, a classical technique
from robust statistics, to trace a mode prediction through
the learning algorithm and back to its training data, thereby
identifying training points most responsible for a given pre-
diction. On linear models and convolutional neural net-
works, they demonstrate that influence functions are useful
for multiple purposes: understanding model behavior, de-
bugging models, detecting dataset errors, and creating vi-
sually indistinguishable training-set attacks.

To achieve the same goal of a reliable estimated result,
estimating the uncertainty in prediction is a related but dif-
ferent approach. Indeed Feinman et al. (2017) seek to reduce
uncertainty by actively using adversarial examples. Sensoy,
Kaplan, and Kandemir (2018) design a predictive distribu-
tion for classification by placing a Dirichlet distribution on
the class probabilities and assigning neural network outputs
to its parameters. They fit this predictive distribution to data
by minimizing the Bayes risk with respect to the L2-Norm
loss which is regularized by an information-theoretic com-
plexity term. The resultant predictor is a Dirichlet distribu-
tion on class probabilities, which provides a more detailed
uncertainty model than the point estimate of the standard
softmax-output deep nets. This approach is related to the
use of Gaussian Processes in machine learning (Rasmussen
2003), which are at their heart an interpolation method pro-
viding a variance estimate throughout the domain of inter-
polation. Note that providing a measure of uncertainty is not
the same as providing explainability.

Uncertainty Characterization Kaplan et al. (2018) point
out that machine-learning systems make mistakes that occur
when the trained systems operate in situations beyond their
training domain. Instead of forcing a decision, it is crucial
for ML systems to characterize a degree of uncertainty rela-
tive to the similarity of the current observations to the train-
ing data. It is also important and to explain the uncertainty to
a human decision-maker. This way, the ML system can alert
its users when it realizes that it can no longer provide quality
inferences. Their paper uses subjective Bayesian networks
and evidential neural networks to achieve this uncertainty
awareness iteratively.

Visualization Finally, as a powerful approach to both in-
terpretability and reliability, visualization of trained network
activity has proved useful. Zeiler and Fergus (2014) pro-
pose to visualize the activity within a trained model. Their
approach reveals the trained features to possess intuitively
desirable properties such as compositionality, increasing in-
variance and class discrimination as they explore increas-
ingly abstract layers. They also demonstrate through a se-
ries of occlusion experiments that a standard, trained deep-
learning model is highly sensitive to local structure in the
image and does not just use a broad scene context. In partic-
ular, even small occlusions can significantly change classifi-
cation results.

Related to this approach, Grad-CAM (Gradient-weighted
Class Activation Mapping) (Selvaraju et al. 2017) has
proved particularly useful and seminal since it allows visu-
alization of the relative importance of weights in network
decision-making by back-propagation of the last convolu-
tional layer through the entire network. In Over-MAP, a step
towards uncertainty assessment propose to combine Grad-
CAM back-propagation and a measure of overlap with a
segmented region to obtain a novel notion of confidence,
depending on the amount of weighted overlap between the
two.

Organizational Approach
Our motivation is to provide simple and efficient uncertainty
measures for deep classification networks, in particular in
the context of fine-grained classification.

Efficient Vision Model
In the context of fine-grained classification, small details are
usually overwhelmed by a rich surrounding context.

Gradient-Boosting Visualization We initially imple-
mented Grad-CAM using reverse gradient propagation as an
auditing tool to check whether our networks were likely to
pay attention to the background instead of focusing on the
object or region of interest. Leveraging visual modalities by
focusing on discriminative segments is key, to benefit the
most from sparse visual cues. Thus, factorizing the object
of interest and feeding the resulting picture as a prior to the
classification network could improve performance. We pro-
pose to build an automated particularizing algorithm to cut
down the background. However, merely focusing on fore-
ground objects may induce some limitations, such as ne-
glecting the spatial conjunction between the region of in-
terest and its parts. Jointly employing attention models is
required to exploit subtleties and local differences.

Detection Phase During object detection (as opposed to
segmentation), we use Mask R-CNN, which provides sev-
eral classifications at various locations. Detected bounding
boxes typically spread much wider than the true objects of
interest. As such, object proposals around these regions are
hypothesized to contain one or several objects of interest for
later classification. We trained a deep classification neural
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network building class activation map, using Mask R-CNN
for pixel labels refinement.

Instance Segmentation To improve our fine-grained clas-
sification, we thus generate segmentation masks. We also
used a Mask R-CNN (He et al. 2017) network pre-trained
on the COCO instance segmentation dataset (Lin et al.
2014) and fine-tuned it on a small subset of our dataset.
This approach is possible because for our objects of inter-
est (wildlife analytics), the segmentation task is very sim-
ilar to segmenting everyday objects present in natural im-
ages and therefore, pre-training was very efficient. We an-
notated a small subset (10% of the total data) used for pre-
training ourselves and we qualitatively assessed the segmen-
tation performance. The segmentation results obtained were
good enough to be used in the guided attention context and
for uncertainty prediction.

Generalization: Prior Neural Knowledge Using Visual
Saliency Visual saliency is a concept in computer vision
(Malik and Perona 1990) that relates to areas of images that
are perceived to be important by the human visual system.
Visual saliency detection algorithms associate a high value
to such areas. Recently, deep-learning-based methods have
provided the state-of-the-art for saliency detection (Li and
Yu 2015). In our work, we can use saliency detection instead
of segmentation to highlight areas of interest in our images.

Attention Module for Feed-Forward Deep CNNs As the
gist of our approach is to leverage attention mechanisms,
we used an attention module for feed-forward convolutional
neural networks (CNN), end-to-end trainable. We chose this
architecture for its good classification performances on sev-
eral benchmarks and its ability to separate the spatial atten-
tion mask from the channel attention. In the same vein as
class activation mapping, we built attention before data clas-
sification to avoid getting large background noise areas of
lower relevance and further reducing overlap, synonym of
data-redundancy.

Overlap-Based Precision Estimation
Motivation for Over-MAP One limitation of most deep
learning models is their incapacity to assess their uncer-
tainty. Indeed, classical deep learning models used in clas-
sification are generally very confident in their predictions,
even when they are incorrect (Goodfellow, Shlens, and
Szegedy 2015). This is unfortunate, so it can be interest-
ing to assess uncertainty and use it to reject predictions be-
low a given confidence threshold. A benefit of such confi-
dence measurement is that high-confident predictions might
require less expert confirmations to be considered reliably
annotated data.

Semantic Process To that end, for each image, we pro-
pose a new confidence measure based on the overlap of sev-
eral possible combinations of masks. We propose a stage-
by-stage comparison starting with the intersection analysis

between the CAM-extracted saliency masks and binarized
R-CNN-extracted segmentation masks. We also measure the
overlap between attention mechanism masks and binarized
R-CNN-extractions.

Threshold-Based Rejection For this measure, predictions
are rejected if the overlap is below a parametric threshold
- we provide three specific values to illustrate their impact
and we suggest guidance for managerial choice. A low over-
lap value can be interpreted as the network likely basing too
much its prediction on regions outside of the region of inter-
est, i.e., the background. However, the underlying assump-
tion of this overlap measure is the accuracy of the Mask
R-CNN segmentation. When it failed to segment our im-
ages, we rendered estimation not available, meaning that no
mask is available, and therefore, the overlap with the atten-
tion masks will be 0.

Experiments
In this section, we describe our overall pipeline including
the classification and segmentation process. Specifically, a
foremost automated segmentation is designed to leverage the
shape-based prior knowledge of pictures. Besides, we gen-
erate independently saliency maps from both feed-forward
attention CNNs and gradient-based localization. Finally, we
introduce the threshold-based rejection measure to weed out
specific sightings.

Through our collaborations, we gathered sightings with
date and time information. In this paper, we worked with
1000 annotated labels (level of hierarchy). To evaluate our
algorithms, we experiment with a fine-grained subset of
100,000 labeled pictures. We split the data into a train (80%)
and test (20%) set.

Optimization and Training

For the classification task, we used a Residual Neural Net-
work augmented with an attention module for feed-forward
convolutional neural networks (CNN) pre-trained on Ima-
genet (Deng et al. 2009). We ran our models with varying
batch sizes. We decayed the learning rate factor every 20
epochs. We optimized this steady number through experi-
ments. To prevent over-fitting, we set a weight decay param-
eter and we add a dropout layer (Srivastava et al. 2014) be-
fore the last fully-connected layer. Data-augmentation com-
prises random rotation, flipping, rescaling and cropping dur-
ing training. The best weights on the validation set were
saved and training was interrupted when no improvement
occurred for more than 50 epochs. To obtain preliminary re-
sults without changing the class-balancing parameters, we
worked with a balanced, reduced by 90% dataset version that
we created, containing the 100 most common labels (focus-
ing on hierarchical level of interest), with a same number
of samples. We noted that including our module for feed-
forward CNNs boosts level-oriented classification perfor-
mance by 2% on the test set. Models are all trained within
12 hours.
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Performance Customized Attention Customized Attention Hierarchical Hierarchical
Accuracy Model (Top-1 acc.) Model (Top-3 acc.) Recovered Family Recovered Genus

Micro acc. 54.31 (0.70) 72.93 (0.45) 84.68 (0.40) 72.14 (0.43)
Macro acc. 81.29 (0.61) 92.81 (0.31) 97.64 (0.52) 91.99 (0.23)

Table 1: Foreword generated baseline CNN (before Over-MAP) model performance with and without CNN Attention Module
and Guided-Attention. We provide the average accuracy obtained over 3 different seeds and the standard deviation between
parenthesis. Best accuracies are in bold. We report macro accuracy, which is the total number of correct observations over the
total number of observations, and micro accuracy, which is the average performance of each class. Top-1 and Top-3 refer to the
fraction of test images for which the correct label is among the one or three labels considered most probable by the model.

Figure 1: 1. Saliency heatmap CAM-generated before metamorphosis (left). Metarmorphosed map, fashioned using delineation
for selected relevant area (CAM). 2. Saliency heatmap channel-generated before metamorphosis (left). Metarmorphosed map,
fashioned using delineation for selected relevant area (Spatial Channel).

Extraction in Probability Map
Activations are taken as the pixel-wise probabilities of
the corresponding class. In this stage, CAM is adopted to
collect our picture’s saliency map to localize the region
of interest. The saliency map indicates the representative
regions used by the CNN to identify the object class. In
our process, we decide to extract salient object regions of
images obtained by performing a binarization and connec-
tivity area extraction on the saliency maps. We performed
the same selection to generate attention mechanism maps,
keeping only the most intense areas (see Figure 1). In our
process, we preserve the areas encircled by our dotted lines,
visually corresponding to the RGB values of interest.

For each image, an overlap percentage is computed using
the Sørensen–Dice (DSC) and Intersection over Union (IoU)
coefficients. We set X1 as the ensemble of pixels kept by
convolutional-block translated maps and X2 as the ensemble
of pixels kept by CAM-extraction.

DSC :=
2|X ∩ Y |
|X|+ |Y |

and IoU :=
|X ∩ Y |
|X ∪ Y |

where Y is the map generated from the segmenting net-
work. The Sørensen index equals twice the number of ele-
ments common to both sets divided by the sum of the num-
ber of elements in each set. As compared to Euclidean dis-
tance, the Sørensen-Dice distance retains sensitivity in more
heterogeneous data sets and gives less weight to outliers.
Both coefficients equal zero of there is no overlap between
the masks, and 1 if the masks are identical. From a Machine-
Learning perspective, they both ignore true negatives, i.e.,

they are insensitive to the size masks’ size compared to that
of the background.

Distribution Analysis

We now consider the overlap distribution for the whole test
set. We select several thresholds on the distribution curve
to determine a relationship between a rejection ratio and a
level of precision. We introduce and compute the probabil-
ity of getting a correct class prediction given that images
taken into account yield an overlap greater than the vary-
ing threshold (see left column of tables 2 and 3). In Table
2, the overlap is computed by considering attention mod-
ule for feed-forward CNNs together with automated seg-
menatation. Therefore, it can only be applied to module-
augmented DNNs. We compare the performance with our
standard score giving full accuracy. In Table 3, the overlap
is computed between the CAM-generated saliency maps and
those from the automated segmentation, which can be ap-
plied to a broader range of networks since an additional at-
tention module is not used, and thus not necessary for this
second context. We also provide in Figures 2 and 3 a scatter
plot representation of macro test accuracies from top-1 and
top-3 columns of the tables. Top-1 and top-3 refer to the frac-
tion of test images for which the correct label is among the
one or three labels considered most probable by the model.
We report macro accuracy, which is the total number of cor-
rect observations over the total number of observations. Up-
per right points are those of interest, showing an improve-
ment in accuracy with a high percentage of the data remain-
ing.

15319



Overlap Data proportion remaining
threshold Model Top-1 acc. Top-3 acc. after threshold cut

0% Attention-augmented 80.95 (0.45) 93.35 (0.20) 100%

20% Attention-augmented 80.92 (0.55) 93.49 (0.22) 90.47 (3.09)%
40% Attention-augmented 81.80 (0.67) 93.81 (0.29) 68.93 (8.64)%
60% Attention-augmented 83.05 (1.25) 94.00 (0.38) 30.6 (9.97)%

Table 2: Model performance on selective dataset subset considering the overlap between spatial attention masks and masks
issued from Mask R-CNN segmentation. Results have been run with 3 different seeds. We provide the mean and the standard
deviation in parenthesis.

Overlap Data proportion remaining
threshold Model Top-1 acc. Top-3 acc. after threshold cut

0% Standard 79.54 (0.70) 91.72 (0.49) 100%
0% Attention-augmented 80.95 (0.45) 93.35 (0.20) 100%

20% Standard 87.09 (0.58) 97.34 (0.33) 82.9 (0.14)%
20% Attention-augmented 90.52 (0.77) 96.62 (0.20) 88.69 (0.91)%

40% Standard 90.55 (0.51) 98.64 (0.20) 46.64 (0.52)%
40% Attention-augmented 88.32 (0.82) 97.55 (0.39) 63.34 (1.07)%

60% Standard 91.87 (0.96) 98.79 (0.48) 11.8 (0.24)%
60% Attention-augmented 89.44 (1.26) 98.06 (0.67) 25.13 (2.45)%

Table 3: Model performance on selective dataset subset considering the overlap between masks issued from CAM-generated
maps and masks issued from Mask R-CNN segmenting network. Results have been run with 3 different seeds. We provide the
mean and the standard deviation between parenthesis.

Discussion
For a given overlap threshold, accuracy improves more
using Grad-CAM masks than attention masks (Tables 1-2).
However, attention masks can advantageously be computed
directly during the inference without reference, whereas
Grad-CAM requires a back-propagation pass after each
inference.

Uncertainty Assessment
From the results on Table 2, we see that accuracy scores are
improved using a thresholded map based on attention mod-
ule version. Moreover, the more we select samples with high
overlap, the higher the score. However, measurable improve-
ment only occurs for high levels of selection: +2% in Top-1
accuracy if we discard about 70% of the samples.

Given the limited amount of improvement, in that setting
we cannot recommend using this technique as a confidence
measure.

The results from Table 3 using our proposed Grad-CAM
overlap measure tell a different story. In this case, effecting
only a small amount of selection (12-18%) results in im-
proved accuracy scores by 6-10 percentage points, which is
more significant. Accuracy keeps rising with an increased
level of selection beyond 18%, but to a lesser degree.

We conclude that using Grad-CAM overlap with a

segmentation mask as a confidence measure allowed us to
weed out ambiguous or noisy samples from the training
and test dataset, and that once these samples were removed,
performance remained at a high level.

Recommendation
Given the continuity of our approach, we recommend
using our approach whenever a binary segmentation map
of the input data can be sufficiently easily derived. We
can wonder what happens if the automated segmentation
is not correct. This is in fact not a problem. Even a mask
which is incomplete or incorrect to some degree helps with
the classification by focusing attention to the salient part.
This approach might be possible when the segmentation
task is sufficiently similar to the task of segmenting other
objects present in a common dataset, and therefore, when
pre-training might be very effective. As a solution, our high
performance in high level labels classification also narrows
down the manual annotation by experts.

Our approach’s critical element seems to be the qual-
ity of the segmentation on the one hand, and the method
used to highlight the network’s attention on the other. The
use of Mask R-CNN or U-Nets is currently a reasonable
approach for segmentation but may not be optimal. We
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Figure 2: Influence of rejecting uncertain classification on
the Top-1 macro test accuracy score by different methods,
with results from Tables 2 and 3. Disk diameters are pro-
portional to data remaining. Darkest disks represent baseline
accuracy without overlap-driven rejection.

plan to test and evaluate other customed methods based on
variants.

The reason why overlap-based selection works well
needs to be analyzed, and in particular, our basis hypothesis,
i.e., that we reject noisy or ambiguous samples. This can be
done by simple inspection of the rejected samples.
Our approach is general enough to be applied to any
fine-grained classification tasks, especially in biomedical
imaging. We plan to extend it to other classification tasks in
future work.

Conclusion

We have sought to improve the fine-grained classification
by deep learning, using in particular attention-based CNNs.
To this end, we have proposed a novel confidence measure
for classification based on the overlap of various generated
maps obtained by segmentation, attention module for feed-
forward CNNs, and saliency maps. This approach is use-
ful to assist fine-grained identifications and to help annotate
large-scale wildlife data. We also showed that our models
are highly accurate when choosing the right overlap thresh-
old and more robust to detail-rich environments. Our ap-
proach is general enough to be applied to other fine-grained
recognition tasks. Our tools are now in a deployment phase
in recognized institutions and provide solutions to a real
need in the research community, showing potential impact
and connection to citizen scientists.
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Model: ResNet + Attention, Comparison: Attention 
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Model: ResNet + Attention, Comparison: Grad-CAM

Figure 3: Influence of rejecting uncertain classification on
the Top-3 macro test accuracy score by different methods,
with results from Tables 2 and 3. Disk diameters are pro-
portional to data remaining. Darkest disks represent baseline
accuracy without overlap-driven rejection.
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