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Machine-Learning-Assisted Intelligent Imaging Flow
Cytometry: A Review

Shaobo Luo, Yuzhi Shi,* Lip Ket Chin,* Paul Edward Hutchinson, Yi Zhang,
Giovanni Chierchia, Hugues Talbot, Xudong Jiang, Tarik Bourouina,* and Ai-Qun Liu*

1. Introduction

Imaging flow cytometry is an analytical tool
extensively used to detect, sort, and count
phytoplankton, cells, and other micropar-
ticles.[1–5] By combining high-throughput
flow cytometry with various imaging acqui-
sition technologies such as multispectral
imaging,[6] imaging flow cytometry is capa-
ble of capturing thousands, even millions
of images with multiparametric morphol-
ogy information, allowing automated
high-throughput data collection.
However, human experts are often
required for performing image analysis
on traditional imaging flow cytometry.

Intelligent imaging flow cytometry
(IIFC), as shown in Figure 1, which com-
bines imaging flow cytometry and artificial

intelligence, has been demonstrated for imaging-based high-
throughput biosensing.[7–18] Artificial intelligence (particularly
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Imaging flow cytometry has been widely adopted in numerous applications such
as optical sensing, environmental monitoring, clinical diagnostics, and precision
agriculture. The system, with the assistance of machine learning, shows
unprecedented advantages in automated image analysis, thus enabling high-
throughput measurement, identification, and sorting of biological entities.
Recently, with the burgeoning developments of machine learning algorithms,
deep learning has taken over most of data analysis and promised tremendous
performance in intelligent imaging flow cytometry. Herein, an overview of the
basic knowledge of intelligent imaging flow cytometry, the evolution of machine
learning and the typical applications, and howmachine learning can be applied to
assist intelligent imaging flow cytometry is provided. Perspectives of emerging
machine learning algorithms in implementing future intelligent imaging flow
cytometry are also discussed.
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deep learning) plays a critical role in IIFC by providing new
approaches of image enhancement, reconstruction, correction,
and more importantly automated object recognition and identi-
fication of cells and other targets of interest. Advances in artificial
intelligence lead the development of IIFC. Several instances of
IIFC using deep-learning models, such as VGGNet,
GoogleNet, ZooplanktoNet, DenseNets, and deep active learning,
have been demonstrated.[19–22] A typical IIFC is shown in
Figure 1, which combines flow cytometry, image acquisition
technologies (laser/image sensors), and artificial intelligence.
The system supports multiparametric analysis and high-
throughput detection of the properties of a single cell from hun-
dreds to millions of cells per second. IIFC is widely used in clin-
ical diagnostics,[23] environmental monitoring,[24] and other
potential biosensing applications.[3,25–28]

In this Review, we focus on the recent developments in IIFC
from the perspective of imaging technologies, the evolution of
machine learning for computer vision, and machine learning tech-
niques that have been developed specifically for IIFC. The emergent
imaging technologies such as multispectral imaging,[6] multi-field-
of-view imaging,[29] and serial time-encoded amplified microscopy
(STEAM)[30,31] are discussed to reveal more distinctive features of
images. To understand cytometry imaging, we introduce the fun-
damentals of visual understanding and the evolution and knowl-
edge of deep learning, which will increase the understanding of
machine learning in a visual perception. Next, we review the inter-
esting applications of machine learning in this field. Finally, we
summarize the Review and give the perspectives of future develop-
ment of machine-learning-assisted IIFC.

2. Imaging Technologies for Flow Cytometry

Technologies to obtain images with both high temporal and high
spatial resolution are critical but challenging.[6] The fundamental
trade-off in imaging technologies is sensitivity, acquisition
speed, and the amount of acquired information. There are
two typical sensors used for imaging: 1) multipixelated imaging
devices (camera-based), such as the charge-coupled device (CCD)
and complementary metal–oxide–semiconductor (CMOS),[32]

and 2) single-pixel photodetectors, e.g., the photomultiplier tube
(PMT) and avalanche photodiode (APD).[33]

The camera-based imaging flow cytometry has a dense 2D
array of CCD or CMOS sensors, such as the commercial systems
ImageStream (Figure 2a) and FlowSight, both developed by
Millipore.[34] They support multispectral imaging acquisition
up to 12 images per cell and three different imaging modes—
bright-field, scattering, and fluorescence—based on the
technique time delay and integration (TDI).[35–37] The TDI sensor
includes multiple rows of CCD or CMOS sensors. When applied
to imaging, the detecting objectives move along the column
direction and the imaging data are shifted row by row. The sys-
tem can read out a weak imaging signal without motion blur even
with increasing exposure time. Unfortunately, data transfer
between rows without gain (e.g., electron multiplication) also
restricts the system to the limit of 3000 cells per second.

To increase the throughput, multi-field-of-view imaging flow
cytometry[29] was developed, as shown in Figure 2b. This method
projects multiple fields of view into a 2D camera, such as micro-
fabricating several microfluidic channels with N�M microlens
arrays to capture multiple images simultaneously. Motion blur is
a big problem in this kind of imaging cytometry when the targets
move too fast and cannot be resolved by the imaging sensor
under a fixed exposure time. Temporal coded excitation[38] is a
technique used to avoid motion blur, which uses a pseudo-
random-code-modulated excitation pulse to illuminate the object.

PMT sensors[33] provide superb sensitivity for photon signals
with a high dynamic range, high bandwidth, and low dark noise,
which serve as perfect candidates to implement high-throughput
imaging flow cytometry. Normally, a laser scanner is used to gen-
erate the images from the time-domain signals collected from
PMTs such as STEAM,[30,31] as shown in Figure 2c. STEAM uses
a near-infrared laser light with a wide spectral bandwidth as the
illumination. The broadband laser pulses are encoded to 2D with
two diffraction gratings for scanning and illuminating the cell.
Eventually, the rainbow signal is collected by an APD detector.
STEAM can achieve a throughput of 100 000 cells per second.
Other examples using PMTs include fluorescence imaging by
radiofrequency-tagged emission[39,40] for high-speed fluores-
cence imaging, spatial-temporal transformation cytometry, etc.

Figure 1. Overview of intelligent imaging flow cytometry.
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The emerging commercial imaging flow cytometry empowers
high-speed cell sorting and microscopic imaging. For example,
the ImageStreamXMk II uses high-resolution and high-
sensitivity objective lenses to capture bright-field, dark-field, and
fluorescence images.[37] The system contributes significantly to
the advancement of a wide range of quantitative, statistically robust
cellular analyses, cellular classification, cell-to-cell interactions,
microalgae morphology, population dynamics, etc. FlowCam is
another imaging flow cytometer that was originally developed by
Fluid Imaging Technologies (Yarmouth, ME, USA) to study oceanic
plankton.[41] It uses a camera and flash illumination to snap the
image of the moving particles in real-time. An image-processing
software with machine learning algorithms is run to generate a sin-
gle grayscale or color image of single cells. The software supports
the extractions of different features such as area, area-based diame-
ter, length, width, equivalent spherical diameter, and others prop-
erties.[42] The Submersible Imaging FlowCytobot is another type of
imaging flow cytometer that can be submerged in water up to 40m
depth for 6months.[43] It can also transmit acquired data to the
cloud in real time. The Submersible Imaging FlowCytobot works
similarly to a standard flow cytometer that uses hydrodynamic
focusing to focus the sample stream and laser (e.g., 635 nm red
diode laser for chlorophyll) to excite the particles for light scattering
and fluorescence imaging, which allows us to analyze cells with size
smaller than 150 μm.

3. Machine Learning

3.1. Machine Vision and Image Analysis

Imaging flow cytometry technologies enable capturing and
analyzing images of cells with high quality and high throughput.

In addition to the challenges in image acquisition, storage, and
processing, image analysis also requires significant efforts for
the development of imaging flow cytometry, which promotes
advances in machine vision.

The working principle of a machine vision system[44] is
elaborated here. First, an object is converted into an image signal
through a machine vision device such as a camera. Then, the
image signal is sent to a dedicated image-processing system
to obtain the morphological information of the captured object.
According to the pixel brightness, color, and spatial distribution,
the imaging system performs various algorithms on those sig-
nals to extract the characteristics of the target object. Next, a con-
trol operation of the equipment is generated according to the
result of the discrimination algorithms. The goal of computer
vision is to fully understand the image of the electromagnetic
wave from the reflection of the object surface, mainly the visible
and infrared parts.

3.2. Traditional Machine Learning

Since 1960,[45] a theoretical framework for object recognition has
been conceptualized, as well as several general vision theoretical
frameworks, visual integration theoretical frameworks, and
many other new research methods and theories have emerged.
Consequently, the processing of general 2D information and the
research on the model and algorithm of 3D images have greatly
improved and the machine has developed vigorously with emerg-
ing new concepts and theories. Before the invention of deep
learning, the image analysis methods could be divided into the
following five categories: image perception, image preprocess-
ing, feature extraction, inference prediction, and recognition.[46]

In the early-stage development of machine learning, among the

Figure 2. Optical systems of typical imaging flow cytometry. a) Optical configuration of ImageStream imaging flow cytometry. b) Multiple field-of-view
imaging flow cytometer. c) Schematic illustration of STEAM flow analyzer. Reproduced with permission.[6] Copyright 2016, Royal Society of Chemistry.
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dominant statistical machine learning groups, little attention was
paid to features. The design principle of early-stage development
of machine learning is to combine pixel values of the image in a
statistical or nonstatistical form to express the part of or the
whole object that one wants to identify or detect.

In 2001, a face-recognizing approach that was capable of work-
ing in real time using Haar-like features to locate a face was
launched.[47] Proposed in this approach, the Viola/Jones facial
detector is a powerful binary classifier consisting of several sim-
ple classifiers, and is still widely used today. However, at the
inception of the Viola/Jones facial detector, it was considered rel-
atively time-consuming in the learning phase because adaptive
boosting (Adaboost) is used to train the cascade of simple clas-
sifiers, such as finding the object of interest (e.g., a face). The
model needs to split the input image into multiple rectangular
blocks and then submit them to the cascaded weak detectors.
If the patch passes through all stages of the cascaded weak detec-
tors, it is classified as a positive example. Otherwise, the algo-
rithm will reject the patch immediately. This whole process is
repeated multiple times on various hierarchies of image scales.

In 2009, another important feature-based milestone work
called deformable part models (DPM) as shown in Figure 3
was developed.[48] The DPM decomposes the object into partial
subobjects, which follows the idea on the image model intro-
duced in the 1970s, enforces a set of geometric constraints
among them, and treats the simulated potential object center
as a potential variable. The DPM excels at object detection tasks
(using bounding boxes for localizing objects) and defeating tem-
plate matching as compared to other object detection methods
that were popular at that time whereby the histogram of oriented
gradient (HoG)[49] feature, as shown in Figure 4, was used to gen-
erate the corresponding “filter” for various objects. The HoG fil-
ter can record the edge and contour information of the object and
use it as a filter at various positions in different pictures. When
the output response value exceeds a certain threshold, the filter
and the object in the picture are treated as highly matched, thus
completing the detection of the object.

The HoG is a good feature descriptor that has been success-
fully deployed in human face detection problems.[50] The HoG
has an advantage on capturing the dense gradient information

of images, which is similar to scale invariant feature transform
(SIFT),[51] but the HoG demands fewer computation resources.
The HoG is also resistant to the lighting conditions; e.g., it
reduces shadows’ influence and other illumination variations
such as smaller rotation and translation of the particle objects
with the gradient and histogram algorithms. As shown in
Figure 4, the HoG calculates on small blocks in a window
of 8� 8 pixels. In that window, the direction of
gradient θ and the magnitude G are calculated by

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
, θ ¼ arctan

Gx

Gy
(1a)

Gx ¼ Hx � Iðx, yÞ, Gy ¼ Hy � Iðx, yÞ (1b)

where Iðx, yÞ is the input, Hx is the vector ½�1 0 1 �, and

Hy is the vector
�1
0
1

2
4

3
5.

Finally, a gradient histogram of those 8� 8 blocks is generated
and put into nine bins. Each bin corresponds to the angles of
direction of the gradient in 0�, 20�, 40�, 60�, 80�, 100�, 120�,
140�, and 160�. As the gradient and magnitude of the image
are mostly sensitive to the lighting, normalization on the histo-
gram is desirable. The gradient histogram would result in more
robust feature sets because it can eliminate the effect of varia-
tions when the lighting conditions are varying.

Local binary pattern (LBP) is a popular texture feature extrac-
tion method with an excellent performance in face
detection.[52,53] LBP excels in differentiating bright pixels from
a dark background, which is used to describe edges, lines, spots,
etc. The procedure of LBP feature extraction is shown in
Figure 5a. First, the original input image is arranged into
individual small cells with 8� 8 pixels. Then, the LBP feature
of each cell is calculated by comparing the intensity of the eight
neighboring pixels with that center pixel and generating an 8 bit
binary number in which 0 or 1 indicates that the intensity of the
neighboring pixel is lesser or higher than the center pixel, respec-
tively, as shown in Figure 5b.

Figure 3. Detections obtained with a single-component person model. Example detection obtained with the person model. The model is defined by a
coarse template, several higher-resolution part templates, and a spatial model for the location of each part. Reproduced with permission.[48] Copyright
2008, IEEE.
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Demonstrated examples of differentiating between Jurkat cells
and white blood cells using traditional machine learning with
imaging flow cytometry include the imaging flow cytometry data
analysis that uses the features generated from CellProfiler and
compares with the gradient boosting (GB)[54] classifier or a ran-
dom forest (RF)[55] classifier to recognize the Jurkat cells.[56]

Another example, such as identifying the label-free white blood
cells using the features generated from CellProfiler and compar-
ing with five common classifiers such as K-nearest neighbors
(KNNs), AdaBoost, GB, RF, or a support vector machine
(SVM).[57] The SVM classifier[58] is one of the most popular dis-
criminative classifiers before the era of deep learning, which
translates the vector of training data into a high-dimensional
space and performs the discrimination. By doing this, the opti-
mal hyperplane can be generated, which splits the dataset into
different classes via a training process. SVMs can be expressed
as the following optimization problem

minimize
W ∈ H,b ∈ R,ξi ∈ R

subject to

8>>>><
>>>>:

1
2
WTW þ C

Xn
i¼1

ξi

yiðWTφðxiÞ þ bÞ > 1� ξi

ξi ≥ 0, i ¼ 1, : : : , n

(2)

where the two-class problem (binary problem) was defined as
y ∈ {1, �1}. W is the weight, ξ is the margin constant, b is the
bias, and C ∈ ℛþ is the regularization constant. The φ function

optionally projects the vector of training data into a high-
dimension feature space H by the so-called kernel trick, where
the SVM can generate the boundary of decision surfaces easily.
A good choice for φ is to use the radial basis function kernel as
Kðxi, xjÞ ¼ φðxiÞTφðxjÞ and Kðxi, xjÞ ¼ expð�γjjxi � xjjj2Þ, γ > 0
for the kernels.

A distance-based classifier such as the Mahalanobis
distance classifier is an extension of the least-squares multiclass
maximum likelihood classifier taking cross-correlations into
account.[59,60] The Mahalanobis distance classifier measures
the number of standard deviation distance d with the calculated
distance of x to a dataset and a mean ui. The covariance matrix is
defined as the equation

P�1
i and T is a standard transpose

operation. The classification result is predicted by measuring
the distance from x to classes i and assuming the result has the
minimal distance from the cluster of true predicted class.
The Mahalanobis distance can be reduced to the Euclidean
distance when the covariance matrix is the identity matrix.
The equation of the Mahalanobis distance is expressed as[60]

dðx, uÞ ¼ ðx � uiÞTΣ�1
i ðx � uiÞ (3)

Machine vision is used to determine whether a set of image
data contains a specific object, image feature, or motion state.
This problem can sometimes be solved automatically by an algo-
rithm, but so far, there is no single method that can be widely
used to perform well in varied situations, i.e., to identify any

Figure 4. Working principle of histograms of oriented gradients.

Figure 5. Local binary patterns. a) The procedure on local binary patterns histograms. b) The process steps on how to calculate local binary patterns.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2021, 3, 2100073 2100073 (5 of 21) © 2021 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


object in unpredictable environments. The prior art can only
solve well in the recognition of specific targets, such as
simple geometric figure recognition,[61] face recognition,[62]

printed or handwritten document recognition,[63] and vehicle
recognition.[64] Unfortunately, the recognition often requires a
specific lightening in a certain background, and designated target
postures. Designing features by hand requires a lot of experience
such as a profound understanding of the field. The algorithm
may also require a lot of debugging. Moreover, machine vision
engineers not only need to manually design features, but also
need to design a more suitable classifier algorithm for the prob-
lem. The combination of designing features and choosing a clas-
sifier at the same time to achieve the best results is a difficult
task, requiring well-trained experts.

3.3. Deep Learning

Machine vision systems are developed such that users do not
need to manually design features and choose classifiers. It is
desirable for machine vision systems to learn features and clas-
sifiers simultaneously, which means that when a user designs a
certain model, the input is just a picture, and the output is its
label. With the rapid development of deep learning, the emer-
gence of convolutional neural networks (CNNs) has made this
idea possible, and the research of computervision based on deep
learning has also developed rapidly. LeCun proposed the first
CNN in LeNet[65] in 1998, as shown in Figure 6. The input image
is a 32� 32 grayscale image. The first layer undergoes a set of
convolution sums and generates six 28� 28 feature maps (C1),
which pass a pooling layer to get six 14� 14 feature maps (S2)
and pass a convolution layer to generate sixteen 10� 10 convo-
lution layers (C3). Next, they pass the pooling layer to generate
sixteen 5� 5 feature maps (S4). It was used to classify hand-
written digits 0–9 with two fully connected layers as the final
layers. In 2012, a deeper and wider neural network AlexNet was
published, which achieved a breakthrough with proposed 10%
higher accuracy than traditional methods in ImageNet large scale
visual recognition challenge (LSVRC).[66] Nowadays, deep learn-
ing has been applied to a variety of areas and huge progress has
been made in those fields, including visual recognition,[67]

speech recognition,[68] biomedicine,[69] and natural language
processing.[70]

Deep-learning methods are well suited to constructing archi-
tectures that can be trained end to end from image data to achieve
cell classification. This approach reduces manual laboring in the
traditional approach, as shown in Figure 7. It can automatically
build multiple levels of representation of data with abstraction.
For example, the first layer studies the edge or color information.
The second layer studies the motif information. The third layer
may learn the eyes and nose information. Finally, the deep-
learning method can learn the weights for the classifier to detect
the human face. The importance layers in the deep neural
network are the convolutional layer, active layer, and pooling
layer (Figure 8), e.g., the CONV layer (convolutional layer
(Convolution)þ the ReLU layer (Activation)), and the fully
connected layer (FC layer).

The convolution function is used to extract the features from
the input. The basic operation of convolution is shown in
Figure 9a. On the left side of the figure, the input has a dimen-
sion of 32� 32� 3. It convolutes with a kernel H with a size of
3� 3� 3. Finally, a feature with 30� 30� 3 dimensions is gen-
erated, which is calculated by sliding the kernel from the top-left
corner to the bottom-right on the input line by line and one layer
of output is generated by the operating of element by element
multiplied and accumulated with the kernel. For example, ten
kernels will generate ten layers of output.

The ReLU layer, as shown in Figure 9b, is a rectified linear
unit activation function. It implements a nonlinear “trigger”
function with the formula y ¼ maxðx, 0Þ, while the input has
the same size as the output layer. The ReLU layer outputs zero
when the input is negative. Compared with other nonlinear func-
tions such as a sigmoid, hyperbolic tangent, and absolute of
hyperbolic tangent, the networks with ReLU learn severalfold
faster than other nonlinear functions. The max-pooling layer
as shown in Figure 9c is used to reduce the resolution of the
features. It makes the features more robust with lower noise
and distortion. For instance, the pooling layer cuts down the sam-
ple from the input dimension of 224� 224� 64 into an output
dimension of 112� 112� 64 with a filter size of 2� 2 and stride
with two steps.

One or several fully connected layers are normally added to the
last layer of a CNN and acts as a classifier for the final decision.
The full connected layer always takes a vector of m input (X) as
the input volume and generates n output (Y) with a function that
is expressed as

Figure 6. The architecture of the LeNet-5 neural network. A CNN for handwriting digital recognition. Reproduced with permission.[65] Copyright 1998,
IEEE.
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Figure 8. A convolutional neural network.

Figure 9. Layers of a CNN. a) Convolutional operation. b) Rectified linear unit (ReLU). c) Max-pooling operation.

Figure 7. Comparison between a) traditional machine learning and b) deep learning for classification.
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Yn ¼ WXm þ b (4)

where m is the input dimension, which is computed with the
weight matrix W with matrix multiplication and added to a bias
offset b.

The learning and optimization process is used to generate the
optimal values of the trainable parameters such as kernel weights
in convolutional layers and the weights in dense layers. The
parameters are optimized by the backpropagation algorithm,
which uses a gradient descent (GD)[71] method to optimize the
model iteratively by minimizing a loss function (e.g., cross-
entropy loss). The three frequently used GD methods are batch
gradient descent, stochastic gradient descent, and minibatch
gradient descent. Softmax regression[72] of the classification layer
outputs was used to train the network, which can be written as

yj ¼
expfxkj gPn
i¼1 exp fxki g

, j ¼ 1, 2, : : : , n (5)

where xki is in the input and yj is the output probability.
During the training, the loss is calculated from the model

input with forwarding propagation whereby the loss difference
backward propagates from the output to the input layer to
generate the gradient of each layer. The parameters of every layer
are updated with that gradient and the parameters of the model
are converged after the iterative process.

3.4. Recent Advances in CNNs

A CNN is a powerful neural network that is widely used for
image classification and segmentation. The CNN is inspired
by the natural visual perception mechanism from the human
perception system. The early attempt was the proposed neocog-
nitron system in 1980.[73] By improving the structure of the neo-
cognitron, LeCun proposed LeNet-5 to solve handwritten digits,
which established the modern framework of the CNN.[65] LeNet-
5 gave a basic idea of the CNN that uses a three-tier architecture:
convolution, downsampling, and nonlinear activation functions.
A CNN extracts image space features using convolution and
reducing image average sparsity with downsampling. The activa-
tion function takes a hyperbolic tangent or sigmoid function.
A multilayer neural network as the final classifier uses sparse
connection matrices between layers to avoid large computational
costs. LeNet-5 can be trained using the backpropagation algo-
rithm and derive an effective representation of the original
image, which allows the CNN to recognize the object directly
from the original pixels with minimal preprocessing.
However, due to the lack of large-scale training data and limited
computing power, LeNet-5 could not work well on complex prob-
lems. From 1998 to 2010, the developments of neural networks
was intense in the machine learning community, but it was not
highly visible to the computer vision community. The rich data-
set, the advanced theories in deep learning such as improving
neural architectures, optimization methods (stochastic gradient
descent, Nesterov accelerated descent,[71] etc.), and the hardware
improving (e.g., GPUs, low-power CPUs, fast- and low-latency
disks such as single-shot detectors (SSDs)) have brought cost-
effective hardware to the world, making deep neural network

computation affordable, and opening the door for deep learning.
In 2010, a GPU neural network was published.[74]

In 2012, AlexNet was published,[66] which is relatively deeper
than LeNet’s network and won the first champion of the 2012
ImageNet Challenge,[66] as shown in Figure 10. AlexNet not only
has deeper neural networks, but also learns more complex fea-
tures in the rich image dataset than LeNet. AlexNet introduced
the ReLU function instead of tanh as its activation function,
which is convex and has no vanishing gradient for positive
weights, considerably reducing computation time in the learning
phase. Furthermore, AlexNet used the dropout technique to clip
certain neurons during training to avoid overfitting. It also intro-
duced max-pooling technology and significantly reduced training
time with a GPU. After the success of AlexNet, the researchers
proposed other architectures, such as VGG,[75] GoogleNet,[76]

residual network (ResNet),[77] MobileNetV2,[78] SENet,[79] and
BiT–L (another version of ResNet).[80]

Regarding the structure, one of the CNN’s development direc-
tions is focused on increasing the number of layers. As the
ILSVRC 2015 champion, ResNet has 20 times more layers than
AlexNet and 8 times more layers than VGGNet. By increasing the
depth, the network can use the increased nonlinearity to derive
the approximate structure of the objective function while yielding
better performance than previous networks. However, this also
increases the overall complexity of the network (more layers) and
makes the network difficult to optimize and easily overfit. In
addition, the optimization problem becomes more difficult when
the network becomes deeper, with a larger parameter space.
Therefore, simply increasing the depth of a network will result
in higher training error. For example, the accuracy of a 56-layer
network is not as good as that of the 20-layer network. In view of
the effect from the layer, ResNet was designed with a residual
module that allows us to train deeper networks.[77]

The core idea of ResNet is to add a direct connection channel
(X) to the network, known as identity shortcut connection.[81]

The network structure of traditional deep learning is a nonlinear
transformation that is performed on the input, whereas ResNet
allows the original input information to be passed directly to the
subsequent layers, as shown in Figure 11. Traditional convolu-
tional networks or fully connected networks will have more infor-
mation loss during information transmission. Consequently,
they will also cause gradients to disappear or explode and make
deep networks unable to train. ResNet solves this problem to a
certain extent as it protects the integrity of the information by
directly bypassing the input information to the output. The entire
network only needs to learn the part of the difference between
input and output, simplifying the learning objectives and diffi-
culty. A comparison of VGGNet (e.g., VGG-19) and ResNet is
shown in Figure 12. The biggest difference between VGGNet
and ResNet is the use of bypass connection to directly connect
the input to the subsequent layers, which is also called shortcut
or skip connections.

Various methods have been proposed to improve network
performance in various aspects. The recent improvements of
CNN include the convolutional layer, pooling layer, activation
function, loss function, regularization, optimization, and fast
computing techniques, for example, the inverted residual block
(IRB), which was first introduced by the MobileNetV2[78]

architecture that includes a 1� 1 expansion convolutional
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layer, a depthwise convolution layer, and a 1� 1 projection. The
depthwise convolution layer and projection layer are referred to
as the depthwise separable convolution adopted by Xception.[82]

The depthwise separable convolution[83] splits the traditional con-
volution operation into two separated steps by two convolutions:
the depthwise convolution and the pointwise convolution. The

depthwise convolution uses a separable filter with one filter
per input channel to produce the output channel, as shown in
Figure 13a. The depthwise convolution is represented as

X̂k
x,y,z ¼ δ

X
i, j

F̂k
i,j,z·Xk�1

xþi�1,yþj�1,z þ bkz

0
@

1
A (6)

where δ is an activation function, and b is a bias; F̂k is the depth-
wise filter in which the zth channel in F̂k only calculates with the
zth channel of Xk�1 and produces the feature X̂k in the zth
channel. A pointwise convolution uses a 1� 1 filter to produce
the final activation map as shown in Figure 13b. Compared to the
traditional convolution, the computation saving of the depthwise
separable convolution is 1

N þ 1
D2

k
, where N is the number of output

channels, and Dk is the kernel size. Furthermore, the IRB also
increases the memory efficiency with its unique architecture.
In addition, the skip connection structure is introduced to the
IRB, which allows the network to access features in earlier stages
and leads to a deeper neural network with high efficiency.

Metric learning is used to learn a distance function that meas-
ures similarity whereby similar targets are associated with a
small distance, and dissimilar ones with a large distance.[84]

Deep metric learning (DML) currently mainly uses the deep-
learning-based basement network to extract embedding, and
then uses the L2 distance to measure the distance in the embed-
ding space. In general, DML consists of three parts: a feature
extraction network to map embedding, a sampling strategy to
combine the samples in a minibatch into many subsets, and
finally the loss function calculates the loss on each subset as
shown in Figure 14. For example, in deep metric learning with

Figure 11. Residual learning building block. The core idea of ResNet is to
add a direct connection channel to the network, known as identity shortcut
connection. The network structure of traditional deep learning is a non-
linear transformation that is performed on the input while ResNet allows
the original input information to be passed directly to the subsequent
layers.

Figure 10. ImageNet challenge.
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contrastive loss[85] the sampling algorithm randomly selects an
example as an anchor and then randomly selects another image
from the rest of the images of the same class as the positive pair
and selects one image from the other classes as the negative pair.
Popular loss functions are contrastive loss,[85] triplet loss,[86] etc.

The contrastive loss is used to train Siamese networks. For the
pair of input (xi, xj), it is a positive pair if xi and xj are semantically
similar and a negative pair if they are dissimilar. The contrastive
loss (L) is expressed as[85]

L W mð Þ, b mð Þ� �
M
m¼1

� � ¼
X
i, jð Þ∈S

h df xi, xj
� �� τ1

� �

þ
X
i, jð Þ∈D

h τ2 � df xi, xj
� �� � (7)

where h(x)¼max (0, x) is the hinge loss function, W is the
weight, and τ1 and τ2 are two positive thresholds with τ1 < τ2.
S ¼ f i, jð Þg are the similar pairs and D ¼ f i, jð Þg are the dissimi-
lar pairs, and the Euclidean distance df between x and y is
expressed as

df x, yð Þ ¼ jjf xð Þ � f yð Þjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f xð Þ � f yð Þð ÞT f xð Þ � f yð Þð Þ2

q
(8)

where x, y ∈ χ. The triplet loss is expressed as[86]

L xa, xp, xn
� � ¼ max

�
0,m þ jjf xað Þ � f xp

� �jj22
� jjf xað Þ � f xnð Þjj22

� (9)

where xa and xp are in same class and xn is in a different class.

4. Deep Learning in Imaging Flow Cytometry

Intelligence imaging flow cytometry that combines imaging flow
cytometry and artificial intelligence has emerged as a promising
platform for imaging-based high-throughput biosensing.[87,88]

With the developments of cell-imaging techniques, the imaging
system could reflect the rich sets of cell information that allow
insightful and more rigorous analysis based on the fluorescence
signal through immunolabeling and the scattering signal origi-
nated from the interaction of the cell structures with light. Based
on the spatial arrangement of the cell images, the analysis prob-
lem can be split into two classes: 1) images that contain multiple
cells and 2) images that contain only a single cell.

When one image contains multiple cells, detection and track-
ing problems occur. The detection task localizes all objects in the
image with a bounding box such as when applying deep learning
to detect mitosis. As to the evolution with deep learning, two-
stage models such as Faster-RCNN are used to detect cells
infected by malaria parasites[89] and one-stage models such as
SSD to detect neural cells.[90] Compared with the previous mod-
els, for instance, RCNN, Faster-RCNN and SSD provide better
performance on speed and detection accuracy. Nowadays, seg-
mentation and detection joint approaches such as DeepLab[91]

and Mask-RCNN[92] excel with the advantage of multitask
learning.

For the detection and tracking task, a pipelined real-time imag-
ing processing algorithm based on a CNN has been demon-
strated for imaging flow cytometry.[10] This algorithm uses a
simplified CNN to identify microbeads and cells. A microfluidic
channel is monitored by a CMOS camera via a microscope.
Then, the real-time image is processed by a real-time moving
object detector (R–MOD) system as shown in Figure 15. The

Figure 12. Examples of network architecture for ImageNet. The VGG-19
model is on the left, a plain network with 34 parameter layers is in the
middle, and a residual network with 34 parameter layers is on the right.
The dotted shortcuts increase dimensions. Reproduced with permission.[77]

Copyright 2016, IEEE.
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R–MOD system contains two parts: 1) multiple-object tracking
and 2) single-cell image acquisition and identification. The
multiple-object-tracking algorithm is composed of three parts:
image segmentation, detection, and tracking. The image seg-
mentation algorithm is implied with a CNN, which performs
a regression operation to convert the grayscale microscopy image
to a probability density map. The detection algorithm finds the
mean u and variance σ of the cell object. First, it finds the

maximum pixel in the density map as the mean u. Then, the area
around the maximum pixel (pmax) with σ is cropped from the
density map. σ is expressed as

σ2 ¼ 0.5pmax (10)

This process continues until all Gaussian distributions in the
density map have been removed. The tracking algorithm uses the

Figure 13. a) Depthwise convolution. b) Pointwise convolution with 256 kernels.

Figure 14. General pipeline of deep metric learning. It includes a base network for extracting features to the latent embedding space, sampling strategies,
and loss functions.
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Hungarian algorithm to detect objects in the consecutive images
and assigns an object number to the detected objects. About
21� 21 pixels are cropped around the center of the object.
A classifier-based CNN is used to determine the cell type without
background noises from other undetermined objects. They also
do not account of the natural containment particles in the water.
Furthermore, the computation power of this classifier-based
CNN is high and needs to be run on a high-end GPU worksta-
tion. Future considerations on object detection and tracking algo-
rithms for imaging flow cytometry include recurrent YOLO,[93]

SiamMask,[94] Deep SORT,[95] and Tracking R-CNN.[96]

Classification and segmentation are two fundamental prob-
lems in computer vision as well as single-cell image analysis.
The image classification as in Figure 16a predicts a label
(Giardia) for an input image, and the segmentation, as shown
in Figure 16b, splits the digital imaging into subparts or super-
pixels such that every superpixel has the same meaningful label.
In general, the segmentation is a subset of the classification,

which predicts in pixel level. In an image with multiple cells,
the algorithms split the image of multiple cells into single cells
or subcellular parts and predict the label of each single cell or
subcellular part.

Early attempts used fully convolutional neural networks
(FCNNs) on segmentation and classified cell such as the
HepG2 cell specimen.[97] The FCNN[98] was a type of
state-of-the-art architecture on the image segmentation task in
2014 and was trained to classify the HepG2 cell specimen into
seven categories. Compared with the classification network, the
FCNN replaces the fully connected layers to 1� 1 convolutional
layers. The classification network outputs a label for each image,
but the FCNN gives a pixel label for every pixel. It learns a func-
tion that maps the input pixel to the output pixel label. The FCNN
and CNN are different because the last three layers in the CNN
network are 1D vectors. The calculation method no longer
involves convolution. Therefore, the 2D information is lost.
However, in FCNNs all three layers are converted into a 1� 1

Figure 15. R-MOD (real-time moving object detector) system. Reproduced with permission.[10] Copyright 2017, Springer Nature.
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convolution kernel with the equivalent vector length correspond-
ing to the multichannel convolutional layer and the latter three
layers in the FCNNs are all in convolution-based calculations. In
the whole model, all layers are convolutional layers and without
fully connected layers.

Recently, U-Net and its variations have dominated cell-level
segmentation and counting.[99,100] U-Net is a generic FCNN with
concatenation at multiple scales. The U-Net architecture takes
the features from multiple layers into account and provides good

localization with utility on the context for pixel-level classifica-
tion. Figure 17 shows the basic structure of the U-Net. The left
part is the contracting path, which follows the standard approach
of the traditional architecture of the CNN. In every block, it has
two 3� 3 unpadded convolutions with each followed by the
ReLU layer. At the end of each block, a 2� 2 max-pooling down-
sampling layer is attached. The right side is the expansive path
with consecutive blocks of 2� 2 up-convolutional layer and 3� 3
convolutional layers. To increase the local information,

Figure 16. Classification and segmentation. a) Classify one image into a label; b) segment multiple cells into an individual.

Figure 17. U-Net: the U-Net architecture takes the features frommultiple layers into account and provides good localization with utility on the context for
pixel-level classification. Reproduced with permission.[99] Copyright 2015, Springer.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2021, 3, 2100073 2100073 (13 of 21) © 2021 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


information from the contracting path is combined with concat-
enation. At the end of the whole network, a 1� 1 convolutional
layer is applied to map the feature map from 64 to 2 classes in the
depth direction (cell and membrane).

Examples of using deep learning in bioparticle classification
and detection on noncommercial IIFC and commercial IIFC
are summarized in the Table 1 and 2, respectively. One of the
examples is a deep CNN used as an early-warning system for
anthrax detection.[8] As shown in Figure 18, a dataset was built
with different anthrax samples such as Bacillus anthracis, Bacillus
thuringiensis, Bacillus cereus, Bacillus atrophaeus, and Bacillus
subtilis. A deep CNN, HoloConvNet, was built with CNN for
anthrax classification. It has three convolutional layers, two fully
connected layers, and achieves a classification accuracy of 96.3%.

An ImageJ plugin interface to U-Net is shown in Figure 19 to
enable users to count, segment, and detect cells.[100] U-Net with
the ImageJ interface offers a step-by-step protocol for cell
detection, counting, and segmentation, such as prediction of

the center of the cell and delineation of the outlines of individual
cells. U-Net can achieve results comparable with the level of
human experts. For training, it requires a relatively low number
of annotated images with special data augmentation, which
needs more data for training on particularly difficult cases.

A deep CNN-based real-time cell sorter[22,101,102] with a proc-
essing speed of 2000 events per second was also demonstrated,
as shown in Figure 20. However, the system requires a complex
hybrid hardware/soft data management system 8 GPUs
(NVIDIA GeForce GTX 1080 Ti) for image processing. First,
the suspended cells in a sample tube are injected into an intelli-
gent IACS, which are hydrodynamically focused to a single
stream. Then, the cells are imaged by virtual-freezing fluores-
cence imaging.[103] Next, the images are analyzed by a real-time
intelligent image processor. Finally, the cells are sorted by a dual
membrane, which receives decisions from the image processor
and uses a cell push–pull mechanism for sorting. The whole
process is operated in an automated and real-time manner.

Table 1. Summary on machine learning articles by new imaging flow cytometry methods.

Application Imaging Application Label Algorithm Result Hardware Reference

Cell classification Time-stretch
imaging

Classify the cells.
THP1, MCF7,
MB231, PBMC

Label-free CNN model 99% accuracy Nvidia Tesla K40c [112]

Cell sorting Cell sorting Label-free CNN model NA Nvidia GTX-1080Ti [22]

Natural water
samples analysis

Lens-free
holographic imaging

Phase-contrast color
image

reconstruction and
identification of

plankton

Label-free CNN model NA NA [13]

Bioaerosol sensing Frequency-division-
multiplexed (FDM)

microscope

Label-free bioaerosol
detection

Label-free Resnet based Accuracy
>94%

NA [11]

Real-time inference
and cell sorting

Time-stretch
imaging

Cell sorting and
cancer cell
classification

CNN model 95% accuracy Nvidia Tesla P100
GPU and Nvidia K80

GPU

[15]

Image construction
and classification

Lens-less time-
resolved holographic
speckle imaging

– Label-free CNN model – Nvidia GeForce GTX
1080Ti GPU

[21]

Detection of cellular
drug responses

Time-stretch
imaging

Drug-treated and -
untreated cell
classification

Label-free Linear SVM/
CNN model

Accuracy of 92% NA [9]

Cell cycle analysis Microscopy Label-free cell-cycle
classification of
Jurkat cells

Label-free LSBoosting 70.2� 2.2% (G1), 90.1� 1.1% (S),
96.8� 0.3% (G2), and 44.0� 8.4%

(M)

NA [7]

Parasite detection Lens-less time-
resolved holographic
speckle imaging

Parasitic detection Label-free CNN model 68–76% (at the lower end of our
tested concentrations) to�38–39%
(at the higher end of our tested

concentrations)

Nvidia GTX 1080 [113]

Detection Microscopy Detection beads Label-free CNN model 93.3% mAP Nvidia GTX 1080 [10]

Chemical imaging
flow cytometry

Microalgal and
cancer cell detection

Label-free CNN model >99% for Euglena gracilis, >98%
for white blood cells, >98% for

PBMCs, >94% for Jurkat cells, and
>93% for HT29 cells

NA [17]

Reconstructing cell
cycle and disease
progression

Microscopy Cell cycle of Jurkat
cells/diabetic
retinopathy

Labeling CNN model Accuracy of 98.73% GPU [114]
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Another example of the deep-learning-enabled portable imaging
flow cytometer was developed by Gorocs et al.[13] This device
combined holographic imaging and a neural network for the
rapid detection of algae in water. The resolution of the device
was limited to 25 μm and was only suitable to identify large
organisms.

A highly accurate algorithm based on a sophisticated dense
CNN[20] is shown in Figure 21 for high-throughput MCF7 cancer
cell detection in blood.[21] It uses deep learning to reconstruct the
cell image based on magnetically modulated lensless speckle

imaging, which uses a periodic magnetic force and lensless
time-resolved holographic speckle imaging to generate target
cells tagged with magnetic beads through antibodies in three
dimensions. Next, the system detects those cells through a
densely connected pseudo-3D CNN. It automatically detects the
rare cells of interest based on the spatial–temporal features under
a controlled magnetic force with a good sensing performance. But
its speed is limited to 100 fps, and it has to rely on a high-
performance platform with an Nvidia GeForce GTX 1080Ti GPU.
High-end GPUs empower the training of complex deep neural

Table 2. Summary on machine learning articles on commercial IFC.

Application Imaging Application Label Algorithm Result Hardware Reference

Cell imaging analysis ImageStream or
FlowSight
(Amnis)

Label-free cell-cycle
classification of Jurkat cells/

segment image and
extraction of features/

multiclass machine learning

Label-free Gradient boosting and random
forest

92% accuracy NA [56]

Plankton
classification

NA Plankton classification Label-free AlexNet, GoogleNet, VGG,
Resnet, DenseNet

F1< 95% Nvidia TitanX
GPU

[106]

Microalgae
classification

FlowCAM Microalgae classification Label-free CNN model 88.59% accuracy Nvidia Titan X
Pascal

[105]

Plankton and coral
classification

NA Automated system for
monitoring underwater

ecosystems

Label-free AlexNet, GoogleNet, VGG,
Resnet, DenseNet, MobileNetV2,

NasNet

F1<¼ 95% Nvidia TitanX
GPU

[107]

Plankton
classification

NA Plankton image classification Label-free AlexNet, GoogLeNet, VGG16,
ResNet, PyramidNet

86.3% accuracy Nvidia Titan X
Pascal GPU

[108]

Identification of
white blood cells

ImageStream
(Amnis)

Identification of white blood
cells

Label-free AdaBoost, gradient boosting,
K-nearest neighbors, random
forest, and support vector

machine (SVM)

99% accuracy NA [57]

Leukemia
monitoring

ImageStream
(Amnis)

Label-free leukemia
monitoring

Label-free Linear SVM 98.2% accuracy NA [104]

Figure 18. Holographic deep learning for anthrax detection. Reproduced with permission.[8] Copyright 2017, American Association for the Advancement
of Science.
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Figure 19. U-Net: deep learning for cell counting, detection, and morphometry. Top: segmentation; bottom: detection. Reproduced with permission.[100]

Copyright 2019, Springer Nature.

Figure 20. Intelligent image-activated cell sorting. Reproduced with permission.[22] Copyright 2020, Royal Society of Chemistry.
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networks, but this is a major hurdle for mass deployment of these
machine learning algorithms to commercial imaging flow cytom-
etry for real-time object identification and classification because of
the high cost and high power consumption.

Machine learning algorithms are used in commercial imaging
flow cytometry for phytoplankton analysis, label-free cell-cycle
identification, white blood cell identification, label-free leukemia
monitoring, etc. In the early days, traditional feature extraction
and classifiers,[56,57,104] such as AdaBoost, GB, KNN, RF, and
SVM, were used. With the emerging of machine learning algo-
rithms, researchers moved their interest to deep-learning-based
algorithms,[105–108] for instance, the conventional CNN,
AlexNet,[66] VGG,[75] GoogleNet,[76] ResNet,[77] DenseNet,[20]

NasNet,[109] PyramidNet,[110] etc. These deep-learning algorithms
are optimized to achieve high prediction accuracies and require
high computational resources, such as the Nvidia GTX 1080Ti,
which have high power consumption, are expensive, and occupy
a huge footprint when designing IIFC.

5. Conclusion

In this Review, we presented recent developments in intelligent
imaging flow cytometry, such as image acquisition technologies
and artificial intelligence. We introduced different imaging
technologies such as a multispectral imaging system, multi-
field-of-view imaging, and serial time-encoded amplified micros-
copy. Furthermore, we depicted the basic knowledge of visual
understanding and deep learning, which is essential to under-
stand machine learning in imaging flow cytometry. We also

discussed examples using deep learning in imaging flow cytom-
etry by summarizing the challenges and limitations encountered.

IIFC has shown broad usages in environment monitoring,
clinical diagnostics, and other biosensing applications. IIFC is
expected to improve the imaging quality for revealing more dis-
tinctive features in cell images while maintaining a high through-
put. Various imaging modalities have been proposed to satisfy
this target, such as optofluidic time-stretch microscopy. It ena-
bles submicrometer resolution in visualizing cell structures with-
out compromising the throughput of cell imaging.[111] To apply
deep learning for IIFC, big datasets are required to train the
deep-learning model to obtain a high-accuracy classifier.
Unfortunately, the development of a large-scale dataset for imag-
ing flow cytometry is quite challenging. Labeled datasets of bio-
particles requires intensive input from experts to compare with
biolabeling or morphologic signals for improving the productiv-
ity and quality of the dataset labeling. Furthermore, to increase
the intelligence and precision, more advanced deep learning
models in general object detection need to be explored in the
IIFC field. Recently, efficient deep-learning models such as
MobileNetV2[78] and SENet[79] have attracted great interest in
the research community to achieve comparable classification
accuracy on cost-efficient hardware, and as IIFC is mass
deployed to the board area, the cost of the whole system will
be considered in the future. Efficient deep-learning models, such
as those for mobile processors or low-bit deep-learning models,
are worthy of interest. Furthermore, deep-learning-assisted IIFC
can provide a solution for the characterization and classification
of cells without the need for fluorescent labeling, which would
benefit its future applications.

Figure 21. A classification network based on a densely connected neural network. Reproduced with permission.[21] Copyright 2019, Springer Nature.
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