Neeraj Peter Rivière
email: peter.riviere@toulouse-inp.fr

Kumar Singh

Yamine Aït-Ameur
email: yamine.aitameur@toulouse-inp.fr

EB4EB: A Framework for Reflexive Event-B

Keywords: Reflection, refinement and proof, meta-models, model instantiation, new proof obligations, theories, Event-B

Event-B is a correct-by-construction rigorous statebased method offering features for formal modelling and proof automation. An inductive proof schema allows to prove system properties, in particular invariants.In the current setup, verifying other properties such as deadlock-freeness, reachability, event scheduling, liveness, etc., requires adhoc modelling.These properties can be established partially using model checkers or by using third party interactive provers.Other crucial aspects, such as deadlock-freeness, are difficult to express. The availabilty of a meta-modelling mechanism for explicit manipulation of Event-B concepts would allow to deal with higher order modelling concepts and to define generic properties and associated proof obligations.

In this paper, we propose EB4EB, an Event-B based modelling framework allowing to manipulate Event-B features explicitly based on meta modelling concepts. This framework relies on a set of Event-B theories defining data-types, operators, welldefined conditions, theorems and proof rules. It preserves the core logical foundation, including semantics, of original Event-B models. Based on the instantiation of the introduced features at meta level, deep and shallow modelling approaches are proposed to exploit this framework. In addition, a case study is developed to demonstrate the use of our framework applying the deep and shallow embedding approaches. The whole framework is supported by the Rodin platform handling Event-B models and proofs.

I. INTRODUCTION

Motivation. Metamodelling is an engineering activity offering the capability to describe the core abstraction and properties to which models must adhere together with model analysis techniques. It has been widely adopted in the field of software engineering, particularly in model-driven engineering. Nowadays, formal methods have adopted such metamodelling techniques for developing theories axiomatising metamodels to represent higher level reasoning concepts used in the specification, development and verification of complex systems [START_REF] Bertot | Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions[END_REF], [START_REF] Fallenstein | Proof-producing reflection for HOL -with an application to model polymorphism[END_REF], [START_REF] Muñoz | Structural embeddings: Mechanization with method[END_REF], [START_REF] Sozeau | The MetaCoq Project[END_REF].

Event-B [START_REF] Abrial | Modeling in Event-B: system and software engineering[END_REF] is a state-based formal method supporting the development of complex systems following a correct-byconstruction approach. It is based on set theory and first-order logic, and it uses the Rodin [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in Event-B[END_REF] integrated development environment. Currently, the core modelling features of the Event-B language enable abstract system modelling as state-transitions systems, refinement based development, and interactive and automatic proofs. There are also a number of other RODIN plugins available to help with other modelling requirements, such as composition/decomposition [START_REF] Silva | Shared Event Composition/Decomposition in Event-B[END_REF], Theory plug-in [START_REF] Abrial | Proposals for mathematical extensions for Event-B[END_REF], [START_REF] Butler | Mathematical extension in Event-B through the Rodin theory component[END_REF], code generation [START_REF] Fürst | Code Generation for Event-B[END_REF], [START_REF] Méry | Automatic code generation from Event-B models[END_REF] etc.

Among these plugins, the Theory plug-in [START_REF] Abrial | Proposals for mathematical extensions for Event-B[END_REF], [START_REF] Butler | Mathematical extension in Event-B through the Rodin theory component[END_REF] offers powerful means to extend Event-B enabling for the development of additional data types, theories, and operators to extend the core modelling concepts and features of Event-B. For example, Dupont et al. [START_REF] Dupont | Event-b hybridation: A proof and refinement-based framework for modelling hybrid systems[END_REF], [START_REF] Dupont | Formally verified architecture patterns of hybrid systems using proof and refinement with event-b[END_REF] have developed a set of theories to integrate continuous features in the Event-B modelling language for modelling differential equations.

Currently, Event-B framework only offers standard proof obligations (POs) that are generated automatically: invariant preservation, theorems proofs, variant decreasing, event feasibility, guard strenghtening, etc. For additional verifications, such as deadlock freeness, liveness, reachability, and domain specific properties, the designer relies on other tools based on interactive proof systems and model checkers. They require ad hoc modelling from the designer for each formalised model. There is a lack of access and explicit manipulation of Event-B concepts, thus it is impossible to express generic properties at a higher order level associated with extra reusable POs in a theory that permits automatic generation of such POs for any designed model. Our claim. We claim that it is possible to express additional POs schemas using meta-modeling techniques without changing Event-B or Rodin, to automatically generate new POs for each Event-B model. Our contribution. This paper proposes an Event-B-based modelling framework, EB4EB, that allows for the explicit manipulation of Event-B features using meta modelling concepts. To cover Event-B modelling language semantics, this framework relies on a set of Event-B theories that define data-types, operators, well-defined conditions, theorems, and proof rules. It allows for the manipulation of static and dynamic aspects of Event-B modelling features, to encode new proof obligations related to other types of properties once and for all. Deep and shallow modelling approaches are proposed to exploit this framework based on the instantiation of the introduced features at the meta level. In addition, a case study demonstrating the use of our framework using the deep and shallow embedding approaches is developed. The Rodin platform, which handles Event-B models and proofs, underpins the entire framework.

As far as we know, this is the only reflection framework in the Event-B language that allows explicit meta-level manipulations of Event-B concepts, including the support of higher level reasoning mechanisms by defining datatypes, operators, well-definedness, and new POs in theories.

Organisation of the paper. This paper is organised as follows. Section II presents related work and the core concept of Event-B language is described in Section III. Sections IV describes EB4EB framework. Section V illustrates the development of meta-theories for Event-B. In Section VI, we present an application of the Event-B meta-theories by applying deep and shallow embedding on the clock model. We demonstrate a new reasoning mechanism related to deadlock freeness in Section VII. In Section VIII, we provide an assessment and Section IX concludes the paper with future work.

II. RELATED WORK

When two languages have the same or different semantics, one language can be mechanized into another by embedding the source logic of the first modelling language into the host modelling language. Deep and shallow embeddings are two widely used methods. Deep embedding describes explicitly the semantics and syntax of the source language in the host logic, whereas shallow embedding simply translates the semantics of the source language in the host logic [START_REF] Boulton | Experience with embedding hardware description languages in HOL[END_REF] (i.e. the translator carries the semantics). Both approaches have their own pros and cons. Deep embedding requires more modelling effort to address structural and semantic elements of the source language. As a result, while this approach may be difficult to grasp and tedious, it offers full access, in the host logic, to the elements of the source modelling language for formal verification. On the other hand, the shallow embedding approach is straightforward and easy to use once the semantics of the source modelling language is encoded in the modelling language transformation. It leads to a limited access to the source modelling language constructs for formal verification, in particular when tracing verification results (e.g. counterexamples). Munoz et al. [START_REF] Muñoz | Structural embeddings: Mechanization with method[END_REF] proposed a structural embedding approach in which only the language structure is deep/shallow embedded in the host logic and the source language expression is replaced by the host logic expression.

There are few formal modelling languages that allow for abstract reasoning about models characteristics while also working on concrete models. In our case, the source and host modelling languages are the same (i.e. Event-B); it is a reflexive relationship. Such work has already been carried out in various formal techniques, such as in Coq [START_REF] Bertot | Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions[END_REF] with the syntactic representation of Coq in Coq with Template Coq [START_REF] Anand | Towards certified meta-programming with typed template-coq[END_REF] and the semantics in MetaCoq [START_REF] Sozeau | The MetaCoq Project[END_REF]. Similarly, a reflection API has been developed in Agda [START_REF] Van Der | Reflection in Agda[END_REF], HOL [START_REF] Fallenstein | Proof-producing reflection for HOL -with an application to model polymorphism[END_REF], Idris [START_REF] Christiansen | Elaborator reflection: Extending idris in idris[END_REF], and Lean [START_REF] Ebner | A metaprogramming framework for formal verification[END_REF] to automate and/or simplify the definition of tactics. Some of them are motivated by other factors such as code generation and meta-programming.

Here, we discuss some approaches for Event-B. In [START_REF] Mehta | Proofs for the Working Engineer[END_REF] [20], the authors provided a comprehensive description of the logic's syntax with a type discipline and the intended semantics, including soundness, for an untyped first-order fragment of logic. In [START_REF] Schmalz | The logic of event-b[END_REF], Event-B logic is defined in order to describe modelling components like guards and invariants, as well as to express and discharge proof obligations. In this work, the abstract syntax of Event-B, including the concepts of theory and proof, is provided as a three-valued semantics in terms of a shallow embedding in Isabelle/HOL. Note that the above mentioned work mainly address the semantics of Event-B modelling components, whereas our work targets the verification of important properties such as liveness, deadlock freeness, and event scheduling, among others, by developing meta-modelling concepts in order to manipulate Event-B concepts using deep and shallow embedding. In addition, it is developed in the Even-B language itself, using Event-B theories expressed using the Theory plugin.

III. EVENT-B

Event-B [START_REF] Abrial | Modeling in Event-B: system and software engineering[END_REF] method is based on set theory and first order logic (FOL). It relies on a powerful state-based modelling language where a set of events models state changes.

A. Event-B Contexts and Machines

Contexts (Tables I(a)) describe all the static elements of the models through the definition of carrier sets s, constants c, axioms A and theorems T ctx .

Context

Machine Refinement I(b)) describe model behaviour. It consists of Variables x, Invariants I(x), Theorems T mch (x) and Variants V (x). It defines a transition system represented as a set of guarded events evt recording state changes using a Before-After Predicates (BAP). Events which decrease the variant are tagged as convergent otherwise they are ordinary. Invariants I(x) and Theorems T mch (x) ensure safety properties, while Variant V (x) ensures convergence properties for convergent events.

CONTEXT Ctx MACHINE M A MACHINE M C SETS s SEES Ctx REFINES M A CONSTANTS c VARIABLES x A VARIABLES x C AXIOMS A INVARIANTS I A (x A) INVARIANTS THEOREMS T ctx THEOREMS T mch (x A) J(x A , x C) ∧ I C (x C) END VARIANT V (x A) EVENTS EVENTS EVENT evt C EVENT evt A REFINES evt A ANY α A ANY α C WHERE G A (x A , α A) WHERE G C (x C , α C) THEN WITH x A :| BAP A (x A′ , α A : W (x A′ , α A , α A , x A , x A ′) x A , α C , x C , x C ′) END THEN END x C :| BAP C (α C , x C , x C ′) END END (a) (b) (c)
(1) Theorems (THM) -Core Well-definedness (WD). The WD POs are associated to all built-in operators of the Event-B modelling language. Once proved, these WD conditions are used as hypotheses to prove other POs related to invariants, theorems, feasibility, etc.

A ⇒ TctxA ∧ I A (x A) ⇒ T mch (x A) (2) Initialisation (INIT) A ∧ G A (α A) ∧ BAP A (α A , x A′) ⇒ I A (x A′) (3) Invariant A ∧ I A (x A) ∧ G A (x A , α A) preservation (INV) ∧BAP A (x A , α A , x A′) ⇒ I A (x A′) (4) Event A ∧ I A (x A) ∧ G A (x A , α A) feasibility (FIS) ⇒ ∃x A′ • BAP A (x A , α A , x A′) (5) Variant A ∧ I A (x A) ∧ G A (x A , α A) progress (VAR) ∧BAP A (x A , α A , x A′) ⇒ V (x A′) < V (x A) TABLE II: Machine Proof obligations (6) Event A ∧ I A (x A) ∧ J(x A , x C) ∧ G C (x C , α C) Simulation ∧W (α A , α C , x A , x A′ , x C , x C′) (SIM) ∧BAP C (x C , α C , x C′) ⇒ BAP A (x A , α A , x A′) (7) Guard A ∧ I A (x A) ∧ J(x A , x C) Strengthening ∧W (α A , α C , x A , x A′ , x C , x C′) (GRDS) ∧G C (x C , α C) ⇒ G A (x A , α A)

B. Event-B extensions with Theories

END

TABLE IV: Global structure of Event-B Theories

In order to handle more complex modelling concepts not supported by native Event-B, an extension of Event-B based on the mathematical definitions has been proposed in [START_REF] Abrial | Proposals for mathematical extensions for Event-B[END_REF], [START_REF] Butler | Practical theory extension in Event-B. In Theories of Programming and Formal Methods -Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday[END_REF]. This extension, like Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL: A Proof Assistant for Higher-order Logic[END_REF] or PVS [START_REF] Owre | PVS: A prototype verification system[END_REF], allows to define new theories by introducing new datatypes, operators, theorems and proof rules. They can be further used in the core development of Event-B models.

-Theory description. Table IV shows core modelling elements for developing new theories. The core modelling elements are classified in different clauses known as datatypes, operators, axiomatic definitions, axioms, theorems and proof rules. A theory can be parameterized by Type in the clause TYPE PARAMETERS. The description of the data-type, operator, theorems and proof rules use the type parameters. Datatypes (DATATYPES clause) can be defined with constructors, and each constructor can have some destructors. Note that the destructors can also have inductive definition.

A theory may contain several operators of different nature (<nature> tag), expression or predicate. These new defined operators extend the capabilities of the Event-B core language and can be used directly in core modelling components like expression and predicate. Operators may be defined in two ways. First, explicitly in the direct definition clause where the operator is equivalent to an expression, and second, axiomatically in the AXIOMATIC DEFINITIONS clause where the behaviour of the operator is expressed by a set of axioms. Last, a theory defines a set of theorems proven with the help of defined operators and axioms.

Many theories have been defined for sequences, lists, groups, reals, differential equations, and so on [START_REF] Butler | Practical theory extension in Event-B. In Theories of Programming and Formal Methods -Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday[END_REF], [START_REF] Dupont | Event-b hybridation: A proof and refinement-based framework for modelling hybrid systems[END_REF].

-Well-definedness (WD) in Theories. For each defined operator, a useful clause is well-definedness (WD) conditions. This clause ensures that the definition is correct. A WD proof obligation is generated when the operators are used in an Event-B expression. A correct definition is related to mathematical correctness, but it is also related to any other condition necessary if the operators guarantee some properties.

All the WD POs and theorems are proved using the Event-B proof system.

-Event-B proof system and its IDE Rodin. The theories extension for Event-B is available as a plug-in. Theories are tightly integrated in the proof process. Depending on their definition (direct or axiomatic), operator definitions are expanded either using their direct definition (if available) or by enriching the set of axioms (hypotheses in proof sequents) using their axiomatic definition. Theorems can be imported as hypotheses and used in proofs just like any other theorem. The proof system is partially automatic, the other parts are interactive. Many tools are available to help the proof like predicate provers or SMT solver.

IV. OUR FRAMEWORK

The primary objective of the developed framework is to offer the capability to explicitly manipulate Event-B features as first-order objects.

A. Methodology

For this purpose, we define a three steps methodology. At the first step, we rely on the definition of Event-B theories describing states and events as data-types associated to a set of operators allowing to manipulate them. In addition, a couple of axioms defining these operators are introduced. These axiomatic definitions formalise the state-based semantics of Event-B models (contexts and machines). Finally a set of proven theorems are given. They formalise relevant properties on states, events and operators. The result of this step is a Meta-theory for Event-B defined once and for all.

In the second step, any specific Event-B model is obtained by instantiating the above mentioned theory to define states, events and related properties. Two possible instantiations are identified: shallow and deep embeddings.

Last, the third step entails proving the correctness of the instantiated models, i.e. proving that models are well-defined, invariants and theorems of the specific Event-B model hold, and other user expressed properties are true. In the meantime, the theorems of the theory are instantiated as well, they are useful for the proofs as they provide, for free, additional hypotheses.

B. Deep or Shallow modelling

As depicted in Figure 1, once the Event-B Metatheory(D.1&S.1) is described, Event-B models are described following two approaches.

1) Deep embedding (see Figure 1a): It consists in defining machine instances as an Event-B context (D.2) where the generic type parameters of the meta-theory are instantiated by sets describing machines state variables and events. Similarly, all Event-B machine constructs such as event guards and before-after predicates, invariants, theorems and so on are formalised. They are defined using the operators introduced in the Meta-theory. This instantiation generates two kinds of POs. First, it generates the WD POs for each operator application to ensure that the Event-B machine is well-defined. Second, the POs related to the predicate operators that define machine consistency like invariant preservation, variant decreasing corresponding to WD POs are produced.

These obtained POs are proved using the Event-B Rodin theorem prover or other theorem provers.

2) Shallow embedding (see Figure 1b): In shallow embedding, an additional generic machine (S.2) is defined at the meta-theory level. In the same line of TLA + [START_REF] Lamport | Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers[END_REF] this machine formalises the behavioural semantics of Event-B. Using the meta-theory features, this machine defines abstract state variables and two abstract events Init and Progress recording respectively state variables initialisation and state transitions. Then, instantiation is defined using the native Event-B refinement where the first Init event is refined using the initialisation after-predicate and second for each event of the concrete machine (model), the Progress event is refined using the before-after predicates issued from the meta-theory. Note that the Progress is a collection of ordinary and convergent events used directly in the generic abstract model.

In this case, unlike from the deep modelling approach, proving the generated proof obligations relies on the Event-B inductive principle introduced by this generic machine.

Our framework provides meta-theory for deep modelling (D.1) and shallow modelling (S.1), and an abstract machine for shallow instantiation (S.2). Deep instantiation (D.2) and shallow instantiations (S.3 and S.4) need to be developed by users.

All of the developments presented in this paper can be found on http://singh.perso.enseeiht.fr/ Conference/ICECCS2022/EB4EB_Models.pdf.

V. META-THEORIES FOR EVENT-B

In this section, we describe the development of metatheories by defining data-types and operators ensuring welldefined conditions and proofs. This development allows to Fig. 1: EB4EB framework define different Event-B modelling components as first-order objects that can be accessed and manipulated using the defined data-types and operators. Note that the given definition for modelling components are derived from the Event-B book [START_REF] Abrial | Modeling in Event-B: system and software engineering[END_REF].

Listings 1, 2, 3 and 4 show meta-theory structure that can include several elements as follows:

A. Type Parameters and Datatypes

The Event-B meta-theory EvtBTheo introduces two polymorphic type parameters ST AT E and EV EN T in the TYPE PARAMETERS clause (see Listing 1). These parameters are similar to carrier sets in contexts. The first attempt to represent the variables is with the type parameter ST AT E. An explicit description of each variable is not required at this abstract level. In fact, the type parameter ST AT E abstracts the state as a cartesian product of all variables. At instantiation step, this abstract type is replaced with concrete variables of the considered Event-B model. The second type parameter EV EN T is used to abstract the label of events. These type parameters are used in the definition of a new datatype M achine in the DATATYPES clause. A constructor Cons_machine is defined in the CONSTRUCTOR clause associated to destructors, i.e, Event, State, Init and so on, to represent and to access different constituents of Event-B components. All these destructors define accesses for: Event -machine events; State -machine states; Init -initialisation event; V ariant -machine variants; Convergent -convergent events; Ordinary -ordinary events; AP -after-predicates; BAP -before after-predicates; Grd -event guards; Invmachine invariants; and T hm -machine theorems.

In our approach, we express the semantics of Event-B models and we use set comprehension to express different modelling components using ST AT E and EV EN T . For example, Invariant is defined as a set of states that satisfy a set of properties. We also use quantification to express event parameters in the set comprehension's predicate. Listing 1: Machine Data-type (D.1&S.1)

B. Theory operators

In the Event-B meta-theory, EvtBTheo, we introduce several operators to manipulate the modelling objects as well as checking the well-defined conditions.

1) Manipulation operators: Listing 2 shows a list of manipulation operators. We introduce isInit, isProgress, and Progress operators. isInit is declared as a prefix operator with two arguments represented by machine m and event e. In terms of existing expression language, the direct definition clause defines the predicate e = Init(m). Similarly, another isProgress prefix operator is declared with two arguments, machine m and event e. Its direct definition clause, expressed as a predicate, states that the predicate holds if the event e is not the initialisation event and is a progress event of the machine m. The last operator Progress is declared as prefix operator with one argument machine m. Its direct definition clause is the expression Event(m) \ Init(m) identifying a set of progress events. Note that our defined operators handle the ordinary and convergence events. 2) Well-defined operators: The DATATYPES clause defines a constructor and destructors to access the Event-B modelling components. These destructors contain typing information only and may lead to be an ill-defined datatype definition. For example, the BAP destructor is a relation between events and states, but the initialisation event is not one of the events of this before-after relation. In order to avoid such ill-defined typing definitions, we introduce a set of new operators in Listing 3 equipped with WD conditions. Due to space constraints, we only show an extract of the set of well-defined operators.

In Listing 3, the first well-defined operator BAP_WellDefined is declared with one argument machine m, and its direct definition shows that all events in the domain of the BAP relation are progress events, implying that the event set contains no initialisation event. The next well-defined operator Grd_WellDefined is also defined with single machine m argument. Its direct definition states that all events in the domain of the Grd relation are progress events. To check the well-defined condition of Init operator, the Init_WellDefined operator is declared. Its direct definition states that the initialisation event belongs to machine events and is an ordinary event. The direct definition of the next Variant_WellDefined operator shows that all the states belonging to the variant states are convergent and identified from the set of invariant states, i.e. each variant state element is associated with an integer. Note that the variant is a total function in the invariant states. The direct definition of the Tag_Event_WellDefined operator shows that the union of convergent and ordinary events are equal to the progress events, and are exclusive sets of events. The last Machine_WellDefined operator is important; the direct definition shows the conjunction of all other well-defined operators. It represents the global well-defined condition associated with an Event-B machine m.

3) Proof obligation operators: Once the notion of machine is defined, the last set of operators deal with the explicit definition of Event-B POs (see Listing 4). They help to discharge the generated proof obligations as given in Section II, such as INV, FIS, NAT and VAR. Their definitions are inductive as they apply on the initialisation and then on all other events.

All guarantees that if invariants and guards hold, then the BAP decreases the variant associated with the convergent event e. The WD clause defines other well-defined operators to ensure the correctness as well as the required WD conditions for the variants. Similarly, the operator All_Convergent_VAR generalises the definition of convergence, it checks the required properties for all convergent events of machine m. Then, the next two operators, Mch_NAT and All_Convergent_NAT, define a variant for an event e as a natural number and all convergent events have a natural number as variant, respectively.

The predicate operator, Machine_PO is the most important. It allows to generate, thanks to the WD PO mechanism, all possible POs related to a machine. Its direct definition is the conjunction of all the other PO operators related to Event-B constituents previously defined. Its welldefinedness clause uses the Machine_WellDefined operator. This operator is associated to the last defined operator check_Machine_WellDefined ensuring that all the destructors are well-defined and the machine satisfies POs. Observe that there is no direct definition for this operator as it shall always be true ⊤. The well-definedness clause contains the required condition that allows to check the machine welldefinedness and machine POs together. When this operator is used, it generates a PO for this WD condition.

VI. APPLICATION OF EVENT-B META-THEORIES

In this section, we describe a simple case study, the clock, to demonstrate how our developed meta models can be applied.

A. Case Study: The Clock

The main functionalities (FUN) and requirements (REQ) of the clock case study are given as follows:

• FUN1 A minute can progress • FUN2 An hour can progress • REQ1
The hours are represented in a 24-hour format.

• REQ2 The clock must converge on midnight.

• REQ3 The clock never stops. In Listing 5, we describe the clock model that is formalised in native Event-B language. In this model, two variables are defined, minute m and hour h, in inv1 -inv2. Two safety properties are introduced in inv3 -inv4. The first safety property (REQ1) states that the minute m is always less than 60 and hour h is less then 24. The next safety property (REQ3) is defined as a theorem that is a disjunction of all guards to state that the clock never stops means always the guard of at least one event is true. The last safety property (REQ2) is related to convergence (variant) expressed by the number 24 * 60 -1 -(m + h * 60). In this model, we introduce three events: tick min -to model the minute progress by 1; tick hour -to model the hour progress by 1; and tick midnight -to reset the clock at midnight. The required guards are added in the defined events to update the minute m and hour h.

MACHINE C l o c k VARIABLES m , h INVARIANTS i n v 1 -2 : m ∈ N ∧ h ∈ N i n v 3 -4 : m < 60 ∧ h < 24 THEOREMS thm1 : m < 59 ∨ (m = 59 ∧ h < 23) ∨ (m = 59 ∧ h = 23) VARIANT 24 * 60 -1 -(m + h * 60) EVENTS INITIALISATION THEN a c t 1 : m, h :| m ′ = 0 ∧ h ′ = 0 END tick

B. Deep embedding of the clock model

We describe the development of the clock case study using the deep modelling instantiation technique of Section IV-B using the meta-theory introduced in Section V. All constituents of the Clock model are explicitly expressed in terms of the EvtBTheo Meta-theory constructs. The Clock Event-B model is represented as an Event-B context, and POs are described either as theorems or as well-definedness POs.

The deep modelling resulting context of the Event-B clock model given in Listing 5 is presented in Listing 6. In this context, a set Ev lists all the clock events in axm1. The clock machine clock is defined by axiom axm2 as a member of M achine(Z × Z, Ev), where the first argument defines machine state as Z × Z and the second one machine events Ev. Furthermore, three axioms (axm3 -axm5) are used to instantiate Event with the enumerated set Ev, Init with the event label init, and State with Z × Z.

CONTEXT C l o c k D e e p I n s t a n c e SETS Ev CONSTANTS c l o c k , t i c k m i n , t i c k h o u r , t i c k m i d n i g h t , i n i t AXIOMS

axm1 : partition(Ev , {init}, {tick midnight}, {tick hour }, {tick min}) axm2-3

: clock ∈ Machine(Z × Z, Ev) ∧ Event(clock) = Ev axm4-5 : Init(clock) = init ∧ State(clock) = Z × Z axm6 : Thm(clock) = {m → h | m < 59 ∨ (m = 59 ∧ h < 23) ∨ (m = 59 ∧ h = 23)} axm7 : Inv (clock) = {m → h | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24} axm8 : AP(clock) = {m → h | m = 0 ∧ h = 0} axm9 : BAP(clock) = {t → ((m → h) → (mp → hp)) | (t = tick min ∧ = m + 1 ∧ hp = h)∨ (t = tick hour ∧ mp = 0 ∧ hp = h + 1)∨ (t = tick midnight ∧ mp = 0 ∧ hp = 0)} axm10 : Grd(clock) = {t → (m → h) | (t = tick min ∧ m < 59)∨ (t = tick hour ∧ m = 59 ∧ h < 23)∨ (t = tick midnight ∧ m = 59 ∧ h = 23)} axm11 : Convergent(clock) = {tick min, tick hour } axm12 : Ordinary(clock) = {tick midnight, init} axm13 : Variant(clock) = {m → h → v | v = 24 * 60 -1 -(m + h * 60)} THEOREMS thm1 : check Machine WellDefined(clock) END Listing 6: A deep instance of the clock machine (D.2)
The next two axioms (axm6 and axm7) are defined to instantiate theorem T hm and invariant Inv using comprehensive sets derived from thm1 and inv1 -inv4 of Listing 5. Axiom axm8 instantiates the after-predicate AP derived from the action of the initialisation event (act1) in the Clock machine. Similarly, axioms axm9 and axm10 are used to instantiate the before-after predicate BAP and the guard Grd with a set of actions and guards of all events derived from the Clock machine using comprehensive sets. The next axioms axm11 -axm12 instantiate the Convergent and Ordinary with a list of convergent and ordinary events, respectively. In this model, we have only two convergent events tick min and tick hour and two ordinary events init and tick midnight. Axiom axm13 is used to instantiate the V ariant with the defined variant of the Clock model. Machine correctness. It is important to note the introduction of a theorem thm1 to invoke the check M achine W ellDef ined operator, which is used to check the welldefinedness and POs generation of the Clock machine. This theorem shall be proved, it entails machine correctness.

C. Shallow embedding of the clock model

We describe the development of the clock case study using the shallow modelling instantiation technique of Section IV-B using the meta-theory introduced in Section V.

All constituents of the Clock model are explicitly expressed in terms of the EvtBTheo Meta-Theory constructs. The Clock Event-B model is represented as an Event-B context and machine, and POs are described either as theorems or as guard strengthening POs. It is inspired from shallow embeddings [START_REF] Boulton | Experience with embedding hardware description languages in HOL[END_REF] used in other interactive provers like Isabelle/HOL and PVS. In the same vein as the shallow embedding, we use the Event-B to preserve semantics and the supporting syntax. Thus, we describe an abstract Event-B model formalising the required properties for Event-B models correctness: a context for the static part and properties and a generic machine for the dynamic parts i.e. transitions represented by events.

1) Abstract generic model: Listings 7 and 8 show the context and machine of the Clock generic model. The context contains sets Ev and S for events and states. A constant machine is introduced as a member of M achine(S, Ev).

CONTEXT C l o c k S h a l l o w G e n SETS Ev , S CONSTANTS m a c h i n e AXIOMS

axm1 : machine ∈ Machine(S, Ev) END Listing 7: A static element of abstract machine (S.2) In the generic machine model, we declare two variables s and InitDone in invariants inv1 -inv2. These variables are set in the INITIALISATION event. To ensure that the invariant is satisfied, we introduce a new invariant inv3. In this model, we define three events Do_Init, Do_Ordinary, and Do_Convergent whose actions modify the state using the AP and BAP operators (act1). The first event is used to initialise state variables in actions (act1 -act2). Its guards ensure that InitDone is F ALSE (grd1), and the feasibility and invariants hold for the Init event. The Do_Ordinary event updates the machine state s for an event e annotated as Ordinary. Its guards state that InitDone is TRUE; the machine state s belongs to Grd of e (grd2); the event e is a progress and ordinary event (grd3 -grd4); and feasibility and invariant properties of machine hold for the event e (grd5 -grd6). Similar to the ordinary event, the last event Do_Convergent contains additional guards grd3 to tag the event e as convergent and grd7 -grd8 to ensure that the variant properties of machine for the event e hold.

Note that our generic abstract model contains initialisation, ordinary and convergent events, whereas we may only have initialisation and progress events, in the same of spirit of TLA + , where the progress event can be refined by ordinary and convergent events later in further refinement. Static constituents. In the context of Listing 9, we define a constant pr in axm1 as a bijection relation between (Z × Z) and S to maintain an exact correspondence between abstract and concrete states. We enumerate the set Ev with clock events in axm2. Axioms (axm3-axm5) are used to instantiate Event with enumerated set Ev, Init with the event init, and State with S. Axiom axm6 is defined to instantiate invariant Inv using comprehensive sets derived from Inv1 -inv4 of Listing 5. Variant of the clock machine is introduced in axm7. Then two axioms (axm8 -axm9) are used to instantiate Convergent and Ordinary with a set of convergent and ordinary events. The last axiom axm10 instantiates theorem concrete machine T hm derived from Listing 5. Context correctness. Four theorems thm1 -thm4 are introduced to check the POs associated with theorems, and well-definedness for variant and machine events (initial and tagged events). Once proved, these theorems guarantee that the context is well-defined and the required properties hold. Listing 9: Instances for static elements: clock machine (S.3) Dynamic constituents. The abstract machine is refined in Listing 10 to introduce the events of the Clock Event-B machine. In this model, we declare two new variables m and h and a gluing invariant inv1 to link (glue) concrete and abstract variables. No new event is added but each abstract event has been refined by concrete ones by providing concrete guards and actions. The newly introduced variables are set in the refined INITIALISATION event, and a witness is provided to map the abstract and concrete variables. In the Do_Init event, we introduce a new guard (grd2) to instantiate AP operator and a witness is provided for the state s ′ . The action of this event modifies the concrete clock variables m and h.

Inv (machine) = pr [{m → h | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24}] axm7 : Variant(machine) = {s, v, m, h • s = pr (m → h)∧ v = (
The event Do_Convergent is refined by two concrete clock events Tick_min and Tick_hour, and the event Do_Ordinary is refined by the concrete event Tick_midnight. In Tick_min event, grd1 is similar to the abstract event, grd2 is updated according to the concrete variables m and h, and two new guards (grd3 -grd4) are added to instantiate Grd and BAP operators for tick min, respectively. In this event, two witnesses are provided for the abstract parameter event e and the state s ′ . The action of this event uses BAP operator to update concrete variables m and h. Note that the other refined events are similarly modeled by providing witnesses and appropriate instantiations. Machine correctness. Gluing invariant (inv1), witnesses and guard strengthening are introduced to check the POs associated with machine events (initial and tagged events). New generated POs are proved to guarantee that the machine is correct and the required properties hold. The complete development of meta theory, instantiations of deep and shallow clock models, and the Event-B clock model are available at http://singh.perso.enseeiht.fr/ Conference/ICECCS2022/EB4EB_Models.pdf. VII. NEW REASONING: DEADLOCK FREENESS Currently, modelling deadlock freeness (FUN1) is achieved manually by the model designer using an additional theorem stating that the disjunction of all events guards holds. Proceeding this way is error prone if the user does not write it correctly. Generating this theorem as a new PO would avoid the designer of the burden of writing this theorem.

MACHINE ClockShallowMac REFINES ClockShallowGenMac SEES C l o c k S h a l l o w VARIABLES m , h , InitDone INVARIANTS i n v 1 : s = pr (m → h) EVENTS INITIALISATION WITH s ′ : s ′ = pr (m ′ → h ′) THEN a c t 1 : m, h :| m ′ ∈ Z ∧ h ′ ∈ Z a c t 2 : InitDone := FALSE END Do Init REFINES Do Init WHERE g r d 1 : InitDone = F ALSE g r d 2 : pr[{ms → hs | ms = 0 ∧ hs = 0}] = AP (machine) WITH s ′ : s ′ = pr (m ′ → h ′) THEN a c t 1 : m, h :| pr(m ′ → h ′) ∈ AP (machine) a c
′ : s ′ = pr (m ′ → h ′) THEN a c t 1 : m, h :| pr(m ′ → h ′) ∈ BAP(machine)[{tick min}][{pr(m → h)}] END Tick hour REFINES Do Convergent . . .
Expressing such a PO (and others) at the Meta-theory level is possible provided that a specific operator with its WD condition is introduced. Listing 11 shows the formalisation of the PO_DeadlockFreeness operator in a theory extension EvtBTheoDeadlock. Then, checking the machine operator check_Machine_DeadLock is redefined so as to handle deadlock freeness in addition to the other WD conditions provided by check_Machine_WellDefined issued from the extended EvtBTheo. To generate the deadlock freeness PO for a concrete model, it is enough to state that predicate operator check_Machine DeadLock is a theorem in the context of the concrete model. V: Proof Statistics as expected, we observe that the clock model is automatically proved using Rodin provers. The proofs of correctness of the same case study using both deep and shallow modelling resulted in a greater number of proof obligations, some of them being proved interactively. Although the number of POs and interactive proofs are increasing, we believe that our framework offers two other complementary proving techniques (using deep and shallow instantiation) to the classical Event-B provers.

2) Deep and shallow modelling: In deep modelling, all Event-B concepts related to variables, events, guards, invariants, substitutions and so on are defined as instances of the developed meta-theory. For shallow modelling, a context and an abstract generic model instantiating the meta-theory with Event-B concepts are defined. They exploit the builtin inductive proof process offered by Event-B/Rodin. Both approaches allow us to double-check, based on different proof mechanisms, design decisions during system development.

Last, such approaches offer a shared format for Event-B models. Indeed, deep modelling style relies on first-order logic and set theory in contexts that can be exported to any other proof assistant, like Coq, PVS and Isabelle/HOL. For shallow modelling, export to other close modelling techniques like TLA is straightforward. Such export makes it possible to exploit other proof assistants than Event-B/Rodin.

3) Extensible framework: The EB4EB framework allows for the extension of the core reasoning mechanism of Event-B by including new POs defined as predicates in theories. Our theories for reflexive Event-B, for example, allowed us to reason about deadlock freedom, reachability, and so on. This capability makes Event-B/Rodin extensible as it can be enriched with additional POs not available in native Event-B.

IX. CONCLUSION

The EB4EB framework we presented allows users to manipulate Event-B features explicitly using reflection and metamodelling concepts. It relies on Event-B theories that define data-types, operators, WD, theorems, and proof rules to formalise the semantics of Event-B. The developed theories enable manipulation of the static and dynamic properties of Event-B, including new POs associated to deadlock freeness, liveness, reachability, composition/decomposition, and so on. Deep and shallow embedding are used to instantiate the defined theories of the EB4EB framework. Furthermore, the Rodin tools have been used to formalise the development of EB4EB-related activities. We have demonstrated the approach on the clock model developed in both core modelling language and deep and shallow modelling. Both deep and shallow instantiated clock models preserve the required safety properties and functional behaviour encoded in theories.

Note that the EB4EB modelling concepts are formalised once and for all, meaning that they are reusable and don't need to be proven again. However, these theories must be instantiated in new developments, and the generated WD POs must be discharged to check instantiation is correct.

The developed theories have been applied on several case studies to assess the expressiveness, effectiveness, portability, and scalability of our approach. Our future goal is to analyse and identify Event-B refinement operations and its semantics to be included in the EB4EB framework. We plan to deploy the EB4EB framework to enhance and extend the reasoning mechanism by supporting other externally defined POs. In particular, we target the definition of domain specific POs issued from domain specific analyses of Event-B models, like continuous behaviours, human machine interaction, and so on. Analyzing and certifying existing plug-ins, such as code generation and composition/decomposition, is on the agenda. Our long-term goal is to use Dedukti [START_REF] Boespflug | Dedukti: A Universal Proof Checker[END_REF] to import/export the Event-B theory and models into proof assistants like Coq, PVS and Isabelle/HOL using the deep modelling approach.

1 :

 1 T 1 , ...) OPERATORS Op1 <nature> (p 1 : T 1 , ...) well-definedness WD(p 1 , ...) direct definition D 1 AXIOMATIC DEFINITIONS TYPES A 1 , ... OPERATORS AOp2 <nature> (p 1 : T 1 , ...): Tr well-definedness WD(p 1 , ...) AXIOMS A 1 , ... THEOREMS T 1 , ...

 Rodin 1 is an open source Eclipse-based Integrated Development Environment for modelling in Event-B. It offers resources for model editing, automatic PO generation, project management, refinement and proof, model checking, model animation and code generation.

 (a) Deep Modelling (b) Shallow Modelling

OPERATORS isInit <p rListing 2 :

 2 e d i c a t e > (m : M achine(ST AT E, EV EN T), e : EV EN T) d i r e c t d e f i n i t i o n e = Init(m) isProgress <p r e d i c a t e > (m : M achine(ST AT E, EV EN T), e : EV EN T) d i r e c t d e f i n i t i o n ¬isInit(m, e) ∧ e ∈ Event(m) Progress <e x p r e s s i o n > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n Event(m) \ {Init(m)} Destructor operator of Data-type (D.1&S.1)

BAP

 WellDefined <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n dom(BAP (m)) = P rogress(m) Grd WellDefined <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n dom(Grd(m)) = P rogress(m) Init WellDefined <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n Init(m) ∈ Event(m) ∧ Init(m) ∈ Ordinary(m) Variant WellDefined <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n Inv(m) ◁ V ariant(m) ∈ Inv(m) → Z Tag Event WellDefined <p r e d i c a t e > (m : M achine(EV EN T, ST AT E)) d i r e c t d e f i n i t i o n Convergent(m) ∪ Ordinary(m) = Event(m)∧ Convergent(m) ∩ Ordinary(m) = ∅ Machine WellDefined <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n BAP W ellDef ined(m)∧ Grd W ellDef ined(m)∧ Init W ellDef ined(m)∧ T ag V ariant W ellDef ined(m)∧ V ariant W ellDef ined(m) Listing 3: Operator of well defined Data-type (D.1&S.1)

 the defined operators have a machine m as argument. The first declared operator Mch_THM shows that the invariants are a subset of theorems. The next two operators, Mch_FIS_Init and Mch_FIS, represent the base case and induction case for the feasibility POs, respectively. The direct definition for the induction case ensures that the invariants and guards of the progress event e are a subset of the domain of the BAP of e. Similarly, the next three predicate operators, Mch_INV_Init, Mch_INV and All_Progress_INV, define the initialisation, the induction case of the invariant PO for a single event e, and the induction case of invariant properties for all progress events, respectively. The direct definition of Mch_INV ensures that BAP of progress event e preserves the invariants if guards and invariants are true before. The next two operators Mch_VARIANT and All_Convergent_VAR are declared to represent convergent properties. The Mch_VARIANT definition

MchListing 4 :

 4 THM <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n Inv(m) ⊆ T hm(m) Mch FIS Init <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n Inv(m) ∩ AP (m) ̸ = ∅ Mch FIS <p r e d i c a t e > (m : M achine(ST AT E, EV EN T), e : Event) w e l l -d e f i n e d n e s s e ∈ P rogress(m) d i r e c t d e f i n i t i o n Inv(m) ∩ Grd(m)[{e}] ⊆ dom(BAP (m)[{e}]) All Progress Mch FIS <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n ∀e • e ∈ P rogress(m) ⇒ M ch F IS(m, e) Mch INV Init <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n AP (m) ⊆ Inv(m) Mch INV <p r e d i c a t e > (m : M achine(ST AT E, EV EN T), e : EV EN T) w e l l -d e f i n e d n e s s e ∈ P rogress(m) d i r e c t d e f i n i t i o n BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m) All Progress INV <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n ∀e • e ∈ P rogress(m) ⇒ M ch IN V (m, e) Mch VARIANT <p r e d i c a t e > (m : M achine(ST AT E, EV EN T), e : EV EN T, s : ST AT E) w e l l -d e f i n e d n e s s V a r i a n t W e l l D e f i n e d (m) , A l l P r o g r e s s I N V (m) , BAP WellDefined (m) , T a g V a r i a n t W e l l D e f i n e d (m) , e ∈ Convergent(m)∧ s ∈ State(m) ∧ s ∈ Inv(m) ∧ s ∈ Grd(m)[{e}] d i r e c t d e f i n i t i o n ∀sp • sp ∈ BAP (m)[{e}][{s}] ⇒ (Inv(m) ◁ V ariant(m))(s) > (Inv(m) ◁ V ariant(m))(sp) All Convergent VAR <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) w e l l -d e f i n e d n e s s V a r i a n t W e l l D e f i n e d (m) , A l l P r o g r e s s I N V (m) , BAP WellDefined (m) , T a g V a r i a n t W e l l D e f i n e d (m) d i r e c t d e f i n i t i o n ∀e, s • e ∈ Event(m) ∧ e ∈ Convergent(m)∧ s ∈ State(m) ∧ s ∈ Inv(m) ∧ s ∈ Grd(m)[{e}] ⇒ M ch V ARIAN T (m, e, s) Mch NAT <p r e d i c a t e > (m : M achine(ST AT E, EV EN T), e : EV EN T) w e l l -d e f i n e d n e s s e ∈ Convergent(m) d i r e c t d e f i n i t i o n V ariant(m)[Inv(m) ∩ Grd(m)[{e}]] ⊆ N All Convergent NAT <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n V ariant(m)[Inv(m) ∩ Grd(m)[Convergent(m)]] ⊆ N Machine PO <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) w e l l -d e f i n e d n e s s M a c h i n e W e l l D e f i n e d (m) d i r e c t d e f i n i t i o n M ch T HM (m) ∧ M ch F IS Init(m) ∧ M ch IN V Init(m)∧ All P rogress M ch F IS(m) ∧ All P rogress M ch IN V (m)∧ All Convergent M ch V ARIAN T (m)∧ All Convergent M ch N AT (m) check Machine WellDefined <p r e d i c a t e > (m : M achine(EV EN T, ST AT E)) w e l l -d e f i n e d n e s s M achine W ellDef ined(m) ∧ M achine P O(m) d i r e c t d e f i n i t i o n ⊤ Operator of well defined Data-type (D.1&S.1)

 min <c o n v e r g e n t> WHERE g r d 1 : m < 59 THEN a c t 1 : m :| m ′ = m + 1 END tick hour <c o n v e r g e n t> WHERE g r d 1 : m= 59 ∧ h < 23 THEN a c t 1 : m, h :| m ′ = 0 ∧ h ′ = h + 1 END tick midnight <o r d i n a r y > WHERE g r d 1 : m = 59 ∧ h = 23 THEN a c t 1 : m, h :| m ′ = 0 ∧ h ′ = 0 END ENDListing 5: A machine of clock Once the theory for Event-B concepts is designed, two main approaches to instantiate it are envisioned, namely deep modelling and shallow modelling as described below.

2 :

 2 MACHINE ClockShallowGenMacSEES C l o c k S h a l l o w G e n VARIABLES s , InitDone INVARIANTS i n v 1 -2 : s ∈ S ∧ InitDone ∈ BOOL i n v 3 : InitDone = TRUE ⇒ s ∈ Inv (machine) EVENTS INITIALISATION THEN a c t 1 : s :| s ′ ∈ S a c t 2 : InitDone := FALSE END Do Init WHERE g r d 1 : InitDone = FALSE grd2-3 : M ch F IS Init(machine) ∧ M ch IN V Init(machine) THEN a c t 1 : s :| s ′ ∈ AP(machine) a ct 2 : InitDone := TRUE END Do Ordinary ANY e WHERE grd1-InitDone = TRUE ∧ s ∈ Grd(machine)[{e}] grd3-4 : e ∈ P rogress(machine) ∧ e ∈ Ordinary(machine) grd5-6 : M ch F IS(machine, e) ∧ M ch IN V (machine, e) THEN a c t 1 : s :| s ′ ∈ BAP(machine)[{e}][{s}] END Do Convergent ANY e WHERE grd1-2 : InitDone = TRUE ∧ s ∈ Grd(machine)[{e}] grd3-4 : e ∈ P rogress(machine) ∧ e ∈ Convergent(machine) grd5-6 : M ch F IS(machine, e) ∧ M ch IN V (machine, e) g r d 7 : M ch V ARIAN T (machine, e, s) g r d 8 : M ch N AT (machine, e) THEN a c t 1 : s :| s ′ ∈ BAP(machine)[{e}][{s}] END END Listing 8: A generic abstract machine (S.2) 2) Concrete model: The concrete model refines the abstract generic model introduced above. The static elements of the clock model are described by the context of Listing 9 and dynamic elements are described in machine of Listing 10.

CONTEXT

 C l o c k S h a l l o w EXTENDS C l o c k S h a l l o w G e n CONSTANTS t i c k m i n , t i c k h o u r , t i c k m i d n i g h t , i n i t , p r AXIOMS axm1-2 : pr ∈ (Z × Z) ↣ → S ∧ State(machine) = S axm3-4 : Event(machine) = Ev ∧ Init(machine) = init axm5 : partition(Ev , {init}, {tick midnight}, {tick hour }, {tick min}) axm6 :

 24 * 60 -1 -(m + h * 60)) | s → v} axm8 : Convergent(machine) = {tick min, tick hour } axm9 : Ordinary(machine) = {tick midnight, init} axm10 : Thm(machine) = pr [{m → h | m < 59 ∨ (m = 59 ∧ h < 23) ∨ (m = 59 ∧ h = 23)}] THEOREMS thm1-2 : P O T HM (machine) ∧ Init W ellDef ined(machine) thm3 : Variant WellDefined(machine) thm4 : T ag Event W ellDef ined(machine) END

THEN a c t 1 :

 1 m, h :| pr(m ′ → h ′) ∈ BAP(machine)[{tick hour }][{pr(m → h)}] END Tick midnight REFINES Do Ordinary . . . THEN a c t 1 : m, h :| pr(m ′ → h ′) ∈ BAP(machine)[{tick midnight}][{pr(m → h)}] END END Listing 10: A shallow instance of the clock machine (S.4)

THEORY

 EvtBTheoDeadlock IMPORT EvtBTheo TYPE PARAMETERS ST AT E, EV EN T OPERATORS / / A p r e d i c a t e f o r m a c h i n e D e a d l o c k f r e e n e s s PO DeadlockFreeness <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) d i r e c t d e f i n i t i o n Inv(m) ⊆ Grd(m)[P rogress(m)] / / W e l l -d e f i n e d m a c h i n e s w i t h d e a d l o c k f r e e n e s s . check Machine DeadLock <p r e d i c a t e > (m : M achine(ST AT E, EV EN T)) w e l l -d e f i n e d n e s s c h e c k M a c h i n e W e l l D e f i n e d (m) ∧ P O D e a d l o c k F r e e n e s s (m) d i r e c t

TABLE I :

 I

Global structure of Context, Machines and Refinements

Machines (Table

TABLE III

 III

	: Refinement Proof obligations
	-Refinements. Refinement (see Table I(c)) enables incremental
	design by introducing characteristics such as functionality,
	safety, reachability at different abstraction levels. It decom-
	poses a machine, a state-transition system, into a more con-
	crete model, by refining events and variables (simulation rela-
	tionship). Introduction of gluing invariants preserves already
	proven properties.
	-Proof Obligations (PO) and Property Verification. Several
	POs are associated with the Event-B models shown in Table II
	and III. These POs are generated automatically, and all of them
	must be successfully discharged to guarantee the correctness
	of an Event-B model, including refinements. Two additional
	POs related to refinement, guard strengthening and simulation,
	are required in our shallow modeling approach.

 d e f i n i t i o n ⊤ END Listing 11: A theory about Deadlock Freeness VIII. ASSESSMENT We evaluate our EB4EB framework in terms of proof effort and benefits of such extension. Rodin supports all the theories and case study. All the resulting POs were successfully discharged. The complete developments can be found on http://singh.perso.enseeiht.fr/Conference/ ICECCS2022/EB4EB_Models.pdf. 1) Proof effort: Proof statistics for all the developed models (i.e clock, deep, shallow generic, shallow context, and shallow machine) are presented in Table V. Due to its simplicity and

	Models	Total	Automatic	Interactive
		POs	POs	POs
	Clock Event-B model (Listing 5)	25	25 (100%)	0 (0%)
	Clock Deep model context (Listing 6)	2	0 (0%)	2 (100%)
	Shallow generic machine (Listing 8)	14	8 (57%)	6 (43%)
	Clock Shallow context (Listing 9)	5	1 (20%)	4 (80%)
	Clock Shallow machine (Listing 10)	54	26 (48%)	28 (52%)

TABLE

Rodin Integrated Development Environment http://www.event-b.org/index. html