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Abstract—Event-B is a correct-by-construction rigorous state-
based method offering features for formal modelling and proof
automation. An inductive proof schema allows to prove system
properties, in particular invariants.In the current setup, verifying
other properties such as deadlock-freeness, reachability, event
scheduling, liveness, etc., requires adhoc modelling.These prop-
erties can be established partially using model checkers or by
using third party interactive provers.Other crucial aspects, such
as deadlock-freeness, are difficult to express. The availabilty of
a meta-modelling mechanism for explicit manipulation of Event-
B concepts would allow to deal with higher order modelling
concepts and to define generic properties and associated proof
obligations.

In this paper, we propose EB4EB, an Event-B based modelling
framework allowing to manipulate Event-B features explicitly
based on meta modelling concepts. This framework relies on
a set of Event-B theories defining data-types, operators, well-
defined conditions, theorems and proof rules. It preserves the
core logical foundation, including semantics, of original Event-B
models. Based on the instantiation of the introduced features at
meta level, deep and shallow modelling approaches are proposed
to exploit this framework. In addition, a case study is developed
to demonstrate the use of our framework applying the deep
and shallow embedding approaches. The whole framework is
supported by the Rodin platform handling Event-B models and
proofs.

Index Terms—Reflection, refinement and proof, meta-models,
model instantiation, new proof obligations, theories, Event-B.

I. INTRODUCTION

Motivation. Metamodelling is an engineering activity offering
the capability to describe the core abstraction and properties
to which models must adhere together with model analysis
techniques. It has been widely adopted in the field of soft-
ware engineering, particularly in model-driven engineering.
Nowadays, formal methods have adopted such metamodelling
techniques for developing theories axiomatising metamodels
to represent higher level reasoning concepts used in the speci-
fication, development and verification of complex systems [6],
[15], [21], [26].

Event-B [1] is a state-based formal method supporting
the development of complex systems following a correct-by-
construction approach. It is based on set theory and first-order
logic, and it uses the Rodin [4] integrated development envi-
ronment. Currently, the core modelling features of the Event-B
language enable abstract system modelling as state-transitions
systems, refinement based development, and interactive and
automatic proofs. There are also a number of other RODIN
plugins available to help with other modelling requirements,

such as composition/decomposition [25], Theory plug-in [2],
[9], code generation [16], [19] etc.

Among these plugins, the Theory plug-in [2], [9] offers
powerful means to extend Event-B enabling for the devel-
opment of additional data types, theories, and operators to
extend the core modelling concepts and features of Event-
B. For example, Dupont et al. [12], [13] have developed a
set of theories to integrate continuous features in the Event-B
modelling language for modelling differential equations.

Currently, Event-B framework only offers standard proof
obligations (POs) that are generated automatically: invariant
preservation, theorems proofs, variant decreasing, event fea-
sibility, guard strenghtening, etc. For additional verifications,
such as deadlock freeness, liveness, reachability, and domain
specific properties, the designer relies on other tools based on
interactive proof systems and model checkers. They require ad
hoc modelling from the designer for each formalised model.
There is a lack of access and explicit manipulation of Event-B
concepts, thus it is impossible to express generic properties at
a higher order level associated with extra reusable POs in a
theory that permits automatic generation of such POs for any
designed model.
Our claim. We claim that it is possible to express additional
POs schemas using meta-modeling techniques without chang-
ing Event-B or Rodin, to automatically generate new POs for
each Event-B model.
Our contribution. This paper proposes an Event-B-based mod-
elling framework, EB4EB, that allows for the explicit manipu-
lation of Event-B features using meta modelling concepts. To
cover Event-B modelling language semantics, this framework
relies on a set of Event-B theories that define data-types,
operators, well-defined conditions, theorems, and proof rules.
It allows for the manipulation of static and dynamic aspects of
Event-B modelling features, to encode new proof obligations
related to other types of properties once and for all. Deep
and shallow modelling approaches are proposed to exploit this
framework based on the instantiation of the introduced features
at the meta level. In addition, a case study demonstrating the
use of our framework using the deep and shallow embedding
approaches is developed. The Rodin platform, which handles
Event-B models and proofs, underpins the entire framework.

As far as we know, this is the only reflection framework in
the Event-B language that allows explicit meta-level manipu-
lations of Event-B concepts, including the support of higher
level reasoning mechanisms by defining datatypes, operators,
well-definedness, and new POs in theories.



Organisation of the paper. This paper is organised as follows.
Section II presents related work and the core concept of Event-
B language is described in Section III. Sections IV describes
EB4EB framework. Section V illustrates the development
of meta-theories for Event-B. In Section VI, we present an
application of the Event-B meta-theories by applying deep
and shallow embedding on the clock model. We demonstrate
a new reasoning mechanism related to deadlock freeness in
Section VII. In Section VIII, we provide an assessment and
Section IX concludes the paper with future work.

II. RELATED WORK

When two languages have the same or different semantics,
one language can be mechanized into another by embedding
the source logic of the first modelling language into the host
modelling language. Deep and shallow embeddings are two
widely used methods. Deep embedding describes explicitly
the semantics and syntax of the source language in the
host logic, whereas shallow embedding simply translates the
semantics of the source language in the host logic [8] (i.e.
the translator carries the semantics). Both approaches have
their own pros and cons. Deep embedding requires more
modelling effort to address structural and semantic elements of
the source language. As a result, while this approach may be
difficult to grasp and tedious, it offers full access, in the host
logic, to the elements of the source modelling language for
formal verification. On the other hand, the shallow embedding
approach is straightforward and easy to use once the semantics
of the source modelling language is encoded in the modelling
language transformation. It leads to a limited access to the
source modelling language constructs for formal verification,
in particular when tracing verification results (e.g. counter-
examples). Munoz et al. [21] proposed a structural embedding
approach in which only the language structure is deep/shallow
embedded in the host logic and the source language expression
is replaced by the host logic expression.

There are few formal modelling languages that allow for
abstract reasoning about models characteristics while also
working on concrete models. In our case, the source and
host modelling languages are the same (i.e. Event-B); it is
a reflexive relationship. Such work has already been carried
out in various formal techniques, such as in Coq [6] with the
syntactic representation of Coq in Coq with Template Coq [5]
and the semantics in MetaCoq [26]. Similarly, a reflection API
has been developed in Agda [27], HOL [15], Idris [11], and
Lean [14] to automate and/or simplify the definition of tactics.
Some of them are motivated by other factors such as code
generation and meta-programming.

Here, we discuss some approaches for Event-B. In [18] [20],
the authors provided a comprehensive description of the logic’s
syntax with a type discipline and the intended semantics,
including soundness, for an untyped first-order fragment of
logic. In [24], Event-B logic is defined in order to describe
modelling components like guards and invariants, as well as
to express and discharge proof obligations. In this work, the
abstract syntax of Event-B, including the concepts of theory

and proof, is provided as a three-valued semantics in terms of
a shallow embedding in Isabelle/HOL.

Note that the above mentioned work mainly address the
semantics of Event-B modelling components, whereas our
work targets the verification of important properties such
as liveness, deadlock freeness, and event scheduling, among
others, by developing meta-modelling concepts in order to ma-
nipulate Event-B concepts using deep and shallow embedding.
In addition, it is developed in the Even-B language itself, using
Event-B theories expressed using the Theory plugin.

III. EVENT-B

Event-B [1] method is based on set theory and first order
logic (FOL). It relies on a powerful state-based modelling
language where a set of events models state changes.

A. Event-B Contexts and Machines

Contexts (Tables I(a)) describe all the static elements of
the models through the definition of carrier sets s, constants
c, axioms A and theorems Tctx .

Context Machine Refinement
CONTEXT Ctx MACHINE MA MACHINE MC

SETS s SEES Ctx REFINES MA

CONSTANTS c VARIABLES xA VARIABLES xC

AXIOMS A INVARIANTS IA(xA) INVARIANTS
THEOREMS Tctx THEOREMS Tmch (xA) J(xA, xC ) ∧ IC (xC )

END VARIANT V (xA) EVENTS
EVENTS EVENT evtC

EVENT evtA REFINES evtA

ANY αA ANY αC

WHERE GA(xA, αA) WHERE GC (xC, αC )

THEN WITH
xA :| BAPA( xA′, αA : W (xA′, αA,

αA, xA, xA′
) xA, αC, xC, xC′

)

END THEN
END xC :| BAPC (

αC, xC, xC′
)

END
END

(a) (b) (c)

TABLE I: Global structure of Context, Machines and Refine-
ments

Machines (Table I(b)) describe model behaviour. It con-
sists of Variables x, Invariants I(x), Theorems Tmch(x) and
Variants V (x). It defines a transition system represented as
a set of guarded events evt recording state changes using a
Before-After Predicates (BAP ). Events which decrease the
variant are tagged as convergent otherwise they are ordinary.
Invariants I(x) and Theorems Tmch(x) ensure safety proper-
ties, while Variant V (x) ensures convergence properties for
convergent events.

(1) Theorems (THM) A ⇒ TctxA ∧ IA(xA) ⇒ Tmch(x
A)

(2) Initialisation (INIT) A ∧ GA(αA) ∧ BAPA(αA, xA′) ⇒ IA(xA′)

(3) Invariant A ∧ IA(xA) ∧ GA(xA, αA)

preservation (INV) ∧BAPA(xA, αA, xA′) ⇒ IA(xA′)

(4) Event A ∧ IA(xA) ∧ GA(xA, αA)

feasibility (FIS) ⇒ ∃xA′ · BAPA(xA, αA, xA′)

(5) Variant A ∧ IA(xA) ∧ GA(xA, αA)

progress (VAR) ∧BAPA(xA, αA, xA′) ⇒ V (xA′) < V (xA)

TABLE II: Machine Proof obligations



(6) Event A ∧ IA(xA) ∧ J(xA, xC) ∧ GC(xC , αC)

Simulation ∧W (αA, αC , xA, xA′, xC , xC′)

(SIM) ∧BAPC(xC , αC , xC′)

⇒ BAPA(xA, αA, xA′)

(7) Guard A ∧ IA(xA) ∧ J(xA, xC)

Strengthening ∧W (αA, αC , xA, xA′, xC , xC′)

(GRDS) ∧GC(xC , αC) ⇒ GA(xA, αA)

TABLE III: Refinement Proof obligations
- Refinements. Refinement (see Table I(c)) enables incremental
design by introducing characteristics such as functionality,
safety, reachability at different abstraction levels. It decom-
poses a machine, a state-transition system, into a more con-
crete model, by refining events and variables (simulation rela-
tionship). Introduction of gluing invariants preserves already
proven properties.
- Proof Obligations (PO) and Property Verification. Several
POs are associated with the Event-B models shown in Table II
and III. These POs are generated automatically, and all of them
must be successfully discharged to guarantee the correctness
of an Event-B model, including refinements. Two additional
POs related to refinement, guard strengthening and simulation,
are required in our shallow modeling approach.
- Core Well-definedness (WD). The WD POs are associated to
all built-in operators of the Event-B modelling language. Once
proved, these WD conditions are used as hypotheses to prove
other POs related to invariants, theorems, feasibility, etc.

B. Event-B extensions with Theories

Theory
THEORY Th

IMPORT Th1, ...

TYPE PARAMETERS E, F , ...

DATATYPES
Type1(E, ...)

constructors
cstr1(p1 : T1 , ...)

OPERATORS
Op1 <nature> (p1 : T1 , ...)

well−definedness WD(p1, ...)

direct definition D1

AXIOMATIC DEFINITIONS
TYPES A1 , ...

OPERATORS
AOp2 <nature> (p1 : T1 , ...): Tr

well−definedness WD(p1, ...)

AXIOMS A1 , ...

THEOREMS T1 , ...

END

TABLE IV: Global
structure of Event-B
Theories

In order to handle more complex
modelling concepts not supported
by native Event-B, an extension of
Event-B based on the mathemati-
cal definitions has been proposed
in [3], [10]. This extension, like
Isabelle/HOL [22] or PVS [23], al-
lows to define new theories by in-
troducing new datatypes, operators,
theorems and proof rules. They can
be further used in the core develop-
ment of Event-B models.
- Theory description. Table IV
shows core modelling elements
for developing new theories. The
core modelling elements are clas-
sified in different clauses known
as datatypes, operators, axiomatic
definitions, axioms, theorems and
proof rules. A theory can be parameterized by Type in the
clause TYPE PARAMETERS. The description of the data-type,
operator, theorems and proof rules use the type parameters.
Datatypes (DATATYPES clause) can be defined with construc-
tors, and each constructor can have some destructors. Note that
the destructors can also have inductive definition.

A theory may contain several operators of different nature
(<nature> tag), expression or predicate. These new defined
operators extend the capabilities of the Event-B core language
and can be used directly in core modelling components

like expression and predicate. Operators may be defined in
two ways. First, explicitly in the direct definition
clause where the operator is equivalent to an expression, and
second, axiomatically in the AXIOMATIC DEFINITIONS
clause where the behaviour of the operator is expressed by a
set of axioms. Last, a theory defines a set of theorems proven
with the help of defined operators and axioms.

Many theories have been defined for sequences, lists,
groups, reals, differential equations, and so on [10], [12].

- Well-definedness (WD) in Theories. For each defined
operator, a useful clause is well-definedness (WD) conditions.
This clause ensures that the definition is correct. A WD
proof obligation is generated when the operators are used
in an Event-B expression. A correct definition is related to
mathematical correctness, but it is also related to any other
condition necessary if the operators guarantee some properties.

All the WD POs and theorems are proved using the Event-B
proof system.
- Event-B proof system and its IDE Rodin. Rodin1 is an open
source Eclipse-based Integrated Development Environment for
modelling in Event-B. It offers resources for model editing,
automatic PO generation, project management, refinement and
proof, model checking, model animation and code generation.
The theories extension for Event-B is available as a plug-in.
Theories are tightly integrated in the proof process. Depending
on their definition (direct or axiomatic), operator definitions
are expanded either using their direct definition (if available) or
by enriching the set of axioms (hypotheses in proof sequents)
using their axiomatic definition. Theorems can be imported as
hypotheses and used in proofs just like any other theorem.
The proof system is partially automatic, the other parts are
interactive. Many tools are available to help the proof like
predicate provers or SMT solver.

IV. OUR FRAMEWORK

The primary objective of the developed framework is to
offer the capability to explicitly manipulate Event-B features
as first-order objects.

A. Methodology

For this purpose, we define a three steps methodology.
At the first step, we rely on the definition of Event-B

theories describing states and events as data-types associated
to a set of operators allowing to manipulate them. In addition,
a couple of axioms defining these operators are introduced.
These axiomatic definitions formalise the state-based seman-
tics of Event-B models (contexts and machines). Finally a
set of proven theorems are given. They formalise relevant
properties on states, events and operators. The result of this
step is a Meta-theory for Event-B defined once and for all.

In the second step, any specific Event-B model is obtained
by instantiating the above mentioned theory to define states,
events and related properties. Two possible instantiations are
identified: shallow and deep embeddings.

1Rodin Integrated Development Environment http://www.event-b.org/index.
html

http://www.event-b.org/index.html
http://www.event-b.org/index.html


Last, the third step entails proving the correctness of the
instantiated models, i.e. proving that models are well-defined,
invariants and theorems of the specific Event-B model hold,
and other user expressed properties are true. In the meantime,
the theorems of the theory are instantiated as well, they are
useful for the proofs as they provide, for free, additional
hypotheses.

B. Deep or Shallow modelling
As depicted in Figure 1, once the Event-B Meta-

theory(D.1&S.1) is described, Event-B models are described
following two approaches.

1) Deep embedding (see Figure 1a): It consists in defining
machine instances as an Event-B context (D.2) where the
generic type parameters of the meta-theory are instantiated by
sets describing machines state variables and events. Similarly,
all Event-B machine constructs such as event guards and
before-after predicates, invariants, theorems and so on are
formalised. They are defined using the operators introduced in
the Meta-theory. This instantiation generates two kinds of POs.
First, it generates the WD POs for each operator application
to ensure that the Event-B machine is well-defined. Second,
the POs related to the predicate operators that define machine
consistency like invariant preservation, variant decreasing cor-
responding to WD POs are produced.

These obtained POs are proved using the Event-B Rodin
theorem prover or other theorem provers.

2) Shallow embedding (see Figure 1b): In shallow em-
bedding, an additional generic machine (S.2) is defined at
the meta-theory level. In the same line of TLA+ [17] this
machine formalises the behavioural semantics of Event-B.
Using the meta-theory features, this machine defines abstract
state variables and two abstract events Init and Progress
recording respectively state variables initialisation and state
transitions. Then, instantiation is defined using the native
Event-B refinement where the first Init event is refined using
the initialisation after-predicate and second for each event of
the concrete machine (model), the Progress event is refined
using the before-after predicates issued from the meta-theory.
Note that the Progress is a collection of ordinary and
convergent events used directly in the generic abstract model.

In this case, unlike from the deep modelling approach,
proving the generated proof obligations relies on the Event-B
inductive principle introduced by this generic machine.

Our framework provides meta-theory for deep modelling
(D.1) and shallow modelling (S.1), and an abstract machine
for shallow instantiation (S.2). Deep instantiation (D.2) and
shallow instantiations (S.3 and S.4) need to be developed by
users.

All of the developments presented in this paper can
be found on http://singh.perso.enseeiht.fr/
Conference/ICECCS2022/EB4EB_Models.pdf.

V. META-THEORIES FOR EVENT-B
In this section, we describe the development of meta-

theories by defining data-types and operators ensuring well-
defined conditions and proofs. This development allows to

(a) Deep Modelling (b) Shallow Modelling

Fig. 1: EB4EB framework
define different Event-B modelling components as first-order
objects that can be accessed and manipulated using the defined
data-types and operators. Note that the given definition for
modelling components are derived from the Event-B book [1].

Listings 1, 2, 3 and 4 show meta-theory structure that can
include several elements as follows:

A. Type Parameters and Datatypes

The Event-B meta-theory EvtBTheo introduces two poly-
morphic type parameters STATE and EV ENT in the TYPE
PARAMETERS clause (see Listing 1). These parameters are
similar to carrier sets in contexts. The first attempt to rep-
resent the variables is with the type parameter STATE.
An explicit description of each variable is not required at
this abstract level. In fact, the type parameter STATE ab-
stracts the state as a cartesian product of all variables. At
instantiation step, this abstract type is replaced with concrete
variables of the considered Event-B model. The second type
parameter EV ENT is used to abstract the label of events.
These type parameters are used in the definition of a new
datatype Machine in the DATATYPES clause. A constructor
Cons_machine is defined in the CONSTRUCTOR clause
associated to destructors, i.e, Event, State, Init and so on,
to represent and to access different constituents of Event-B
components. All these destructors define accesses for: Event
- machine events; State - machine states; Init - initialisation
event; V ariant - machine variants; Convergent - convergent
events; Ordinary - ordinary events; AP - after-predicates;
BAP - before after-predicates; Grd - event guards; Inv -
machine invariants; and Thm - machine theorems.

In our approach, we express the semantics of Event-B
models and we use set comprehension to express different
modelling components using STATE and EV ENT . For
example, Invariant is defined as a set of states that satisfy a
set of properties. We also use quantification to express event
parameters in the set comprehension’s predicate.

THEORY EvtBTheo
TYPE PARAMETERS STATE,EV ENT
DATATYPES

Machine(STATE,EV ENT )
CONSTRUCTORS

Cons machine(
Event : P(EV ENT ),
State : P(STATE),
Init : EV ENT,
V ariant : P(STATE × Z),
Convergent : P(EV ENT ),
Ordinary : P(EV ENT ),
AP : P(STATE),
BAP : P(EV ENT × (STATE × STATE)),

http://singh.perso.enseeiht.fr/Conference/ICECCS2022/EB4EB_Models.pdf
http://singh.perso.enseeiht.fr/Conference/ICECCS2022/EB4EB_Models.pdf


Grd : P(EV ENT × STATE),
Inv : P(STATE)
Thm : P(STATE))

Listing 1: Machine Data-type (D.1&S.1)

B. Theory operators

In the Event-B meta-theory, EvtBTheo, we introduce
several operators to manipulate the modelling objects as well
as checking the well-defined conditions.

1) Manipulation operators: Listing 2 shows a list of ma-
nipulation operators. We introduce isInit, isProgress,
and Progress operators. isInit is declared as a prefix
operator with two arguments represented by machine m and
event e. In terms of existing expression language, the direct
definition clause defines the predicate e = Init(m). Similarly,
another isProgress prefix operator is declared with two
arguments, machine m and event e. Its direct definition clause,
expressed as a predicate, states that the predicate holds if
the event e is not the initialisation event and is a progress
event of the machine m. The last operator Progress is
declared as prefix operator with one argument machine m. Its
direct definition clause is the expression Event(m)\Init(m)
identifying a set of progress events. Note that our defined
operators handle the ordinary and convergence events.

OPERATORS
isInit <p r e d i c a t e>

(m : Machine(STATE,EV ENT ), e : EV ENT )
d i r e c t d e f i n i t i o n

e = Init(m)
isProgress <p r e d i c a t e>

(m : Machine(STATE,EV ENT ), e : EV ENT )
d i r e c t d e f i n i t i o n

¬isInit(m, e) ∧ e ∈ Event(m)
Progress <e x p r e s s i o n> (m : Machine(STATE,EV ENT ))

d i r e c t d e f i n i t i o n
Event(m) \ {Init(m)}

Listing 2: Destructor operator of Data-type (D.1&S.1)
2) Well-defined operators: The DATATYPES clause defines

a constructor and destructors to access the Event-B modelling
components. These destructors contain typing information
only and may lead to be an ill-defined datatype definition. For
example, the BAP destructor is a relation between events and
states, but the initialisation event is not one of the events of this
before-after relation. In order to avoid such ill-defined typing
definitions, we introduce a set of new operators in Listing 3
equipped with WD conditions. Due to space constraints, we
only show an extract of the set of well-defined operators.

In Listing 3, the first well-defined operator
BAP_WellDefined is declared with one argument
machine m, and its direct definition shows that all events
in the domain of the BAP relation are progress events,
implying that the event set contains no initialisation event.
The next well-defined operator Grd_WellDefined is also
defined with single machine m argument. Its direct definition
states that all events in the domain of the Grd relation are
progress events. To check the well-defined condition of Init
operator, the Init_WellDefined operator is declared. Its
direct definition states that the initialisation event belongs to
machine events and is an ordinary event.

BAP WellDefined <p r e d i c a t e> (m : Machine(STATE,EV ENT ))
d i r e c t d e f i n i t i o n

dom(BAP (m)) = Progress(m)
Grd WellDefined <p r e d i c a t e> (m : Machine(STATE,EV ENT ))

d i r e c t d e f i n i t i o n
dom(Grd(m)) = Progress(m)

Init WellDefined <p r e d i c a t e> (m : Machine(STATE,EV ENT ))
d i r e c t d e f i n i t i o n

Init(m) ∈ Event(m) ∧ Init(m) ∈ Ordinary(m)
Variant WellDefined <p r e d i c a t e>

(m : Machine(STATE,EV ENT ))
d i r e c t d e f i n i t i o n

Inv(m) ◁ V ariant(m) ∈ Inv(m) → Z
Tag Event WellDefined <p r e d i c a t e>

(m : Machine(EV ENT, STATE))
d i r e c t d e f i n i t i o n

Convergent(m) ∪ Ordinary(m) = Event(m)∧
Convergent(m) ∩ Ordinary(m) = ∅

Machine WellDefined <p r e d i c a t e>
(m : Machine(STATE,EV ENT ))

d i r e c t d e f i n i t i o n
BAP WellDefined(m)∧
Grd WellDefined(m)∧
Init WellDefined(m)∧
Tag V ariant WellDefined(m)∧
V ariant WellDefined(m)

Listing 3: Operator of well defined Data-type (D.1&S.1)
The direct definition of the next

Variant_WellDefined operator shows that all the
states belonging to the variant states are convergent and
identified from the set of invariant states, i.e. each variant
state element is associated with an integer. Note that the
variant is a total function in the invariant states. The direct
definition of the Tag_Event_WellDefined operator
shows that the union of convergent and ordinary events are
equal to the progress events, and are exclusive sets of events.
The last Machine_WellDefined operator is important;
the direct definition shows the conjunction of all other
well-defined operators. It represents the global well-defined
condition associated with an Event-B machine m.

3) Proof obligation operators: Once the notion of machine
is defined, the last set of operators deal with the explicit defi-
nition of Event-B POs (see Listing 4). They help to discharge
the generated proof obligations as given in Section II, such as
INV, FIS, NAT and VAR. Their definitions are inductive as
they apply on the initialisation and then on all other events.

All the defined operators have a machine m as argument.
The first declared operator Mch_THM shows that the in-
variants are a subset of theorems. The next two operators,
Mch_FIS_Init and Mch_FIS, represent the base case and
induction case for the feasibility POs, respectively. The direct
definition for the induction case ensures that the invariants
and guards of the progress event e are a subset of the domain
of the BAP of e. Similarly, the next three predicate operators,
Mch_INV_Init, Mch_INV and All_Progress_INV, de-
fine the initialisation, the induction case of the invariant PO for
a single event e, and the induction case of invariant properties
for all progress events, respectively. The direct definition of
Mch_INV ensures that BAP of progress event e preserves the
invariants if guards and invariants are true before.

The next two operators Mch_VARIANT and
All_Convergent_VAR are declared to represent
convergent properties. The Mch_VARIANT definition



guarantees that if invariants and guards hold, then the BAP
decreases the variant associated with the convergent event
e. The WD clause defines other well-defined operators
to ensure the correctness as well as the required WD
conditions for the variants. Similarly, the operator
All_Convergent_VAR generalises the definition of
convergence, it checks the required properties for all
convergent events of machine m. Then, the next two
operators, Mch_NAT and All_Convergent_NAT, define a
variant for an event e as a natural number and all convergent
events have a natural number as variant, respectively.

The predicate operator, Machine_PO is the most impor-
tant. It allows to generate, thanks to the WD PO mechanism,
all possible POs related to a machine. Its direct definition
is the conjunction of all the other PO operators re-
lated to Event-B constituents previously defined. Its well-
definedness clause uses the Machine_WellDefined op-
erator. This operator is associated to the last defined opera-
tor check_Machine_WellDefined ensuring that all the
destructors are well-defined and the machine satisfies POs.
Observe that there is no direct definition for this operator as it
shall always be true ⊤. The well-definedness clause contains
the required condition that allows to check the machine well-
definedness and machine POs together. When this operator is
used, it generates a PO for this WD condition.

Mch THM <p r e d i c a t e> (m : Machine(STATE,EV ENT ))
d i r e c t d e f i n i t i o n

Inv(m) ⊆ Thm(m)
Mch FIS Init <p r e d i c a t e> (m : Machine(STATE,EV ENT ))

d i r e c t d e f i n i t i o n
Inv(m) ∩ AP (m) ̸= ∅

Mch FIS <p r e d i c a t e>
(m : Machine(STATE,EV ENT ), e : Event)

w e l l − d e f i n e d n e s s
e ∈ Progress(m)

d i r e c t d e f i n i t i o n
Inv(m) ∩ Grd(m)[{e}] ⊆ dom(BAP (m)[{e}])

All Progress Mch FIS <p r e d i c a t e>
(m : Machine(STATE,EV ENT ))

d i r e c t d e f i n i t i o n
∀e · e ∈ Progress(m) ⇒ Mch FIS(m, e)

Mch INV Init <p r e d i c a t e> (m : Machine(STATE,EV ENT ))
d i r e c t d e f i n i t i o n

AP (m) ⊆ Inv(m)
Mch INV <p r e d i c a t e>

(m : Machine(STATE,EV ENT ), e : EV ENT )
w e l l − d e f i n e d n e s s e ∈ Progress(m)
d i r e c t d e f i n i t i o n

BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m)
All Progress INV <p r e d i c a t e> (m : Machine(STATE,EV ENT ))

d i r e c t d e f i n i t i o n
∀e · e ∈ Progress(m) ⇒ Mch INV (m, e)

Mch VARIANT <p r e d i c a t e>
(m : Machine(STATE,EV ENT ), e : EV ENT, s : STATE)

w e l l − d e f i n e d n e s s V a r i a n t W e l l D e f i n e d (m) ,
A l l P rog re s s INV (m) , BAP WellDefined (m) ,
T a g V a r i a n t W e l l D e f i n e d (m) ,e ∈ Convergent(m)∧
s ∈ State(m) ∧ s ∈ Inv(m) ∧ s ∈ Grd(m)[{e}]

d i r e c t d e f i n i t i o n
∀sp · sp ∈ BAP (m)[{e}][{s}]
⇒ (Inv(m) ◁ V ariant(m))(s) > (Inv(m) ◁ V ariant(m))(sp)

All Convergent VAR <p r e d i c a t e>
(m : Machine(STATE,EV ENT ))

w e l l − d e f i n e d n e s s V a r i a n t W e l l D e f i n e d (m) ,
A l l P rog re s s INV (m) , BAP WellDefined (m) ,
T a g V a r i a n t W e l l D e f i n e d (m)

d i r e c t d e f i n i t i o n
∀e, s · e ∈ Event(m) ∧ e ∈ Convergent(m)∧
s ∈ State(m) ∧ s ∈ Inv(m) ∧ s ∈ Grd(m)[{e}]

⇒ Mch V ARIANT (m, e, s)

Mch NAT <p r e d i c a t e>
(m : Machine(STATE,EV ENT ), e : EV ENT )

w e l l − d e f i n e d n e s s e ∈ Convergent(m)
d i r e c t d e f i n i t i o n

V ariant(m)[Inv(m) ∩ Grd(m)[{e}]] ⊆ N
All Convergent NAT <p r e d i c a t e>

(m : Machine(STATE,EV ENT ))
d i r e c t d e f i n i t i o n

V ariant(m)[Inv(m) ∩ Grd(m)[Convergent(m)]] ⊆ N
Machine PO <p r e d i c a t e> (m : Machine(STATE,EV ENT ))

w e l l − d e f i n e d n e s s Machine Wel lDef ined (m)
d i r e c t d e f i n i t i o n

Mch THM(m) ∧ Mch FIS Init(m) ∧ Mch INV Init(m)∧
All Progress Mch FIS(m) ∧ All Progress Mch INV (m)∧
All Convergent Mch V ARIANT (m)∧
All Convergent Mch NAT (m)

check Machine WellDefined <p r e d i c a t e>
(m : Machine(EV ENT, STATE))

w e l l − d e f i n e d n e s s
Machine WellDefined(m) ∧ Machine PO(m)

d i r e c t d e f i n i t i o n
⊤

Listing 4: Operator of well defined Data-type (D.1&S.1)

VI. APPLICATION OF EVENT-B META-THEORIES

In this section, we describe a simple case study, the clock, to
demonstrate how our developed meta models can be applied.

A. Case Study: The Clock

The main functionalities (FUN) and requirements (REQ) of
the clock case study are given as follows:

• FUN1 A minute can progress
• FUN2 An hour can progress
• REQ1 The hours are represented in a 24-hour format.
• REQ2 The clock must converge on midnight.
• REQ3 The clock never stops.
In Listing 5, we describe the clock model that is formalised

in native Event-B language. In this model, two variables are
defined, minute m and hour h, in inv1 − inv2. Two safety
properties are introduced in inv3 − inv4. The first safety
property (REQ1) states that the minute m is always less than
60 and hour h is less then 24. The next safety property (REQ3)
is defined as a theorem that is a disjunction of all guards to
state that the clock never stops means always the guard of
at least one event is true. The last safety property (REQ2)
is related to convergence (variant) expressed by the number
24 ∗ 60− 1− (m+ h ∗ 60). In this model, we introduce three
events: tick min - to model the minute progress by 1; tick hour
- to model the hour progress by 1; and tick midnight - to reset
the clock at midnight. The required guards are added in the
defined events to update the minute m and hour h.

MACHINE Clock
VARIABLES m , h
INVARIANTS

inv1−2 : m ∈ N ∧ h ∈ N
inv3−4 : m < 60 ∧ h < 24

THEOREMS
thm1 : m < 59 ∨ (m = 59 ∧ h < 23) ∨ (m = 59 ∧ h = 23)

VARIANT 24 ∗ 60 − 1 − (m + h ∗ 60)
EVENTS

INITIALISATION
THEN

a c t 1 : m,h :| m′ = 0 ∧ h′ = 0
END
tick min <convergen t>
WHERE

grd1 : m < 59



THEN
a c t 1 : m :| m′ = m + 1

END
tick hour <convergen t>
WHERE

grd1 : m = 59 ∧ h < 23
THEN

a c t 1 : m,h :| m′ = 0 ∧ h′ = h + 1
END
tick midnight <ord inary>
WHERE

grd1 : m = 59 ∧ h = 23
THEN

a c t 1 : m,h :| m′ = 0 ∧ h′ = 0
END

END

Listing 5: A machine of clock
Once the theory for Event-B concepts is designed, two

main approaches to instantiate it are envisioned, namely deep
modelling and shallow modelling as described below.

B. Deep embedding of the clock model

We describe the development of the clock case study using
the deep modelling instantiation technique of Section IV-B
using the meta-theory introduced in Section V. All constituents
of the Clock model are explicitly expressed in terms of the
EvtBTheo Meta-theory constructs. The Clock Event-B model
is represented as an Event-B context, and POs are described
either as theorems or as well-definedness POs.

The deep modelling resulting context of the Event-B clock
model given in Listing 5 is presented in Listing 6. In this
context, a set Ev lists all the clock events in axm1. The
clock machine clock is defined by axiom axm2 as a member
of Machine(Z × Z, Ev), where the first argument defines
machine state as Z × Z and the second one machine events
Ev. Furthermore, three axioms (axm3 − axm5) are used to
instantiate Event with the enumerated set Ev, Init with the
event label init, and State with Z× Z.

CONTEXT C l o c k D e e p I n s t a n c e
SETS Ev
CONSTANTS c lock , t i ck min , t i c k h o u r , t i c k m i d n i g h t , i n i t
AXIOMS

axm1 : partition(Ev ,
{init}, {tick midnight}, {tick hour}, {tick min})

axm2−3 : clock ∈ Machine(Z × Z,Ev) ∧ Event(clock) = Ev
axm4−5 : Init(clock) = init ∧ State(clock) = Z × Z
axm6 : Thm(clock) = {m 7→ h |

m < 59 ∨ (m = 59 ∧ h < 23) ∨ (m = 59 ∧ h = 23)}
axm7 : Inv(clock) = {m 7→ h | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24}
axm8 : AP(clock) = {m 7→ h | m = 0 ∧ h = 0}
axm9 : BAP(clock) = {t 7→ ((m 7→ h) 7→ (mp 7→ hp)) |

(t = tick min ∧ mp = m + 1 ∧ hp = h)∨
(t = tick hour ∧ mp = 0 ∧ hp = h + 1)∨
(t = tick midnight ∧ mp = 0 ∧ hp = 0)}

axm10 : Grd(clock) = {t 7→ (m 7→ h) |
(t = tick min ∧ m < 59)∨
(t = tick hour ∧ m = 59 ∧ h < 23)∨
(t = tick midnight ∧ m = 59 ∧ h = 23)}

axm11 : Convergent(clock) = {tick min, tick hour}
axm12 : Ordinary(clock) = {tick midnight, init}
axm13 : Variant(clock) = {m 7→ h 7→ v |

v = 24 ∗ 60 − 1 − (m + h ∗ 60)}
THEOREMS

thm1 : check Machine WellDefined(clock)
END

Listing 6: A deep instance of the clock machine (D.2)
The next two axioms (axm6 and axm7) are defined to in-

stantiate theorem Thm and invariant Inv using comprehensive

sets derived from thm1 and inv1− inv4 of Listing 5. Axiom
axm8 instantiates the after-predicate AP derived from the
action of the initialisation event (act1) in the Clock machine.
Similarly, axioms axm9 and axm10 are used to instantiate
the before-after predicate BAP and the guard Grd with a
set of actions and guards of all events derived from the
Clock machine using comprehensive sets. The next axioms
axm11− axm12 instantiate the Convergent and Ordinary
with a list of convergent and ordinary events, respectively. In
this model, we have only two convergent events tick min and
tick hour and two ordinary events init and tick midnight.
Axiom axm13 is used to instantiate the V ariant with the
defined variant of the Clock model.
Machine correctness. It is important to note the introduc-
tion of a theorem thm1 to invoke the check Machine
WellDefined operator, which is used to check the well-
definedness and POs generation of the Clock machine. This
theorem shall be proved, it entails machine correctness.

C. Shallow embedding of the clock model

We describe the development of the clock case study using
the shallow modelling instantiation technique of Section IV-B
using the meta-theory introduced in Section V.

All constituents of the Clock model are explicitly expressed
in terms of the EvtBTheo Meta-Theory constructs. The
Clock Event-B model is represented as an Event-B context and
machine, and POs are described either as theorems or as guard
strengthening POs. It is inspired from shallow embeddings [8]
used in other interactive provers like Isabelle/HOL and PVS.
In the same vein as the shallow embedding, we use the Event-
B to preserve semantics and the supporting syntax. Thus, we
describe an abstract Event-B model formalising the required
properties for Event-B models correctness: a context for
the static part and properties and a generic machine for the
dynamic parts i.e. transitions represented by events.

1) Abstract generic model: Listings 7 and 8 show the
context and machine of the Clock generic model. The context
contains sets Ev and S for events and states. A constant
machine is introduced as a member of Machine(S,Ev).

CONTEXT ClockShal lowGen
SETS Ev , S
CONSTANTS machine
AXIOMS

axm1 : machine ∈ Machine(S,Ev)
END

Listing 7: A static element of abstract machine (S.2)
In the generic machine model, we declare two variables

s and InitDone in invariants inv1 − inv2. These variables
are set in the INITIALISATION event. To ensure that the
invariant is satisfied, we introduce a new invariant inv3. In this
model, we define three events Do_Init, Do_Ordinary,
and Do_Convergent whose actions modify the state using
the AP and BAP operators (act1). The first event is used to
initialise state variables in actions (act1 − act2). Its guards
ensure that InitDone is FALSE (grd1), and the feasibility
and invariants hold for the Init event. The Do_Ordinary
event updates the machine state s for an event e annotated



as Ordinary. Its guards state that InitDone is TRUE; the
machine state s belongs to Grd of e (grd2); the event e is
a progress and ordinary event (grd3 − grd4); and feasibility
and invariant properties of machine hold for the event e
(grd5 − grd6). Similar to the ordinary event, the last event
Do_Convergent contains additional guards grd3 to tag the
event e as convergent and grd7 − grd8 to ensure that the
variant properties of machine for the event e hold.

Note that our generic abstract model contains initialisation,
ordinary and convergent events, whereas we may only have
initialisation and progress events, in the same of spirit of
TLA+, where the progress event can be refined by ordinary
and convergent events later in further refinement.
MACHINE ClockShallowGenMac
SEES ClockShal lowGen
VARIABLES s , InitDone
INVARIANTS

inv1−2 : s ∈ S ∧ InitDone ∈ BOOL
inv3 : InitDone = TRUE ⇒ s ∈ Inv(machine)

EVENTS
INITIALISATION
THEN

a c t 1 : s :| s′ ∈ S
a c t 2 : InitDone := FALSE

END
Do Init
WHERE

grd1 : InitDone = FALSE
grd2−3 : Mch FIS Init(machine) ∧ Mch INV Init(machine)

THEN
a c t 1 : s :| s′ ∈ AP(machine)
a c t 2 : InitDone := TRUE

END
Do Ordinary
ANY e
WHERE

grd1−2 : InitDone = TRUE ∧ s ∈ Grd(machine)[{e}]
grd3−4 : e ∈ Progress(machine) ∧ e ∈ Ordinary(machine)
grd5−6 : Mch FIS(machine, e) ∧ Mch INV (machine, e)

THEN
a c t 1 : s :| s′ ∈ BAP(machine)[{e}][{s}]

END
Do Convergent
ANY e
WHERE

grd1−2 : InitDone = TRUE ∧ s ∈ Grd(machine)[{e}]
grd3−4 : e ∈ Progress(machine) ∧ e ∈ Convergent(machine)
grd5−6 : Mch FIS(machine, e) ∧ Mch INV (machine, e)
grd7 : Mch V ARIANT (machine, e, s)
grd8 : Mch NAT (machine, e)

THEN
a c t 1 : s :| s′ ∈ BAP(machine)[{e}][{s}]

END
END

Listing 8: A generic abstract machine (S.2)
2) Concrete model: The concrete model refines the abstract

generic model introduced above. The static elements of the
clock model are described by the context of Listing 9 and
dynamic elements are described in machine of Listing 10.
Static constituents. In the context of Listing 9, we define a
constant pr in axm1 as a bijection relation between (Z× Z)
and S to maintain an exact correspondence between abstract
and concrete states. We enumerate the set Ev with clock
events in axm2. Axioms (axm3-axm5) are used to instantiate
Event with enumerated set Ev, Init with the event init, and
State with S. Axiom axm6 is defined to instantiate invariant
Inv using comprehensive sets derived from Inv1 − inv4 of
Listing 5. Variant of the clock machine is introduced in axm7.
Then two axioms (axm8 − axm9) are used to instantiate

Convergent and Ordinary with a set of convergent and
ordinary events. The last axiom axm10 instantiates theorem
concrete machine Thm derived from Listing 5.
Context correctness. Four theorems thm1 − thm4 are in-
troduced to check the POs associated with theorems, and
well-definedness for variant and machine events (initial and
tagged events). Once proved, these theorems guarantee that
the context is well-defined and the required properties hold.
CONTEXT ClockSha l low EXTENDS ClockShal lowGen
CONSTANTS t i ck min , t i c k h o u r , t i c k m i d n i g h t , i n i t , p r
AXIOMS

axm1−2 : pr ∈ (Z × Z) ↣→ S ∧ State(machine) = S
axm3−4 : Event(machine) = Ev ∧ Init(machine) = init
axm5 : partition(Ev ,

{init}, {tick midnight}, {tick hour}, {tick min})
axm6 : Inv(machine) =

pr [{m 7→ h | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24}]
axm7 : Variant(machine) = {s, v,m, h · s = pr(m 7→ h)∧

v = (24 ∗ 60 − 1 − (m + h ∗ 60)) | s 7→ v}
axm8 : Convergent(machine) = {tick min, tick hour}
axm9 : Ordinary(machine) = {tick midnight, init}
axm10 : Thm(machine) = pr [{m 7→ h |

m < 59 ∨ (m = 59 ∧ h < 23) ∨ (m = 59 ∧ h = 23)}]
THEOREMS

thm1−2 : PO THM(machine) ∧ Init WellDefined(machine)
thm3 : Variant WellDefined(machine)
thm4 : Tag Event WellDefined(machine)

END

Listing 9: Instances for static elements: clock machine (S.3)
Dynamic constituents. The abstract machine is refined in
Listing 10 to introduce the events of the Clock Event-B
machine. In this model, we declare two new variables m and h
and a gluing invariant inv1 to link (glue) concrete and abstract
variables. No new event is added but each abstract event has
been refined by concrete ones by providing concrete guards
and actions. The newly introduced variables are set in the
refined INITIALISATION event, and a witness is provided
to map the abstract and concrete variables. In the Do_Init
event, we introduce a new guard (grd2) to instantiate AP
operator and a witness is provided for the state s′. The action
of this event modifies the concrete clock variables m and h.

The event Do_Convergent is refined by two con-
crete clock events Tick_min and Tick_hour, and the
event Do_Ordinary is refined by the concrete event
Tick_midnight. In Tick_min event, grd1 is similar to
the abstract event, grd2 is updated according to the concrete
variables m and h, and two new guards (grd3 − grd4) are
added to instantiate Grd and BAP operators for tick min,
respectively. In this event, two witnesses are provided for the
abstract parameter event e and the state s′. The action of this
event uses BAP operator to update concrete variables m and
h. Note that the other refined events are similarly modeled by
providing witnesses and appropriate instantiations.
Machine correctness. Gluing invariant (inv1), witnesses and
guard strengthening are introduced to check the POs as-
sociated with machine events (initial and tagged events).
New generated POs are proved to guarantee that the ma-
chine is correct and the required properties hold. The com-
plete development of meta theory, instantiations of deep
and shallow clock models, and the Event-B clock model
are available at http://singh.perso.enseeiht.fr/
Conference/ICECCS2022/EB4EB_Models.pdf.

http://singh.perso.enseeiht.fr/Conference/ICECCS2022/EB4EB_Models.pdf
http://singh.perso.enseeiht.fr/Conference/ICECCS2022/EB4EB_Models.pdf


MACHINE ClockShallowMac
REFINES ClockShallowGenMac
SEES ClockSha l low
VARIABLES m , h , InitDone
INVARIANTS

inv1 : s = pr(m 7→ h)
EVENTS

INITIALISATION
WITH

s′ : s′ = pr(m′ 7→ h′)
THEN

a c t 1 : m,h :| m′ ∈ Z ∧ h′ ∈ Z
a c t 2 : InitDone := FALSE

END
Do Init REFINES Do Init
WHERE

grd1 : InitDone = FALSE
grd2 : pr[{ms 7→ hs | ms = 0 ∧ hs = 0}] = AP (machine)

WITH
s′ : s′ = pr(m′ 7→ h′)

THEN
a c t 1 : m,h :| pr(m′ 7→ h′) ∈ AP (machine)
a c t 2 : InitDone := TRUE

END
Tick min REFINES Do Convergent
WHERE

grd1 : InitDone = TRUE
grd2 : m 7→ h ∈ pr ∼ [Grd(machine)[{tick min}]]
grd3 : pr [{ms, hs · ms < 59 ∧ hs ∈ Z | ms 7→ hs}] =

Grd(machine)[{tick min}]
grd4 : {ss, ssp,ms, hs,msp, hsp·

ss = pr(ms 7→ hs) ∧ ssp = pr(msp 7→ hsp)∧
msp = ms + 1 ∧ hsp = hs | ss 7→ ssp} =

BAP(machine)[{tick min}]
WITH

e : e = tick min
s′ : s′ = pr(m′ 7→ h′)

THEN
a c t 1 : m,h :| pr(m′ 7→ h′) ∈

BAP(machine)[{tick min}][{pr(m 7→ h)}]
END
Tick hour REFINES Do Convergent
. . .
THEN

a c t 1 : m,h :| pr(m′ 7→ h′) ∈
BAP(machine)[{tick hour}][{pr(m 7→ h)}]

END
Tick midnight REFINES Do Ordinary
. . .
THEN

a c t 1 : m,h :| pr(m′ 7→ h′) ∈
BAP(machine)[{tick midnight}][{pr(m 7→ h)}]

END
END

Listing 10: A shallow instance of the clock machine (S.4)

VII. NEW REASONING: DEADLOCK FREENESS

Currently, modelling deadlock freeness (FUN1) is achieved
manually by the model designer using an additional theorem
stating that the disjunction of all events guards holds. Pro-
ceeding this way is error prone if the user does not write it
correctly. Generating this theorem as a new PO would avoid
the designer of the burden of writing this theorem.

Expressing such a PO (and others) at the Meta-theory level
is possible provided that a specific operator with its WD
condition is introduced. Listing 11 shows the formalisation of
the PO_DeadlockFreeness operator in a theory extension
EvtBTheoDeadlock. Then, checking the machine operator
check_Machine_DeadLock is redefined so as to handle
deadlock freeness in addition to the other WD conditions
provided by check_Machine_WellDefined issued from
the extended EvtBTheo. To generate the deadlock freeness
PO for a concrete model, it is enough to state that predicate

operator check_Machine DeadLock is a theorem in the
context of the concrete model.
THEORY EvtBTheoDeadlock IMPORT EvtBTheo

TYPE PARAMETERS STATE,EV ENT
OPERATORS

/ / A p r e d i c a t e f o r machine Deadlock f r e e n e s s
PO DeadlockFreeness <p r e d i c a t e>

(m : Machine(STATE,EV ENT ))
d i r e c t d e f i n i t i o n
Inv(m) ⊆ Grd(m)[Progress(m)]

/ / W e l l − d e f i n e d machines w i t h d e a d l o c k f r e e n e s s .
check Machine DeadLock <p r e d i c a t e>

(m : Machine(STATE,EV ENT ))
w e l l − d e f i n e d n e s s check Machine Wel lDef ined (m)∧

PO DeadlockFreeness (m)
d i r e c t d e f i n i t i o n ⊤

END

Listing 11: A theory about Deadlock Freeness

VIII. ASSESSMENT

We evaluate our EB4EB framework in terms of proof effort
and benefits of such extension. Rodin supports all the theo-
ries and case study. All the resulting POs were successfully
discharged. The complete developments can be found on
http://singh.perso.enseeiht.fr/Conference/
ICECCS2022/EB4EB_Models.pdf.

1) Proof effort: Proof statistics for all the developed models
(i.e clock, deep, shallow generic, shallow context, and shallow
machine) are presented in Table V. Due to its simplicity and

Models Total Automatic Interactive
POs POs POs

Clock Event-B model (Listing 5) 25 25 (100%) 0 (0%)
Clock Deep model context (Listing 6) 2 0 (0%) 2 (100%)
Shallow generic machine (Listing 8) 14 8 (57%) 6 (43%)
Clock Shallow context (Listing 9) 5 1 (20%) 4 (80%)
Clock Shallow machine (Listing 10) 54 26 (48%) 28 (52%)

TABLE V: Proof Statistics
as expected, we observe that the clock model is automatically
proved using Rodin provers. The proofs of correctness of
the same case study using both deep and shallow modelling
resulted in a greater number of proof obligations, some of
them being proved interactively. Although the number of POs
and interactive proofs are increasing, we believe that our
framework offers two other complementary proving techniques
(using deep and shallow instantiation) to the classical Event-B
provers.

2) Deep and shallow modelling: In deep modelling, all
Event-B concepts related to variables, events, guards, in-
variants, substitutions and so on are defined as instances of
the developed meta-theory. For shallow modelling, a context
and an abstract generic model instantiating the meta-theory
with Event-B concepts are defined. They exploit the built-
in inductive proof process offered by Event-B/Rodin. Both
approaches allow us to double-check, based on different proof
mechanisms, design decisions during system development.

Last, such approaches offer a shared format for Event-
B models. Indeed, deep modelling style relies on first-order
logic and set theory in contexts that can be exported to any
other proof assistant, like Coq, PVS and Isabelle/HOL. For
shallow modelling, export to other close modelling techniques
like TLA is straightforward. Such export makes it possible to
exploit other proof assistants than Event-B/Rodin.

http://singh.perso.enseeiht.fr/Conference/ICECCS2022/EB4EB_Models.pdf
http://singh.perso.enseeiht.fr/Conference/ICECCS2022/EB4EB_Models.pdf


3) Extensible framework: The EB4EB framework allows
for the extension of the core reasoning mechanism of Event-
B by including new POs defined as predicates in theories.
Our theories for reflexive Event-B, for example, allowed us
to reason about deadlock freedom, reachability, and so on.
This capability makes Event-B/Rodin extensible as it can be
enriched with additional POs not available in native Event-B.

IX. CONCLUSION

The EB4EB framework we presented allows users to ma-
nipulate Event-B features explicitly using reflection and meta-
modelling concepts. It relies on Event-B theories that de-
fine data-types, operators, WD, theorems, and proof rules to
formalise the semantics of Event-B. The developed theories
enable manipulation of the static and dynamic properties of
Event-B, including new POs associated to deadlock freeness,
liveness, reachability, composition/decomposition, and so on.
Deep and shallow embedding are used to instantiate the
defined theories of the EB4EB framework. Furthermore, the
Rodin tools have been used to formalise the development of
EB4EB-related activities. We have demonstrated the approach
on the clock model developed in both core modelling language
and deep and shallow modelling. Both deep and shallow in-
stantiated clock models preserve the required safety properties
and functional behaviour encoded in theories.

Note that the EB4EB modelling concepts are formalised
once and for all, meaning that they are reusable and don’t
need to be proven again. However, these theories must be
instantiated in new developments, and the generated WD POs
must be discharged to check instantiation is correct.

The developed theories have been applied on several case
studies to assess the expressiveness, effectiveness, portability,
and scalability of our approach. Our future goal is to analyse
and identify Event-B refinement operations and its semantics
to be included in the EB4EB framework. We plan to deploy
the EB4EB framework to enhance and extend the reasoning
mechanism by supporting other externally defined POs. In
particular, we target the definition of domain specific POs
issued from domain specific analyses of Event-B models, like
continuous behaviours, human machine interaction, and so
on. Analyzing and certifying existing plug-ins, such as code
generation and composition/decomposition, is on the agenda.
Our long-term goal is to use Dedukti [7] to import/export the
Event-B theory and models into proof assistants like Coq, PVS
and Isabelle/HOL using the deep modelling approach.
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