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Abstract Structural  libraries  of  fragments  are  commonly  used  to  model  or  design  the  3D
structure  of  biomolecules  (drugs,  peptides,  nucleic  acids).  They  typically  approximate  all
possible local  conformations of these molecules within a given precision,  by a set  of  well-
chosen  representative  fragments.  Such  a  set  can  be  obtained  by  clustering  a  larger  set  of
fragments whose structures have been solved experimentally, using suitable clustering algorithm
and measure of dissimilarity between fragments. A commonly used measure of dissimilarity in
structural biology is the root mean square deviation (RMSD), whose exact computation requires
a pairwise structural alignment. But this alignment is highly time-consuming and not applicable
for a very large initial set of fragments.

We propose here an approach based on feature extraction to perform an effective clustering,
while avoiding a computationally expensive full pairwise alignment. Using as example poly-A
RNA fragments of 3 nucleotides (3-nt), we searched for internal coordinates whose differences
can best approximate the RMSD between two fragments without any superposition. We found
that the simple differences of internal distances and angles can provide a lower bound on the
RMSD, allowing us to filter out pairs of which the RMSD does not need to be computed. We
can then compute the exact values for only the small RMSDs, and use it to apply more effective
clustering methods.

We present this strategy and its application on 39431 RNA 3-nt, which could be approximated
by only 3258 representative prototypes with 1 Å accuracy.

Keywords Fragment-based modeling, Structural library, Clustering, RNA 3D structure.

1 Introduction

Fragment-based methods are commonly used for modeling flexible polymers (protein loops,  RNA...).
They can exploit  a  discrete  representation of  the  local  conformations of  the  molecule  in  the  form of  a
structural library [1], which contains an ensemble of conformers for each type of fragment. As an example,
we use a library of trinucleotide (3-nt) conformations for fragment-based docking of ssRNA on proteins [2].
A straightforward approach to create structural libraries suitable for a given modeling task is to take all
existing experimental structures of similar targets,  extract all  their fragments, and  create a representative
subset,  by  means  of  clustering.  The  objective  is  then  to  have  as  few  prototypes  as  possible,  while
approximating the whole set with a given precision (governed by the application).

 One common clustering criterion for the building of structural libraries is the root mean square deviation
(RMSD),  whose  minimum  value  obtained after  structural  alignment  is  called  conformational  RMSD
(cRMSD) [3]. Using this cRMSD raises problems reporting to both statistics and computational complexity.
Indeed, there is no guarantee that the measure still exhibits all the properties of a metric, and its computation
for all pairs of fragments can be time-consuming. We previously addressed both problems by aligning all
fragments  on one of  them selected randomly before  computing the RMSD,  as an approximation of the
cRMSD.  But  the  resulting  values  are  larger  than  the  cRMSD,  with  the  consequence  that  too  many
clusters/prototypes are generated.

Our present contribution provides a solution to both problems, based on feature extraction. Those new
features,  which  do  not  require  any  structural  alignment  for  their  comparison,  can  be  seen  as  internal
coordinates. With these new descriptions at hand, we construct libraries of 3-nt prototypes such that every
conformation  is  at  most  at  1Å  of  a  prototype  (according  to  the  cRMSD).  Compared  to  the  previous
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algorithm, our new method basically decreases the number of prototypes, under an acceptable computing
time.

The problem is formalized in Section 2.  The original  contribution is  introduced in Section 3.  Finally
Section 4 is devoted to the comparative experiments.

2 Problem statement

Our data are fragments x which belong to a subset  of an Euclidean space 𝓧 ℝ3n, where n is the number of
atoms. Their dissimilarity is measured by means of the normalized ℓ2 distance (RMSD) computed after the
application of a structural alignment. It is thus given by the following formula:

 (x, x')  (∀ ∈ ℝ3n)2, d(x, x') =  

where Φ(x') in ℝ3n  is the image of x' by the alignment. We consider two instances of the function Φ :

• Φ` is associated with the one against all strategy (all fragments are aligned on one single fragment,
the reference fragment).

• Φ* is associated with the one against one strategy (the alignments are performed pairwise).

We assume that we are given m fragments xi. Their matrix of dissimilarities D = (di,j)1≤i,j≤m , given by di,j =
d(xi, xj), is used to produce the set of prototypes {x̄  } through clustering. Let d` and d* be respectively the
dissimilarity measures associated with Φ` and Φ*. The prototypes must satisfy the constraint:

∀ i, 1 ≤ i ≤ m,  ∃ x̄  : d*(xi, x̄ ) ≤ threshold.

Given the fact that the constraints involve d*, using the matrix of dissimilarities associated with Φ`raises
an  obvious  difficulty.  If  we  focus  on  the  kind  of  libraries  we  are  especially  interested  in  (3-nt  RNA
conformations for fragment-based docking), then it appears that the values of the RMSD after alignement on
a reference (d`) and of the cRMSD (d*) can vary up to 7Å. Symmetrically, using the matrix associated with
Φ* restricts the choice of the clustering methods, since it is no longer a matrix of distance. Furthermore, the
computation of this second matrix is far more time consuming than the previous one, since its complexity is
quadratic in the number of fragments.

3 Methods

3.1 Representation in Cartesian and internal coordinates 

We extracted from  the Protein Data Bank  all  the overlapping 3-nt RNA fragments in all  structures of
RNA-protein complexes obtained by X-ray crystallography (with resolution < 3Å) or solution NMR, using
our in-house protNAff tool [https://github.com/isaureCdB/ProtNAff]. We then convert them into the coarse-
grain representation defined in ATTRACT, which replaces sets of 3-4 heavy atoms by one pseudo-atom,
resulting in 7 pseudo-atoms per purine nucleotide (Fig 1).

To define relevant internal coordinates, taking inspiration from existing methods [4, 5],  we selected and
computed 6 distances and 9 dihedral angles: 

• the 3 pairwise distances between bases, using for each base the pseudo-atom the farthest from the
backbone (GA4)

• the distance between 5’-GS2 (sugar) and 3’-GA4 (base)
• the distance between 5’-GA4 (base) and 3’-GS2 (sugar)
• the length of the backbone, from 5’-GP (phosphate) to 3’-GS1 (sugar)
• the 3 backbone angles between pseudo-atoms GP and GS1 of consecutive nucleotides
• the 3 μ angles between sugar and base of each nucleotide, using the pseudo-atoms GS1 – GS2 – GA1

– GA2.
• the 3 χ angles between the sugar-base axis GS2 – GA1 of two nucleotides.



Fig 1. Selected internal coordinates: distances (left) and angles (right) on a trinucleotide in all-atoms (sticks) and
coarse-grained (beads) representations, with the name of the pseudo-atoms on the 3’ nucleotide.

3.2 Connection between internal coordinates and RMSD

We analysed  the  distribution  of  its  values  among  the  fragments,  and  evaluated  how to  connect  the
differences between two fragments measured either by the  cRMSD or by the difference in each internal
coordinate. We selected four times a random sample of 10 % of the full set of fragments, and computed for
all  pairs  of  fragment  (i)  the  pairwise  cRMSD  after  fitting,  (ii)  the  difference  between  each  internal
coordinate, and (iii) the sum of the differences over the internal either distances or angles. We selected, for
each of the 15 coordinates and 2 sums of coordinates, the threshold value above which all pairs of fragments
have a cRMSD above 1 Å. In practice, to make the filtering more stringent, we allowed 1 false negative per
1000 positives (meaning that 1/1000 pairs with cRMSD < 1 Å are above that threshold). We then computed
the 17 average threshold values over the 4 random samples.

We applied those thresholds on the full set of 39431 fragments. We computed all the internal coordinates
and their pairwise (sum of) differences, then selected the pairs with all 17 values below the corresponding
threshold. The pairwise alignment and computation of the cRMSD value were done only on that subset of
pairs. For all other pairs, the cRMSD was considered as above 1 Å.

3.3 Choice of clustering methods with the full RMSD matrix

Three clustering algorithms are described below, that are compatible with our dissimilarity matrix. One
fast clustering using only a subset of approximate RMSD values was applied on the full set of fragments.
The two others use the full pairwise cRMSD matrix and were applied and compared in 2 cases: First, on the
prototypes obtained by fast clustering with approximate RMSD values, in order to evaluate the potential gain
in the number of clusters by using more effective clustering algorithms on cRMSD values.  Second,  we
applied them on the full set of fragments, using the RMSD matrix obtained after filtering by differences of
internal coordinates.

Fast Clustering with approximate RMSD

We first align each fragment on one fragment randomly chosen. All pairwise structural alignments in this
study are done with the Kabsch algorithm, using the fit.py protocol of ATTRACT. We then use the fastcluster
protocol  from  ATTRACT,  whose algorithm  goes  as  follows  :  Initialization  is  performed  by  randomly
choosing (using a uniform law) a fragment as the 1st cluster prototype. Then, for each fragment is measured
the distance to each of the prototypes in the current set after alignment. If one of these distances is less than
the chosen threshold,  then the fragment  is  assigned to  that  cluster.  Otherwise,  it  is  added to the  set  of
prototypes.

Hierarchical agglomerative clustering (HAC)

This type of clustering is a “bottom-up” approach. At the start, each fragment is a prototype, then the two
closest clusters (depending on the chosen linkage) are agglomerated, and this is iterated until reaching the
linkage threshold, resulting in a hierarchy of clusters. The number of clusters obtained by the method is
dependent on the threshold applied on the linkage. We applied it with a complete linkage of 1 Å, meaning
that two clusters are agglomerated if the maximum distance between two members from each cluster is



below 1 Å.  We used the  Agglomerative Clustering function of  the  sklearn  python module.  Finally,  the
prototype for each cluster can be chosen as the averaged conformation from all members.

Star-shape clustering

We also applied a star-shape clustering algorithm, creating clusters with all distances of each member to a
central element below a given threshold. We first select the fragment with the highest number of connected
fragments (with RMSD below the threshold), assign this fragment and its connections to the first cluster and
remove them from the pool, then repeat. If several fragments have the maximal number of neighbors, one of
them is picked randomly. Given this stochastic aspect, the clustering was run three times on the full set of
fragments, and the cluster set with smallest cardinality was kept.

4 Results

4.1 Re-clustering of prototypes with cRMSD values

By re-clustering the 4771 AAA prototypes with the pairwise cRMSD values using  HAC, we obtained
3307 new clusters: The current fast clustering method with approximated RMSD is indeed non optimal, and
the number of clusters can be reduced by at least 30% with more accurate methods. We also tested to apply a
star-shape clustering method, and obtained 3248 clusters. As the number of clusters obtained by both re-
clustering methods is quite similar, we decided to test both on the full set of fragments, after filtering by
internal coordinates.

4.2 Connection between internal coordinates and RMSD

We computed all 15 internal coordinates in the full set of fragments, and plotted their distributions (Fig 2).
Among distances, the base-base distance show a large variance, while the 3’-sugar – 5’-base distance is more
conserved  among  fragments.  Among  angles,  the  χ  angles  representing  the  relative  orientation  of  two
nucleotides show a large variance, while the μ angles between sugar and base of each nucleotide are much
more conserved.

Fig 2. Distribution of the selected internal coordinates among the 39431 fragments.



We then analysed the link between the RMSD and the differences in internal coordinates for the 4 random
samples of fragments (see part 3.2). We looked at which conformations are closer than 1 Å cRMSD, and we
mostly found pairs below a certain difference threshold, for each internal coordinate (Fig 3). For differences
above this threshold, only 0.1% of the cRMSD values below 1 Å are found.

Fig 3. Correlation between pairwise RMSD and difference in some internal distances/angles.

Distances

base 1-2 base 2-3 base 1-3 sugar 1 – base 3 sugar 3 – base 1 bb sum

43 % 47 % 43 % 57 % 49 % 52 % 23 %

Angles

bb1 bb2 bb3 mu1-2 mu2-3 mu1-3 chi1 chi2 chi3 sum

76 % 67 % 70 % 49 % 52 % 45 % 80 % 77 % 89 % 28 %

Table 1. Percentage of pairs that are under the threshold holding 99.9% of the compatible pairs, for
each internal coordinate, in the 39431 fragments.

When looking at each individual threshold, the most efficient filtering is provided by the sum of distances,
the sum of angles and the base-base distances, while the χ angles give the least efficient filters.

4.3 Clustering with internal coordinates filters

We tested the combination of the 17 thresholds (see 3.2) on the four random samples. The real percentage
of cRMSD values under 1 Å is in range 8.6 - 9.7 % (average 9.2 %) in each sample, and is assumed to be in
the same range for the full set of fragments. We found that the proportion of pairs for which all values are
below the 17 thresholds is in range 14 - 16 % in the samples, meaning that we can reduce the number of pair



alignments to only ~15 % of all pairs. Among the pairs kept, 54 - 62 % were real positives. This set of
thresholds was then applied to the full set of 39431 fragments. As expected, 15 % of the 1.6 x 10 9 pairs were
identified  as  potentially  under  1  Å  cRMSD.  Those  were  selected  for  pairwise  alignment  and  RMSD
computation. For the other pairs, the cRMSD was considered as above 1 Å.

Using the pre-filtered full  RMSD matrix  resulted  in  3258 and 5483 clusters  with  the  star-shape and
agglomerative clustering algorithms respectively. The agglomerative clustering requires an upper bound on
the RMSD between members from two clusters to agglomerate them. This results in clique clusters, with all
members within 1 Å from each other. This is more stringent than our initial objective to have all members at
a maximal distance from the cluster center, and might explain the higher number of clusters obtained by
agglomerative versus star-shape clustering.

4.4 CPU times

To estimate the gain of pre-filtering with internal coordinates in terms of CPU time, we computed the full
c RMSD-matrix for the 4 samples, either with or without pre-filtering, on 1 CPU.  The computation of the
internal coordinates and of their pairwise differences takes less than 1’’. The cRMSD-matrix calculation for
4773 AAA fragments takes ~ 23' for all pairs, and < 5' for the pre-filtered pairs.

On the full set of fragments, the computation of the internal coordinates and of their pairwise differences
takes 2’’ and 4’ respectively. The clustering with the pre-filtered RMSD matrix takes ~1’ for agglomerative
clustering and ~ 45’ for star-shape clustering, each on 1 CPU.

5 Conclusion and future work

We showed that it is possible to overcome both the statistical and the computational problems associated
with clustering fragments based on their  cRMSD, by extracting features from the Cartesian coordinates.
Those internal coordinates are used to evaluate if a structural alignment is needed to calculate the cRMSD
between two fragments. Using this filter, the cRMSD matrix can be computed and used for new clustering
methods. While this paper presents an application on RNA trinucleotides, the approach can be extended to
different RNA structures, and different molecules such as peptides.

We are  now developing a  specific clustering method based on the hierarchical  clustering,  but  with a
different linkage. The idea is to calculate the smallest enclosing ball, containing the two linked clusters. Its
center is the prototype of the new cluster, whose RMSD after alignment to all other prototypes are computed.
The reduction of calculation time shown in this paper is a great help for this new method. 

To refine even more the fragment libraries, the use of other dissimilarities may be explored. The current
normalised ℓ2 distance takes into account deviations globally rather than locally. However, local deviations
might have a significant impact on the relevance of the RNA models created from the fragments. Other
dissimilarities measures (from mixed standards...) can take this constraint into account.
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