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Rayleigh-Bénard convection in a cubic cell under the effects of gas
radiation up to Ra=109
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• Direct numerical simulations of coupled radiation and Rayleigh-Bénard
convection in a cubic cell are performed in the range 103 6 Ra 6 109

for an air/H2O/CO2 mixture.

• Radiative transfer delays the onset of convection but promotes convec-
tion and increases the kinetic energy of the flow from Ra > 105.

• Specific contributions of radiative transfer to the potential energy bal-
ance and the thermal energy balance are highlighted.

• Second order turbulence statistics are analysed in the range 107 6 Ra 6
109.
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Abstract

This paper investigates radiative transfer effects on Rayleigh-Bénard convec-
tion in a cubic cell over a large range of Rayleigh numbers, from Ra = 103

(below the onset of convection) to Ra = 109 in the turbulent regime. Coupled
direct numerical simulations are carried out for a radiating air/H2O/CO2

mixture at room temperature, using a Chebyshev spectral method for the
flow and a ray-tracing method for the radiation field. For the highest Rayleigh
numbers, a subgrid model is used to account for the radiation of the small-
est, non-optically thin, turbulent scales. Symmetry and time-averaging (for
unsteady solutions) are applied to compare coupled and uncoupled results,
regardless of the multiple flow configurations that may be obtained. At low
Rayleigh number, the potential energy decreases, and the onset of convection
is delayed when radiation is taken into account. However, once convection
settles, the potential energy increases with radiation, leading to a higher
convective flux in the core and a higher kinetic energy. Specific contribu-
tions of radiative transfer to the potential energy balance and to the thermal
energy balance are highlighted. It is also shown that the ratio of radiative
and convective source terms in the energy balance roughly scales as Ra−1/2

and that radiative transfer effects weaken at high Rayleigh numbers. Finally,
radiative transfer effects on turbulence budgets of mechanical and thermal
fluctuations are analysed in the range 107 ≤ Ra ≤ 109. The magnitude
of each term of these budgets is stronger when radiation is taken into ac-
count. However, radiative dissipation has little influence on the temperature
fluctuation budget.
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1. Introduction

Rayleigh-Bénard (RB) convection, in which a fluid layer is heated from
below and cooled from above, remains a challenging problem for both fun-
damental studies and for natural or engineering applications. These applica-
tions include atmospheric physics, convection in the Earth mantle, thermal
management of buildings, and many industrial processes. A layer of transpar-
ent fluid heated from below is known to become unstable when the Rayleigh
number reaches a critical value of about Racr =1708 for an infinite geometry
in the directions perpendicular to gravity, and for rigid walls [1]. When the
fluid is confined in a closed cavity, the critical Rayleigh number increases due
to friction on the lateral walls. Fluid confinement also leads to a great variety
of possible flow structures and corresponding heat transfer rates just above
the transition, due to the symmetries of the system. Several studies have re-
vealed a variety of steady and unsteady flows at moderate Rayleigh numbers
for a cubic cavity heated from below. Depending on the boundary conditions
on the lateral walls, up to seven or nine (for insulated lateral walls [2, 3, 4])
or even more (for conducting lateral walls [5]) structures have been observed
and analyzed using numerical simulations or continuation technique iden-
tification. The existence of multiple solutions at Ra = 105 has also been
observed experimentally depending on the initial conditions [6]. Different
sets of the Nusselt number have indeed been identified for the same Rayleigh
number. Also, benchmark numerical simulations in the range 105 − 108 of
the Rayleigh number have shown an important disparity between the results
from several numerical codes [7].

Subsequently, several studies have shown that, for confined enclosures
and intermediate Ra numbers, typically in the range 106 − 109, the weakly
turbulent RB flows are characterized by a Large-Scale Circulation (LSC)
with low-frequency intermittent phenomena such as reversals and reorien-
tations. Azimuthal rotation of the LSC and sudden reversals in cylindrical
enclosures have been observed in experimental studies [8, 9] and by numerical
simulations [10, 11]. Recently, large-scale flow reversals in circular enclosures
have been demonstrated both experimentally [12] and numerically [13]. In
cubic enclosures, LSC is generally organized in the diagonal vertical planes
and reorientations from one plane to another have been observed [14, 15].
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Several models have been developed to predict LSC low-frequency dynamics,
either based on stochastic phenomenological approaches [16, 17, 18, 19, 20] or
modal decomposition [21, 22, 23, 24, 25]. The development of such predictive
models is a very attractive topic since Direct Numerical Simulations (DNS)
must be run for very long integration times to capture these low-frequency
phenomena.

The brief and non-exhaustive picture of the state of the art described
above is related to RB convection in non-radiating fluids (transparent or
opaque). However, it is well known that the small amounts of water vapour
and carbon dioxide in ambient air are responsible of significant radiative
transfer that could affect the mean and fluctuating temperature fields and
the resulting thermal convection. This radiative transfer is at the origin of
the greenhouse effect in Earth atmosphere. The effects of radiation on RB
convection, with application to atmospheric physics, have been investigated
in the pioneering studies [26, 27, 28]. Using linear stability analyses, radia-
tive transfer was shown to delay the onset of instability due to two mech-
anisms, namely, the homogenization of the temperature field in the core of
the fluid layer (effect on the base state) and the damping of temperature dis-
turbances [29]. Numerical simulations [30, 31] and experimental studies [28]
have also confirmed this behavior. However, the above mentioned studies
were limited to the first transition to the convection regime or addressed the
flow structure and heat transfer just above this transition.

For higher Rayleigh numbers, although several studies have addressed
the effects of radiation on natural convection in differentially heated cavi-
ties [32, 33, 34, 35], there are very few studies related to radiation effects on
RB convection in chaotic and turbulent regime. First attempts have been
performed in Refs. [36, 37] for Rayleigh numbers of about 106 − 107. How-
ever, no full coupling was considered in Ref. [36] and, in Ref. [37], devoted to
mixed convection, the gray gas assumption was used for a non-confined thin
layer of radiating fluid. A preliminary investigation [38] of radiation effects
on RB convection in a cubic cell was limited to Ra = 107 and, due to lim-
itations in computational resources, the integration time was not sufficient
to capture LSC reorientations. More recently, low order models based on
Proper Orthogonal Decomposition (POD) have been developed to analyse
these LSC reorientations with and without radiation [39, 40] in the range
106 6 Ra 6 108. Similar first eigenmodes were found with and without ra-
diation but with higher energies (eigenvalues) when radiation was taken into
account. It was found also that the frequency of reorientation events tends
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to increase with radiative transfer. However, the effects of radiation on heat
transfer and flow dynamics were not fully analyzed in these studies.

The aim of this paper is to analyse molecular radiation effects on heat
transfer and flow dynamics in a large range of the Rayleigh number, from 103

to 109, in a cubic cavity heated from below and cooled from the top at con-
stant temperatures, with insulated lateral walls. Mixture of air with small
amounts of H2O and CO2 as radiating gases, typical of ambient humid air
conditions, is considered. Given the variety of flow patterns (and associated
reorientations in unsteady regime) that may be observed in the large range of
Rayleigh numbers studied, we will focus the analysis on symmetry-averaged
and time-averaged (for unsteady solutions) quantities. The governing equa-
tions and the employed numerical methods for DNS are described in Sec. 2.
The symmetries of the considered problem are also discussed in this section.
The effects of radiation on mean flow fields and on mean conductive, convec-
tive and radiative fluxes are discussed in Sec. 3. Then we analyse the budgets
of kinetic energy, potential energy, and thermal energy (square of the tem-
perature differences) in Sec. 4. Finally, in Sec. 5, second order statistics are
processed in the range 107 6 Ra 6 109 to analyse the budgets of turbulent
kinetic energy and of the variance of temperature fluctuations.

2. Direct numerical simulations

2.1. Problem set-up and governing equations

The studied configuration is displayed in Fig. 1. We consider a cubic
cavity of size L, heated from below and cooled from above. Top and bottom
walls are isothermal at temperature Tcold and Thot, and are black (emissivity
ε = 1). The four side walls are adiabatic and perfectly diffuse reflecting
(emissivity ε = 0). The cavity is filled with a radiating air/H2O/CO2 mixture
at a mean temperature T0.

In the case of a non radiating fluid the problem would be fully controlled
by two parameters: the Prandtl number Pr = νf/a and the Rayleigh number

Ra =
gβ∆TL3

νfa
, (1)

where g is the gravitational acceleration, β = 1/T0 is the thermal expansion
coefficient, ∆T = Thot−Tcold is the temperature difference, νf is the kinematic
viscosity and a is the thermal diffusivity. In the presence of gas radiation,
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Figure 1: (a) Cubic Rayleigh-Bénard cavity filled with a radiating air/H2O/CO2 mixture.
Top and bottom walls are isothermal and black while side vertical walls are adiabatic
and perfectly diffuse reflecting. (b) Absorption coefficient spectrum of the considered
air/H2O/CO2 mixture (T0 = 300 K, XH2O = 0.02, XCO2

= 0.001, atmospheric pressure)
and Planck function I◦ν (T0).

it is not possible to define a limited set of dimensionless parameters due to
the complex structure of molecular absorption spectra. In order to make
our study relevant for building applications, we consider an air/H2O/CO2

mixture at a mean temperature of T0 = 300 K, at atmospheric pressure, of
molar composition XH2O = 0.02 and XCO2 = 0.001. The cavity size is set to
L = 1 m and we vary the Rayleigh number by changing the temperature dif-
ference ∆T , other parameters being fixed. Thermophysical properties are as-
sumed to be uniform (low temperature differences), not affected by the small
amount of water vapour and carbon dioxide, and constant at all Rayleigh
numbers (thermal conductivity λ = 0.0263 W m−1 K−1, thermal diffusivity
a = 2.25× 10−5 m2 s−1, Prandtl number Pr = 0.707).

Mass, momentum and energy balance write under Boussinesq approxi-
mation

∂ui
∂xi

= 0, (2)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ Prθδi3 +

Pr√
Ra

∂2ui
∂xj∂xj

, (3)

∂θ

∂t
+ ui

∂θ

∂xi
=

1√
Ra

(
∂2θ

∂xi∂xi
+ Prad

)
, (4)

where xi is the ith dimensionless Cartesian coordinate, ui is the ith dimen-
sionless velocity vector component, p is the dimensionless motion pressure,
θ = (T−T0)/∆T is the dimensionless temperature and Prad is the dimension-
less radiative power. Eqs. (2)-(4) are made dimensionless using the reference
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time L2/(a
√

Ra) and the reference length L. A non-slip boundary condi-
tion is imposed on the velocity at the six walls and the thermal boundary
conditions write

θ = 0.5 on x3 = 0,
θ = −0.5 on x3 = 1,
∇θ·n = 0 on x1 = 0, x1 = 1, x2 = 0, x2 = 1.

 (5)

Note that there is no radiative flux on the reflecting adiabatic sidewalls. The
Boussinesq approximation is fully justified in the present study since, at the
highest considered value of the Rayleigh number Ra = 109 and with the above
numerical values, the relative temperature difference is ∆T/T0 = 0.036. This
would imply insignificant non-Boussinesq effects according to Ref. [41] for in-
stance.

The dimensionless radiative power is defined by

Prad(x) =
L2

λ∆T

∫
ν

κν

(∫
4π

Iν(x,Ω) dΩ− 4πI◦ν (T (x))

)
dν, (6)

where Iν(x,Ω) is the actual radiative intensity at wavenumber ν, position x,
and direction Ω and I◦ν (T (x)) is the Planck equilibrium intensity (blackbody
intensity) at temperature T . The absorption coefficient κν is assumed to
be uniform in accordance with the Boussinesq approximation. The high
resolution spectrum of the absorption coefficient of the considered mixture
is shown in Fig. 1. It contains thousands of spectral lines which makes
expensive the computation of the integral over the wavenumbers in Eq. (6).
Therefore, we use the Absorption Distribution Function (ADF) model [42]
which consists in substituting the integration over the wavenumber with an
integration over the values of the absorption coefficient, for which a coarse
logarithmic discretisation is sufficient. In the present study, the values of
the absorption coefficient of Fig. 1 have been logarithmically discretised in
16 classes and the accuracy of the model has been shown to be better than
1 % [43]. Model parameters and computational details for the considered
mixture are given in Refs. [44, 32].

Using the ADF model, the dimensionless radiative power writes

Prad(x) =
L2

λ∆T

∑
k

κk

(∫
4π

Ik(x,Ω) dΩ− 4wkσT
4(x)

)
, (7)
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where κk and wk are respectively the absorption coefficient and the weight
associated with the kth ADF class and σ is the Stefan-Boltzmann constant.
The radiative intensity Ik(x,Ω) is obtained by solving the radiative transfer
equation for a non scattering medium, for each class k

Ω ·∇Ik(x,Ω) = κk

(
wkσT

4(x)

π
− Ik(x,Ω)

)
. (8)

The associated boundary condition at wall positions xw for propagation di-
rections Ω such that Ω·n > 0, n being the wall normal directed towards the
interior of the domain, writes

Ik(x
w,Ω) =

εwkσT
4(xw)

π
+

1− ε
π

∫
Ω′·n<0

Ik(x
w,Ω′)|Ω′ ·n |dΩ′. (9)

2.2. Numerical methods

Direct Numerical Simulations (DNS) have been performed, considering
the air/H2O/CO2 mixture as radiating (radiation case) or transparent (no-
radiation case, XH2O = 0, XCO2 = 0 and thus Prad = 0) for 12 Rayleigh
number values in the range 103 ≤ Ra ≤ 109. The coupled algorithm for solv-
ing flow equations (2)-(4) and radiative transfer equation (8) has been ex-
tensively used and described in previous works, for both differentially heated
cavities [32, 33] and Rayleigh-Bénard cavities [39, 40]. We will briefly recall
here the main features of this algorithm. Simulation parameters are given in
Tab. 1.

Flow equations are solved using a collocation spectral method [45, 46]
based on a Chebyshev polynomial expansion for the three directions of space.
Time integration is performed through a second-order semi-implicit scheme.
The pressure-flow coupling is ensured by a projection method that forces
the velocity divergence free condition. Domain decomposition is applied
along the vertical direction to perform parallel computations. The convection
mesh is built from Chebyshev collocation points and is given in Tab. 1 for
each Rayleigh number. We have checked that the number of points in the
boundary layers is sufficient regarding the criterion proposed in Ref. [47].
Although this criterion was established for non-radiating fluids, calculation
results show a posteriori that radiation does not affect so much the thickness
of boundary layers. We therefore adopt the same meshing for flow filed
calculations with and without radiation. The radiative transfer equation is
solved using a ray-tracing algorithm [43, 32], made parallel by distributing
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the rays among the different processors. The 4π steradian angular domain is
uniformly discretized using between 900 rays to 3600 rays from volume cell
centers, depending on the spatial mesh size. Up to Ra = 107, the radiation
mesh is built from the convection mesh, coarsened by a factor of two in each
direction of space. For Ra ≥ 3 × 107, the radiation mesh is built from the
convection mesh, coarsened by a factor of four to eight in each direction
of space and we use a subgrid model [48, 33] to account for the radiation
of small spatial scales. This subgrid model has been validated in various
configurations and its accuracy is about a few percent on radiative power
and wall fluxes.

Finally, an explicit coupling is carried out between flow and radiation cal-
culations and the radiation source term is updated every 10 convection time
steps δt (every 5 convection time steps at Ra = 109). Indeed, the flow time
step is imposed by numerical stability constraints and does not correspond
to significant variations of the temperature field. Note that the computed
radiative source term is based on instantaneous temperature fields and will
be discussed itself in terms of mean and fluctuating fields (see Sec. 5). For
unsteady solutions, time integration is carried out over a period ∆t once the
asymptotic regime (statistically steady) is reached. It should be mentioned
here that radiation calculations are much more computationally expensive
than convection calculations (the CPU time is about 30 times greater in the
radiation case).

2.3. Validation of the numerical tools

Validations of the pseudo-spectral solver were provided first in Ref. [43],
where steady solutions of the natural convection problem for differentially
heated cavities at different Rayleigh numbers varying from Ra = 105 to 107,
without radiation, were calculated and successfully compared with the 3D
benchmark solutions of Ref. [49]. For weakly turbulent natural convection
without radiation, the predictions from the present solver were compared
with the results provided by Refs. [50, 51, 52] in the case of a parallelepipedic
differentially heated cavity of aspect ratio Lz/Lx = 4, Ly/Lx = 1, filled with
air (Pr = 0.71), at a Rayleigh number based on the height of the cavity Ra =
2×109. Excellent agreement was found for both mean fields and second order
statistics [32]. Moreover, the grid convergence was discussed in Ref. [33] for
differentially heated cubic cavities at Rayleigh numbers up to Ra= 3× 109.

For Rayleigh-Bénard convection in cubic cavities and without radiation,
we compare in Tab. 2 the Nusselt number (dimensionless conductive flux av-
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Ra Convection mesh Radiation mesh δt× 103 ∆t

103 41x41x(4x11) 20x20x20 10 N/A
3× 103 41x41x(4x11) 20x20x20 10 N/A
104 41x41x(4x11) 20x20x20 10 N/A
3× 104 41x41x(4x11) 20x20x20 10 N/A
105 65x65x(4x17) 32x32x32 10 N/A

3× 105 65x65x(4x17) 32x32x32 10 10,000 | N/A(a)

106 81x81x(4x21) 40x40x40 5 10,000
3× 106 81x81x(4x21) 40x40x40 2.5 10,000
107 81x81x(4x21) 40x40x40 2.5 10,000

3× 107 121x121x(6x21) 30x30x30(b) 2 | 1.5(a) 5,000

108 161x161x(8x21) 40x40x40(b) 1 5,000

109 321x321x(16x41) 40x40x40(b) 0.5 | 0.25(a) 100

Table 1: Simulation parameters: Convection mesh, radiation mesh, convection time step δt
and integration time interval ∆t for unsteady solutions. For the convection mesh, numbers
in parenthesis indicate the number of spatial domains times the number of collocation
points in the vertical in each domain. (a) No-radiation case | radiation case. (b)Radiation
subgrid model is used.

Ra 106 107 108

Kaczorowski et al. (2013) [53], DNS, Pr = 0.7 8.32 16.30 31.30
Giannakis et al. (2018) [23], DNS, Pr = 0.7 - 16.57 -
Foroozani et al. (2017) [15], LES, Pr = 0.7 8.10 - 31.60
Xu et al. (2019) [54], LB, Pr = 0.7 8.33 16.22 -
Our results, DNS, Pr = 0.707 8.30 16.24 31.06

Table 2: Comparison of the averaged wall conductive Nusselt number with literature.

eraged over the hot and cold walls) computed in the present study with the
few values found in the literature. A good agreement is obtained with differ-
ences smaller than 1% with the DNS results of Kaczorowski et al. (2013) [53],
2% with the DNS results of Giannakis et al. (2018) [23], 2.5% with the Large-
Eddy Simulation (LES) results of Foroozani et al. (2017) [15], and 0.4% with
the Lattice-Boltzmann (LB) results of Xu et al. (2019) [54]. Note that the 1%
difference for the values of the Prandtl number used by the different authors
are not expected to affect the Nusselt numbers by more than 1% according
to the classical correlations that may be found in the literature [55].

In addition to the Nusselt number, we compare in Tab. 3 the flow strengths
obtained in the present study with the LB computations of Xu et al. (2019) [54].
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Rerms Rerms
u3

Ra 106 3× 106 107 106 3× 106 107

Xu et al. (2019) [54], LB, Pr=0.7 208.80 357.11 654.86 145.58 249.96 454.92
Our results, DNS, Pr=0.707 208.05 357.44 650.73 144.45 249.43 451.79

Table 3: Comparison of the flow strength with results of Xu et al. (2019) [54].

The flow strengths are characterized by the two Reynolds numbers Rerms =√
〈uiui〉v Ra/Pr and Rerms

u3
=
√
〈u3u3〉v Ra/Pr, based either on the total ve-

locity magnitude or the vertical velocity magnitude (· denotes the statistical
average and 〈·〉v the average over the entire volume of the cavity). The
comparisons given in Tab. 3 show an excellent agreement with less than 1%
differences in all cases.

As for radiative transfer computations, the ray-tracing algorithm was
successfully compared to Monte Carlo results in the case of prescribed an-
alytical temperature fields in a cubical enclosure [43]. The accuracy of the
refined angular discretization and of the ADF model were studied in Ref. [44]
and Ref. [43], respectively, and the radiation subgrid-scale model was vali-
dated, considering a snapshot of turbulent natural convection in a differen-
tially heated cavity at Ra = 3× 109 [48].

2.4. Symmetries

Without radiative source term, Eqs. (2)-(4) satisfy four independent re-
flection symmetries Sx1 , Sx2 , Sx3 and Sd with respect to the planes x1 = 0.5,
x2 = 0.5, x3 = 0.5 and x1 = x2 [5]. These symmetries act on the velocity
and temperature fields as follows

Sx1 :
(x1, x2, x3)→ (1− x1, x2, x3)
(u1, u2, u3, θ)→ (−u1, u2, u3, θ)

}
(10)

Sx2 :
(x1, x2, x3)→ (x1, 1− x2, x3)
(u1, u2, u3, θ)→ (u1,−u2, u3, θ)

}
(11)

Sx3 :
(x1, x2, x3)→ (x1, x2, 1− x3)
(u1, u2, u3, θ)→ (u1, u2,−u3,−θ)

}
(12)

Sd :
(x1, x2, x3)→ (x2, x1, x3)
(u1, u2, u3, θ)→ (u2, u1, u3, θ)

}
(13)

These four elementary symmetries generate a symmetry group of sixteen ele-
ments. Radiation emission being proportional to T 4, radiative transfer should
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break the Sx3 symmetry as the mean temperature gradient is directed along
the x3 axis. However, owing to the weak temperature gradients (∆T ' 10 K
for the highest Rayleigh number), non-linear effects are negligible (namely

1 − 4T 3
0 ∆T

T 4
hot−T

4
cold
' 3 × 10−4 for the highest Rayleigh number) so that we can

consider that the Sx3 symmetry is still satisfied in the radiation case. Sym-
metries (10)-(13) act on the radiative power field in the same way as they
act on the temperature field.

These many symmetries are responsible for multiple flow patterns in the
studied Rayleigh range. In the no-radiation case, symmetry breaking solu-
tions are observed from the onset of convection at a critical Rayleigh number
Rac ' 3400 [56, 3]: one observes a single roll flow pattern around either the
x1 axis or the x2 axis (which breaks either the Sx2 or Sx1 symmetry, and
also the Sd symmetry). When the Rayleigh number increases up to the onset
of unsteadiness, multiple stable or unstable flow patterns have been identi-
fied, as highlighted in Sec. 1. A detailed description of these flow patterns
and associated bifurcation diagram, from the onset of convection and up to
Ra = 1.5 × 105, for Pr = 0.71 in a cubic cell, is provided in Ref. [3] for the
no-radiation case. At higher Rayleigh numbers Ra ≥ 106 in unsteady regime,
large-scale single roll flow patterns are observed, aligned along the diagonal
planes x1 = x2 or x1 = 1 − x2 and breaking both Sx1 and Sx2 symmetries.
However, all symmetries could be recovered for sufficiently long integration
time, because of low-frequency reorientations of this large-scale roll in the
horizontal plane, that are rotations of π/2 around the vertical axis [19, 15].
Reorientations of the large-scale roll in the horizontal plane have also been
reported in the case of a radiating gas in the range 106 ≤ Ra ≤ 108 [40],
radiation causing an increase of the reorientation frequency.

Given the variety of flow patterns that may be observed, it might seem
difficult to compare the results of the radiation case and the no-radiation
case. Therefore, we apply the symmetries to any flow variable φ after the
simulation and we define the statistical average as follows

φ =
1

∆t

∫
∆t

1

16

16∑
n=1

Sn(φ) dt, (14)

Sn(φ) being the action of the nth symmetry (among 16 elements) of the
symmetry group on the variable φ. The time average in Eq. (14) is only
applied in the asymptotic regime of unsteady solutions.
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3. Flow fields and heat transfer

In this section, we analyse the vertical distribution of key quantities aver-
aged over horizontal planes. Statistical average (time average and symmetry
average) as defined in Eq. (14) is applied to each solution.

3.1. Low Rayleigh numbers: onset of convection

Figure 2 shows the temperature, the kinetic energy and the radiative
power (defined as the difference between the absorbed and emitted powers)
obtained at the different Rayleigh numbers, in the radiation case and in the
no-radiation case. At the lowest Rayleigh number (103), there is no kinetic
energy for both the radiation and no-radiation case, which means that the
convection has not started. The configuration is purely conductive in the no-
radiation case, which means that the temperature profile is linear. However,
the presence of radiative energy transfer in the radiation case diminishes the
temperature gradient in the center of the cavity: gas-gas radiative exchanges
tend to homogenise the temperature field in the cavity. When the Rayleigh
number increases (between Ra = 3 × 103 and Ra = 104), the convection
settles in the no-radiation case, thus mixing the fluid and flattening the
temperature profile. In the radiation case, though, the convection does not
settle: the radiation has a delaying effect on the onset of the flow in the
cavity. The gas is rather emitting near the hot wall and absorbing near the
cold wall, and these radiative exchanges make the temperature field more
stable.

But when the convection starts in the radiation case, between Ra = 104

and Ra = 3× 104, the kinetic energy in the cavity is higher than in the no-
radiation case. This is mainly due to an increase of potential energy in the
radiation case. This will be discussed in details in Sec. 4. As the convection
starts, the center of the cavity becomes more isothermal, but the temperature
profile is steeper in the radiation case. Let us consider the lower half of the
cavity: near the wall, the fluid is hotter than in the nearly isothermal center of
the cavity. Therefore, the gas is emitting near the wall and then is absorbing
up to the cavity center, creating a hump in the radiative power distribution,
which is absent without convection. Because of the Sx3 symmetry, it is the
exact opposite in the upper half of the cavity.

3.2. Higher Rayleigh numbers: unsteady convection

The onset of unsteadiness in the flow field occurs at different Rayleigh
numbers, depending on the presence of radiation or not (between Ra = 105
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Figure 2: Flow fields at different Rayleigh numbers. Temperature, kinetic energy and
radiative power, averaged over the horizontal plane and statistically averaged. Radiation
case (black lines) and no-radiation case (red lines).
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and Ra = 3 × 105 for the no-radiation case, and between Ra = 3 × 105 and
Ra = 106 for the radiation case). Radiation seems to delay the onset of
unsteadiness, though a detailed investigation of the stability of all possible
flow patterns would be required to confirm this point. As the Rayleigh num-
ber increases, the convection is more efficient at mixing the fluid. Therefore,
the cavity is quasi-isothermal and thermal boundary layers form near the
upper and lower walls. The kinetic energy is more and more homogeneous
in the center, with peaks near the walls, where the temperature gradient is
stronger. As before, the presence of gas radiation increases the kinetic en-
ergy, even if the relative effect of radiation diminishes as the Rayleigh number
increases [33]. In the energy budget, the radiative power roughly scales as

1√
Ra
Prad = O

(
1√
Ra

κPσT
3
0L

2

λ

)
(15)

where κP =
∫
κνI

0
ν (T0)dν × π/(σT 4

0 ) is the Planck mean absorption coeffi-
cient. Thus, the radiative power remains of the same order of magnitude
but is penalized by the 1/

√
Ra factor, whereas the order of magnitude of the

convective term u · ∇θ remains the same regardless of the Rayleigh number.
In order to better show the thermal boundary layer in the range 107 6

Ra 6 109, Fig. 3 displays the temperature and radiative power distributions
near the lower wall. Only the radiation case is shown as radiation has little
effect on the boundary layer thickness for this Rayleigh number range. It can
be seen that the thickness of the thermal boundary layer roughly scales as
Ra−1/3, in agreement with literature results in turbulent regime [57, 58]. The
radiative power profile is similar to the one described at Ra = 105: in the
lower half of the cavity, the gas is rather absorbing except in a thin layer near
the lower hot wall where the gas is emitting (the opposite happens nearby
the upper wall). As the Rayleigh number increases, the convection mixing is
stronger, the temperature gradient at the wall is sharper and the radiative
power gradient at the wall increases. The thickness of the emitting layer and
the position of the absorption peak also roughly scale as Ra−1/3.

3.3. Heat fluxes

Figure 4 shows the three components of the total heat flux qtot

qtot = −
∂
〈
θ
〉
s

∂z︸ ︷︷ ︸
qcond

+
√
Ra
〈
θu3

〉
s︸ ︷︷ ︸

qconv

+
L

λ∆T

〈∑
k

∫
4π

IkΩ · ex3dΩ

〉
s︸ ︷︷ ︸

qrad

, (16)
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Figure 3: Temperature and radiative power close to the hot wall, averaged over the hori-
zontal plane and statistically averaged. Rayleigh number range 107 6 Ra 6 109. Radiation
case. On the right plots, the abscissa is scaled by Ra1/3.

where qcond, qconv and qrad denote respectively the conductive, the convective
and the radiative flux. 〈·〉s denotes the spatial average over the horizontal
plane and · denotes the statistical average as defined in Eq. (14). The total
flux qtot is constant with height as the side walls are adiabatic. Values of wall
fluxes and mid-height fluxes are reported in Tabs. 4 and 5 for the no-radiation
case and the radiation case, respectively.

In the no-radiation case, there is a balance between the conductive and
convective fluxes. The radiative flux, reported in Tab. 4, represents the en-
ergy exchange between the isothermal black upper and lower walls and is
constant with height and across the range of Rayleigh numbers. Figure 4
shows that, at high Rayleigh numbers (Ra > 106), variations of the conduc-
tive and convective fluxes are restricted to the boundary layer regions. In
the center, convection prevails and conduction vanishes.

When gas radiation is taken into account, however, it modifies the balance
between the fluxes. At low Rayleigh numbers, before the onset of convection
in the cavity, the conduction-radiation coupling enables a greater conductive
flux near the wall, as seen is Fig. 4. With the onset of convection, the
presence of a radiating gas allows a greater convective flux in the center of
the cavity: contrary to the no-radiation case, the variations of the convective
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Figure 4: Heat fluxes at different Rayleigh numbers. Conductive flux, convective flux and
radiative flux, averaged over the horizontal plane and statistically averaged. Radiation
case (black lines) and no-radiation case (red lines).
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wall mid-height
Ra qcond qrad qcond qconv qrad

103 1.00 125.05 1.00 - 125.05
3× 103 1.00 125.05 1.00 - 125.05
104 1.94 125.05 0.12 1.82 125.05
3× 104 2.67 125.05 -0.13 2.80 125.05
105 4.24 125.05 -0.11 4.35 125.05
3× 105 5.92 125.05 -0.06 5.99 125.05
106 8.30 125.05 0.18 8.12 125.05
3× 106 11.48 125.05 0.15 11.34 125.05
107 16.24 125.05 0.08 16.14 125.05
3× 107 22.06 125.05 0.04 22.02 125.05
108 31.06 125.05 0.02 31.04 125.05
109 61.38 125.05 0.002 61.87 125.05

Table 4: Wall heat fluxes and mid-height heat fluxes at different Rayleigh numbers. Con-
ductive flux, convective flux and radiative flux, averaged over the horizontal plane and
statistically averaged. No-radiation case.

wall mid-height
Ra qcond qrad qcond qconv qrad

103 2.55 116.31 0.71 - 118.15
3× 103 2.55 116.31 0.71 - 118.15
104 2.55 116.31 0.71 - 118.15
3× 104 2,74 116.48 0.55 1.06 117.61
105 3.79 118.39 0.10 5.46 116.60
3× 105 6.45 119.28 0.03 9.57 116.10
106 8.77 119.88 0.09 12.44 116.12
3× 106 11.87 120.29 0.17 15.90 116.08
107 16.66 120.82 0.12 21.62 115.77
3× 107 22.29 121.93 0.07 28.73 115.46
108 31.29 121.97 0.03 38.29 114.90
109 61.82 122.36 0.007 68.61 114.60

Table 5: Wall heat fluxes and mid-height heat fluxes at different Rayleigh numbers. Con-
ductive flux, convective flux and radiative flux, averaged over the horizontal plane and
statistically averaged. Radiation case.
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flux are not restricted to the boundary layers due to a convection-radiation
coupling in the quasi-isothermal part of the cavity. Though, the influence
of radiative transfer decreases as the Rayleigh number increases, as seen
in Eqs. (16): the convective flux scales as

√
Ra, but not the radiative nor

the conductive fluxes, whose relative effects become less important at higher
Rayleigh numbers (qrad = O(κPσT

3
0L

2/λ), the cavity size L being constant).
Comparing Tabs. 4 and 5, it can also be noticed that the radiative flux at
the wall decreases in the radiation case (screening effect due to gas radiation)
and that gas radiation has little effect on the conductive flux at the wall for
Ra > 106.

4. Energy budgets

We investigate in this section the effect of gas radiation on the balance
of three quantities: the kinetic energy ek = 1

2
uiui, the potential energy

ep = −Prθ(x3 − 0.5) and the thermal energy eθ = 1
2
θ2, where · denotes

the statistical average as defined in Eq. (14). For the latter quantity eθ, the
word energy is used in a statistical sense and not in a physical sense and we
use italics to emphasize it. The volume average of these three quantities at
different Rayleigh numbers is shown in Fig. 5.

As stated in Sec. 3.1, gas radiation in the cavity delays the onset of
convection: in the no-radiation case, the convection starts between Ra =
3×103 and Ra = 104, whereas with gas radiation it starts between Ra = 104

and Ra = 3 × 104. Kinetic energy increases with the Rayleigh number and
reaches a peak at Ra = 3× 105. In the no-radiation case, the kinetic energy
remains quite constant across the unsteady regime. The velocity was made

dimensionless using the reference velocity uref = a
√

Ra
L

, which corresponds to
a balance between the inertial and buoyancy forces. The quasi-plateau of the
kinetic energy in the unsteady regime confirms that the reference velocity is
well suited in this study. Gas radiation clearly increases the kinetic energy
from Ra > 105: the kinetic energy peak is almost 50% higher in the radiation
case than in the no-radiation case. Like the fluxes, the relative effect of
radiation is less important as the Rayleigh number increases and the kinetic
energy then decreases and becomes closer to the no-radiation case.

Potential energy and thermal energy are related to differences between
the local temperature of the fluid and the mean temperature in the cavity.
Both decrease with the Rayleigh number, given that the boundary layer zones
(with the highest temperature gradients) narrow. As stated in Sec. 3.1, before
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Figure 5: Total kinetic energy 〈ek〉v, potential energy 〈ep〉v and thermal energy 〈eθ〉v as
a function of the Rayleigh number. Radiation case (black symbols) and no-radiation case
(red symbols).

the onset of convection, gas radiation decreases the temperature gradient in
the core, and thus the potential energy and the thermal energy. However,
after the onset, both are higher in the radiation case because of a higher
temperature gradient in the core.

The kinetic energy balance can be written in the form

∂ek
∂t

+
∂ujek
∂xj

= −∂uip
∂xi

+ Prθu3 +
Pr√
Ra

∂

∂xj

(
ui
∂ui
∂xj

)
− Pr√

Ra

∂ui
∂xj

∂ui
∂xj

, (17)

After applying volume average and statistical average, this equation writes

Pr
〈
θu3

〉
v︸ ︷︷ ︸

〈τu〉v

=
Pr√
Ra

〈
∂ui
∂xj

∂ui
∂xj

〉
v︸ ︷︷ ︸

〈εu〉v

, (18)

where 〈τu〉v is the total production of kinetic energy (work of buoyant forces)
and 〈εu〉v denotes the total mechanical dissipation. Radiation does not affect
directly this balance.
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Figure 6: Potential energy balance: 〈τu〉v, 〈ωθ〉v and 〈ωrad〉v as a function of the Rayleigh
number. Radiation case (black symbols) and no-radiation case (red symbols).

The potential energy balance writes

∂ep
∂t

+
∂ujep
∂xj

= −Prθu3 −
Pr√
Ra

∂

∂xi

(
(x3 − 0.5)

∂θ

∂xi

)
+

Pr√
Ra

∂θ

∂x3

− Pr√
Ra

(x3 − 0.5)Prad. (19)

After applying volume average and statistical average, this equation writes

Pr√
Ra

(Nu− 1)︸ ︷︷ ︸
〈ωθ〉v

− Pr√
Ra

〈
(x3 − 0.5)Prad

〉
v︸ ︷︷ ︸

〈ωrad〉v

= Pr
〈
θu3

〉
v︸ ︷︷ ︸

〈τu〉v

, (20)

where Nu is the Nusselt number (conductive flux at the wall). Terms 〈ωθ〉v
and 〈ωrad〉v correspond to sources / sinks of potential energy associated with
conduction and radiation transport of temperature variations. These sources
/ sinks are balanced with kinetic energy production (〈τu〉v, see Eq. (18)).
The three terms of the balance of Eq. (20) are displayed in Fig. 6.

At the lowest Rayleigh numbers, 〈τu〉v = 0 because there is no fluid
movement, and thus Nu = 1 in the no-radiation case, which is consistent
with the profile of the conductive flux in Fig. 4. However, the conductive
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flux is sharper near the walls in the radiation case, even in the absence of
convection (see 3.3). Thereby, the Nusselt number is greater than one and
〈ωθ〉v is positive at low Rayleigh numbers. Interestingly the sign of the term
〈ωrad〉v changes with the Rayleigh number: it is negative at low Rayleigh
numbers and positive from Ra = 105, when the kinetic energy is greater in
the radiation case than in the no-radiation case. Therefore, the sign of this
term determines whether gas radiation slows down convection or promotes
convection. The sign change of 〈ωrad〉v is correlated with the modification
of the shape of the radiative power in Fig. 2. In the absence of convection,
the lower half of the cavity (x3 < 0.5) is exclusively emitting (Prad < 0)
and the upper half (x3 > 0.5) is exclusively absorbing (Prad > 0), which
corresponds to a destruction of potential energy (〈ωrad〉v < 0). With the
onset of convection, the lower half becomes absorbing, except for a thin layer
near the isothermal wall that is still emitting, and the opposite happens in the
upper half: this corresponds to a production of potential energy (〈ωrad〉v > 0).

The thermal energy balance writes

∂eθ
∂t

+
∂ujeθ
∂xj

=
1√
Ra

∂

∂xi

(
θ
∂θ

∂xi

)
− 1√

Ra

∂θ

∂xi

∂θ

∂xi
+

1√
Ra

θPrad. (21)

After applying volume average and statistical average, this equation writes

Nu√
Ra︸ ︷︷ ︸
〈τθ〉v

=
1√
Ra

〈
∂θ

∂xi

∂θ

∂xi

〉
v︸ ︷︷ ︸

〈εθ〉v

− 1√
Ra

〈
θPrad

〉
v︸ ︷︷ ︸

〈εrad〉v

. (22)

The production of thermal energy (〈τθ〉v) is dissipated through two mech-
anisms: conduction (〈εθ〉v) and radiation (〈εrad〉v). The three terms of the
balance of Eq. (22) are displayed in Fig. 7.

At the lowest Rayleigh numbers, the production of thermal energy is much
higher in the radiation case than in the no-radiation one, due to significant
differences in conductive fluxes. The dissipation distributes quite evenly
between conduction and radiation until the onset of convection, where the
importance of radiation reduces compared to conduction. At higher Rayleigh
numbers, the radiative dissipation is negligible.

5. Turbulence budgets

We analyse in this section turbulence budgets of velocity and temperature
fluctuating fields in the range 107 6 Ra 6 109. Mean and fluctuating fields
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Figure 7: Thermal energy balance: 〈τθ〉v, 〈εθ〉v and 〈εrad〉v as a function of the Rayleigh
number. Radiation case (black symbols) and no-radiation case (red symbols).

are defined according to the statistical average · given by Eq. (14). Details on
the computation of second order and third order statistics with this statistical
mean are given in Appendix A.

The turbulent kinetic energy balance ek(u′) = 1
2
u′iu
′
i writes

∂ek(u′)

∂t
+ uj

∂ek(u′)

∂xj
= − ∂

∂xj

(
u′jp
′ +

1

2
u′iu
′
iu
′
j −

Pr√
Ra

∂ek(u′)

∂xj

)
︸ ︷︷ ︸

δu′

+Pru′3θ
′︸ ︷︷ ︸

τu′

−u′iu′j
∂ui
∂xj︸ ︷︷ ︸

ζu′

− Pr√
Ra

∂u′i
∂xj

∂u′i
∂xj︸ ︷︷ ︸

−εu′

. (23)

In the above equation, τu′ is the production term of turbulent kinetic energy
by the work of buoyancy forces, ζu′ , is an energy exchange term between mean
and fluctuating flow, εu′ is the molecular dissipation term (always positive),
while δu′ appears as a diffusion term — which vanishes when integrating
over the whole spatial domain for non slip boundary conditions. Table 6
provides these volume integrated production (〈τu′〉v), transfer (〈ζu′〉v), and
dissipation (〈εu′〉v) terms, in the radiation and no-radiation cases for the three
Rayleigh numbers 107, 108, and 109. In the six considered configurations, the
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Ra 107 108 109

terms ×103 no-rad rad no-rad rad no-rad rad

〈τu′〉v 2.65 3.45 (30%) 1.77 2.09 (18%) 1.19 1.29 (8%)
〈ζu′〉v 0.27 0.27 (——) 0.18 0.20 (13%) 0.10 0.11 (8%)
〈εu′〉v 2.96 3.87 (31%) 2.02 2.50 (24%) 1.43 1.56 (9%)

Table 6: Production 〈τu′〉v, transfer 〈ζu′〉v, and dissipation 〈εu′〉v terms of the turbulent
kinetic energy balance, averaged on the whole domain, in the radiation (rad) and no-
radiation (no-rad) cases for the three Rayleigh numbers Ra= 107, 108, and 109. Term
variations due to radiation are provided in parentheses

integrated production term 〈τu′〉v highly dominates the transfer term 〈ζu′〉v
(by a factor ∼ 10) contrary to what was observed in differentially heated
configurations [33]. Radiation always increases this production term (and
also the dissipation one necessarily), the magnitude of the increase being
reduced when the Rayleigh number increases. This increase is consistent with
the convection enhancement in the radiation case discussed in the previous
sections.

Figure 8 shows the vertical distribution of each term in the right hand
side of Eq. (23), averaged over the horizontal plane. Contrary to volume in-
tegrated terms, all terms can significantly contribute to the local balance of
turbulent kinetic energy. In addition, all sources of mechanical fluctuations
are significant in the core of the cavity which means the dynamics of turbu-
lent fluctuations is not restricted to the boundary layers near the hot and
cold walls. Note that the transfer term like the diffusion one have a varying
sign through all the domain, which explains that they can contribute signifi-
cantly to the local balance and in a much lesser extent to the global balance.
Interestingly, the transfer term is negative in the boundary layer, while the
mean flow shear at the walls is usually a source of turbulent fluctuations in
most flows.

The balance of the variance of temperature fluctuations eθ(θ′) = 1
2
θ′θ′
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writes

∂eθ(θ′)

∂t
+ uj

∂eθ(θ′)

∂xj
= − ∂

∂xj

(
1

2
u′jθ
′θ′ − 1√

Ra

∂eθ(θ′)

∂xj

)
︸ ︷︷ ︸

δθ′

−u′jθ′
∂θ

∂xj︸ ︷︷ ︸
ζθ′

− 1√
Ra

∂θ′

∂xj

∂θ′

∂xj︸ ︷︷ ︸
−εθ′

− 1√
Ra

θ′P ′rad︸ ︷︷ ︸
−εrad′

(24)

Here again appear a diffusion term δθ′ and a transfer term ζθ′ between the
mean temperature field and the fluctuating temperature field. εθ′ corresponds
to the conductive dissipation term. In the case of a radiating mixture, a
supplementary radiative dissipation term εrad′ appears. After integration over
the whole spatial domain, this balance of temperature fluctuation variance
reduces to an equilibrium between the transfer source term 〈ζθ′〉v, and the
conductive 〈εθ′〉v and radiative (if relevant) 〈εrad′〉v dissipation terms — the
contribution of the diffusion term vanishes since temperature fluctuations at
isothermal horizontal walls and temperature gradients at adiabatic perfectly
reflecting walls vanish. Table 7 provides these volume integrated terms in
the radiation and no-radiation cases for the three Rayleigh numbers 107, 108,
and 109. Here again, radiation is shown to increase the transfer term, but to
a lesser extent compared to the increase observed for velocity fluctuations.
The radiative dissipation term contributes to 10% of the transfer term at
Ra=107 but reduces to 5 and 1% at Ra =108 and 109 respectively. This
behaviour was already observed in differentially heated configurations [33]
and was explained by the ability of radiative transfer to dissipate large scale
thermal structures while conduction becomes more efficient for smaller scale
structures that occur at higher Rayleigh numbers [59].

Figure 9 shows the vertical distribution of each term in the right hand
side of Eq. (24), averaged over the horizontal plane. There is a slight increase
of each term when radiation is taken into account, as observed above on
volume integrated terms: this is particularly noticeable at Ra = 107. Let
note again that the diffusion term, though vanishing in volume integrated
balances, may have a significant local contribution in the redistribution of
temperature fluctuations, in particular in the boundary layers near horizontal
hot and cold walls. Contrary to mechanical fluctuations, the transfer term is
positive in the boundary layers and the dynamics of fluctuations in the core
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Ra 107 108 109

terms ×103 no-rad rad no-rad rad no-rad rad

〈ζθ′〉v 1.73 1.99 (15%) 1.16 1.23 (6%) 0.774 0.780 (1%)
〈εθ′〉v 1.73 1.81 (5%) 1.16 1.23 (6%) 0.797 0.797 (—-)
〈εrad′〉v — 0.20 — 0.06 — 0.008

Table 7: Transfer 〈ζθ′〉v, conductive 〈εθ′〉v and radiative 〈εrad′〉v dissipation terms of the
balance equation for the variance of temperature fluctuations, averaged on the whole
domain, in the radiative (rad) and non-radiative (no-rad) cases for the three Rayleigh
numbers Ra= 107, 108, and 109.

is very weak.

6. Conclusion

Direct numerical simulations of Rayleigh-Bénard convection in a cubic
cell for a radiating air-H2O-CO2 mixture have been performed over a large
range of Rayleigh numbers (Ra ∈ [103 − 109]), from the onset of convection
to the turbulent regime.

At low Rayleigh numbers, conduction-radiation energy exchanges make
the temperature field more stable. This coupling delays the onset of convec-
tion. Once convection settles, convection-radiation exchanges in the cavity
core have been highlighted. When gas radiation is taken into account energy
transfer is no longer restricted to the boundary layers: convection is enhanced
and so is the total kinetic energy of the flow. Gas radiation also increases the
conductive flux and decreases the radiative flux at the two opaque isother-
mal walls, though differences with the no-radiation case are below 5 % from
Ra > 106. Because the Rayleigh number is varied through the temperature
difference ∆T , radiative transfer effects weaken when the Rayleigh number
increases.

Specific contributions of radiative transfer to the potential energy balance
and the thermal energy balance have been highlighted. It has been shown
that gas radiation acts as a sink of potential energy at low Rayleigh numbers
and as a source of potential energy from Ra > 105. In the thermal energy
balance, radiation effects correspond to a dissipation of temperature differ-
ences. This radiative dissipation is comparable to the conductive dissipation
up to Ra = 105, but decreases and becomes negligible for higher Rayleigh
numbers.
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At high Rayleigh numbers, in the range 107 6 Ra 6 109, the analysis of
turbulence statistics has shown that all sources of turbulent fluctuations are
stronger in the radiation case, especially velocity fluctuations. This turbu-
lence intensification is associated with the convection enhancement observed
when gas radiation is accounted for. Sources of temperature fluctuations
are less affected by gas radiation: the convection enhancement is mitigated
by radiative dissipation of temperature disturbances, although this term re-
mains weak compared to other sources. Again, radiation effects on turbulence
statistics weaken when the Rayleigh number increases.

To the best of our knowledge, the present coupled simulations are the
first to address Rayleigh-Bénard convection of a radiating gas at such high
Rayleigh numbers and such wide Rayleigh number range. Results will be use-
ful for the development and validation of reduced order models or large-eddy
simulation models, accounting for radiation effects. However, the simulations
were restricted to a single gas mixture and a single cavity size. Sensitivity of
radiation effects on these parameters will be the topic of future research.
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Appendix A. Turbulence statistics using symmetry average

This section details the computation of second order and third order tur-
bulence statistics in turbulence budgets of Sec. 5 with the statistical average
defined in Eq. (14), which implies an ensemble average of symmetrised time
evolutions of each flow variable of interest.

The first step is to compute the symmetry average (ensemble average
over symmetrised states) of physical quantities of the form φ, φψ or φφψ.
To do this, we need to express the action of each elementary symmetry Sx1 ,
Sx2 , Sx3 and Sd (Eqs. (10)-(13)) on each flow variable and each product of
flow variables of interest. This is given in Tab. A.8. Note that for third
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Sx1 Sx2 Sx3 Sd
(x1, x2, x3) (1− x1, x2, x3) (x1, 1− x2, x3) (x1, x2, 1− x3) (x2, x1, x3)

u1 −u1 u1 u1 u2

u2 u2 −u2 u2 u1

u3 u3 u3 −u3 u3

θ θ θ −θ θ
Prad Prad Prad −Prad Prad

u1u1 u1u1 u1u1 u1u1 u2u2

u1u2 −u1u2 −u1u2 u1u2 u1u2

u1u3 −u1u3 u1u3 −u1u3 u2u3

u2u2 u2u2 u2u2 u2u2 u1u1

u2u3 u2u3 −u2u3 −u2u3 u1u3

u3u3 u3u3 u3u3 u3u3 u3u3

θθ θθ θθ θθ θθ
u1θ −u1θ u1θ −u1θ u2θ
u2θ u2θ −u2θ −u2θ u1θ
u3θ u3θ u3θ u3θ u3θ
εu εu εu εu εu
εθ εθ εθ εθ εθ
εrad εrad εrad εrad εrad

u1u1u3 u1u1u3 u1u1u3 −u1u1u3 u2u2u3

u2u2u3 u2u2u3 u2u2u3 −u2u2u3 u1u1u3

u3u3u3 u3u3u3 u3u3u3 −u3u3u3 u3u3u3

θθu3 θθu3 θθu3 −θθu3 θθu3

Table A.8: Action of elementary symmetries defined in Eqs. (10)-(13)) on each flow variable
or product of flow variable of interest.

order statistics, only products of the type φφu3 are required to compute the
diffusion terms δu′ and δθ′ in Eqs. (23)-(24), averaged over horizontal planes.
The symmetry average can be applied before the time average or after the
time average, indifferently.

Once averaged quantities φ, φψ or φφψ are known, the second step con-
sists in computing second order statistics φ′ψ′ or third order statistics φ′φ′ψ′

with the following relationships

φ′ψ′ = φψ − φψ, (A.1)

φ′φ′ψ′ = φφψ − φφψ − 2φ′ψ′ φ− φ′φ′ ψ. (A.2)
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Rayleigh-Bénard convection in radiating gases, in: Proc. of 11th In-
ternational Heat Transfer Conference, pp. 261-266, Taylor and Francis,
1998.

[31] C. H. Lan, O. A. Ezekoye, J. R. Howell, K. S. Ball, Stability analysis for
three-dimensional Rayleigh–Bénard convection with radiatively partic-
ipating medium using spectral methods, International Journal of Heat
and Mass Transfer 46 (2003) 1371–1383.

[32] L. Soucasse, Ph. Rivière, A. Soufiani, S. Xin, P. Le Quéré, Transitional
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