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Abstract

We present two characterizations of positive invariance of sets under the flow
of systems of ordinary differential equations. The first characterization uses
inward sets which intuitively collect those points from which the flow evolves
within the set for a short period of time, whereas the second characterization
uses the notion of exit sets, which intuitively collect those points from which
the flow immediately leaves the set. Our proofs emphasize the use of the real
induction principle as a generic and unifying proof technique that captures
the essence of the formal reasoning justifying our results and provides cleaner
alternative proofs of known results. The two characterizations presented in
this article, while essentially equivalent, lead to two rather different decision
procedures (termed respectively LZZ and ESE) for checking whether a given
semi-algebraic set is positively invariant under the flow of a system of polynomial
ordinary differential equations. The procedure LZZ improves upon the original
work by Liu, Zhan and Zhao (Liu et al., 2011). The procedure ESE, introduced
in this article, works by splitting the problem, in a principled way, into simpler
sub-problems that are easier to check, and is shown to exhibit substantially
better performance compared to LZZ on problems featuring semi-algebraic sets
described by formulas with non-trivial Boolean structure.

Keywords: Ordinary differential equations, dynamical systems, positively
invariant sets, polynomial vector fields, decision procedures.

1. Introduction

Positive invariance is an important concept in the theory of dynamical sys-
tems and one which also has practical applications in areas of computer science,
such as formal verification, as well as in control theory. Informally, a set is
positively invariant if it is preserved under the evolution of the system accord-
ing to the dynamics as time advances. A considerable amount of literature is
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dedicated to this subject (Blanchini, 1999), and great progress has been made
in understanding positively invariant sets in continuous dynamical systems.

In computer science, the notion of an inductive invariant is analogous to
that of a positively invariant set. It has relatively recently become the focus
of considerable research interest, especially in the area of so-called hybrid sys-
tems, which studies systems that combine discrete and continuous dynamics.
Significant progress has been made over the past decade in the methods for
algorithmically checking inductive invariants of ODEs (i.e. deciding whether a
given set is positively invariant); these methods provide powerful tools for rea-
soning about the temporal behaviour of ODEs without the need to explicitly
solve them. For example, one may use an inductive invariant to prove that a
system cannot evolve from a given set of initial conditions into a state which is
deemed undesirable or unsafe (e.g. if the ODEs describe the motion of physical
objects, one may wish to know that there can be no collisions between these
objects in the future).

Contributions. This article presents a self-contained development of two char-
acterizations of positively invariant sets of continuous systems (in Theorem 6
and Theorem 23). In the case of semi-algebraic sets and polynomial ODEs, the
two characterizations lend themselves to two alternative decision procedures for
checking set positive invariance, both of which are described in detail.

Section 3 is entirely devoted to the first characterization (Theorem 6), which
relies on the concept of inward sets (see Zhan et al., 2017, Def. 9.4) and is very
closely related to a theorem (Zhan et al., 2017, Thm. 9.1) which originally
appeared in (Liu et al., 2011); we show how real induction, via equivalent, yet
subtly different formulations, can be used to give clean proofs of this known
result and of Theorem 6. The section then describes a robust implementation
of the associated decision procedure (LZZ, after Liu, Zhan and Zhao), along
with our improvements to the original method.

Section 4 presents the second characterization (Theorem 23), which is based
on Conley’s notion of exit sets (Conley, 1978). We give a direct proof for this
new result while formally establishing the relationship between exit sets and
inward sets. Section 4.3 presents a new algorithm (ESE, which stands for Exit
Set Emptiness) that can more efficiently decide positive invariance of semi-
algebraic sets described by formulas with non-trivial Boolean structure. The
procedure works by splitting the problem into simpler sub-problems that are
easier to check, reminiscent of divide-and-conquer algorithms.

Our implementations of the two decision procedures LZZ and ESE are em-
pirically evaluated on a number of positive invariance checking problems where
semi-algebraic sets are described by non-atomic formulas in Section 5, with ESE
exhibiting substantially better performance.
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2. Preliminaries

A system of autonomous ordinary differential equations (ODEs) has the
form:

x′1 = f1(x1, . . . , xn) ,

...

x′n = fn(x1, . . . , xn) ,

where x′i stands for the time derivative dxi

dt and f = (f1, f2, . . . , fn) is a vector-
valued continuous function (which defines a vector field on Rn); we will write
such a system more concisely as x′ = f(x). We will denote by ϕ(·, x) the solution
to the initial value problem x′ = f(x), with initial value x ∈ Rn. We will only
consider systems in which solutions to initial value problems always exist (at
least locally) and are unique (e.g. local Lipschitz continuity of f is sufficient
to guarantee this property). When we quantify solutions over time t, we only
consider t in the maximal interval of existence Ix, which in our case exists for
any x and contains 0. In order to simplify our presentation, we will quantify
over “all forward time” by writing ∀ t ≥ 0 with the understanding that ϕ(·, x)
may only be defined for t ∈ Ix. We refer to the mapping ϕ as the (local) flow
of the vector field f .

Definition 1 (Positively invariant set). Given a system of ODEs x′ = f(x), a
set S ⊆ Rn is positively invariant if and only if no solution starting inside S
can leave S in the future, i.e. just when the following holds:

∀ x ∈ S. ∀ t ≥ 0. ϕ(t, x) ∈ S .

One analogously arrives at a definition of negatively invariant sets in which
no solution starting inside the set S is permitted to be outside the set in the
past. Basic results in the theory of dynamical systems establish that a set S
is positively invariant precisely when its complement Sc is negatively invariant
(Bhatia and Szegő, 1970, Thm. 1.4), and that the closure of a positively invari-
ant set is also positively invariant (Alongi and Nelson, 2007, Prop. 1.4.5); this
property also holds for the set’s interior (Bhatia and Szegő, 1970, Thm. 1.7).

Remark 2. Some authors (Blanchini and Miani, 2008) favour a definition of
positively invariant sets in which the solutions ϕ(t, x) are explicitly required to
exist for all time t ≥ 0, by imposing a global Lipschitz continuity requirement on
the vector field f , whereas others (Redheffer, 1972) simply require that solutions
emanating from the set S remain inside S for as long as they exist in the future
(Definition 1 is stated in this spirit).

The first necessary and sufficient condition (i.e. characterization) for posi-
tive invariance of closed sets in systems of ODEs with unique solutions (but
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without requiring knowledge of the solutions ϕ) was given by Nagumo (1942),1

and was later independently found by numerous other mathematicians (the in-
terested reader is invited to consult (Blanchini, 1999), (Blanchini and Miani,
2008, Ch. 4, §4.2), and (Walter, 1998, Ch. III, §10, XV, XVI) for more details
about Nagumo’s theorem and its multiple rediscoveries). Informally, Nagumo’s
theorem states that a closed set S is positively invariant if and only if at each
point x on the boundary of S the vector f(x) points into the interior of the set
or is tangent to it. The theorem may be easily applied in cases where the set S
is a sub-level set of a differentiable real-valued function g, i.e. a set defined as
{x ∈ Rn | g(x) ≤ 0}, provided that the gradient vector ∇g(x) is non-vanishing
(i.e. non-zero) whenever g(x) = 0 (intuitively this ensures that the boundary of
S is smooth): in this special case Nagumo’s theorem says that S is positively
invariant if and only if g′(x) ≤ 0 for all x such that g(x) = 0, where g′ denotes
the (first) Lie derivative of g with respect to the vector field f , which is defined
by: 2

g′
def
= ∇g · f =

n∑
i=1

∂g

∂xn
fi .

Remark 3. Applying Nagumo’s theorem in practice becomes problematic when
the boundary of S is not smooth, e.g. when the set {x ∈ Rn | g(x) = 0} con-
tains singularities (points x where the gradient vanishes, i.e. ∇g(x) = 0);
these issues have been explored by Taly and Tiwari (2009). In order to ap-
ply the theorem more generally to sets that are intersections of sub-level sets,
i.e. {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . , k}, one likewise needs to be very careful.
The concept of practical sets was introduced specifically to deal with these is-
sues (see Blanchini and Miani, 2008, Ch. 4, Def. 4.9).

In the following sections we will be concerned with characterizations of pos-
itive invariance that are of a very different nature to that of Nagumo’s result
(which provides a characterization only for closed sets obtained using the tools
of real analysis and is without effective computational means of applying it). As
we shall see, these alternative characterizations can be effectively applied using
tools from commutative algebra and real algebraic geometry.

3. Characterizing Positive Invariance Through Inward Sets

Let us consider the following construction of the so-called inward set for a
given set S ⊆ Rn and a system of ODEs x′ = f(x) for which a unique (local)
solution to the initial value problem exists for any x ∈ Rn, following (Zhan
et al., 2017, Def. 9.4):

Inf (S)
def
= {x ∈ Rn | ∃ ε > 0. ∀ t ∈ (0, ε). ϕ(t, x) ∈ S} .

1Nagumo’s result was in fact a little more general in that it did not require unique solutions
and focused on so-called weak positive invariance, which is identical to positive invariance
when solutions are unique.

2The Lie derivative of g is sometimes also denoted by Lf (g) instead of g′.
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When time/flow is reversed, one can likewise construct the inverse inward set :

In−f (S) = {x ∈ Rn | ∃ ε > 0. ∀ t ∈ (0, ε). ϕ(−t, x) ∈ S} .

It is useful to intuitively think of these as sets of states from which the system
will evolve inside S for some non-trivial time interval “immediately in the fu-
ture” and, respectively, has evolved inside S for some non-trivial time interval
“immediately in the past”.

We observe that, although according to the statement of Inf (S), x can be
any point in Rn, it is in fact restricted to the closure of S.

Lemma 4. For S ⊆ Rn, the set Inf (S) is a subset of the closure of S.

Proof. We show by contradiction that Inf (S) ∩ (Sc)◦ is empty. Let x be an
element of the intersection. Since x ∈ (Sc)◦, there exists an open neighbourhood
U ⊂ (Sc)◦ of x and ρ > 0 such that ϕ(t, x) ∈ U ⊂ Sc for all t ∈ (0, ρ)
(by continuity of ϕ(·, x)). But if x ∈ Inf (S), then there exists ε > 0 such
that ϕ(t, x) ∈ S for all t ∈ (0, ε). So ϕ(t, x) is in both Sc and S for all t ∈
(0,min{ρ, ε}), a contradiction.

Remark 5. Notice that the interior of S is always contained inside Inf (S) (by
definition) and the inclusion S ⊆ Inf (S) therefore holds trivially whenever S is
an open set (for any f). A quick glance at the definitions

Inf (Sc) = {x ∈ Rn | ∃ ε > 0. ∀ t ∈ (0, ε). ϕ(t, x) 6∈ S} ,

Inf (S)c = {x ∈ Rn | ∀ ε > 0. ∃ t ∈ (0, ε). ϕ(t, x) 6∈ S} ,

reveals the following inclusion Inf (Sc) ⊆ Inf (S)c for any set S. Whenever S is
a closed set (Sc is open), we therefore have that Sc ⊆ Inf (Sc) ⊆ Inf (S)c or, if
we prefer, Inf (S) ⊆ S.

These constructions can be used to state the following characterization of
positively invariant sets.

Theorem 6. A set S ⊆ Rn is positively invariant under the flow of the system
x′ = f(x) if and only if S ⊆ Inf (S) and Sc ⊆ In−f (Sc).

Theorem 6 can be understood and proved using induction over the non-
negative real numbers. Though there are many different variations of induction
over the reals (e.g. see Clark, 2019), this method of proof appears to be far less
well known than standard mathematical induction over the natural numbers.
We state below a version of real induction that is well suited to directly prove
the theorem.

Lemma 7 (Real induction). A predicate P (t) holds for all t ≥ 0 if and only if:

1. P (0) ,

2. ∀ t ≥ 0.
(
¬P (t)→

(
∃ ε > 0. ∀ T ∈ (t− ε, t). ¬P (T )

))
,
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3. ∀ t ≥ 0.
(
P (t)→

(
∃ ε > 0. ∀ T ∈ (t, t+ ε). P (T )

))
.

Proof. Necessity is obvious. Sufficiency is easy to show by considering (for
contradiction) that there exists t ≥ 0 such that ¬P (t) and defining the time
t∗ = inf{t ≥ 0 | ¬P (t)} (which exists as the set is assumed to be non-empty, is
bounded from below, and the reals are complete). By 1. and 3. we have that
t∗ 6= 0, so t∗ must be positive, but in this case P (t) holds for all t ∈ [0, t∗) (by
definition). If P (t∗) holds, then t∗ cannot be an infimum (by 3.), and if ¬P (t∗)
then (by 2.) we have that ¬P (t) holds for all t ∈ (t∗ − ε, t∗) for some ε > 0; a
contradiction.

Using the above real induction principle, the proof of Theorem 6 is immediate
if one takes “ϕ(t, x) ∈ S” to be the predicate P (t) in Lemma 7. We remark
that (unlike Nagumo’s theorem), Theorem 6 makes no assumptions about the
set S being closed, or open. As such, Theorem 6 is very general and applies to
all sets and systems of ODEs with locally unique solutions.

Theorem 6 is closely related to (Zhan et al., 2017, Thm. 9.1) where the
authors require Sc ⊆ In−f (S)c instead of Sc ⊆ In−f (Sc). 3 Despite the fact
that, in general, In−f (S)c 6= In−f (Sc) (cf. counterexample 19), the conditions
in Theorem 6 and (Zhan et al., 2017, Thm. 9.1) are in fact equivalent. We show
this equivalence by appealing again to real induction: we first state a slightly
different real induction principle that is more suited to prove (Zhan et al., 2017,
Thm. 9.1), providing thereby a new simpler proof for this known result, and
then show that both principles are in fact equivalent. 4

Lemma 8 (Real induction (Jackson)). A predicate P (t) holds for all t ≥ 0 if
and only if:

1. P (0),

2’. ∀ t > 0.
((
∃ ε ∈ (0, t]. ∀ T ∈ (t− ε, t). P (T )

)
→ P (t)

)
,

3. ∀ t ≥ 0.
(
P (t)→

(
∃ ε > 0. ∀ T ∈ (t, t+ ε). P (T )

))
.

Notice that condition 2’. could be equivalently replaced by its contrapositive form

2”. ∀ t > 0.
(
¬P (t)→

(
∀ ε ∈ (0, t]. ∃ T ∈ (t− ε, t). ¬P (T )

))
.

Proof. Necessity is obvious. Sufficiency is easy to show by considering (for
contradiction) the time t∗ = inf{t ≥ 0 | ¬P (t)}. By 1. and 3. we have that
t∗ 6= 0, so t∗ must be positive, but in this case P (t) holds for all t ∈ [0, t∗) (by
definition) and by 2’. we have that P (t∗) holds; a contradiction.

3The set inclusions required in (Zhan et al., 2017, Thm. 9.1) can be alternatively phrased
as In−f (S) ⊆ S ⊆ Inf (S).

4The idea of using real induction to prove (Zhan et al., 2017, Thm. 9.1) was first suggested
by Paul B. Jackson and Kousha Etessami (School of Informatics, University of Edinburgh) in
private communication with the second author.
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Remark 9. For completeness, we include below a statement of Hathaway’s
continuity induction (Hathaway, 2011), which is very similar to the notion of
real induction in (Clark, 2019). A predicate P (t) holds for all t ∈ [0, T ], where
T > 0, if and only if:

1. P (0) holds ,

2. ∀ τ ∈ (0, T ].
((
∀ τ ′ ∈ [0, τ). P (τ ′)

)
→ P (τ)

)
,

3. ∀ τ ∈ [0, T ).
((
∀ τ ′ ∈ [0, τ ]. P (τ ′)

)
→
(
∃ ε > 0. ∀ τ ′′ ∈ (τ, τ+ε). P (τ ′′)

))
.

The proof is essentially identical to that of Lemma 8.

The proof of (Zhan et al., 2017, Thm. 9.1) now becomes immediate using
real induction as it is stated in Lemma 8. The following lemma establishes an
equivalence between the two formulations of real induction.

Lemma 10. Let P (t) denote a predicate defined for all t ≥ 0. If

1. P (0) , and

3. ∀ t ≥ 0.
(
P (t)→

(
∃ ε > 0. ∀ T ∈ (t, t+ ε). P (T )

))
hold ,

then

2. ∀ t ≥ 0.
(
¬P (t)→

(
∃ ε > 0. ∀ T ∈ (t− ε, t). ¬P (T )

))
,

if and only if

2”. ∀ t > 0.
(
¬P (t)→

(
∀ ε ∈ (0, t]. ∃ T ∈ (t− ε, t). ¬P (T )

))
.

Proof. The implication from 2. to 2”. is obvious (in this sense, one may con-
sider Lemma 7 weaker than Lemma 8). To prove the converse, suppose (for
contradiction) that 2”. and ¬2. both hold. More explicitly:

¬2. ≡ ∃ t ≥ 0.
(
¬P (t) ∧

(
∀ ε > 0. ∃ T ∈ (t− ε, t). P (T )

))
.

Let τ > 0 be the point at which ¬P (τ) holds in ¬2. (τ cannot be 0 by
1.) Then for all ε0 > 0, there exists some T0 ∈ (τ − ε0, τ) such that P (T0)
holds. Consider the interval I0 = [T0, τ ]. At T0, since P (T0) holds, we have
(by 3.) that P (t) holds for all t in the interval I1 = [T0, T0 + ε1) for some
ε1 > 0. If T0 + ε1 ≥ τ , we obtain a contradiction (because ¬P (τ) is assumed
to hold); otherwise we have I1 = [T0, T0 + ε1) ⊂ [T0, τ ]. If at the endpoint of
I1 we have that ¬P (T0 + ε1) holds, we obtain a contradiction (by 2”.), and
if P (T0 + ε1) holds we have (by 3.) that for some ε2 > 0, P (t) holds for all
t ∈ I2 = [T0, T0 + ε1 + ε2). Repeating the argument, we obtain a sequence Ik of
intervals of strictly increasing length where P (t) holds. The right endpoints of
the intervals in this sequence cannot converge within (T0, τ ] because this would
yield a contradiction (by 2”.). The right endpoints thus go beyond τ , which
again yields a contradiction.
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The equivalence stated in Lemma 10 is somewhat abstract and it may not be
immediately clear how this equivalence is relevant with regard to inward sets.
To make this more apparent, we prove below a lemma which can be used to
establish the equivalence between Theorem 6 and (Zhan et al., 2017, Thm. 9.1)
without appealing to real induction directly in the proof, although following a
similar line of argument as that employed in the proof of Lemma 10.

Lemma 11. Let S ⊆ Rn. If S ⊆ Inf (S) then In−f (S) = In−f (Sc)c.

Proof. The inclusion In−f (S) ⊆ In−f (Sc)c holds in general by definition as
already stated. Let x ∈ In−f (Sc)c and let ε0 > 0. Then, by definition, there
exists t0 ∈ (0, ε0), such that x0 := ϕ(−t0, x) 6∈ Sc, or equivalently x0 ∈ S. Since
S ⊆ Inf (S), x0 ∈ Inf (S) and there exists γ0 > 0, such that for all s0 ∈ (0, γ0),
ϕ(s0, x0) ∈ S. If −t0 + γ0 < 0, then the same arguments with ε1 := t0 − γ0
lead to the existence of t1, γ1 > 0 such that for all s1 ∈ (0, γ1), ϕ(s1, x1) ∈ S
where x1 := ϕ(−t1, x). We can thus construct a (strictly) increasing sequence
−t0 + γ0,−t1 + γ1, . . . . Two cases may occur:

(i) If the sequence crosses zero after finitely many steps, that is there exists
n ≥ 0 such that −tn +γn ≥ 0, then this means that for all t ∈ (0, tn), ϕ(−t, x) ∈
S thereby proving that x ∈ In−f (S) since −tn < −t < 0 ≤ −tn + γn.

(ii) If the sequence is upper bounded by 0, then it has a limit −tl + γl ≤ 0.
The case −tl + γl < 0 is impossible since we can perform one more step to get
−tl + γl < −tl′ + γl′ ≤ 0. Thus −tl + γl = 0 and one gets ϕ(−t, x) ∈ S for all
t ∈ (0, tl) leading, as in case (i), to x ∈ In−f (S).

Remark 12. The statement of the characterization in Theorem 6 enjoys some
rather nice properties when compared to that of (Zhan et al., 2017, Thm. 9.1).
It is in particular symmetric in the sense that the set inclusions in the theorem
are preserved when one simultaneously replaces S with its complement Sc and f
with the reversed dynamics −f . This allows for instance to immediately prove
the well-known result in dynamical systems which states that a set is positively
invariant if and only if its complement is negatively invariant (Bhatia and Szegő,
1970, Thm. 1.4). One sees that by syntactically replacing S with Sc and f with
−f in the conditions of Theorem 6, one obtains Sc ⊆ In−f (Sc) and S ⊆ Inf (S),
i.e. equivalent conditions, using only the set-theoretic fact that (Sc)c = S. On
the other hand, applying the same transformation to the conditions S ⊆ Inf (S)
and Sc ⊆ In−f (S)c required in (Zhan et al., 2017, Thm. 9.1), one does not
immediately obtain the same conditions; instead, one obtains Sc ⊆ In−f (Sc)
and S ⊆ Inf (Sc)c. In order to show that the original inclusions hold one needs
to use the fact that In−f (Sc) ⊆ In−f (S)c for the first inclusion, and then use
Lemma 11 for the second inclusion, which is somewhat more involved than using
Theorem 6 to prove the same fact.

The main practical difficulty in applying Theorem 6 (or equivalently (Zhan
et al., 2017, Thm. 9.1)) lies in the fact that inward sets Inf (S) and In−f (Sc) are
defined in terms of solutions to a system of differential equations; the theorem
says nothing about our ability to construct these sets or reason about their
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inclusion. The following section will elucidate how this problem is addressed
using tools from algebraic geometry in the important case where the set S is
semi-algebraic and the right-hand side of the system x′ = f(x) is polynomial.

3.1. A Decision Procedure for Checking Positively Invariant Sets

In this section we describe a procedure for deciding whether a given set is
positively invariant or not. For this we first require a few basic results. Let
g : Rn → R denote a real-valued function. The zero-th Lie derivative of g is g

itself, the first order Lie derivative g′
def
= ∇g·f corresponds to the total derivative

of t 7→ g(ϕ(t, x)) with respect to time t, and higher-order Lie derivatives are
defined inductively, i.e. g′′ = (g′)′; the k-th order Lie derivative of g will be
denoted by g(k). We will require the fact that unique solutions to real analytic
systems of ODEs are also real analytic (Chicone, 2006, Thm 1.3). Whenever g
is a real analytic function, its Taylor series expansion

g(ϕ(t, x)) = g(x) + g′(x)t+ g′′(x)
t2

2!
+ · · ·

converges in some time interval (εl, εu), where εl < 0 < εu. The set of states
{x ∈ Rn | g(x) = 0}, simply denoted by g = 0 in the sequel, remains invariant
under the flow for some non-trivial forward time interval if and only if all Lie
derivatives g(k), k ≥ 1, vanish whenever g(x) = 0.

Remark 13. We will abuse notation slightly in this article by interchangeably
using sets and formulas characterizing those sets. For example, we will use
formulas in the arguments to Inf and In−f (from Theorem 6). However, when
describing sets we will use set-theoretic symbols ∪ and ∩ for set union and
intersection, respectively, and will let Sc denote the complement of S; when
we are working with formulas, we will instead employ the corresponding logical
symbols ∨ and ∧ for disjunction and conjunction, and ¬ for negation. The set
Rn (resp. ∅) will be syntactically represented by the symbol T (resp. F).

We thus have the inward set of g = 0 given by

Inf (g = 0) = g = 0 ∩ g′ = 0 ∩ g′′ = 0 ∩ g′′′ = 0 ∩ · · · ,

which is characterized by the following infinite “formula” 5

“ Inf (g = 0) ≡ g = 0 ∧ g′ = 0 ∧ g′′ = 0 ∧ g′′′ = 0 ∧ · · · ” .

For sets of states satisfying inequalities {x ∈ Rn | g(x) < 0}, which we also
concisely denote by the formula g < 0, the situation is similar with the following

5Technically, a formula can only be finite, hence the quotes for such hypothetical objects.
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infinite construction:

“ Inf (g < 0) ≡ g < 0

∨ (g = 0 ∧ g′ < 0)

∨ (g = 0 ∧ g′ = 0 ∧ g′′ < 0)

∨ (g = 0 ∧ g′ = 0 ∧ g′′ = 0 ∧ g′′′ < 0)

...

” .

Intuitively, the first non-zero Lie derivative of g needs to be negative at a point
x satisfying g(x) = 0 in order for the flow ϕ(t, x) to enter the set g < 0 from
that point and remain within this set throughout some time interval (0, ε), for
some positive ε.

Remark 14. One may draw physical analogies here, e.g. to the motion of a
vehicle: if the velocity is 0, then it is the sign of the acceleration term that
determines whether the vehicle will move forward in the next time instant; if
both the velocity and the acceleration are 0, it is the sign of the derivative of the
acceleration (i.e. the sign of the jerk term), and so forth.

The decision procedure developed by Liu et al. (2011) rests on the fact that
for a polynomial function p and a polynomial system of ODEs x′ = f(x), the
formulas characterizing Inf (p = 0) and Inf (p < 0) are indeed finite. To see
why this is true, note that whenever p and f1, f2, . . . , fn that make up f are
polynomials, all the formal Lie derivatives p′, p′′, · · · are also guaranteed to be
polynomials. Let us now recall the ascending chain property of ideals in the
polynomial ring R[x1, . . . , xn] – a consequence of Hilbert’s basis theorem and
the fact that the ring R is Noetherian (Cox et al., 2015, Ch. 2, Thm. 7).

Lemma 15. Let p ∈ R[x1, . . . , xn], then the ascending chain of ideals

〈p〉 ⊆ 〈p, p′〉 ⊆ 〈p, p′, p′′〉 ⊆ · · ·

is finite, i.e. there exists a k ∈ N such that 〈p, p′, . . . , p(k)〉 = 〈p, p′, . . . , p(K)〉
for all K ≥ k.

For a given p, we denote the smallest k in the above lemma by ordf (p) and
say that it defines the order of p with respect to the system of polynomial ODEs
x′ = f(x). In practice, we can always compute ordf (p) by simply computing
successive formal Lie derivatives of p and successively checking whether

p(k+1) ∈ 〈p, p′, p′′, . . . , p(k)〉

holds for k = 1, 2, 3, . . . , until the membership check succeeds, which would
imply that the ideal chain has stabilized (the fact that this process termi-
nates is guaranteed by Lemma 15).6 The ideal membership check can be

6Using terminology from differential algebra (Ritt, 1950) one may say that the ideal

〈p, p′, . . . , p(ordf (p))〉 defines a differential ideal.
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easily performed by reducing the polynomial p(k+1) by the Gröbner basis of
{p, p′, . . . , p(k)} for each successive k and checking whether the remainder is 0.
An upper bound on the length of the ascending chain of ideals generated by
successive Lie derivatives of p was obtained in (Novikov and Yakovenko, 1999,
Thm. 4); this bound is doubly-exponential in the number of variables, how-
ever, in practice one typically observes the ideals stabilizing after only a few
iterations.

As a direct consequence of Lemma 15, whenever p, p′, . . . , p(ordf (p)) are all
simultaneously 0, all higher derivatives must also evaluate to 0. More formally:

p = 0 ∧ p′ = 0 ∧ p′′ = 0 ∧ · · · ∧ p(ordf (p)) = 0 → ∀ K > ordf (p). p(K) = 0 .

Using this fact one can construct perfectly legitimate formulas that provide a
finite characterization of Inf (p = 0) and Inf (p < 0), given as follows:

Inf (p = 0) ≡ p = 0 ∧ p′ = 0 ∧ p′′ = 0 ∧ · · · ∧ p(ordf (p)) = 0 ,

Inf (p < 0) ≡ p < 0

∨ (p = 0 ∧ p′ < 0)

∨ (p = 0 ∧ p′ = 0 ∧ p′′ < 0)

...

∨ (p = 0 ∧ p′ = 0 ∧ p′′ = 0 ∧ · · · ∧ p(ordf (p)) < 0) .

Notice that in the construction of Inf (p < 0) the saturation of the chain of
ideals guarantees that all further terms in the disjunction, i.e.

p = 0 ∧ p′ = 0 ∧ p′′ = 0 ∧ · · · ∧ p(ordf (p)) = 0 ∧ · · · ∧ p(K) < 0

where K > ordf (p), are False and therefore unnecessary.

3.2. Improving the Construction of Inf (p = 0) and Inf (p < 0)

One may work näıvely with ideals generated by the successive Lie derivatives
〈p, p′, p′′, . . . , p(k)〉 and construct Inf (p = 0) and Inf (p < 0) using these deriva-
tives directly (as above), following Liu et al. (2011). However, this construction
can be improved if one realizes that only the remainders of the Lie derivatives
are needed for this construction, as will be shown in the following lemma. The
practical advantage afforded by doing this is the degree of the remainder polyno-
mials, which is typically lower than the degree of the Lie derivatives themselves.

Lemma 16. Given a polynomial p and a system of polynomial ODEs x′ = f(x),
let rem0 = p and let remi+1 be defined inductively as the remainder obtained
from polynomial reduction (i.e. multivariate polynomial division) of the Lie
derivative rem′i by the polynomials {rem0, rem1 . . . , remi}. Then for all i ≥ 0

remi = p(i) −
i−1∑
j=0

αijp
(j)

where αij are polynomials.

11



Proof. By induction. Base case: rem0 = p = p(0). For an inductive hypothesis,
assume that remk = p(k) −

∑k−1
j=0 αkjp

(j) holds for all k ≤ n. Since remn+1

is the remainder upon the reduction of rem′n by {rem0, . . . , remn}, we have
remn+1 = rem′n −

∑n
i=0 βiremi, where β0, . . . , βn are polynomials. From our

inductive hypothesis and by applying the product rule for differentiation we
have

rem′n = p(n+1) −

n−1∑
j=0

αnjp
(j)

′ = p(n+1) −
n∑

j=0

γjp
(j) , (1)

where γ0, . . . , γn are polynomials, and

remn+1 = rem′n −
n∑

i=0

βiremi [from the definition]

=

p(n+1) −
n∑

j=0

γjp
(j)

− n∑
i=0

βiremi [from (1)] ,

=

p(n+1) −
n∑

j=0

γjp
(j)

− n∑
i=0

βi

(
p(i) −

i−1∑
l=0

αilp
(l)

)
[by hypothesis] ,

from which it is apparent that remn+1 has the required form:

remn+1 = p(n+1) −
n∑

j=0

αn+1jp
(j) .

Lemma 17. Let remi be defined as in Lemma 16. Then the inward sets can be
characterized as follows:

Inf (p = 0) ≡ (rem0 = 0 ∧ rem1 = 0 ∧ rem2 = 0 ∧ · · · ∧ remordf (p) = 0)

and

Inf (p < 0) ≡ rem0 < 0

∨ (rem0 = 0 ∧ rem1 < 0)

∨ (rem0 = 0 ∧ rem1 = 0 ∧ rem2 < 0)

...

∨ (rem0 = 0 ∧ rem1 = 0 ∧ rem2 = 0 ∧ · · · ∧ remordf (p) < 0) .

Proof. For Inf (p = 0), we show by induction that

∀ n ≥ 0.

(
n⋂

i=0

remi = 0

)
=

(
n⋂

i=0

p(i) = 0

)
.
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Base case: rem0 = p(0) = p by definition. For the inductive hypothesis, let us
assume that (

k⋂
i=0

remi = 0

)
=

(
k⋂

i=0

p(i) = 0

)
holds for some k ≥ 0. Then from the hypothesis we have that(

k+1⋂
i=0

remi = 0

)
=

(
k⋂

i=0

p(i) = 0 ∩ remk+1 = 0

)
.

By Lemma 16 we have remk+1 = p(k+1) −
∑k

j=0 αk+1jp
(j) and hence(

k+1⋂
i=0

remi = 0

)
=

 k⋂
i=0

p(i) = 0 ∩ p(k+1) −
k∑

j=0

αk+1jp
(j) = 0


=

(
k⋂

i=0

p(i) = 0 ∩ p(k+1) = 0

)
.

The proof for Inf (p < 0) follows a similar inductive argument.

Remark 18. Using the remainders instead of the higher-order Lie derivatives
of p for constructing Inf (p = 0) and Inf (p < 0) is pragmatically often a good
choice. For a concrete example, consider the Van der Pol oscillator whose dy-
namics is given by x′ = y and y′ = −x − y(x2 − 1), and let p = x2 + y2 − 1.
The ascending chain of ideals

〈rem0〉 ⊆ 〈rem0, rem1〉 ⊆ 〈rem0, rem1, rem2〉 ⊆ · · ·

stabilizes at 〈rem0, . . . , rem6〉, which is 〈x2+y2−1, 2y4,−8xy3, 24y2,−48xy, 48〉.
In contrast, if one uses the actual higher-order Lie derivatives, the 6 generators
of the ideal 〈p, p′, . . . , p(6)〉 are too large to all fit on this page, with p(6) having
total degree 12. We should however note that in certain cases it may be more
expensive to compute the ideal 〈rem0, rem1, . . . , remordf (p)〉 than it is to compute

〈p, p′, . . . , p(ordf (p))〉 because the potential gain in lowering the total degree of the
ideal generators can be outweighed by the computational overhead arising from
the size of the coefficients of the intermediate polynomials. This is a well-known
phenomenon when computing Gröbner bases (Cox et al., 2015, Ch. 2, p.116).

3.3. Distributive Properties of Inf

Viewed as a set operator, Inf distributes over set intersections. For any sets
S1, S2 ⊆ Rn, one has:

Inf (S1 ∩ S2) = Inf (S1) ∩ Inf (S2) .

The operator Inf does not, however, distribute over set union; only the following
set inclusion is guaranteed to hold in general:

Inf (S1 ∪ S2) ⊇ Inf (S1) ∪ Inf (S2) .
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Counterexample 19. To see why the converse inclusion does not hold, con-
sider the simple 1-dimensional system x′ = 1 and the set

S =
{
x ∈ R | x ≤ 0 ∨

(
x > 0 ∧ sin

(
x−1

)
= 0
)}

.

The point 0 ∈ R cannot be an element of Inf (S) because ϕ(t, 0) = t and for
any positive ε there exists a t ∈ (0, ε) such that sin

(
t−1
)
6= 0 and therefore

ϕ(t, 0) 6∈ S. In other words, 0 belongs to Inf (S)c. At the same time, 0 cannot
be in Inf (Sc) either because the flow cannot move from the point at x = 0
without crossing one root of sin

(
t−1
)

= 0. Thus

Inf (S ∪ Sc) = Inf (Rn) = Rn 6= Inf (S) ∪ Inf (Sc) .

The example also shows that in general Inf (Sc) is not equal to Inf (S)c since
0 ∈ Inf (S)c while 0 6∈ Inf (Sc). 7

For semi-analytic sets the Inf operator does distribute over set unions. In
particular, for semi-algebraic sets (a special class of semi-analytic sets) given by

S =

l⋃
i=1

mi⋂
j=1

pij < 0 ∩
Mi⋂

j=mi+1

pij = 0

 ,

where pij are polynomials, one has:

Inf (S) =

l⋃
i=1

mi⋂
j=1

Inf (pij < 0) ∩
Mi⋂

j=mi+1

Inf (pij = 0)

 .

A proof of this property for semi-algebraic sets (Liu et al., 2011, Lemma 20)
was generalized to semi-analytic sets in (Platzer and Tan, 2020, §6.1.2). These
results in particular mean that, if one restricts attention to these classes of sets,
the equality Inf (S)c = Inf (Sc) holds (making the equivalence of Theorem 6
and (Zhan et al., 2017, Thm. 9.1) immediate, contrary to the general setting
where this equality does not hold and where Lemma 11 is required to prove the
equivalence).

3.4. The LZZ Decision Procedure Based on Theorem 6

Given a quantifier-free formula describing a semi-algebraic set

S ≡
l∨

i=1

mi∧
j=1

pij < 0 ∧
Mi∧

j=mi+1

pij = 0

 ,

and a polynomial system of ODEs x′ = f(x), in order to decide whether S is a
positively invariant set, a basic decision procedure using the characterizations

7Recall from Remark 5 that Inf (Sc) ⊆ Inf (S)c holds for any set S. The above counterex-
ample demonstrates that the converse inclusion does not hold generally.
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based on inward sets (Theorem 6 and (Liu et al., 2011, Thm. 19)), which
we term LZZ, after the authors in Liu et al. (2011), can be implemented by
performing the following steps:

1. Compute Inf (pij ./ij 0), where ./ij∈ {=, <} appearing in S (formulas
p < 0 and p = 0, where p is a polynomial, will be referred to as atomic
formulas), and from these construct

Inf (S) ≡
l∨

i=1

mi∧
j=1

Inf (pij < 0) ∧
Mi∧

j=mi+1

Inf (pij = 0)

 ,

following the distributive property of Inf for semi-algebraic sets S.
2. Construct In−f (Sc) following the same process as in step 1, but using the

complement Sc and the reversed system x′ = −f(x).
3. Check the semi-algebraic set inclusions S ⊆ Inf (S) and Sc ⊆ In−f (Sc)

from Theorem 6 using e.g. the CAD algorithm of Collins and Hong (1991).

Remark 20. One can alternatively construct In−f (S) in step 2 and check the
inclusions S ⊆ Inf (S) and Sc ⊆ In−f (S)c in step 3, following the original
method of Liu et al. (2011), rather than the characterization in Theorem 6.

A basic implementation of the LZZ decision procedure thus requires an algo-
rithm for computing Gröbner bases (to compute the inward sets in step 1 and
step 2) and a decision procedure for the universally (or existentially) quantified
fragment of real arithmetic (to check the semi-algebraic set inclusions in step
3).

In practice, the syntactic description of S may feature atomic formulas that
are not of the form p < 0 or p = 0, e.g. S may feature the comparison operators
>,≥,≤, and may have atomic formulas where the term on the right-hand side
of the comparison operator is not 0 as assumed above. To implement step 1 and
step 2 for this more general case (without tampering with the description of S) it
is convenient to compute Inf (S) by syntactically replacing all atomic formulas
plhs ./ prhs (where plhs and prhs are polynomials and ./∈ {<,≤,=, 6=,≥, >})
appearing in the syntactic description of S, with Inf (plhs ./ prhs), which can be
defined for atoms in terms of the primitives Inf (p < 0) and Inf (p = 0) in the
following way (we use ‘:=’ to denote function definitions):

Inf (T) := T ,

Inf (F) := F ,

Inf (plhs = prhs) := Inf (plhs − prhs = 0) ,

Inf (plhs < prhs) := Inf (plhs − prhs < 0) ,

Inf (plhs > prhs) := Inf (prhs − plhs < 0) ,

and, using the fact that Inf (Sc) = Inf (S)c for semi-algebraic sets S,

Inf (plhs 6= prhs) := ¬ Inf (plhs − prhs = 0) ,

Inf (plhs ≤ prhs) := ¬ Inf (prhs − plhs < 0) ,

Inf (plhs ≥ prhs) := ¬ Inf (plhs − prhs < 0) .

15



The primitives Inf (p = 0) and Inf (p < 0) are defined following Lemma 17 as

Inf (p = 0) := (rem0 = 0 ∧ rem1 = 0 ∧ rem2 = 0 ∧ · · · ∧ remordf (p) = 0) ,

Inf (p < 0) :=
(

rem0 < 0

∨ (rem0 = 0 ∧ rem1 < 0)

∨ (rem0 = 0 ∧ rem1 = 0 ∧ rem2 < 0)

...

∨ (rem0 = 0 ∧ rem1 = 0 ∧ rem2 = 0 ∧ · · · ∧ remordf (p) < 0)
)
.

An implementation of the LZZ decision procedure in the Wolfram Language
can be achieved with fewer than 35 lines of code following the above approach.8

4. Characterizing Positive Invariance Through Exit Sets

In this section we develop an alternative characterization of positively in-
variant sets using the concept of exit set as formulated by Conley (1978).

Let s ∈ Ix be a point in time within the maximal interval of existence of

solution ϕ from initial value x, and let Iϕ(s,x)
def
= {t | t + s ∈ Ix}, which is

simply the time interval Ix offset by s (or, equivalently, the maximal interval of
existence from the initial value ϕ(s, x)). The mapping ϕ defines a local flow on
the topological space Rn since, for all x ∈ Rn, ϕ(0, x) = x, and

∀ s ∈ Ix. ∀ t ∈ Iϕ(s,x). ϕ(t, ϕ(s, x)) = ϕ(s+ t, x) .

Let S be a subset of Rn. Recall that a point x ∈ Rn is a closure point of S
if and only if every open set containing x intersects S in at least one point (not
necessarily distinct from x itself if x happens to be in S). Let S◦ denote the
interior of S. The boundary of S, denoted ∂S, is defined as S \ S◦. As before,
we use t > 0 as a shorthand for t ∈ Ix ∩ (0,+∞) and, similarly, by t < 0 we
understand t ∈ Ix ∩ (−∞, 0).

Definition 21 (Exit Set (Conley, 1978)). The exit set of S ⊆ Rn with respect
to the local flow induced by x′ = f(x) is defined as follows:

Exitf (S)
def
= {x ∈ S | ∀ t > 0. ∃ s ∈ (0, t). ϕ(s, x) 6∈ S} .

The exit set of S defines the set of points in S from which the flow cannot
evolve forward in time without leaving the set S. As the name suggests, a
flow starting at a point in Exitf (S) “leaves the set S immediately” (regardless
of where it was before). It is intuitive that such points can only lie on the
boundary of S.

8Our implementation is available from (Ghorbal, 2020)
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Lemma 22. The set Exitf (S) is a subset of ∂S (in addition to being a subset
of S, by definition).

Proof. Let x ∈ Exitf (S) ∩ S◦, then there exists an open set U ⊂ S◦ containing
x. By continuity of ϕ(·, x) with respect to time, there exists a neighbourhood
I of 0 in Ix such that ϕ(t, x) ∈ U for all t ∈ I. Let t ∈ I ∩ (0,+∞). Since
x ∈ Exitf (S), there exists s ∈ (0, t) ⊂ I such that ϕ(s, x) 6∈ S and, a fortiori,
ϕ(s, x) 6∈ U , which contradicts the existence of I and thus Exitf (S) ∩ S◦ = ∅.
Since Exitf (S) ⊆ S by definition, the exit set is a subset of ∂S.

Positive invariance of a set S (as given in Definition 1) may be equivalently
defined using the set of so-called escape points (also due to Conley, 1978): 9

Escapef (S)
def
= {x ∈ S | ∃ t > 0. ϕ(t, x) 6∈ S} . (2)

Notice the difference between the exit and escape sets: starting at an exit
point, the flow immediately exits the set S, whereas for an escape point the
flow may first evolve within S before leaving S at some point in time in the
future (i.e., it must eventually leave S). Thus, Exitf (S) ⊆ Escapef (S). The
set of escape points of S is empty precisely when S is a positively invariant set.
Furthermore, this criterion can be stated entirely in terms of exit sets.

Theorem 23. A set S ⊆ Rn is positively invariant if and only if both Exitf (S)
and Exit−f (Sc) are empty.

Proof. For necessity, it is easy to see that the set is not positively invariant
whenever the exit sets are not both empty. Case (i): if Exitf (S) is non-empty,
then for some point x ∈ S there exists a t > 0 such that ϕ(t, x) 6∈ S. Case (ii):
if Exit−f (Sc) is non-empty, then for some y 6∈ S there exists a τ > 0 such that
ϕ(−τ, y) ∈ S. Taking z = ϕ(−τ, y), it is clear that z ∈ S and ϕ(τ, z) 6∈ S.

For sufficiency we show that whenever S is not positively invariant, the sets
Exitf (S) and Exit−f (Sc) cannot both be empty. Suppose (for contradiction)
that both Exitf (S) and Exit−f (Sc) are empty and that S is not positively
invariant. The set of escape points of S is therefore non-empty. Consider an
escape point x ∈ Escapef (S): by our hypothesis x cannot be in the empty set
of exit points Exitf (S). Therefore there exists a positive t0 ∈ Ix such that for
all s ∈ (0, t0) one has ϕ(s, x) ∈ S, and there exists a t1 ∈ Ix such that t0 ≤ t1
and ϕ(t1, x) 6∈ S (i.e. ϕ(t1, x) ∈ Sc). Let us define

T ′ = {t ∈ Ix ∩ (0,+∞) | ∀s ∈ (0, t), ϕ(s, x) ∈ S} .

Under our hypothesis, the set T ′ is non-empty and has a supremum t′ such that
t0 ≤ t′ ≤ t1. Let us now define

T ′′ = {t ∈ Ix ∩ (0,+∞) | ϕ(t, x) 6∈ S} .

9The set of escape points is fundamental to the Ważewski principle. See Conley (1978)
where it is denoted as W ◦ for a set W .

17



This set is likewise non-empty (as it contains t1) and has an infimum t′′ such that
t0 ≤ t′′. Every element of T ′′ is an upper bound for T ′ (otherwise there would
exist a time t ∈ T ′′ at which both ϕ(t, x) ∈ S and ϕ(t, x) 6∈ S). Clearly, since t′ is
the least upper bound for T ′ it can act as a lower bound on T ′′ and we therefore
have t′ ≤ t′′, where t′′ is the greatest lower bound for T ′′. Suppose the inequality
is strict (t′ < t′′), then for all r ∈ [t′, t′′) one has ϕ(r, x) ∈ S (otherwise t′′ is not
the greatest lower bound for T ′′). But then t′ cannot be the least upper bound
for T ′ because ϕ(s, x) ∈ S for s ∈ (t′, t′′). Thus t′ = t′′ and we have two cases to
consider: either (i) ϕ(t′, x) ∈ S, in which case ϕ(t′, x) ∈ Exitf (S) and Exitf (S)
is therefore non-empty, or (ii) ϕ(t′, x) 6∈ S, in which case ϕ(t′, x) ∈ Exit−f (Sc),
so Exit−f (Sc) is non-empty. Both cases give us a contradiction.

Remark 24. The main technical difference between the proof of Theorem 23
and (Zhan et al., 2017, Thm. 9.1) is that the latter draws a contradiction from
considering the supremum of the set T ′ (with respect to our notations in the proof
of Theorem 23) whereas we draw a contradiction by considering in addition the
set T ′′. This is to be expected as the statements of these theorems are slightly
different: Theorem 23 complements S then applies the Exit−f operator to Sc,
whereas (Zhan et al., 2017, Thm. 9.1) applies the In−f operator to S first then
complements the result. This being said, the overall structure of both proofs is
however very similar and this fact is better captured by appealing to the real
induction principle as a generic proof technique as detailed in Section 3.

Remark 25. Readers with a background in dynamical systems may find it a
little counterintuitive that one needs to consider the flow in the reversed system
to characterize positive invariance. Indeed, for closed sets S it is well known that
“local invariance” under the flow ϕ (viz. emptiness of Exitf (S)) is equivalent
to positive invariance (e.g. see Cârjă et al., 2007, Ch. 4). It is important to
remember that Theorem 23 makes no assumptions about the set S being open
or closed. When S is open, local invariance holds trivially because the flow may
always evolve within the set for some time from any x ∈ S.

Observe that the sets Exitf (S) and Exit−f (S) are not necessarily disjoint:
for example, any isolated point which is not an equilibrium would lie in both
sets. Neither are they required to cover the boundary ∂S: if S is an equilibrium
point, then both Exitf (S) and Exit−f (S) are empty, whereas ∂S = S.

The operators Exitf and Inf respectively capturing the main underlying
concepts used in Theorems 6 and Theorem 23 are intimately related.

Lemma 26. For any set S ⊆ Rn, Exitf (S) = Inf (S)c ∩ S. Equivalently, one
has Exitf (S)c ∩ S = Inf (S) ∩ S.

Proof. One has x ∈ Inf (S)c∩S if and only if x ∈ S, and, for any positive t ∈ Ix,
there exists s ∈ (0, t) such that ϕ(s, x) 6∈ S, otherwise ϕ(s, x) ∈ S holds for all
s ∈ (0, t) which would mean that x ∈ Inf (S). The latter is exactly the definition
of Exitf (S).

A symmetric equality holds (only) for closed sets.
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Lemma 27. For a closed set S ⊆ Rn, Inf (S) = Exitf (S)c ∩ S.

Proof. If S is a closed set, then the inclusion Inf (S) ⊆ S holds trivially, from
Lemma 26 we have Exitf (S)c ∩ S = Inf (S) ∩ S and the result follows.

Remark 28. According to the above lemmas, while Inf (S) is sufficient to fully
recover Exitf (S) by simple set operations. The converse is not true for general
sets: the bare knowledge of Exitf (S) is not enough to completely recover Inf (S)
unless S is closed. This might seem as a conceptual defect favouring inward
sets as more fundamental than exit sets. From a computational standpoint,
however, this lack of symmetry between the two concepts turns out to be powerful:
intuitively one does not need the full information encoded by inward sets to decide
the positive invariance of S. Exit sets, despite carrying less information, are
sufficient for this purpose.

Using Lemma 26, both characterizations of positively invariant sets in The-
orem 6 and Theorem 23 can be recovered from one another using the following
equivalences:

∅ = Inf (S)c ∩ S︸ ︷︷ ︸
Exitf (S)

⇐⇒ S ⊆ Inf (S) ,

∅ = In−f (Sc)c ∩ Sc︸ ︷︷ ︸
Exit−f (Sc)

⇐⇒ Sc ⊆ In−f (Sc) .

The origins of exit sets in Theorem 23 lie in topology and it is the properties
of exit sets that make this characterization computationally interesting. The
astute reader may remark at this point that Theorem 23 admits a shorter proof
using real induction via Lemma 26. This is indeed the case; however, such a
proof would not rely on the concept of exit set nor would it expose the topological
insights that we wish to call upon later. As we shall see, exit sets afford a very
different way of looking at the problem of checking positive invariance and their
properties can be exploited to give a substantially different algorithmic solution
than that offered by LZZ in Section 3.4.

4.1. Properties of Exit Sets

Let S1, S2 ⊆ Rn, we discuss below the distributive properties of Exitf over
set intersection and union.

Lemma 29. Exitf (S1 ∩ S2) = (Exitf (S1) ∩ S2) ∪ (S1 ∩ Exitf (S2)).

Proof. The inclusion Exitf (S1 ∩ S2) ⊇ (Exitf (S1) ∩ S2) ∪ (Exitf (S2) ∩ S1) is
immediate: if x ∈ Exitf (S1)∩ S2, then, for all positive t, there exists a positive
s < t such that ϕ(s, x) 6∈ S1 and therefore ϕ(s, x) 6∈ S1 ∩ S2. Likewise for
Exitf (S1 ∩S2) ⊇ Exitf (S2)∩S1. To prove the converse, let x ∈ Exitf (S1 ∩S2),
then x ∈ S1 ∩ S2 and for all positive t, there exists a positive s < t such that
ϕ(s, x) 6∈ S1 ∩ S2 which is equivalent to ϕ(s, x) 6∈ S1 or ϕ(s, x) 6∈ S2.

Lemma 30. Exitf (S1 ∪S2) ⊆
(
Exitf (S1)∩ Inf (S2)c

)
∪
(
Inf (S1)c ∩Exitf (S2)

)
.
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Proof. Let x ∈ Exitf (S1 ∪ S2), then by definition, for all t > 0, there exists
s ∈ (0, t) such that ϕ(s, x) 6∈ S1 ∪ S2, which is equivalent to ϕ(s, x) 6∈ S1 and
ϕ(s, x) 6∈ S2. By hypothesis, x ∈ S1 ∪ S2. If x ∈ S1 then it has to belong to
Exitf (S1) as well as Inf (S2)c, by definition of the latter. If x ∈ S2, we get a
symmetric formula by swapping S1 and S2, namely x ∈ Exitf (S2) ∩ Inf (S1)c.
The desired formula is the union of these two cases.

Counterexample 31. The reverse inclusion of Lemma 30 does not hold in
general. Consider the simple 1-dimensional system x′ = 1 and the sets

S1 = {0} ∪
{
x ∈ R | x > 0 ∧ sin

(
x−1

)
= 0
}
,

S2 = {0} ∪
{
x ∈ R | x > 0 ∧ sin

(
x−1

)
6= 0
}
.

The point 0 belongs to both Exitf (S1) and Exitf (S2). In addition, it does not
belong to either Inf (S1) or Inf (S2). However, 0 is not in Exitf (S1 ∪ S2) as the
union (x ≥ 0) is clearly a positively invariant set for the considered flow.

This simple example highlights the main reason why the inclusion in Lemma 30
cannot in general be replaced with set equality. If x ∈ Exitf (S1) ∩ Inf (S2)c,
one can only conclude that for any positive ε1, ε2, there exist t1 ∈ (0, ε1) and
t2 ∈ (0, ε2) such that ϕ(t1, x) 6∈ S1 and ϕ(t2, x) 6∈ S2; there is nothing to suggest
that t1 should be equal to t2, which is required for x to belong to Exitf (S1∪S2).
However, if one restricts attention to semi-analytic sets S (which includes semi-
algebraic sets) then Inf (Sc) = Inf (S)c (as observed in the previous section), and
the inclusion of Lemma 30 becomes an equality. (Notice that semi-analyticity is
only sufficient to ensure that Inf (Sc) = Inf (S)c. We currently lack a full char-
acterization of the most general topological settings that respect this equality.)

Lemma 32. Let S1, S2 be semi-analytic sets. Then

Exitf (S1 ∪ S2) =
(
Exitf (S1) ∩ Inf (S2)c

)
∪
(
Inf (S1)c ∩ Exitf (S2)

)
.

Proof.

Exitf (S1 ∪ S2) = Inf (S1 ∪ S2)c ∩ (S1 ∪ S2)

= (Inf (S1)c ∩ Inf (S2)c ∩ S1) ∪ (Inf (S1)c ∩ Inf (S2)c ∩ S2)

=
(
Exitf (S1) ∩ Inf (S2)c

)
∪
(
Exitf (S2) ∩ Inf (S1)c

)
.

4.2. The ESE Decision Procedure Based on Theorem 23

Given a quantifier-free formula describing a semi-algebraic set S and a poly-
nomial system of ODEs x′ = f(x), Theorem 23 can be used to algorithmically
decide whether S is positively invariant or not with respect to f .

A näıve approach would be to first compute E = Exitf (S) ∪ Exit−f (Sc)
recursively on the Boolean structures of S and Sc using Lemmas 30 and 32,
then check whether E is empty or not. Such an approach would be very similar
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to the LZZ procedure described in section 3.4 and would therefore suffer from the
same problem, namely the impossibility of the current state-of-the-art quantifier
elimination algorithms to check the emptiness of E in reasonable time, even for
seemingly simple planar systems (cf. section 5). Indeed, one experimentally
observes that, for many interesting examples, the construction of the set E is
not computationally expensive despite requiring several ideal membership tests
as, often, the order (with respect to f) of the polynomials involved remains low.
An overwhelming share of the running time for a typical problem is spent on
proving emptiness of E (as is the case for checking the inclusions S ⊆ Inf (S)
and Sc ⊆ In−f (Sc) using LZZ).

We will see in this section how the concept of exit sets, and more precisely
Theorem 23, can be used to overcome this bottleneck in a principled way. The
main idea is to “chop the set E into smaller pieces” (chunks) on which the
emptiness test can be performed in a divide-and-conquer fashion, instead of
constructing a formula characterizing E first and only then checking for its
emptiness. What is perhaps more interesting is that Theorem 23 suggests a
natural way of splitting E into chunks in such a way that each chunk involves
precisely one exit set of an atomic formula. This, in turn, allows one to exploit
topological properties of atomic formulas, such as openness, in order to check
for set emptiness syntactically, obviating the need for expensive computations
such as real quantifier elimination.

As in the previous sections, we use the same notation for semi-algebraic sets
and their formal representations as quantifier-free formulas of real arithmetic.
Without loss of generality, we also restrict our attention to the atomic formulas,
p < 0 and p = 0, where p is a polynomial. The formulas p ≤ 0 and p 6= 0, are
syntactic sugar for (p < 0∨ p = 0) and (−p < 0∨ p < 0) respectively. Similarly,
p > 0, p ≥ 0 can be encoded as −p < 0,−p ≤ 0 respectively.

The exit sets of F, T, and p < 0 are all empty (by Lemma 22) as the sets
defined by these formulas are open. According to the same lemma, the exit set
of p = 0 necessarily lies on its boundary, which is also given by p = 0. When
the first Lie derivative of p does not vanish on p = 0, the flow necessarily leaves
the set for some positive time. The same reasoning applies for higher-order Lie
derivatives. As with the construction of Inf in Section 3.4, the construction of
the exit set of p = 0 is fully captured by a (finite) formula:

Exitf (p = 0) ≡
(
p = 0 ∧ p′ 6= 0

∨ p = 0 ∧ p′ = 0 ∧ p′′ 6= 0

...

∨ p = 0 ∧ p′ = 0 ∧ p′′ = 0 ∧ · · · ∧ p(ordf (p)) 6= 0
)
.

Note that Lemma 16 also applies to Exitf (p = 0) and the remainders remi

(as defined in the lemma) can be used instead of the Lie derivatives p(i). In
summary, the exit set of atomic formulas can be constructed using a procedure
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Exitf which is defined as follows:

Exitf (F) := F ,

Exitf (T) := F ,

Exitf (p < 0) := F ,

Exitf (p = 0) :=
(

rem0 = 0 ∧ rem1 6= 0

∨ rem0 = 0 ∧ rem1 = 0 ∧ rem2 6= 0

...

∨ rem0 = 0 ∧ rem1 = 0 ∧ · · · ∧ remordf (p) 6= 0
)
.

Thus, the only non-trivial exit set for atomic formulas is the exit set of an
equality as it is the only (atomic) closed set.

We next define a recursive procedure called NonEmptyf , parametrized by
the vector field f , and which takes as its arguments two quantifier-free real
arithmetic formulas describing semi-algebraic sets S and R. It is defined as
follows (A denotes an atomic formula):

NonEmptyf (A, R) := Reduce (∃x1. . . .∃xn. Exitf (A) ∧R) ,

NonEmptyf (S1 ∧ S2, R) := NonEmptyf (S1, S2 ∧R)

∨NonEmptyf (S2, S1 ∧R) ,

NonEmptyf (S1 ∨ S2, R) := NonEmptyf (S1,¬Inf (S2) ∧R)

∨NonEmptyf (S2, ¬Inf (S1) ∧R) ,

NonEmptyf (¬S, R) := NonEmptyf (Neg(S), R) .

In addition to Exitf , NonEmptyf relies on three other procedures: Inf (already
defined in Section 3.4), Neg, and Reduce. The procedure Neg applies negation
¬ to the formula it receives as its argument (but does not recursively apply
negation to the sub-formulas). For atomic formulas, Neg simply negates the
formula, expressing the result in terms of only the basic forms of atomic formulas
(T, F, p < 0, and p = 0):

Neg(F) := T ,

Neg(T) := F ,

Neg(p < 0) := (−p < 0) ∨ (−p = 0) ,

Neg(p = 0) := (−p < 0) ∨ (p < 0) .

For non-atomic formulas Neg simply applies De Morgan’s laws and eliminates
double negation:

Neg(S1 ∧ S2) := (¬S1) ∨ (¬S2) ,

Neg(S1 ∨ S2) := (¬S1) ∧ (¬S2) ,

Neg(¬S) := S .
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The procedure Reduce checks for emptiness of the semi-algebraic set by per-
forming real quantifier elimination (this functionality is offered e.g. by imple-
mentations of CAD (Collins and Hong, 1991); however, there exist alternatives
which are not based on CAD, e.g. RAGLib (Safey El Din, 2017)).

In a nutshell, the main purpose of NonEmptyf is to recursively check for
emptiness of exit sets, as stated more formally in the following lemma.

Lemma 33. Let S and R be two formulas describing semi-algebraic sets. Then
NonEmptyf (S,R) returns False if and only if Exitf (S) ∩R is empty.

Proof. The proof is by induction on the depth of formula S. Base case: if
S ∈ {F,T, p < 0, p = 0}, then NonEmptyf (S,R) is

Reduce (∃x1. . . .∃xn. Exitf (S) ∧R) ,

which is False if and only if Exitf (S)∩R is empty (we freely interchange ∧ and
∩ as well as the empty set and False as mentioned in Remark 13).

For the inductive hypothesis, suppose the property holds for all formulas of
depth less than or equal to k and let S1, S2, and S′ be such formulas.

If S = S1 ∧ S2, then by definition NonEmptyf (S1 ∧ S2, R) is False if and
only if both NonEmptyf (S1, S2 ∧ R) and NonEmptyf (S2, S1 ∧ R) are False.
By the induction hypothesis, this means that both Exitf (S1) ∧ (S2 ∧ R) and
Exitf (S2) ∧ (S1 ∧ R) are empty, and therefore their union is also empty. One
gets the desired result by factoring out R then using Lemma 29:

∅ = (Exitf (S1) ∩ (S2 ∩R)) ∪ (Exitf (S2) ∩ (S1 ∩R))

= ((Exitf (S1) ∩ S2) ∪ (Exitf (S2) ∩ S1)) ∩R
= Exitf (S1 ∩ S2) ∩R .

The disjunctive case can be proved similarly using Lemma 32.
Finally, if S = ¬S′, NonEmptyf (S,R) = NonEmptyf (Neg(S′), R) and one

may eliminate all negations from Neg(S′) by applying De Morgan’s laws and
double negation elimination and finally applying Neg to any remaining negated
atoms. Since the property holds for atomic formulas, conjunctions and disjunc-
tions, it holds for S as well.

The procedure NonEmptyf can thus be used to check positive invariance as
an immediate corollary of Theorem 23 and Lemma 33 by setting R to T.

Theorem 34. A semi-algebraic set S is positively invariant for a system of
ODEs x′ = f(x) if and only if ¬

(
NonEmptyf (S,T) ∨ NonEmpty−f (¬S,T)

)
.

Accordingly, we define the Exit Set Emptiness (ESE) decision procedure that
checks for positive invariance of S with respect to f as

ESE(S, f) := ¬
(
NonEmptyf (S,T) ∨ NonEmpty−f (¬S,T)

)
.
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4.3. Complexity Analysis

For given formulas S and R, in order to check the emptiness of Exitf (S)∩R,
the procedure NonEmptyf (S,R) performs several calls to Reduce in order to
eliminate existential quantifiers. The number of such calls depends only on the
Boolean structure of S, in particular, the second argument R plays no role in
the way the procedure operates. In this section, we first give upper and lower
bounds of the number of such calls as a measure of the impact of the encoding
of S. We then discuss further decompositions of Exitf (S) as a union of basic
semi-algebraic sets. Recall that a basic semi-algebraic set is a set described by
a conjunction of atomic formulas

∧
i(pi ./i 0), where ./i∈ {<,=} and pi are

polynomials.

Proposition 35. Suppose the set S is characterized by a formula in disjunctive
normal form (DNF)

∨k
i=1

∧mi

j=1Aij, where Aij are atomic formulas. Let m =
maximi. Then the recursion depth of NonEmptyf (S,T) is bounded by k + m

and the number of calls to Reduce is
∑k

i=1mi ≤ km, each of which has the form
Reduce ∃x1 . . . ∃xn.Exitf (Ars) ∧Rrs, where

Rrs ≡
mr∧

j=1,j 6=s

Arj ∧ ¬Inf

 k∨
i=1,i6=r

mi∧
j=1

Aij

 .

Proof. The form of the real quantifier elimination (QE) problems is immediate
from the definition of NonEmptyf . The equivalence of Rrs is obtained by us-
ing the distributive properties (over disjunctions and conjunctions) of the Inf

operator.

For instance, suppose S ≡ (A11 ∧ A12) ∨ A21 ∨ A31 (k = 3, m = m1 = 2,
m2 = m3 = 1). Then, in the worst case, the procedure NonEmptyf (S,T) has
to call Reduce 4 times:

Reduce ∃x1 . . . ∃xn. Exitf (A11) ∧A12 ∧ ¬Inf (A21 ∨A31) ,

Reduce ∃x1 . . . ∃xn. Exitf (A12) ∧A11 ∧ ¬Inf (A21 ∨A31) ,

Reduce ∃x1 . . . ∃xn. Exitf (A21) ∧ ¬Inf ((A11 ∧A12) ∨A31) ,

Reduce ∃x1 . . . ∃xn. Exitf (A31) ∧ ¬Inf ((A11 ∧A12) ∨A21) .

Proposition 36. Suppose the set S is characterized by a formula in conjunctive
normal form (CNF)

∧k
i=1

∨mi

j=1Aij where Aij are atomic formulas, and let m =
maximi. Then the recursion depth of NonEmptyf (S,T) is bounded by k + m

and the number of calls to Reduce is
∑k

i=1mi ≤ km, each of which has the form
Reduce ∃x1 . . . ∃xn.Exitf (Ars) ∧Rrs, where

Rrs ≡ ¬Inf

 mr∧
j=1,j 6=s

Arj

 ∧ k∧
i=1,i6=r

mi∨
j=1

Aij .
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For instance, suppose S ≡ (A11 ∨ A12) ∧ A21 ∧ A31, (k = 3, m = m1 = 2,
m2 = m3 = 1). Then, in the worst case, the procedure NonEmptyf (S,T) has
to call Reduce 4 times:

Reduce ∃x1 . . . ∃xn. Exitf (A11) ∧ ¬Inf (A12) ∧ (A21 ∧A31) ,

Reduce ∃x1 . . . ∃xn. Exitf (A12) ∧ ¬Inf (A11) ∧ (A21 ∧A31) ,

Reduce ∃x1 . . . ∃xn. Exitf (A21) ∧ ((A11 ∧A12) ∨A31) ,

Reduce ∃x1 . . . ∃xn. Exitf (A31) ∧ ((A11 ∧A12) ∨A21) .

Remark 37. Suppose S ≡
∨k

i=1

∧mi

j=1Aij and let S′ denote the same formal
expression as S except that ∨ and ∧ are swapped. Then the QE problems that
NonEmptyf (S′,T) has to solve could be obtained syntactically from those of
NonEmptyf (S,T) by swapping Aij and ¬Inf (Aij) (and leaving Exitf (Aij) un-
touched).

The encoding of the set S to be checked may have a significant impact on
the number of calls to Reduce in NonEmptyf (S,T). For instance, suppose S is
encoded as S1 ≡ (A1 ∨ (A2 ∧ A3)) ∧ (A4 ∨ (A2 ∧ A3)) where the Ai are atomic
formulas. Then NonEmptyf (S1,T) calls Reduce 6 times. In this case, none of
the upper bounds of Propositions 35 nor 36 apply because S1 is neither in DNF
nor in CNF. If one uses the equivalent (DNF) encoding S2 ≡ (A1∧A4)∨(A2∧A3)
for S, then NonEmptyf (S2,T) calls Reduce only 4 times at most.

Lemma 38. The number of calls to Reduce is bounded below by the number of
distinct atomic formulas in S (regardless of the encoding of S).

Proof. The procedure NonEmptyf requires one call to Reduce for each problem
of the form Exitf (A) ∧R (where A is an atomic formula), and R any arbitrary
formula. Depending on the encoding of S, NonEmptyf might call Reduce once
for Exitf (A)∧(R1∨R2), or twice for Exitf (A)∧R1 and Exitf (A)∧R2 separately.
In the best case, the encoding of S is such that each call to Reduce features a
distinct Exitf (A) (otherwise, the several calls with the same Exitf (A) can be
factored out), and the result follows.

An interesting open question is whether there exists a systematic way of
finding an encoding of S which always results in the minimal number of calls to
Reduce that is possible. We leave this question open while observing that one
can build simple examples for which neither the DNF nor the CNF encoding of
S are adequate in this regard (it suffices to consider encodings with redundant
atomic formulas).

The QE problems to solve in Proposition 35 can be split further (by dis-

tributivity) into
∏k

i=1,i6=rmi ≤ mk−1 “smaller” problems of the form

Reduce ∃x1 . . . ∃xn. Exitf (Ars) ∧
mr∧

j=1,j 6=s

Arj ∧
k∧

i=1,i6=r

¬Inf (Ai`i) .
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Likewise, the QE problems to solve in propositions 36 can be split further into∏k
i=1,i6=rmi ≤ mk−1 problems of the form

Reduce ∃x1 . . . ∃xn. Exitf (Ars) ∧
mr∧

j=1,j 6=s

¬Inf (Arj) ∧
k∧

i=1,i6=r

Ai`i .

We could further evaluate Exitf and Inf for atomic formulas. To do so, one
has to account for the system of ODEs x′ = f(x) as well as the order of the
involved polynomials with respect to f . Let deg(p) denote the (total) degree of
a polynomial p, and deg(f) the maximum degree of the polynomials appearing
in the right-hand side of x′ = f(x). Recall that the degree of p′, the first
(Lie) derivative of p with respect to f , has a total degree which is at most
deg(p) + (deg(f)− 1), and the degree of p(s) is at most deg(p) + s(deg(f)− 1).
Recall that ordf (p) denotes the order of p with respect to f .

The set Exitf (p ./ 0) is the union of ordf (p) basic semi-algebraic sets,
whereas Inf (p ./ 0) is the union of ordf (p) + 1 basic semi-algebraic sets.

Lemma 39. Let pi, 1 ≤ i ≤ m, and qj, 1 ≤ j ≤ k, denote some polynomials
and let ρ denote the maximum of their respective order with respect to f . The
expression

Exitf (p1 ./1 0) ∧
m∧
i=2

(pi ./i 0) ∧
k∧

j=1

Inf

(
qj ./j 0

)
is the union of at most ρ(ρ + 1)k basic semi-algebraic sets. Each basic semi-
algebraic set is a conjunction of at most m − 1 + (k + 1)(ρ + 1) expressions of
the form p ./ 0.

Proof. The expression is a union of at most ordf (p1)
∏k

j=1(ordf (qj) + 1) basic

semi-algebraic sets. From which one immediately deduces the ρ(ρ + 1)k upper
bound. Each basic semi-algebraic set is a conjunction of at most (ordf (p1) +

1) + (m− 1) +
∑k

j=1(ordf (qj) + 1) ≤ m+ k + (k + 1)ρ literals.

For instance, Exitf (p1 = 0) ∧ (p2 < 0) ∧ Inf (q < 0) where ordf (p1) =
ordf (q) = 2, (thus m = 2, k = 1, and ρ = 2) is the following union

p1 = 0 ∧ p′1 6= 0 ∧ p2 < 0 ∧ q < 0

∨ p1 = 0 ∧ p′1 6= 0 ∧ p2 < 0 ∧ q = 0 ∧ q′ < 0

∨ p1 = 0 ∧ p′1 6= 0 ∧ p2 < 0 ∧ q = 0 ∧ q′ = 0 ∧ q′′ < 0

∨ p1 = 0 ∧ p′1 = 0 ∧ p′′1 6= 0 ∧ p2 < 0 ∧ q < 0

∨ p1 = 0 ∧ p′1 = 0 ∧ p′′1 6= 0 ∧ p2 < 0 ∧ q = 0 ∧ q′ < 0

∨ p1 = 0 ∧ p′1 = 0 ∧ p′′1 6= 0 ∧ p2 < 0 ∧ q = 0 ∧ q′ = 0 ∧ q′′ < 0 .

Theorem 40. Let S be a semi-algebraic set encoded either as
∧k

i=1

∨mi

j=1(pij ./ij

0) (DNF) or as
∨k

i=1

∧mi

j=1(pij ./ij 0) (CNF) for some polynomials pij. Let
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m = maximi, d = maxi,j deg(pij), and ρ = maxi,j ordf (pij). Then Exitf (S) ∨
Exit−f (¬S) is a union of at most kmkρ(ρ+ 1)k−1 basic semi-algebraic sets

q1 ./1 0 ∧ . . . ∧ qs ./s 0 ,

where s ≤ m− 1 + k(ρ+ 1) and deg(qj) ≤ d+ ρ(deg(f)− 1).

Proof. Suppose S ≡
∨k

i=1

∧mi

j=1(pij ./ij 0) (the same reasoning applies when S

is in CNF). Thus ¬S ≡
∧k

i=1

∨mi

j=1 ¬(pij ./ij 0). According to Propositions 35

and 36, Exitf (S) is a union of at most kmk basic semi-algebraic sets, each
involving Exitf (pij ./ij 0), whereas Exit−f (¬S) is the union of at most kmk

basic semi-algebraic sets, each involving Exit−f¬(pij ./ij 0). If pij ./ij 0 encodes
a closed set, then its negation encodes an open set (and vice versa). Thus at
least one of the expressions

Exitf (prs ./rs 0) ∧
mr∧

j=1,j 6=s

(prj ./rj 0) ∧
k∧

i=1,i6=r

¬Inf (pi`i ./i`i 0)

or

Exit−f¬(prs ./rs 0) ∧
mr∧

j=1,j 6=s

In−f (prj ./rj 0) ∧
k∧

i=1,i6=r

¬(pi`i ./i`i 0)

reduces to False syntactically, and the total number of basic semi-algebraic sets
is therefore kmk. Now, according to Lemma 39, each of the above expressions
is the union of at most ρ(ρ + 1)k−1 basic semi-algebraic sets (after evaluating
Inf and Exitf for atomic formulas). Thus Exitf (S) ∨ Exit−f (¬S) is the union
of at most kmkρ(ρ+ 1)k−1 basic semi-algebraic sets, as stated. The bounds on
the total number of the involved polynomials as well as their degrees are direct
consequences of Lemma 39 and of the bound on the total degree of high-order
Lie derivatives, namely d+ ρ(deg(f)− 1).

The main conclusion from the analysis performed in this section is the fol-
lowing: instead of solving one large real quantifier elimination problem which
results from a näıve application of Theorems 6 and 23 (coarse granularity), it is
instead possible to solve exponentially many (precisely kmkρ(ρ+1)k−1) smaller
real quantifier elimination problems as in Theorem 40; these smaller problems
furthermore only involve basic semi-algebraic sets (fine granularity).

In theory, there exist decision procedures for deciding universally (or exis-
tentially) quantified sentences of real arithmetic that have singly exponential
worst case complexity (sd)O(n), where s is the number of polynomials, d their
maximum degree and n the number of variables (Grigor’ev, 1988). Each of the
smaller QE problems features fewer polynomials with a lower maximum degree
than the original QE problem. The potential gain in complexity is however mit-
igated by the number of these small problems, which is exponential as stated in
Theorem 40.
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The procedure ESE, as defined in Section 4.2, seeks a trade-off between
the fine and coarse granularities which translates into a trade-off between the
computational cost of QE problems versus the number of QE problems to solve.
Combined with the syntactic reductions to False of Exitf (A) whenever A is
an atomic formula encoding an open set, the concept of exit sets provides a
powerful tool from a computational standpoint – in addition to its ability to
characterize positively invariant sets in full generality as stated in Theorem 23.

The next section provides some examples that are out of reach for LZZ (see
Section 3.4) and where ESE (see Section 4.2) succeeds in deciding set positive
invariance. Notice that, although one can divide the QE problem in LZZ into
basic semi-algebraic sets, such an approach will not benefit from the syntactic
reductions to False offered by Exitf (without paying an extra computational
overhead to detect such cases).

5. Experiments

For checking positive invariance of sets described by a single atomic formula
(e.g. p < 0), there is no discernible difference in performance between the
LZZ and ESE procedures. However, there is a very palpable difference between
the two procedures when checking positive invariance of sets described by more
interesting formulas with non-trivial Boolean structure. The examples below
serve to illustrate this difference.

Example 41. Consider the non-linear system x′ = −x3, y′ = −y3 + x. To
construct a semi-algebraic set with non-trivial Boolean structure, let us consider
the sequence of points obtained from a rational parametrization of the unit circle

x2 + y2 = 1, e.g. a sequence of points (xt, yt) = ( 2t
t2+1 ,−

1−t2
t2+1 ) ∈ Q2. From the

arithmetic sequence of rational numbers t0 = −2, tn+1 = tn + 1
8 with t in the

range [−2, 2], we can construct a sequence of half-planes that include the unit
disc centred at the origin and are tangent to the unit circle at the points (xt, yt).
The intersection of these half-planes results in a droplet-like shape shown in
Fig. 1a and is characterized by a formula S which is a conjunction of 36 linear
inequalities.

By inspecting the phase portrait of the system in Fig. 1a, the set defined by
this formula appears to be positively invariant, which is something we should be
able to check using the procedures described in the previous sections. Checking
positive invariance of S using our implementation of ESE returns False within
0.3 seconds. 10 Indeed, while it is difficult to see from inspecting Fig. 1a, a closer
examination (Fig. 1b) reveals that the set characterized by S is not positively
invariant because the flow does in fact leave the droplet region. On the other
hand, no answer to this positive invariance question could be obtained using
LZZ within reasonable time (> 4 hours).

10Using Mathematica 12.0, running on a machine with an Intel Core i5-7300U CPU clocked
at 2.6GHz with 16GB of RAM.
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(a) “Droplet” invariant candidate
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Figure 1: Checking positive invariance

Example 42. Now let us consider the system x′ = −x3, y′ = −y3 and the set
corresponding to the tilted Maltese cross in Figure 2a, which, unlike the previous
example, is not described by a purely conjunctive formula, but is instead given
by a disjunction of 4 formulas describing the arms of the cross (each arm is
described by a formula of the form p1 ≤ 0 ∧ p2 ≤ 0 ∧ (p3 ≤ 0 ∨ p4 ≤ 0),
where each pi=1,2,3,4 is linear). For this example, one can verify that the set is
indeed a positive invariant using ESE, which returns True within 164 seconds.
Once more, no answer could be obtained using LZZ within reasonable time (> 4
hours).
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(a) Semi-linear invariant
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(b) Semi-algebraic invariant

Figure 2: Positive invariants

The set shown in Figure 2a is semi-linear because its formal description
only features polynomials of maximum degree 1. Figure 2b illustrates a semi-
algebraic set which is not semi-linear, featuring quadratic polynomials in its
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formal description; the vector field shown in Figure 2b corresponds to x′ =
−x3 − y, y′ = −y3 + x. Using ESE we are able to check (within 7 seconds)
that the set is indeed positively invariant under the flow of the system, whereas
LZZ produces the same answer in over 30 minutes.

6. Positive Invariants Under Constraints

In addition to the standard notion of set positive invariance (as given in Def-
inition 1), more general notions have been considered. For example continuous
invariance, as it is known in the formal verification literature (see e.g. Platzer
and Clarke, 2008; Liu et al., 2011), extends positive invariance to accommodate
cases in which there is a constraint (given by some Q ⊆ Rn) imposed on the
evolution of the system.

Definition 43 (Continuous invariant). A set S ⊆ Rn is a continuous invariant
under evolution constraint Q ⊆ Rn if and only if the following holds:

∀ x ∈ S. ∀ t ≥ 0.
(
(∀ τ ∈ [0, t]. ϕ(τ, x) ∈ Q)→ ϕ(t, x) ∈ S

)
.

Essentially, in a continuous invariant positive invariance is predicated on
the constraint Q being maintained. Thus, positive invariance may be regarded
as a special case of continuous invariance as defined above, i.e. the special case
where the constraint Q is all of Rn.

Remark 44. Readers familiar with temporal logics such as LTL may think of
continuous invariance as (very loosely speaking) being in a certain sense analo-
gous to temporal modal operators such as Weak Until (W), i.e. one may think
of a continuous invariant described by formula S subject to evolution constraint
described by Q as satisfying the temporal logic formula S W ¬Q. Of course, the
semantics of such a formula needs to be defined over the trajectories of the con-
tinuous system rather than discrete traces, e.g. as is done in Signal Temporal
Logic (STL, see Maler and Nickovic, 2004).

The work of Liu et al. (2011) was developed in this slightly more general set-
ting of continuous invariance, rather than positive invariance. A semi-algebraic
set S subject to a semi-algebraic evolution constraint Q is a continuous in-
variant of the system x′ = f(x) if and only if (Liu et al., 2011, Thm. 19):
S ∩Q ∩ Inf (Q) ⊆ Inf (S) and Sc ∩Q ∩ In−f (Q) ⊆ In−f (S)c.

The ESE algorithm introduced in this article is likewise easily lifted to check
continuous invariance.

Theorem 45. A semi-algebraic set S is a continuous invariant for a system of
ODEs x′ = f(x) subject to a semi-algebraic evolution constraint Q if and only
if ¬

(
NonEmptyf (S,Q \ Exitf (Q)) ∨ NonEmpty−f (¬S,Q \ Exit−f (Q))

)
.

The main difference with respect to Theorem 34, is that instead of consid-
ering the entire space Rn for both forward and backward flows, we focus on
Q \Exitf (Q)) (which is equivalent to Q∩ Inf (Q) by Lemma 26) for the forward
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flow and Q \ Exit−f (Q) (or equivalently Q ∩ In−f (Q)) for the backward flow.
These formulations make explicit the fact that the states from which the flow
exits Q (formally captured by Exitf (Q)) are not relevant for checking continu-
ous invariance and are thus removed from Q. Said differently, by construction,
the set Exitf (Q) (resp. Exit−f (Q)) is considered a positive (resp. negative)
invariant set relative to Q.

6.1. Discrete Abstractions of Continuous Systems

Problems involving positive invariance checking under evolution constraints
(i.e. continuous invariance in the sense of Definition 43) arise frequently in the
area of formal verification. Invariants described using formulas with non-trivial
Boolean structure are particularly important to verification methods based on
discrete abstractions of continuous dynamical systems (Sogokon et al., 2016).
Briefly, discrete abstraction involves partitioning the state space (e.g. Rn) into
disjoint sets that correspond to equivalence classes representing states in a dis-
crete transition system. For example, such a partitioning can be obtained from
an algebraic decomposition of Rn using a finite set of polynomials {p1, . . . , pk}.
Each cell of this decomposition is described by a conjunction of sign conditions
on these polynomials, e.g. the formula S ≡ p1 > 0 ∧ p2 = 0 ∧ · · · ∧ pk < 0
describes a cell (which is a basic semi-algebraic set corresponding to a single
discrete state in the abstraction). Discrete abstractions of continuous systems
are obtained by constructing a discrete transition relation between the discrete
states. An abstraction is said to be sound if the absence of a discrete transition
from the state described by Si to another state described by Sj in the transi-
tion relation implies that the continuous system cannot evolve from any state
within the set Si to any state within Sj without leaving the union Si ∪ Sj ; an
abstraction is said to be exact if the presence of such a transition implies the
existence of a trajectory which starts at a state within Si and reaches some state
in Sj without leaving the union Si ∪ Sj in the process. In order to construct
the transition relation for a sound and exact discrete abstraction one considers
the union of neighbouring cells Si and Sj in the algebraic decomposition and
checks whether the set described by Sj is a continuous invariant subject to the
constraint Si ∨ Sj . There can be no transition from cell Si to Sj in the discrete
transition relation if and only if Sj is continuous invariant under constraint
Si ∨ Sj in the sense of Definition 43. Naturally, the Boolean structure of the
formulas involved make the construction of discrete abstractions a potentially
fruitful area of application for the ESE algorithm.

7. Related Work

The method of applying the ascending chain condition to ideals generated by
successive Lie derivatives of polynomials in order to prove invariance of algebraic
varieties in polynomial vector fields was employed by Novikov and Yakovenko
(1999), Ghorbal and Platzer (2014), and more recently by Harms et al. (2017).
Liu et al. (2011) were the first to address positive invariance of semi-algebraic
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sets using techniques described in Section 3 of this article. Dowek (2003) inves-
tigated the use of real induction to solve kinematic problems involving ODEs.

Platzer and Tan (2020) recently developed a system of formal axioms (one
of which formalizes the real induction principle) for reasoning about continuous
invariants in differential dynamic logic. This axiomatization is complete in the
sense that a formal proof of continuous invariance of a semi-analytic set rep-
resented by a formula S can be derived in differential dynamic logic from the
axioms whenever this invariance property holds, and a refutation can be derived
whenever it does not.

Among characterizations of positive set invariance in a less general setting
than that considered in this article, we note the work of Castelan and Hennet
(1993), who reported necessary and sufficient conditions for positive invariance
of convex polyhedra in linear vector fields.

Conclusion

This article describes two alternative characterizations of positively invariant
sets for systems of ODEs with unique solutions.

The first characterization, along with its associated LZZ decision procedure
for checking positive invariance of semi-algebraic sets in poylnomial vector fields,
is closely related to the work by Liu et al. (2011). While the relationship be-
tween the work of Liu et al. (2011) and the principle of real induction has been
known informally to a number of researchers, this important link has not been
adequately elaborated in existing literature. One of our aims in writing this
article has been to make this relationship more widely appreciated and also to
create an accessible account of the original LZZ decision procedure, along with
our own improvements to this method (Section 3.2) and nuances in its practical
implementation informed by our experience (Section 3.4).

The second part of the article contributes an alternative characterization of
set positive invariance and is based on the notion of exit sets (Conley, 1978). The
topological origins of this notion afford certain computational vistas that sug-
gest a very different approach to developing a decision procedure for checking
positive invariance than that of LZZ. The ESE procedure developed in Sec-
tion 4.2 is, to the authors’ knowledge, entirely novel. Its main advantage over
LZZ lies in its efficient handling of formulas with non-trivial Boolean structure
(a class of problems where the LZZ procedure generally performs poorly). The
complexity analysis undertaken in Section 4.3 sheds some light on the compu-
tational advantages of using ESE, which is empirically confirmed in a number
of examples in Section 5.

Important topics not touched upon in this article include robustness of pos-
itively invariant sets under small perturbations of the system dynamics; indeed,
in practical applications, the system of ODEs is often only known approximately
and invariants that are not robust are in a certain sense unphysical. In the future
we hope to build upon the present work to address these considerations.
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