
HAL Id: hal-03540759
https://hal.science/hal-03540759v1

Preprint submitted on 24 Jan 2022 (v1), last revised 19 Apr 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Output regulation of infinite-dimensional nonlinear
systems: a forwarding approach for contraction

semigroups
Nicolas Vanspranghe, Lucas Brivadis

To cite this version:
Nicolas Vanspranghe, Lucas Brivadis. Output regulation of infinite-dimensional nonlinear systems: a
forwarding approach for contraction semigroups. 2022. �hal-03540759v1�

https://hal.science/hal-03540759v1
https://hal.archives-ouvertes.fr


Output regulation of infinite-dimensional nonlinear systems:

a forwarding approach for contraction semigroups∗

Nicolas Vanspranghe† Lucas Brivadis‡

Abstract

This paper deals with the problem of robust output regulation of systems governed
by nonlinear contraction semigroups. After adding an integral action to the system, we
design a feedback law based on the so-called forwarding approach. For small constant
perturbations, we give sufficient conditions for the existence of a locally exponentially stable
equilibrium at which the output coincides with the reference. Under additional assumptions,
global asymptotic stability is achieved. All these conditions are investigated in the case of
semilinear systems, and examples of application are given.

Key words. Output regulation, infinite-dimensional control systems,nonlinear contraction semi-
groups, forwarding design, semilinear systems.
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1 Introduction

Robust output regulation in one of the oldest problems in control theory. It consists in designing a
feedback law which ensures that the output of a system tracks a given reference, even in the presence
of external disturbances. If a feedback law can be designed to stabilize the system at some target point
then a natural strategy to regulate the output robustly with respect to constant disturbances consists
in adding an integral action to the system. Then, one must find a new feedback law that stabilizes
the augmented system (i.e., the state and the output integrator) at some equilibrium point even in the
presence of constant disturbances. The integrator guarantees that the output is at the reference when
the full state is at the equilibrium.

While the theory of output regulation for linear finite-dimensional systems is well-understood since
the seminal work of E. Davidson [9, 10], many problems remain open in the case of nonlinear and/or
infinite-dimensional systems. In [23,24], S. Pohjolainen proposed an extension of the finite-dimensional
linear robust regulation theory to the infinite-dimensional context. In particular, a controller based on
an output integrator was investigated. More recently, this work has been continued in [19,20,22] where
an internal model principle was developed to reject a wider class of disturbances (and not only constant
ones). This theory however struggles to deal with nonlinearities. In the finite-dimensional context, a
strategy to take them into account is the so-called forwarding approach, devised by F. Mazenc and L.
Praly in [18] and developed with different purposes in [1,3,13].

To the best of our knowledge, the present paper is a first attempt to tackle the robust regulation
problem in a nonlinear infinite-dimensional abstract framework. We propose to approach the issue via
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France. Email: lucas.brivadis@centralesupelec.fr.

1



the forwarding technique. Few extensions of this technique in the infinite-dimensional setting exist. In
all of them [2, 16, 17, 27], the control system is essentially linear, except for a potential cone-bounded
nonlinearity that may be applied to the input. In the recent work [11], the authors followed a contrac-
tion approach to achieve the output regulation of nonlinear finite-dimensional systems by means of an
incremental forwarding approach. Inspired by this work, we focus on systems of contraction, namely,
such that the distance between any pair of trajectories is exponentially converging towards zero. We
particularly investigate the case of semilinear systems, that are Lipschitz perturbations of linear systems.

Organization of the paper In the first section of the paper, we state more precisely the class of
systems under consideration and the output regulation problem. Then, we give some insights on the
forwarding strategy we use to design a stabilizing feedback law. Main results are stated and discussed
in Section 3, and proved in Section 4. Some examples of application are provided in Section 5.

Notation Let us introduce some notations and definitions. If H is a Hilbert space endowed with the
norm ‖ · ‖H , BH(x, r) denotes the open ball of (H, ‖ · ‖H) centered at x ∈ H of radius r > 0. Let Z
be a Hilbert space. We denote by C(H,Z) the space of continuous maps from H to Z and by C1(H,Z)
the space of continuously Fréchet differentiable maps. We also denote by L(H,Z) the Banach algebra of
bounded linear operators from H to Z. Given L in L(H,Z), the adjoint operator L∗ is uniquely defined
in L(Z,H) by (Lx, y)Z = (x, L∗y)H , where (·, ·) denotes the scalar product. We shall say that a map
M : H → Z is locally Lipschitz continuous if it is Lipschitz continuous on every bounded subset of H .
Given a H-valued map A defined on some subset D(A) of H , we say that w is a strong solution to the
abstract evolution equation dw/dt+A(w) = 0 on (0, T ) if w is absolutely continuous with respect to the
topology of H , takes values in D(A), and solves the differential equation almost everywhere on (0, T ).
A weak solution w is a limit of such strong solutions in C([0, T ],H).

2 Problem statement

2.1 Systems under consideration

Consider a nonlinear infinite-dimensional controlled system with measured output of the form:

dw

dt
+A(w) = Bu(t), (1a)

y = Cw, (1b)

where w is the state of the system lying in some real Hilbert space H , y is the measured output lying in
some real Hilbert space Z, u is the control input lying in some real Hilbert space U , A : D(A) → H is a
singled-valued maximal monotone operator defined on the dense subset D(A) ⊂ H such that A(0) = 0,
B : U → H is a bounded linear map, and C : D(C) → Z is a (potentially unbounded) linear map
defined on the (dense) subspace D(C) ⊃ D(A). According to [25, Chapter 4, Proposition 3.1], −A is the
generator of a nonlinear strongly continuous contraction semigroup over H , denoted by {Tt}. In order
to address the problem of output regulation, we assume that A satisfies the following assumption.

Hypothesis 2.1 (Monotonicity). The nonlinear operator A is strongly monotone, i.e., there exists α > 0
such that

(A(w1)−A(w2), w1 − w2)H > α‖w1 − w2‖
2
H , ∀w1, w2 ∈ D(A). (2)

Hypothesis 2.1 implies that the semigroup {Tt} satisfies

‖Ttw1 − Ttw2‖H 6 exp(−αt)‖w1 −w2‖H , ∀w1, w2 ∈ H, ∀t ∈ R+. (3)

We address the problem of regulating the output y of (1) at some constant reference yref ∈ Z in presence
of constant disturbances d ∈ H acting on the dynamics of the system. We proceed by adding an
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integrator to the output of the system, so that the resulting full system may be written as follows:

dw

dt
+A(w) = Bu(t) + d, (4a)

dz

dt
= Cw − yref , (4b)

where z lying in Z is the output integrator. The reason for that strategy is the following. Assume that
a feedback law ϕ : H × Z → U may be designed, so that (4) in closed-loop with u(t) = ϕ(w(t), z(t)) is
asymptotically stable at (0, 0) ∈ H × Z when [d, yref ] = (0, 0). Then, formally, one can expect that for
small perturbations of this system, i.e., for small values of [d, yref ], the closed-loop is still asymptotically
stable at some new equilibrium point [w⋆, z⋆] near (0, 0) ∈ H × Z. Roughly speaking, this would imply
that the dynamics of z, namely dz/dt = Cw − yref , still tend towards zero, that is, the output y = Cw
is regulated at yref . In this paper, we propose a design strategy of such a feedback law ϕ based on the
so-called forwarding approach, for which we make precise this formal reasoning.

2.2 Forwarding design

Following the forwarding design [18], we consider a candidate Lyapunov function of the form:

V (w, z) =
1

2
‖w‖2H +

ρ

2
‖z −M(w)‖2Z (5)

where ‖w‖2H/2 corresponds to the Lyapunov function associated to the contraction semigroup {Tt},
M : H → Z is some Fréchet differentiable nonlinear map that vanishes at zero to be tuned, and ρ is
some positive constant to be fixed (large enough) later. Let us compute the derivative of V along a
strong solution [w, z] of the open-loop system (4) in the case where [d, yref ] = [0, 0]:

d

dt
V (w, z) = −(w,A(w))H + (w,Bu(t))H

+ ρ(z −M(w),dM(w)A(w) + Cw − dM(w)Bu(t)))Z.
(6)

Under Hypothesis 2.1, we have (w,A(w))H > α‖w‖2H . The key idea of the forwarding design is to choose
a nonlinear map M satisfying the following functional equation, which guarantees that the graph of M
is positively invariant under the uncontrolled dynamics (4):

M(0) = 0, (7a)

dM(w)A(w) + Cw = 0, ∀w ∈ D(A). (7b)

In order to follow the forwarding approach, let us consider the next hypothesis.

Hypothesis 2.2. The functional equation (7) admits a continuously Fréchet differentiable solution M ∈
C1(H,Z).

For such a map M, we obtain:

d

dt
V (w, z) 6 −α‖w‖2H + (B∗w, u(t))U − ρ(B∗dM(w)∗[z −M(w)], u(t))U . (8)

This suggests to set the feedback law as

u(t) = B∗dM(w)∗[z −M(w)]. (9)

Then, applying Young’s inequality, we get that for all ε > 0,

d

dt
V (w, z) 6 −α‖w‖2H +

ε

2
‖B‖2L(U,H)‖w‖2H +

1

2ε
‖u‖2U − ρ‖u‖2U . (10)

In particular, setting ρ = ‖B‖2L(U,H)/α and ε = 1/ρ yields

d

dt
V (w, z) 6 −

α

2
‖w‖2H −

ρ

2
‖u‖2U 6 0, (11)
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so that V is indeed a Lyapunov function. These formal computations give an insight on the feedback
law (9) to choose and on the Lyapunov function (5) to consider in order to stabilize (4). However, many
important questions remain open, in particular concerning the well-posedness of the closed-loop, the
stability properties in presence of [d, yref ], and the feasibility of the functional equation (7).

Remark 2.3 (On Hypothesis 2.2). Checking Hypothesis 2.2 on a general nonlinear system of the form
(1) is difficult in general. Moreover, since M is used in feedback law (9), an expression of M in terms of
parameters of the system should be given in order to implement the controller. For these two reasons,
we investigate later in the paper the case of semilinear systems, for which we give sufficient conditions
on A for Hypothesis 2.2 to be satisfied, as well as an expression of M in terms of A and C.

3 Main results

We now state our results on the closed-loop system (4)-(9).

3.1 Well-posedness of the closed-loop dynamics

Our first result concerns the existence and uniqueness of solutions to the closed-loop equations (4)-(9).

Theorem 3.1 (Well-posedness). Assume Hypotheses 2.1 and 2.2 hold and dM is locally Lipschitz
continuous. Then,

(i) For all [d, yref ] ∈ H × Z and all [w0, z0] ∈ H × Z, the closed-loop system (4)-(9) admits a unique
maximal weak solution [w, z] satisfying the initial condition [w(0), z(0)] = [w0, z0] and defined on
[0, Tmax(w0, z0)) for some Tmax(w0, z0) ∈ (0,+∞];

(ii) Moreover, if w0 ∈ D(A), then [w, z] is a strong solution to (4)-(9);

(iii) Furthermore, if d = 0 or dM is globally Lipschitz continuous, then (4)-(9) is forward complete,
i.e., Tmax(w0, z0) = +∞ for all [w0, z0] ∈ H × Z.

The proof of Theorem 3.1 is given in Section 4.1 and works around two technical difficulties (the
possible unboundedness of C and the a priori non-monotonicity of the system with integral action) by
an appropriate use of Hypothesis 2.2.

3.2 Sufficient conditions for output regulation

In view of the output regulation problem, we wish to investigate the existence of an attractive equilibrium.
The following theorem is the main result of the paper.

Theorem 3.2 (Sufficient conditions for output regulation). Assume Hypotheses 2.1 and 2.2 are satisfied.
Assume that

Range dM(0)B = Z, i.e., ∃λ > 0 | ∀z ∈ Z, ‖B∗dM(0)∗z‖2Z > λ‖z‖2Z . (12)

If dM is globally (resp. locally) Lipschitz continuous, then there exist positive constants M , κ and r and
a neighborhood N of the origin in H×Z such that for any [d, yref ] in BH×Z(0, r) (resp. in {0}×BZ (0, r)),
the following results hold.

• There exists an equilibrium point [w⋆, z⋆] ∈ D(A)×Z in N of the closed-loop system (4)-(9) such
that Cw⋆ = yref and for all [w0, z0] in N , the corresponding solution [w, z] of (4)-(9) satisfies, for
all t ∈ R+,

‖[w(t)− w⋆, z(t)− z⋆]‖H×Z 6 M exp(−κt)‖[w0 −w⋆, z0 − z⋆]‖H×Z . (13)

• Moreover, if
‖B∗dM(w)∗z‖2Z > λ‖z‖2Z , ∀z ∈ Z, ∀w ∈ H, (14)

then for all [w0, z0] in H × Z, the corresponding solution [w, z] of (4)-(9) satisfies:

[w(t), z(t)] → [w⋆, z⋆] in H × Z as t → +∞. (15)
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The proof of Theorem 3.2 is given in Section 4.2. Equation (13) guarantees the local exponential
stability of the equilibrium point [w⋆, z⋆], while (15) provides global asymptotic stability under the
additional condition (14). This condition is stronger than a global version of the range condition (12),
in the sense that the constant λ must be independent of w ∈ H . We shall show in the proof how this
uniformity implies the global attractivity of the local exponential basin of attraction N .

Conditions (12) and (14) may be difficult to check in general. In Section 3.3, we show how to
investigate them in the semilinear case. In the finite-dimensional context, (14) is equivalent to the
incremental condition given in [11, Assumption 2]. In our work, it allows to obtain global asymptotic
stability even in the presence of small perturbations. The local condition (12) is commonly used in the
forwarding design (see, e.g., [1]) to obtain local exponential stability. Note that in the finite-dimensional
context, (12) is sufficient to obtain local exponential stability and global asymptotic stability in absence
of perturbations [1, Lemma 1].

It is clear that if the operator C is continuous, i.e., C belongs to L(H,Z), then the output Cw(t)
goes to yref in Z whenever w(t) goes to w⋆ in H . If C is unbounded, the question is more delicate and
is discussed in Section 3.4.

3.3 The semilinear case

Consider now the case where A = A+F with D(A) = D(A), where −A is the infinitesimal generator of
a strongly continuous semigroup {St} of linear operators on H , and F is a nonlinear mapping satisfying

F ∈ C1(H), dF locally Lipschitz continuous, (16)

and without loss of generality, dF (0) = 0. Following [21], we shall say that A is semilinear. In that
context, let us introduce the following set of assumptions.

Hypothesis 3.3. The operator A = A+ F is semilinear and satisfies the following properties:

(i) C is A-bounded, i.e., there exist positive constants a and b such that

‖Cw‖Z 6 a‖Aw‖H + b‖w‖H , ∀w ∈ D(A); (17)

(ii) 0 is in the resolvent set of A;

(iii) There exists α > 0 such that

(Ah+ dF (w)h, h)H > α‖h‖2H , ∀w ∈ H, ∀h ∈ D(A). (18)

Remark that Hypothesis 3.3 implies both Hypothesis 2.1 and maximal monotonicity of A. Indeed,
writing F (w1)− F (w2) as an integral of dF along the line segment joining w1 to w2, one can show that
(18) implies (2). Then, standard results on Lipschitz perturbations of linear systems (see [21, Section
6.1]) together with (2) yield that −A generates a strongly continuous semigroup of contractions (denoted
by {Tt}) on H , which in turn implies that A is maximal monotone by virtue of [14, Theorem 4].

Under Hypothesis 3.3, we show in the following theorem that (7) admits a solution that can be
expressed in terms of C, A, and F .

Theorem 3.4 (Existence of M in the semilinear case). Assume Hypothesis 3.3 is satisfied. Then there
exists a map M ∈ C1(H,Z) satisfying (7) with dM locally Lipschitz continuous and given for all w ∈ H
by

M(w) , −C

{

lim
τ→+∞

∫ τ

0

Ttw dt

}

= −CA−1w − CA−1

∫ +∞

0

F (Ttw) dt. (19)

For all w, h ∈ H,

dM(w)h = −CA−1h− CA−1

∫ +∞

0

dF (Ttw)dTt(w)hdt, (20)

where dTt(w) denotes the differential of Tt at w, which exists. Moreover, if F and dF are globally
Lipschitz continuous, then so is dM.

5



The proof of Theorem 3.4 is given in Section 4.3. Its purpose is to guarantee the existence of
the control law (9) for a wide class of semilinear systems and provide easy conditions under which
requirements of Theorem 3.2 are met. A notable consequence of (20) is that the coercivity condition
(12) in Theorem 3.2 simply reads as

RangeCA−1B = Z, (21)

which, in the context of output regulation of finite-dimensional linear systems, corresponds to a non-
resonance condition between A and the zero dynamics of the integrator via the Schur complement (see,
e.g., [12]). On the other hand, Theorem 3.4 also states that dM inherits the Lipschitz properties of F and
dF . Now, regarding Hypothesis 3.3, (18) is roughly speaking a sufficient condition under which solutions
to the uncontrolled w-equation linearized around a given trajectory (also called first variation equation)
uniformly converge to that trajectory. Equation (18) is easily verified in (at least) two situations of
interest.

• The nonlinearity F contributes to the contraction behavior of the w-dynamics. This is the case
for example if A is coercive and F is monotone (i.e. such that (dF (w)h, h)H is nonnegative for all
w, h in H). More generally, the reader may refer to [15] in finite dimension or [26, Chapter V] for
the contraction analysis of the system by means of its first variation equation.

• Variations of F are small with respect to linear dissipation brought by A. More precisely, if F is
K-Lipschitz continuous, then ‖dF (·)‖L(H) is bounded by K, hence (18) is satisfied if (Ah,h)H >
β‖h‖2H for some constant β > K. In the same spirit, under (18) and (21), by observing1 that for
each w the integral map in (20) has operator norm bounded by K/α, one deduces from (20) that
global uniform coercivity (14) holds whenever K < α.

Remark 3.5 (Linear case). If A is linear, i.e., F = 0, and 0 is in the resolvent set of A, then the solution
M to (7) is explicitly and uniquely determined as M = −CA−1. This choice corresponds to the linear
forwarding approach followed by [17,27].

3.4 The case of unbounded output

We conclude Section 3 with an informal discussion regarding the convergence of the output Cw(t) towards
the reference when the operator C is unbounded. To get some insight on the situation, assume for a
moment that the original w-system is linear. Then, the solution M to (7) provided by Theorem 3.4
is a bounded linear operator, and the closed-loop dynamics around the equilibrium are governed by a
strongly continuous linear semigroup, which commutes with its generator. Recalling the notation from
Section 3.3, it follows that for a strong solution [w, z] to (4)-(9), w(t) − w⋆ goes to 0 in D(A) endowed
the graph norm, hence Cw(t) converges to yref provided that C is A-bounded. In the nonlinear case,
the argument breaks down.

Alternatively, one may look for weaker notions of convergence. In many applications, unbounded
output operators of interest enjoy an admissibility property with respect to the uncontrolled dynamics.
In the linear theory, C is said to be A-admissible if C is A-bounded and there exist positive constants
K and T such that

∫ T

0

‖CStw0‖
2
Z dt 6 K‖w0‖

2
H , ∀w0 ∈ D(A). (22)

In the semilinear case, one can deduce from (22) that, first of all, the output Cw is well-defined in
L2

loc(0,+∞;Z) even for weak solutions [w, z] to the closed-loop equations (4)-(9), and secondly, that the
output converges “in average” to the reference:

lim
τ→+∞

∫ T+τ

τ

‖Cw(t)− yref‖
2
Z dt = 0 (23)

for any (including weak) solution [w, z] that converges to the equilibrium [w⋆, z⋆] in H × Z. When no
semilinear structure is prescribed for the maximal monotone operator A governing the w-dynamics, we

1See Lemma 4.6 below for the bound K/α.
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generalize (22) by assuming that for any w0
i in D(A) and fi absolutely continuous with derivative in

L2(0, T ;H), the solution2 wi to dwi/dt+A(w) = fi with initial condition wi(0) = w0
i , i ∈ {1, 2}, satisfies

∫ T

0

‖Cw1(t)− Cw2(t)‖
2
Z dt 6 K‖w1(0) −w2(0)‖

2
H +K

∫ T

0

‖f1 − f2‖
2
H dt. (24)

In that case, the same conclusions hold for closed-loop solutions.

4 Proofs of the main results

This section is devoted to the proofs of the results of the paper. In what follows, we will investigate
well-posedness, global attractivity (15) and local exponential stability (13) of the closed-loop system
(4)-(9) in the new coordinates [w, η] where η is given by

η , z −M(w). (25)

In [w, η]-coordinates, (4)-(9) may be equivalently rewritten as

dw

dt
+A(w) = BB∗dM(w)∗η + d, (26a)

dη

dt
+ dM(w)BB∗dM(w)∗η = −yref − dM(w)d. (26b)

Equation (26b) is obtained by differentiating (25) and using (7) combined with (26a). Since M is
continuous, (25) preserves the topology of the space: given [w⋆, z⋆] ∈ H × Z, any solution [w, z] of
(4)-(9) converges towards some [w⋆, z⋆] ∈ H × Z if and only if [w, η] converges towards [w⋆, η⋆], where
η = z − M(z) and η⋆ = z⋆ − M(w⋆). Moreover, given a ball of H containing w⋆, by local Lipschtz
continuity of M, there exist positive constants K1 and K2 such that

K1‖[w − w⋆, z − z⋆]‖H×Z 6 ‖[w − w⋆, η − η⋆]‖H×Z 6 K2‖[w −w⋆, z − z⋆]‖H×Z (27)

whenever w lies in that ball. Therefore, well-posedness, global attractivity (15), and local exponential
stability (13), of (4)-(9) and (26) are actually equivalent. Finally, to alleviate notation when needed, we
define

K(w) , dM(w)B ∈ L(U,Z), ∀w ∈ H. (28)

4.1 Proof of Theorem 3.1 (well-posedness)

We start by proving that solutions to (26) exist at least on a finite time interval (Items (i) and (ii) of
Theorem 3.1), and then we investigate forward completeness (Item (iii) of Theorem 3.1).

Step 1: Local well-posedness. First, we observe that (26) represents a locally Lipschitz pertur-
bation of the following maximal monotone problem:

d

dt
[w, η] + [A(w), η] = 0. (29)

Indeed, by letting

Fd,yref [w, η] ,

[

−BK(w)∗η − d
−η +K(w)K(w)∗η + yref + dM(w)d

]

, ∀[w, η] ∈ H × Z, (30)

we can rewrite (26) as follows:

d

dt
[w, η] + [A(w), η] + Fd,yref [w, η] = 0. (31)

2Existence and uniqueness of a strong solution is guaranteed by [25, Chapter 4, Theorem 4.1]. In particular,
each wi is absolutely continuous; hence A(wi) is measurable, and so is Cwi by (7).
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The nonlinear map Fd,yref is locally Lipschitz continuous onH×Z. Besides, sinceA is maximal monotone
on H , so is the mapping [w, η] 7→ [A(w), η] on H × Z (with dense domain D(A) × Z). Furthermore,
[A(0), 0] = 0. Thus, it follows from [6, Theorem 7.2] that for each initial condition [w0, η0] ∈ H×Z, there
exists a unique maximal weak solution [w, η] to (26) defined on [0, Tmax(w0, η0)), with Tmax(w0, η0) ∈
(0,+∞]. Moreover, if w0 ∈ D(A), [w, η] is actually a strong solution. Recalling that z = η +M(w) and
M ∈ C1(H,Z), we obtain Items (i) and (ii). Finally, if Tmax(w0, η0) is finite, then the norm of [w(t), η(t)]
must go to +∞ as t approaches Tmax(w0, η0).

Step 2: Sufficient conditions for forward completeness. Let us prove that if take d = 0 or
dM is globally Lipschitz continuous, then Tmax(w0, η0) = +∞ for any initial condition [w0, η0] ∈ H×Z.
Let ρ > 0 to be fixed (large enough) later on. Given a (strong) solution [w, η] with initial data [w0, η0] ∈
D(A) × Z, we have

1

2

d

dt

{

‖w‖2H + ρ‖η‖2Z
}

= −(A(w), w)H + (BK(w)∗η,w)H + (d,w)H

− ρ‖K(w)∗η‖2U − ρ(yref , η)Z − ρ(dM(w)d, η)Z (32)

holding almost everywhere (a.e.) on (0, Tmax(w0, η0)). Similarly as in our preliminary Lyapunov analysis
(8)-(10), in order to deal with the term BK(w)∗η, we use (2) together with Young’s inequality and choose
2ρ > ‖B‖2L(U,H) to obtain

d

dt

{

‖w‖2H + ρ‖η‖2Z
}

6 2‖w‖2H + 2ρ‖η‖2Z + ρ‖yref‖
2
Z + ‖d‖2H + ρ‖dM(w)d‖2Z (33)

If d = 0 or dM is globally Lipschitz continuous, the following inequality holds:

‖dM(w)d‖2Z 6 K(1 + ‖w‖2H)‖d‖2H (34)

for some K > 0 independent of w or d. Combining (33) and (34) yields

d

dt

{

‖w‖2H + ρ‖η‖2Z
}

6 K′ {‖w‖2H + ρ‖η‖2Z‖
}

+K′ a.e. (35)

for some K′ > 0 independent of the initial data. As a strong solution to (26), [w, η] is absolutely
continuous in H×Z; therefore, we can deduce from (35) and Grönwall’s inequality the following uniform
estimate: for all t ∈ [0, Tmax(w0, η0)),

‖w(t)‖2H + ρ‖η(t)‖2Z 6 exp(K′t){‖w0‖
2
H + ρ‖η0‖

2
Z + 1}. (36)

We infer from (36) that the norm of [w, η] cannot blow up in finite time; thus, Tmax(w0, η0) = +∞.
Furthermore, by passing to the limit, we see that (36) is satisfied for weak solutions as well, which means
that the same conclusion holds for any initial data in H × Z. This proves Item (iii) and ends the proof
of Theorem 3.1.

4.2 Proof of Theorem 3.2 (output regulation)

Our main result concerning the output regulation problem is demonstrated here, along with some aux-
iliary results.

4.2.1 Outline of the proof and intermediate results

The proof of Theorem 3.2 relies on a series of lemmas that are given below. Let us first give some insight
on the main strategy.

1. Under the range condition (12), the operators K(w)∗ = B∗dM(w)∗ involved in the η-equation
(26b) enjoy a coercivity property that is uniform with respect to w, provided that w is small. This
is shown in Lemma 4.1.
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2. This allows to prove that there exists a (not necessarily invariant) region around the origin of
H×Z where the dynamics generated by (26) are strictly contractive. This is stated in Lemma 4.2.

3. Another consequence of the local coercivity property is the existence of suitable attracting sets
for the closed-loop dynamics (26), as demonstrated in Lemma 4.3. Furthermore, if the reference
yref and the perturbation d are sufficiently small, then those sets are contained in the contraction
region of the previous step.

4. Finally, existence of a locally exponentially stable equilibrium for (26) is shown by using Banach
fixed point arguments and properties of ω-limit sets associated with contraction semigroups.

5. Additionally, under the global coercivity condition (14), the attracting sets from Lemma 4.3 are
in fact globally attractive, hence the equilibrium is also globally asymptotically stable.

Coming back to the [w, z]-coordinates and thus to the original closed-loop system (4)-(9) is then straight-
forward. In what follows, we shall be careful regarding the dependence of the various neighborhoods
involved in the analysis with respect to each parameter. Before proceeding further, we introduce some
additional notation. Recalling (30) and (31), given [d, yref ], we denote by Ãd,yref the nonlinear op-
erator [A, id] + Fd,yref defined on D(A) × Z and associated with the closed-loop system (26) in the
[w, η]-coordinates. Also, for ρ > 0, we denote by ‖ · ‖H×Z,ρ the Hilbert norm on H × Z given by

‖[w, η]‖2H×Z,ρ , ‖w‖2H + ρ‖η‖2Z , ∀[w, η] ∈ H × Z. (37)

We denote by (·, ·)H×Z,ρ the associated scalar product. All these norms are equivalent. Bearing in mind
our Lyapunov analysis in the [w, z]-coordinates in Section 2.2, the ρ-norm is connected to the Lyapunov
function V by V (w, z) = (1/2)‖[w, z−M(w)‖2H×Z,ρ. In the sequel, we either take d = 0 or assume that
dM is globally Lipschitz continuous. Therefore, by virtue of Theorem 3.1, solutions to the closed-loop
equations (26) are well-defined for all positive time and any initial condition in H ×Z. Recall from (12)
in the statement of Theorem 3.2 that the following coercivity assumption is in force:

‖K(0)∗z‖2U > λ‖z‖2Z , ∀z ∈ Z. (38)

The first lemma is a consequence of (38) and continuity of dM.

Lemma 4.1 (Local coercivity). There exist positive constants λ̃ and r̃ such that

‖K(w)∗z‖2U > λ̃‖z‖2Z , ∀z ∈ Z, ∀w ∈ BH(0, r̃). (39)

Proof. Let w ∈ H and z ∈ Z. Recall that K(w)∗z = B∗dM(0)∗z + B∗[dM(w) − dM(0)]∗z. Using
Cauchy-Schwarz and Young inequalities together with (38), we get

‖K(w)∗z‖2U >
2λ

3
‖z‖2H − 2‖B‖2L(U,H)‖[dM(w)− dM(0)]∗‖2L(Z,U)‖z‖

2
Z . (40)

By continuity of dM at 0, we can choose r̃ > 0 such that

‖dM(w)− dM(0)‖2L(H,Z) 6
λ

6‖B‖2L(U,H)

, ∀w ∈ BH(0, r̃). (41)

Thus, by letting λ̃ , λ/3 > 0, we obtain the desired inequality (39).

The following constant appears in the next two lemmas:

κ , min{α/4, λ̃/4}. (42)

Those concern the contraction property of the dynamics governed by (26) around the origin and the
existence of attractive sets depending on [d, yref ].
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Lemma 4.2 (Local strong monotonicity). There exists ρ0 > 0 such that the following property holds:
for all ρ > ρ0, there exists a positive r0,ρ 6 r̃ such that

(Ãd,yref [w1, η1]− Ãd,yref [w2, η2], [w1, η1]− [w2, η2])H×Z,ρ

> κ‖[w1, η1]− [w2, η2]‖
2
H×Z,ρ (43)

for all [w1, η1], [w2, η2] ∈ BH×Z(0, r0,ρ) ∩ D(A)× Z, d ∈ BH(0, r0,ρ) and yref ∈ Z.

Proof. Let [w1, η2] and [w2, η2] in D(A) × Z. We write w̃ , w1 − w2 and η̃ , η1 − η2. Then, for any
ρ > 0,

(Ãd,yref [w1, η1]− Ãd,yref [w2, η2], [w̃, η̃])H×Z,ρ

= (A(w1)−A(w2)−B[K(w1)
∗η1 −K(w2)

∗η2], w̃)H

+ ρ(K(w1)K(w1)
∗η1 −K(w2)K(w2)

∗η2 + [dM(w1)− dM(w2)]d, η̃)Z . (44)

By adding and removing some terms, (44) can be rewritten as follows:

(Ãd,yref [w1, η1]− Ãd,yref [w2, η2], [w̃, η̃])H×Z,ρ = (A(w1)−A(w2), w̃)H

+ ρ(K(w1)K(w1)
∗η̃, η̃)Z + ρ([K(w1)K(w1)

∗ −K(w2)K(w2)
∗]η2, η̃)Z

− (BK(w1)
∗η̃, w̃)H − (B[K(w1)−K(w2)]

∗η2, w̃)H + ρ([dM(w1)− dM(w2)]d, η̃)Z . (45)

Assume for a moment that ‖wi‖H 6 r̃/2, where r̃ is given by Lemma 4.1. Therefore, ‖w̃‖H 6 r̃; and
using (2) and (39) together with the Lipschtz continuity of K and K(·)K(·)∗ on BH(0, r̃), we infer from
(45) that

(Ãd,yref [w1, η1]− Ãd,yref [w2, η2], [w̃, η̃])H×Z,ρ > α‖w̃‖2H + ρλ̃‖η̃‖2Z

− ρK1‖w̃‖H‖η2‖Z‖η̃‖Z −K2‖η̃‖Z‖w̃‖H −K3‖η2‖Z‖w̃‖2H − ρK4‖w̃‖H‖d‖H‖η̃‖Z . (46)

where the Ki are some positive constants independent of [wi, ηi], [d, yref ] and ρ. Given ε > 0, we employ
Cauchy-Schwarz and Young inequalities to obtain

(Ãd,yref [w1, η1]− Ãd,yref [w2, η2], [w̃, η̃])H×Z,ρ > α‖w̃‖2H + ρλ̃‖η̃‖2Z

−
ρ

2
{K1‖η2‖Z +K4‖d‖H}{‖w̃‖2H + ‖η̃‖2Z} −

K2

2ε
‖η̃‖2Z −

εK2

2
‖w̃‖2H −K3‖η2‖Z‖w̃‖2H . (47)

Let ε = α/(2K2) in (47) and define ρ0 , 2K2/(λ̃ε). For all ρ > ρ0,

(Ãd,yref [w1, η1]− Ãd,yref [w2, η2], [w̃, η̃])H×Z,ρ >
α

2
‖w̃‖2H +

ρλ̃

2
‖η̃‖2Z

−
ρ

2
{K1‖η2‖Z +K4‖d‖H}{‖w̃‖2H + ‖η̃‖2Z} −K3‖η2‖Z‖w̃‖2H . (48)

Let ρ > ρ0. We infer from (48) that there exists r0,ρ 6 r̃/2 such that

(Ãd,yref [w1, η1]− Ãd,yref [w2, η2], [w̃, η̃])H×Z,ρ >
α

4
‖w̃‖2H +

ρλ̃

4
‖η̃‖2Z (49)

as long as [wi, ηi] ∈ BH×Z(0, r0,ρ) and d ∈ BH(0, r0,ρ), which completes the proof.

Lemma 4.3 (Absorbing balls). There exists ρ1 > 0 such that the following property holds: for any
ρ > ρ1, there exist positive r1,ρ and Kρ such that, if [d, yref ] ∈ BH×Z(0, r1,ρ), then the estimate

‖[w(t), η(t)]‖2H×Z,ρ

6 exp(−κt)‖[w0, η0]‖
2
H×Z,ρ +Kρ{1− exp(−κt)}‖[d, yref ]‖

2
H×Z (50)

holds for any solution [w, η] to (26) with initial data [w0, η0] in BH×Z(0, r1,ρ). Furthermore, if (39) holds
globally, then (50) is true for all initial data in H × Z.
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Proof. All formal computations performed below are justified by considering appropriate sequence of
strong solutions as provided by Theorem 3.1 and then passing to the limit at the very end. First, let

ρ1 , ‖B‖2L(U,H) max{1, 2α−1}. (51)

Let ρ > ρ1 be fixed and let [w, η] be a solution to (26) with initial condition [w0, η0]. As in the proof of
Theorem 3.1, using (32) we obtain

d

dt
‖[w, η]‖2H×Z,ρ 6 kρ{‖[w, η]‖2H×Z,ρ + ‖yref‖

2
Z + ‖d‖2H} (52)

for some kρ > 0 independent of [w0, η0] and [d, yref ]. It follows from (52) that

‖[w(t), η(t)]‖2H×Z,ρ 6 exp(kρ)‖[w0, η0]‖
2
H×Z,ρ + exp(kρ){‖yref‖

2
Z + ‖d‖2H} (53)

for all t ∈ [0, 1]. As a consequence of (53), there exists a positive constant rρ such that max{‖w0‖H , ‖η0‖Z , ‖d‖H , ‖yref‖Z} 6
rρ implies ‖w(t)‖H 6 r̃ for all t ∈ [0, 1], where r̃ is defined in Lemma 4.1. Therefore, for such initial
data, we can use (39) in (32) to refine our previous estimate: for all positive ε and µ, on (0, 1) we have

1

2

d

dt
‖[w, η]‖2H×Z,ρ 6 −α‖w‖2H +

1

2ε
‖B‖2L(U,H)‖K(w)∗η‖2U + ε‖w‖2H

+
1

2ε
‖d‖2H − ρ‖K(w)∗η‖2U +

ρ

2µ
‖yref‖

2
Z +

ρ

2µ
‖dM(w)d‖2Z + ρµ‖η‖2Z . (54)

First, recall that we have either dM globally Lipschitz continuous or d = 0. Hence, there exists k > 0
independent of [w0, η0] and [d, yref ] such that ‖dM(w)d‖2Z 6 k‖d‖2H . By choosing ε = α/2 and µ = λ̃/4,
we deduce from (54) the following differential inequality, valid on (0, 1):

1

2

d

dt
‖[w, η]‖2H×Z,ρ 6 −

α

2
‖w‖2H −

ρλ̃

4
‖η‖2Z +

ρ

2µ
‖yref‖

2
Z +

{

ρk

2µ
+

1

2ε

}

‖d‖2H (55)

Applying Grönwall’s inequality to (55) yields

‖[w(t), η(t)]‖2H×Z,ρ

6 exp(−κt)‖[w0, η0]‖
2
H×Z,ρ +Kρ(1− exp(−κt))‖[d, yref ]‖

2
H×Z (56)

for all t ∈ [0, 1], where κ is defined in (42) and Kρ > 1 is some constant independent of [w0, η0] and
[d, yref ]. Next, by norm equivalence, there exists r1,ρ > 0 such that the following implication holds: if
[w0, η0] and [d, yref ] are in BH×Z(0, r1,ρ), then

‖[w0, η0]‖H×Z,ρ 6 2−1/2rρ, and ‖[d, yref ]‖H×Z 6 (2Kρ)
−1/2rρ. (57)

Now, we claim that the estimate (56) remains valid for all t > 0. Indeed, (56) shows that ‖[w(1), η(1)]‖H×Z,ρ 6
rρ. Therefore, by definition of rρ, we infer from the estimate (53) applied to the initial data [w(1), η(1)]
that ‖w(t)‖H 6 r̃ for all t ∈ [1, 2]. As a consequence, the differential inequality (55) is valid on (0, 2);
hence, (56) holds on [0, 2], with in particular ‖[w(2), η(2)‖H×Z,ρ 6 rρ, and so on. The conclusion readily
follows by induction.

Moreover, if it is assumed that (39) holds for all w ∈ H , then (55) is valid on (0,+∞) whatever the
initial condition, so that (53) immediately holds for all t > 0. In this case, no additional condition on
[d, yref ] is required.

4.2.2 Proof of Theorem 3.2

We can now prove the main result.
Step 1: Setting all neighborhoods. Pick ρ such that ρ > max{ρ0, ρ1} as in Lemmas 4.2 and 4.3.

In the sequel, [d, yref ] is assumed to lie in the intersection of BH(0, r0,ρ)× Z and BH×Z(0, r1,ρ), so that
the lemmas apply. Now that ρ is fixed, we will omit the dependence on ρ in further notation. Lemma 4.2
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provides a neighborhood K of the origin in H×Z, which we will refer to as the contraction region, where
(43) holds. On the other hand, according to (50) in Lemma 4.3, the set

V
d,yref , BH×Z,ρ(0, K

1/2
ρ ‖[d, yref ]‖H×Z) (58)

attracts all solutions to (26) originating from BH×Z(0, r1,ρ). By norm equivalence, any sufficiently small
ball for the ρ-norm that is centered at the origin is contained in both K and BH×Z(0, r1,ρ). That being
said, as a consequence of (50) and (58), there exists positive numbers δ and r such that, having let
B , BH×Z,ρ(0, δ), the following properties hold for any [d, yref ] ∈ BH×Z(0, r):

• The closure of the corresponding attracting set Vd,yref is contained in B;

• Solutions to (26) with initial data in B remain in K.

If in addition we assume that (14) holds, i.e., (39) holds globally, then by Lemma 4.3,

• The set Vd,yref attracts all solutions to (26), whatever the initial data.

In what follows, we omit the dependence on [d, yref ] in the notation and we denote by {T̃t} the strongly
continuous semigroup associated with (26). Then, since solutions originating from (the non-empty open
set) B remain in the contraction region K, we infer from (43) together with a density argument that

‖T̃t[w1, η1]− T̃t[w2, η2]‖H×Z,ρ 6 exp(−κt)‖[w1, η1]− [w0, η0]‖H×Z,ρ (59)

for all t > 0 and [wi, ηi] ∈ B, i ∈ {1, 2}.
Step 2: Existence of a fixed point. Pick an arbitrary [w0, η0] ∈ B. By (59) and a usual

contraction argument, we see that

{T̃n[w0, η0]}n>0 is a Cauchy sequence in H × Z (60)

and converges to a fixed point [w⋆
0 , η

⋆
0 ] of the nonlinear operator T̃1. Now, consider the ω-limit set

ω([w0, η0]) of [w0, η0] with respect to the evolution semigroup {T̃t}. By the sequential characterization
of ω-limit sets (see [5, Lemma 2.1, p.19]), we observe that [w⋆

0 , η
⋆
0 ] ∈ ω([w0, η0]), which means that

ω([w0, η0]) is non-empty. Moreover, it is positively invariant by definition. Finally, since Vd,yref attracts
all solutions originating from B, we must have

ω([w0, η0]) ⊂ Vd,yref ⊂ B. (61)

By following verbatim3 the proof of [8, Theorem 1], we obtain that for each t > 0, T̃t is an isometry on
ω([w0, η0]). On the other hand, for positive t, T̃t is a strict contraction on ω([w0, η0]); thus, ω([w0, η0])
must be reduced to the singleton {[w⋆

0 , η
⋆
0 ]}. By invariance of the ω-limit set, [w⋆

0 , η
⋆
0 ] is fixed by the

semigroup {T̃t}. Moreover, it follows from (59) that [w⋆
0 , η

⋆
0 ] is the unique fixed point of {T̃t} in B and

is exponentially attractive in B. Thus, we write [w⋆, η⋆] , [w⋆
0 , η

⋆
0 ].

Step 3: The fixed point lies in the domain. We now prove that w⋆ ∈ D(A). Let ε > 0
sufficiently small and consider the ball C , BH×Z,ρ([w

⋆, η⋆], ε) ⊂ K. Since D(A) is dense in H and C has
non-empty interior, we can pick some [w0, η0] ∈ [D(A)×Z]∩C. Let [w(t), η(t)] , T̃t[w0, η0]. As a strong
solution to (26), [w, η] is differentiable a.e. in H × Z and

d

dt
[w, η] + Ãd,yref [w, η] = 0 a.e. (62)

Besides, we infer from (59) that C is positively invariant so that {T̃t} restricted to C is still a well-defined
contraction semigroup. Thus, we can apply [7, Theorem 1.4] to obtain

‖Ãd,yref [w, η]‖H×Z,ρ 6 ‖Ãd,yref [w(t0), η(t0)]‖H×Z,ρ a.e. on (t0,+∞) (63)

3The only difference with [8, Theorem 1] is that {T̃t} is a contraction only on a region (containing the ω-limit
set) that is not a priori positively invariant. However, in order to obtain the isometry property, contraction is
only needed on the points of the ω-limit set.
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for some t0 > 0. In particular, ‖A(w)‖H is bounded a.e. on (t0,+∞). On the other hand, w(t) converges
to w⋆ in H when t goes to +∞. Therefore, it follows from A being maximal monotone and [7, Lemma
2.3] that w⋆ ∈ D(A).

Step 4: Conclusion. Since [w⋆, η⋆] belongs toD(A)×Z and is fixed by {T̃t}, Ãd,yref [w
⋆, η⋆] = 0. We

come back to the original [w, z] coordinates by letting z⋆ , η⋆+M(w⋆) and N , {[w, η+M(w)], [w, η] ∈
B}. Then, [w⋆, z⋆] belongs to [D(A)×Z]∩N and is an equilibrium for (4)-(9); hence, Cw⋆ = yref . Because
M vanishes at 0 and is continuous, N is indeed a neighborhood of 0. Local exponential stability of
[w⋆, z⋆] with decay rate κ and bassin of attraction containing N follows from (59) and our prior remarks
regarding the change of coordinates; the constant M in (3) comes from (27) and equivalence with the
ρ-norm. Additionally, under the stronger condition (14), [w⋆, z⋆] is globally asymptotically stable. The
proof is now complete.

4.3 Proof of Theorem 3.4 (semilinear case)

We first give some auxiliary results valid under the hypotheses of Section 3.3, and then we prove Theo-
rem 3.4.

4.3.1 Preliminaries

We endow D(A) with the graph norm. First, we claim that weak solutions (in the sense of nonlinear
semigroup theory) to

dw

dt
+A(w) = 0. (64)

coincide with mild solutions (in the sense of perturbation of linear equation). In other words, solutions
t 7→ Ttw0 to (64) with initial data w0 ∈ H are characterized by

Ttw0 = Stw0 +

∫ t

0

St−sF (Tsw0) ds, ∀t > 0. (65)

Because F is continuously differentiable, strong solutions w to (64) enjoy the regularity w ∈ C1(R+,H)∩
C(R+,D(A)). Lemma 4.4 given below allows us to circumvent the possible unboundedness of the output
operator C and, together with the A-boundeness of C, guarantees that M given by the limit in (19) is
a well-defined nonlinear mapping on the whole space H .

Lemma 4.4 (Integral formula). For any w0 ∈ H,

lim
τ→+∞

∫ τ

0

Ttw0 dt = A−1w0 +A−1

∫ +∞

0

F (Ttw0) dt. (66)

In particular, limτ→+∞

∫ τ

0
Tt(w0) dt belongs to D(A).

Proof. Let w0 ∈ H . Recall from standard linear semigroup theory that the vector-valued integral
∫ τ

0
Stw0 dt belongs to D(A) and A

∫ τ

0
Stw0 dt = w0 − Sτw0. Thus, by integrating the variation of the

constant formula (65) over (0, τ ), τ > 0, we obtain
∫ τ

0

Ttw0 dt = A−1w0 − A−1Sτw0 +

∫ τ

0

∫ t

0

St−sF (Tsw0) dsdt. (67)

Let τ > 0. Then, by letting Iτ , {(s, t) ∈ R
2, 0 6 s 6 t 6 τ}, we can write the last term in (67) as an

absolutely convergent integral over R2:
∫ τ

0

∫ t

0

St−sF (Tsw0) ds dt =

∫∫

R2

1Iτ (s, t)St−sF (Tsw0) dsdt, (68)

where 1Iτ denotes the indicator function of the set Iτ . Switching the order of integration in the right-
hand side of (68) leads to

∫ τ

0

∫ t

0

St−sF (Tsw0) ds dt =

∫ +∞

0

{

1Iτ (s, s)

∫ τ−s

0

StF (Tsw0)dt

}

ds. (69)
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We shall apply Lebesgue’s dominated convergence theorem to conclude, the parameter being τ . For
fixed s > 0, limτ→+∞ 1Iτ = 1, and limτ→+∞ SτF (Tsw0) = 0 in H ; hence,

lim
τ→+∞

1Iτ (s, s)

∫ τ−s

0

StF (Tsw0) dt = A−1F (Tsw0). (70)

On the other hand, by α-exponential stability of {St}, for all τ > 0 and s > 0,

∥

∥

∥

∥

1Iτ (s, s)

∫ τ−s

0

StF (Tsw0) dt

∥

∥

∥

∥

H

6
1

α
‖F (Tsw0)‖H , (71)

Equation (71) provides an integrable dominating function, which ends the proof.

Now, let us come back to the uncontrolled w-equation (64), which we linearize around a given
trajectory {Ttw0, t > 0}:

dv

dt
+ Av + dF (Ttw0)v = 0. (72)

Equation (72) is linear but non-autonomous in general. Given h ∈ H , (72) possesses a unique mild
solution t 7→ v(t) = v(t;w0, h) satisfying v(0) = h and v ∈ C(R+,H) (see [21, Theorem 1.2, p.184]).
Given w0 in H , the next lemma states that the nonlinear operators Tt are all differentiable at w0

and their differentials coincide with the evolution family associated with (72). This is a classical fact
for sufficiently smooth nonlinear dynamics; here, we give a proof that matches our particular set of
hypotheses.

Lemma 4.5 (Differentiability of the semigroup). Each operator Tt is Fréchet differentiable. Further-
more, for any t > 0 and w0 ∈ H, the differential dTt(w0) is given by

dTt(w0)h = v(t;w0, h) for all h ∈ H, (73)

where t 7→ v(t;w0, h) is the unique mild solution to (72) with initial data h.

Proof. Let τ > 0 and w0 ∈ H . It is clear that the mapping h 7→ v(τ ;w0, h) is linear; it is also continuous
by [21, Theorem 1.2, p.184]. First, since F is differentiable, the following Taylor formula holds:

F (a+ b)− F (a) = dF (a)b+R(a, b), ∀a, b ∈ H, (74)

with R(a, b) = o(‖b‖H) when ‖b‖H → 0 for fixed a ∈ H . Now, take a nonzero h ∈ H . Combining the
variation of the constant formula (65) with (74) leads to

Tt(w0 + h) − Ttw0 = Sth−

∫ t

0

St−sdF (Tsw0){Ts(w0 + h)− Tsw0}ds

−

∫ t

0

St−sR(Tsw0, Ts(w0 + h)− Tsw0) ds. (75)

Omitting the dependence on w0 and h for the moment, we write v(t) , v(t;w0, h) and R(t) , Tt(w0 +
h) − Ttw0 − v(t). Now, taking the difference between (75) and the integral identity satisfied by v as a
mild solution to (72), one obtains

R(t) =

∫ t

0

S(t−s)dF (Tsw0)R(s) ds−

∫ t

0

S(t−s)R(Tsw0, Ts(w0 + h) − Tsw0) ds (76)

holding for all 0 6 t 6 τ . Next, because dF is continuous on the compact set {Tsw0, 0 6 s 6 τ},
‖dF (Tsw0)‖L(H) is bounded by some m independent of h. Besides, ‖Ss‖L(H) 6 1 for all s > 0. Therefore,
it follows from (76) that for all 0 6 t 6 τ ,

‖R(t)‖H 6 m

∫ t

0

‖R(s)‖H ds+

∫ t

0

‖R(Tsw0, Ts(w0 + h)− Tsw0)‖H ds. (77)
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Using Grönwall’s inequality in its integral form, we deduce from (77) that

‖R(τ )‖H
‖h‖H

6 exp(mτ )

∫ τ

0

‖R(Tsw0, Ts(w0 + h) − Tsw0)‖H
‖h‖H

ds. (78)

To obtain the desired differentiability property, it suffices to show that the right-hand side of (78)
converges to 0 as ‖h‖H goes to 0. This is done using Lebegue’s dominated convergence theorem. Let
s ∈ [0, τ ]. By the contraction property of {Tt}, for any nonzero h ∈ H such that Ts(w0 + h) − Tsw0 is
nonzero, we have

‖R(Tsw0, Ts(w0 + h) − Tsw0)‖H
‖h‖H

6
‖R(Tsw0, Ts(w0 + h)− Tsw0)‖H

‖Ts(w0 + h)− Tsw0‖H
, (79)

and if Ts(w0 + h) − Tsw0 = 0, then R(Tsw0, Ts(w0 + h) − Tsw0) = 0. Either way, when ‖h‖H → 0,
‖Ts(w0 + h) − Tsw0‖H → 0, and by definition of the residual term R, the right-hand side of (79) must
converge to 0 as well. To conclude the proof, let us estimate the left-hand side of (79) uniformly with
respect to h. We observe that the set of all points Ts(w0 +h), 0 6 s 6 τ , ‖h‖H 6 1, is contained in some
open ball, on which F is K-Lipschitz continuous for some K > 0. Thus, using (74), one obtains that the
left-hand side of (79) is smaller than 2K.

We continue by establishing exponential decay of solutions to (72).

Lemma 4.6 (Stability of the linearized equation). Let w0 ∈ H. For any h ∈ H, the solution t 7→
v(t;w0, h) to (72) with initial data h satisfies

‖v(t;w0, h)‖H 6 exp(−αt)‖h‖H , ∀t > 0. (80)

Proof. Let w0 and h in H . Let τ > 0 and f , t 7→ dF (Ttw0)v(t) ∈ C([0, τ ],H). Then, pick sequences
{hn} ⊂ D(A) and {fn} ⊂ W 1,2(0, τ ;H) such that hn → h in H and fn → f in L2(0, τ ;H). For each
n, there exists a unique strong solution vn to dvn/dt + Avn + fn(t) = 0 satisfying the initial condition
vn(0) = hn. Furthermore,

1

2

d

dt
‖vn‖

2
H = −(Avn, vn)H − (fn, h)H a.e. on (0, τ ), (81)

and vn converges to v in C([0, τ ],H). Plugging (18) into (81) yields

1

2

d

dt
‖vn‖

2
H 6 −α‖vn‖

2
H + (dF (Ttw0)vn − fn, vn)H a.e. on (0, τ ). (82)

We deduce from (82) that for all 0 6 t 6 τ ,

‖vn(t)‖
2
H 6 exp(−2αt)‖hn‖

2
H +

1

2α

∫ τ

0

|(dF (Tsw0)vn(s)− fn(s), vn(s))H |ds. (83)

As n goes to +∞, the integral term in (83) tends to 0 and we obtain the desired result by passing to
the limit.

4.3.2 Proof of Theorem 3.4

Now that we have established that all objects in the statement of the theorem are well-defined, we can
give the proof of the result. Recall that CA−1 is a bounded linear operator. In view of the formula (66),
the desired properties of M and dM readily follow from those of the mappings w 7→

∫ +∞

0
F (Ttw) dt and

w 7→
∫ +∞

0
dF (Ttw)dTt(w) dt, which we investigate next.

Step 1: Differentiability. Let w0 ∈ H . It suffices to prove that

∫ +∞

0

‖F (Tt(w0 + h))− F (Ttw0)− dF (Ttw0)dTt(w0)h‖H
‖h‖H

dt → 0 (84)
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when ‖h‖H goes to 0. We use Lebesgue’s dominated convergence theorem. Since F and Tt are differen-
tiable, by the chain rule, the integrand in (84) converges to 0 pointwise. Let us now find some integrable
dominating function. As in the proof of Lemma 4.5, we can find some open ball where F is K-Lipschitz
and which contains the set of all Tt(w0 + h), ‖h‖H 6 1, t > 0. Thus, it follows from (3) and (80) that
the integrand in (84) is dominated by t 7→ 2K exp(−αt), which is integrable.

Step 2: Lipschitz continuity of the differential. Pick two elements w1 and w2 in H . We write
R , max{‖w1‖H , ‖w2‖H}. Subsequent estimates are motivated by the following decomposition:

dF (Ttw1)dTt(w1)− dF (Ttw2)dTt(w2)

= dF (Ttw1)[dTt(w1)− dTt(w2)] + [dF (Ttw1)− dF (Ttw2)]dTt(w2). (85)

First, Ttw1 and Ttw2 must remain in BH(0, R), where dF is, say, KR-Lipschitz continuous. Since
dF (0) = 0, for all t > 0 we have

‖dF (Ttw1)‖L(H) 6 KR‖Ttw1‖H 6 KR‖w1‖H . (86)

Now, let us estimate dTt(w1) − dTt(w2) in operator norm. Pick h ∈ H . In what follows, we denote by
v(t) the difference v(t) , dTt(w1)h−dTt(w2)h. Then, v(0) = 0 and v is a (mild) solution to the following
non-automonous equation:

dv

dt
+ Av + [dF (Ttw1)dTt(w1)− dF (Ttw2)dTt(w2)]h = 0, (87)

which can be rewritten as

dv

dt
+ Av + dF (Ttw1)v + [dF (Ttw1)− dF (Ttw2)]dTt(w2)h = 0. (88)

Justifications for the formal computations performed below are similar to those in the proof of Lemma 4.6;
they are omitted here. Taking the scalar product in H of (88) with v and using (18) along with Cauchy-
Schwarz and Young inequalities leads to

1

2

d

dt
‖v‖2H 6 −

α

2
‖v‖2H +

1

2α
‖[dF (Ttw1)− dF (Ttw2)]dTt(w2)‖

2
L(H)‖h‖

2
H . (89)

Since v(0) = 0, we deduce from (89) multiplied by exp(αt), (80) and (3) that

‖v(t)‖2H 6
K2

R exp(−αt)

3α2
‖w1 −w2‖

2
H‖h‖2H , ∀t > 0. (90)

We infer from (86) and (90) that

‖dF (Ttw1)[dTt(w1)− dTt(w2)]‖L(H) 6 mRK2
R exp(−αt/2)‖w1 − w2‖H (91)

for all t > 0, where m is some constant independent of R; on the other hand, coming back to the second
term of (85), we also have

‖[dF (Ttw1)− dF (Ttw2)]dTt(w2)‖L(H) 6 KR exp(−2αt)‖w1 − w2‖H . (92)

Thus, the desired local Lipschitz continuity is obtained by applying the triangular inequality to (85) and
integrating (91) and (92) over (0,+∞). Furthermore, if we assume that both F and dF are globally
Lipschitz continuous, then for some KF we can choose KR = KF independent of R and replace (86)
with ‖dF (Ttw1)‖L(H) 6 KF , thereby proving global Lipschitz continuity of the differential dM.

Step 3: Conclusion. At this point, it remains to check that our candidate M is a solution
to (7). It is clear that M(0) = 0. Take w0 in D(A) and consider the associated strong solution
w , t 7→ Ttw0 ∈ C(R+,D(A)) ∩ C1(R+,H) to (64). Then,

M(Ttw0)−M(w0)

t
= C

[

1

t

∫ t

0

Tsw0 ds

]

. (93)
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As w is continuous in D(A), the term t−1
∫ t

0
Tsw0 ds converges to w0 in D(A) when t approaches 0.

Thus, C being A-bounded, the difference quotient in (93) converges to Cw0 in Z. On the other hand,
since w ∈ C1(R+,H) and M ∈ C1(H,Z), by the chain rule, we have

d

dt
[M(Ttw0)] = −dM(Ttw0)A(Ttw0), ∀t > 0. (94)

Evaluating (94) at t = 0 yields dM(w0) + Cw0 = 0 by uniqueness of the limit.

5 Examples

We provide two examples for which our previous results apply. In what follows, we use standard notation
for real-valued Lebesgue and Sobolev spaces.

5.1 Sine-Gordon equation

Let ξ, γ, and L be positive constants. Let O be a non-empty open subset of Ω , (0, L). Consider the
following damped sine-Gordon equation with control acting on O and homogeneous Dirichlet boundary
conditions:

∂ttθ + ξ∂tθ − ∂xxθ + γ sin(θ) = 1O(x)u(x, t) in (0, L)× (0,+∞), (95a)

θ(0, t) = θ(L, t) = 0 for all t > 0. (95b)

In this example inspired by [26, Chapter IV], (95) may represent the voltage dynamics of the continuous
limit case for coupled Josephson junctions, with the control u being proportional to the applied current.
The uncontrolled dynamics generated by (95) are well-posed on the energy space H , H1

0 (Ω) × L2(Ω).
Using the state variable w = [θ, ∂tθ], we can recast (95) into a semilinear evolution problem on H as
in Section 3.3. Letting D(A) , [H2(Ω) ×H1

0 (Ω)] ∩H and U , L2(O), we define the unbounded linear
operator A, the input operator B, and the nonlinear mapping F by

A[θ, ζ] , [−ζ,−∂xxθ + ξζ + γθ] ∀[θ, ζ] ∈ D(A), (96a)

Bu = [0,1Ou] ∀u ∈ U, (96b)

F [θ, ζ] , [0, γ sin(θ)− γθ] ∀[θ, ζ] ∈ H. (96c)

As an output, consider the Neumann trace at, say, x = 0:

y(t) = Cw(t) = ∂xθ(0, t), (97)

which is modeled by an unbounded (but A-bounded) scalar-valued operator. That A−1 exists in L(H)
can be proved using Riesz representation theorem in H1

0 (Ω). Besides, F is in C1(H) and both F and dF
are globally Lipschitz continuous, dF being given by

dF (θ, ζ)[h1, h2] = [0, γ cos(θ)h1 − γh1], ∀[θ, ζ], [h1, h2] ∈ H. (98)

We equip H with a scalar product that is equivalent to the usual one:

([θ1, ζ1], [θ2, ζ2])H,ε ,

∫

Ω

∂xθ1∂xθ2 dx+

∫

Ω

(ζ1 + εθ1)(ζ2 + εθ2) dx (99)

where ε , min{ξ/4, λ1/(2ξ)}, with λ1 being the optimal Poincaré inequality constant. Then, after some
computations similar to [26, Section IV.1.2], we obtain

(Ah+ dF (θ, η)h, h)H,ε >
ε

2
‖h‖2H,ε − γλ1‖h‖

2
H,ε, ∀h ∈ D(A), ∀[θ, ζ] ∈ H. (100)

Therefore, Hypothesis 3.3 is satisfied as long as γ < ε/(2λ1). In that case, Theorem 3.4 provides a
suitable solution M to (7) with dM globally Lipschitz continuous, upon which a forwarding control
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law can be built for the output regulation problem. Since the range of CA−1B is non-zero4 and hence
R, Theorem 3.2 guarantees the existence of a locally exponentially stable equilibrium for the closed-
loop system with small reference and disturbance. Furthermore, following the discussion subsequent to
Theorem 3.2, the global coercivity condition (14) holds whenever ε/2(1 + λ1) > γ, in which case the
theorem provides a globally asymptotically stable equilibrium.

5.2 A pre-stabilized Wilson-Cowan equation

The following example is inspired by the study of neural fields (see for instance [4]). Let Ω be a bounded
domain in R

n and O be an open subset of Ω. Given a positive gain α, a kernel k ∈ L∞(Ω × Ω), and
a smooth scalar nonlinearity s that has bounded derivative and vanishes at 0, consider the following
non-local evolution equation:

∂tw(x, t) + αw(x, t) +

∫

Ω

k(x, ν)s(w(ν, t)) dν = 1O(x)u(x, t) on Ω× (0,+∞). (101)

We look at the (vector-valued) output given by

y(t) = Cw(t) = w|O(t). (102)

Having set H , L2(Ω), we define two mappings K and F on H by [Kw](x) , s′(0)
∫

Ω
k(x, ν)w(ν) dν and

[F (w)](x) ,
∫

Ω
k(x, ν){s(w(ν))−s′(0)w(ν)}dν for all w ∈ H . Then, K is a bounded linear operator, and

F is continuously differentiable with F and dF globally Lipschitz continuous. We also let A , αid +K
and Bu , 1Ou with U , L2(O). As an integral operator, K is compact; thus, 0 lies in the resolvent set
of A except for a bounded and countable set of values for α. Here, A is continuous; therefore, we can
choose Z , RangeA−1B, which as a closed subspace of H is a Hilbert space as well. By letting C , id,
the condition (21) is automatically satisfied. Furthermore, Z = H if and only if O = Ω. As for condition
(18), we have

(Ah+ dF (w)h, h)H > (α−Mk,s)‖h‖
2
H , ∀w, h ∈ H, (103)

where Mk,s ,
∫∫

Ω×Ω
|k(x, ν)s′(ν)|2 dxdν. Hypothesis 3.3 is satisfied whenever α > Mk,s, while global

uniform coercivity (14) holds provided that α > 2Mk,s.

6 Conclusions

We finish our article with some comments on our results. We wish to point out two notable byproducts
of our approach in terms of robustness.

In order to take into account nonlinear behavior of actuators (e.g., saturation) in the feedback loop,
one may investigate stability properties of (4)-(9) when a nonlinearity g is applied to the input u. This
is also relevant in applications where the control signal must satisfy some prescribed bound in norm (see
e.g. [17]). Consider a Lipschitz continuous map g that vanishes at 0 and is strongly monotone in some
neighborhood of 0. Then, the local (strict) contraction property of the [w, η]-dynamics is preserved.
This leaves room for a possible adaptation of Theorem 3.2 in the case of saturated or a priori bounded
control.

We also believe that our framework provides tools to analyse the behavior of the closed-loop (4)-
(9) under certain time-varying disturbances. Indeed, given [d0, yref ] as in Theorem 3.2, to which we
associate an equilibrium [w⋆, z⋆], consider a disturbance of the form d(t) = d0 + d1(t) with d1 small in
L2(0,+∞;H). It can then be deduced from (43) that the system (4)-(9) is incrementally input-to-state
stable in a neighborhood of [w⋆, z⋆], allowing us to quantify the deviation from equilibrium due to the
exogenous signal d1 in terms of its L2-norm.

Finally, putting aside the problem of output regulation and following [16,17], we might be interested
in stabilizing the cascade composed of the (actuated) w-subsystem and a more general z-subsystem

4Consider for instance the image by CA−1B of 1I where I is some segment contained in O.
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governed by dz/dt = Sz + Cw, where S is a skew-adjoint operator on Z. This would require to
investigate a nonlinear Sylvester equation of the form

dM(w)A(w) + SM(w) + Cw = 0, ∀w ∈ D(A). (104)

Under the condition that a sufficiently regular solution M to (104) exists, the Lyapunov analysis per-
formed in Section 2.2 remains valid, which is a good starting point for analysing stability of the new
closed-loop with control law given by (9).
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