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Abstract

The exact distance p-power of a graph G, denoted G'*!, is a graph on vertex set V(G) in which two vertices are adjacent if they
are at distance exactly p in G. Given integers k and p, we define f(k, p) to be the maximum possible order of a clique in the exact
distance p-powers of graphs with maximum degree k + 1. It is easily observed that f(k,2) < k*> + k + 1. We prove that equality
may only hold if a connected component of G is isomorphic to a member of the class P of incidence graphs of finite projective
k-geometries. (These famous combinatorial structures are known to exist when £ is a prime power, and are conjectured not to exist
for other values of k.) We then study the case of graphs of maximum degree k + 1 with clique number k> + k. One way to obtain
such a graph is to remove a vertex from a graph in #;; we call #; the class of all such resulting graphs. We prove that for any graph
G of maximum degree k + 1 whose exact square has a (k> + k)-clique, either G has a subgraph isomorphic to a graph in P, ora
connected component of G is a (k + 1)-regular bipartite graph of order 2(k> + k). We call O, the class of such bipartite graphs, and
study their structural properties. These properties imply that (if they exist) the graphs in O, must be highly symmetric. Using this
structural information, we show that O, contains only one graph, known as the Franklin graph. We then show that O; also consists
of a single graph, which we build. Furthermore, we show that O, and Os are empty.

For general values of p, we prove that f(k, p) < (k + 1)k'”’2) + 1, and that the bound is tight for every odd integer p > 3. This
implies that f(k,2) = f(k,3) whenever there exists a finite projective k-geometry, however, in such a case, the bound of f(k, 3)
could also be reached by highly symmetric graphs built from a finite k-geometry, which is not the case for other values of k.
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1. Introduction

In this paper, we study exact distance powers of graphs, and more precisely, we focus on the structure and possible
sizes of their maximum cliques. Graphs considered here are finite, without loops and multiple edges. Given a graph
G, we denote G!*) the exact distance p-power of G, that is, the graph obtained by taking the vertices of G and adding
an edge between any two distinct vertices at distance exactly p. For p = 2, we call G¥! the exact square of G. The
graph G'*7! is a subgraph of the usual distance p-power G” of G (in which any two distinct vertices at distance ar most
p in G are joined by an edge), which is a classic and well-studied notion. Thus, exact distance powers can be seen as
refinements of usual graph powers. Although exact distance powers have not been studied much, as we will see, they
give rise to many interesting problems, with deep connections to other parts of mathematics.

The concept of exact distance powers of graphs is a special case of exact distance graphs arising from metric
spaces [13], which appears in many contexts. In particular, it is the object of the famous Hadwiger-Nelson problem
of “coloring the plane” [8, 9]. One of the first explicit definitions of the concept of exact distance powers of graphs
is due to Simi¢ [16], who studied graphs which had an exact distance power isomorphic to their line graph. Among
recent studies of the subject, one may refer to [2], which is about the search for graphs that are isomorphic to their
exact square, or to [4], which is about the structure of exact distance powers of products of graphs. The notion of exact
distance powers also appears in the context of the theory of sparse graphs, see the book [14, Section 11.9]. Following
this line of work, the chromatic number of exact distance powers of graphs in various graph classes has been studied
in several papers, see [3, 6, 11, 13, 15].

The main focus of this work is on the maximum possible clique number of the exact distance power of graphs of
given maximum degree. We denote by w(G) the clique number of a graph G. Bounds on the clique number of usual
powers of graphs have been the subject of many studies. In particular, it is easily observed that the usual square of a
graph of maximum degree d has clique number at most d” + 1. It is a well-known result of Hoffman and Singleton [12]
that the bound can be achieved only for d € {2, 3,7, 57} and while there are unique examples for d = 2, 3, 7, it remains
an open question whether such a graph exists for d = 57. Our work, however, suggests that the notion of exact distance
power is perhaps a better fit to the study of cliques. It leads to the discovery of highly symmetric graphs and provides
strong connections to other areas of mathematics, such as finite geometries, geometrical configurations, Latin squares
and orthogonal arrays. More precisely we ask the following.

What is the maximum possible clique number f(k, p) among exact p-distance powers of graphs with maximum
degree k + 1?7

Noticing that the maximum degree of G is at most d(d — 1)P~! (where d = k + 1 is the maximum degree of G),
it is clear that f(k, p) < (k+ DkP~! + 1.

Before answering the above question we give the following two definitions. A finite projective k-geometry is a
combinatorial structure that consists of a finite set of points and a finite set of lines where each line contains exactly
k+1 points, any pair of lines intersect in exactly one point and any pair of points belong to a unique line. The incidence
graph of a finite projective k-geometry is a bipartite graph where one part consists of all the points and the other part
consists of all the lines. A point is adjacent to a line if it belongs to it. The class of incidence graphs of all finite
projective k-geometries is denoted by P.

We first focus on the case p = 2 and show in Section 2 that f(k,2) = k*> + k + 1 if and only if there exists a finite
projective k-geometry. More precisely, w(G'#') = k% +k+1 if and only if a connected component of G is isomorphic to
some graph in $%. In that case, the exact square of this component results in the disjoint union of two complete graphs,
each of order k*> + k + 1. Note that finite projective k-geometries are highly regular structures, and it is a prominent
open problem to determine for which integers k they exist. There are a number of classical constructions based on
finite fields, thus for those values of k which are prime powers. It is conjectured that there does not exist one for other
values of k. Currently, kK = 12 is the smallest open case of this conjecture [5].

In Section 3, we turn our attention to cliques in exact squares having size k> + k (that is, one less than the trivial
upper bound). The removal of a vertex from a finite projective k-geometry gives a graph with a clique of size k> + k.
We define #; as the class of all such graphs (graphs formed by deleting a vertex from the incidence graph of a finite
projective k-geometry). We provide two other interesting constructions, that do not come from finite projective k-
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geometries, for the cases where k = 2,3 with clique sizes 6 and 12, respectively. For k = 2 this is the Franklin graph,
and for £ = 3 the construction is obtained by doubling the Franklin graph in a certain way. Moreover, we show that
for the cases k = 2,3, these are the only examples. This is done by exploring the (highly constrained) structure of
potential examples for general values of k. Using these structural properties, we further prove that for k = 4,5, no
such alternative constructions exist (besides those arising from finite projective k-geometries). This could indicate that
the two constructions for k = 2, 3 are exceptional small cases, and that f(k,2) < k* + k whenever no finite projective
k-geometry exists.

In Section 4, we turn our attention to powers for larger distances. We show that f(k, p) < (k + DkP/21 + 1, which
is tight for every odd p > 3. Interestingly, this implies that f(k,2) = f(k,3) whenever there exists a finite projective
k-geometry.

We conclude in Section 5.

Notation. The open neighbourhood of a vertex v is denoted N(v) and the k" neighbourhood, that is the set of vertices
at distance exactly k from v, is denoted Ny (v). For a set S of vertices, N(S) := {u ¢ S|u is a neighbour of some v € S}.
The degree of v is denoted d(v). The S -degree of v, denoted dg (v), is the number of neighbours of v in set S.

2. Cliques of order k> + k + 1 in exact squares of graphs of maximum degree k + 1, and finite projective
k-geometries

It follows by a simple counting argument that a finite projective k-geometry must have exactly k> + k + 1 points and
the same number of lines. Moreover there is a symmetry between points and lines, indeed any two points must belong
to a unique common line. Examples of finite projective k-geometries when k is a prime power are known. Perhaps the
most important conjecture of finite geometry states that for other values of k (i.e., when & is not a prime power), there
is no finite projective k-geometry [5].

We will now see that there is a strong connection between cliques in exact squares and finite projective k-
geometries. The idea of the proof is similar to the ones in [10, Theorem 16] and [1, Section 3] which deal with
related topics of injective chromatic number and usual graph powers, respectively.

Theorem 2.1. If G is a graph of maximum degree k + 1, then w(G'¥') < k> + k + 1. Moreover, equality holds only if a
connected component of G is isomorphic to a graph in the class Py.

Proof. Let G be a graph of maximum degree at most k + 1. Let K be a clique of maximum order in G'*?!, and let u
be a vertex of K. Then, all other vertices of K are in N»(u), however |[N,(u)| < k> + k. This proves the first part of the
statement.

Suppose equality holds for G, and observe that if |[N,(u)| = k* + k, then: (i) u and all its neighbours are of degree
exactly k + 1, (ii) any two distinct neighbours of # in G have exactly one common neighbour, which is u (each must
contribute k distinct vertices to Na(u)). By the definition of an exact square, K must induce an independent set in G.
Applying properties (i) and (ii) to every other vertex of K, we conclude that G is a bipartite (k + 1)-regular graph.

It remains to show that this graph is isomorphic to the incidence graph of a finite projective k-geometry. Consider
the finite geometry built as follows: the points of the geometry are the vertices of K, and for each neighbour x of a
vertex u of K, we define the line L, as the set of all k£ + 1 neighbours of x. Note that if any two lines intersect, they
can only intersect once by Property (ii). Thus, to show that our points and lines form a finite projective geometry, it
remains only to prove that any two lines intersect.

To see this, consider two lines L, and L,. Let u be a neighbour of x and v be a neighbour of y (in G). Recall that the
k + 1 neighbours y, y1, y2, ...,y of vform k + 1 lines, any pair of which has only v as a common point. If L, does not
intersect Ly, then, by the pigeonhole principle, it must intersect one of Ly, L,, ..., L, at least in two points, but this
contradicts Property (ii).

Conversely, the clique number of the exact square of any incidence graph of a projective k-geometry is k> + k + 1,
in fact the exact square of any such graph consists of two cliques of size k> + k + 1, since any two lines intersect and
any two points belong to a common line. O

P

By Brook’s theorem, Theorem 2.1 implies that the chromatic number of G¥! is at most k> + k (where G has
maximum degree k + 1), unless when a component of G is isomorphic to the incidence graph of a finite projective
k-geometry (then it is exactly k> + k + 1).
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3. Cliques of order k* + k in exact squares of graphs of maximum degree k + 1

In this section, we show that there are two possible types of graphs of maximum degree k + 1 whose exact square
has a clique of order k> + k. The first type is essentially obtained from a projective k-geometry by removing a vertex.
Those of the second type are graphs that are essentially (k + 1)-regular bipartite graphs. The existence of this second
type of graphs for a given k is the main subject of study in this work.

Lemma 3.1. Let G be a graph of maximum degree k+1 and assume a set K of k* + k vertices induces a clique in G,
Then the bipartite graph with vertex set K U N(K) and whose edge set is the set of all edges incident with a vertex of
K is either:

1. isomorphic to a graph in P, or
2. a (k + 1)-regular bipartite subgraph of G (and thus a component). Morover, in this case, for each vertex x of K
there is a unique vertex c(x) in K (called its cousin), such that x and c(x) have exactly two common neighbours.

Proof. By analogy with finite projective geometries, the vertices of K and L = N(K) will be called points and lines,
respectively.

Let x be any point of K and let £y, >, ..., {4 be the neighbours of x. As each vertex ¢; is adjacent to at most k
other points of K, and as there are k* + k — 1 such other points in K, we must have that d(x) = k + 1. For the same
reason, only one of the £;’s can be of K-degree k.

Now, let by,b,,...,b, (r = 0) be the lines in L which are of K-degree k (thus by the previous paragraph, the
other lines are of K-degree k + 1). Observe that no pair of b;’s has a common neighbour in K, since by the previous
paragraph, for each neighbour x of b;, x has b; as its unique neighbour of K-degree k. Thus, the points of K can be
partitioned into r sets, each of size k (the sets N(b;) N K), and a last set of size k> + k — rk. This implies that r is at
most k + 1.

Case a: r = k + 1. We show that this case corresponds to the first case of the statement. We restrict G to K and L and
remove edges inside L (note that K remains a clique in the exact square of the new graph). Then, we add a new vertex
u joined by an edge to all the lines of K-degree k. Then, u is at distance 2 from all the points of K, thus K U {u} forms
a clique of order k> + k + 1 in the new graph, whose maximum degree remains k + 1. By Theorem 2.1, this new graph
must be the incidence graph of a finite projective k-geometry, and we are indeed in the first case.

Case b: r < k + 1. We will show that the second case of the statement holds.

Note that (by the first two paragraphs of the proof), there are exactly k> + k — rk > 0 points in K that have no
neighbour of L with K-degree k. Consider such a point, and name it «. Since all neighbours of u are of K-degree k+ 1,
and there are only k> + k — 1 points in K other than u, there has to be a unique pair £; and ¢, of neighbours of u which
have another common neighbour in K: call it u’, the cousin of u. Observe that u uniquely determines #’ and that this
relation is symmetric: »” must also have k + 1 neighbours, each of K-degree k + 1, so u is the cousin of ’. Thus, overall
there are exactly kz’f% pairs of cousins.

We now count the total number of pairs of points of K in two ways:

e On one hand, since K has order k2 + k, we have a total of (k22+ k) pairs.

e On the other hand, each vertex £ of L contributes to counting (dkz(f)) pairs of points of K, where overall there
Ptk—rk

will be exactly =

repetitions.

Let £ be the number of lines. Counting the pairs in K as above, we have

k k1) Kak-rk (R+k
el 3) = 0)

Simplifying this identity, we have (k + 1)(€ — (k> + k)) = r. As r is an integer between 1 and k + 1, and as from
this equation it must be divisible by k + 1, we conclude that » = 0. This implies that £ = k> + k, G is bipartite and
(k + 1)-regular, and that K can be partitioned into pairs of cousins. Thus, the second point of the statement holds. [
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The first case of Lemma 3.1 is about the classic problem of the existence of finite projective k-geometries (but then,
we know by Theorem 2.1 that we actually have f(k,2) = k*> + k + 1). The class of all graphs coming from the second
case is denoted O,. Note that any graph G in Oy is a bipartite graph, with partite sets, say, (K, L). By analogy with
finite geometries, we call vertices of K, points and vertices of L, lines. This will lead to the introduction of highly
symmetric structures, perhaps so structured that they do not exist unless k = 2 or 3. The study of this case is the main
focus of this work.

Thus, for the next lemmas, we will work with a graph G of maximum degree k + 1 having a clique K of maximum
size k> + k in its exact square, and we assume that the second point of Lemma 3.1 holds for G. Recall that then, by
Lemma 3.1, each point x of K has a unique cousin x" in K.

Lemma 3.2. Any two lines of a graph G in Oy have a common neighbour.

Proof. Consider any line /. We first show that [ sees both vertices of a unique pair of cousin points. If / is not adjacent
to any pair of cousins, every neighbour of [ is adjacent to k other lines, and all these lines are distinct. This gives a
total of (k + 1)k + 1 lines, contradicting Lemma 3.1 (there are only k* + k lines). So, [ sees a pair of cousins. There
are L;k pairs of cousins in K, and by Lemma 3.1 the vertices of each cousin pair have exactly two lines as common
neighbours. Since by Lemma 3.1 there are only k> + k lines, every line can only see one pair of cousins. Thus [ sees
exactly one pair of cousins (say {x, x'}), as claimed.

Any line seeing a vertex of R = N(I) \ {x, x'} does not see any other vertex of N(I). So, [ is at distance 2 of (k — 1)k
lines through the vertices of R, and 2(k — 1) lines through x and x’. This makes a total of k> + k — 1 distinct lines, that
is, all the lines, and the claim is proved. O

Lemma 3.2 implies that the points and lines are in fact interchangeable: indeed L also is a clique of size k> + k in
the exact square of G, and so G¥! is isomorphic to two copies of the complete graph Kja... (This is reminiscent of
finite projective k-geometries, which also enjoy this symmetry.) Hence, all the properties described until now for the
points, are valid for the lines; in particular, by Lemma 3.1, every line / has a unique cousin I’. This implies that the
two common neighbours of any pair of cousins are themselves cousins. We can now prove the following (which thus
holds when x, x” are cousin points or cousin lines, thus we do not make the distinction, although we use the notation
for points).

Lemma 3.3. Let {x, X'} be a pair of cousins in a graph G in Oy. For every neighbour | of x, the cousin I’ of l is a
neighbour of x'.

Proof. Let a,a’ be the two common neighbours of x and x’, and let / be some neighbour of x. We wish to prove that
the cousin I’ of [ is adjacent to x’. If [ € {a,a’} (say [ = a), we are done, since then I’ = @’ is the second common
neighbour of x and x’. Thus, assume that / is not adjacent to x". Let A = N(J) \ {x} and let B = N(x’) \ {a,a’}. Since
x" and all vertices of A are in K, x’" must have a common neighbour with each of them. This common neighbour
cannot be a or @', since otherwise x would have two cousins, contradicting Lemma 3.1. Hence, every vertex of A has
a neighbour in B. But since |B| < |A|, by the pigeonhole principle, there is a vertex in B that has two neighbours in A.
Thus, this vertex is the cousin [’ of [ and is a neighbour of x’, as claimed. O

By the structural properties of the graphs in Oy proved so far, we can see that for any graph G in O, V(G)
can be partitioned into vertex-disjoint 4-cycles (each composed of one pair of cousin points and one pair of cousin
lines). There is no other 4-cycle in G, since any two cousins have just two common neighbours. By Lemma 3.3, the
adjacencies of cousins are in a way parallel, we can thus reduce the graph G by introducing the following construction,
without losing much information. We denote by C(K) and C(L) the sets of cousin pairs in K and L, respectively.

Definition 3.4. For any graph G in O, let G’ be the bipartite graph with partite sets C(K), C(L) obtained from G by
identifying every pair of cousins as a single vertex. We define O, := {G" | G € O}.

1 /
We now prove some properties of O;.

Lemma 3.5. Let G be a graph in Oy. Then G’ is k-regular and has a perfect matching ¢ : K — L whose edges x¢(x)
correspond to the 4-cycles of G. Moreover, any two vertices in the same part of G either have exactly one common
neighbour (this common neighbour is matched by ¢ to one of the two vertices), or exactly two common neighbours
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(and none of these common neighbours is matched by ¢ to any of these two vertices). In particular, there is no K3
inG'.

Proof. The first part of the statement follows directly from the definition of G’ and from Lemma 3.3.

Then, consider two vertices, say x and y, in the same part of G’, say C(K), and let P(x) and P(y) be the pairs of
cousins of K corresponding to x and y. Clearly, x and y must have a common neighbour, for otherwise the vertices in
P(x) would not have a common neighbour with those of P(y) in G. Suppose first that ¢(x) is their common neighbour.
If x and y had another common neighbour, this would imply that the vertices of P(x) have two common neighbours
with the vertices of P(y), a contradiction to Lemma 3.1. Assume thus that x and y have a common neighbour z and
z & {¢(x),o(y)}. Then, one can see that only two of the pairs in P(x) X P(y) have a common neighbour in G, a
contradiction. Moreover, if x and y had more than two common neighbours, this would imply the existence of a pair
in P(x) X P(y) having two common neighbours in G, a contradiction too. O

Note that given G” € O, the original graph G € O is not uniquely determined. Indeed, for an edge x/ of G’ that is
not in the matching ¢, it is not clear which were the two edges in G connecting the two pairs of cousins corresponding
to x and /. However, the construction will still be enough for the purposes of our proofs.

3.1. Characterizations for k = 2,3,4,5

We now characterize graphs having maximum degree k + 1 with their exact square having clique number k> + k,
when k < 5. The first case involves the Franklin graph [7] (Fig. 1a) and the subgraph of the Heawood graph (Fig. 1b).

Theorem 3.6. Let G be a subcubic graph with w(G"¥21) = 6. Then either G is isomorphic to the Franklin graph, (that
is Oy has only one graph that is the Franklin graph), or G has a subgraph isomorphic to the Heawood graph with one
vertex deleted (that is, in P).

Proof. By Lemma 3.1, either G is in #}, or G is a cubic graph with specific properties. In the former case, it is known
that G must be the Heawood graph with a vertex deleted (there is only one finite projective 2-geometry, the Fano
plane, whose incidence graph is the Heawood graph [5]).

In the latter case, by the results in Section 3, we can consider the corresponding graph G’ € O/, defined in Defi-
nition 3.4. We know that any graph in O) is 2-regular, bipartite, and has order 6; thus, it must be a 6-cycle. One can
now reconstruct the original graph G; even though the three edges that are not in the matching ¢ give room to several
graphs, they are all isomorphic to the Franklin graph. O

(a) The Franklin graph, in O, (b) The Heawood graph with one vertex deleted, in #}

Figure 1: Two subcubic graphs whose exact squares have clique number 6.

We can obtain next graph of interest by “doubling” the Franklin graph in the following way: we make two copies
H, and H, of the Franklin graph, and for each edge xy of the Franklin graph that is not in a 4-cycle, we connect the
copy of x in H either to the copy of y in H;, or to the copy of its cousin y’ in H, in a certain way (see Fig. 2). Using
the structural properties from Section 3, we can also prove the following theorem.
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Theorem 3.7. Let G be a graph with maximum degree 4 and w(G¥) = 12. Then either G is isomorphic to the graph
from Fig. 2, or G has a subgraph isomorphic to the incidence graph of a finite projective 3-geometry with one vertex
deleted, (that is, in P}). That is the graph mentioned in Fig. 2 is the only graph in Os.

Proof. By Lemma 3.1, if G has no subgraph isomorphic to the incidence graph of a finite projective 3-geometry with
one vertex deleted, we can use the results of Section 3. However, we will not use Definition 3.4, as we lose some
information when reducing the graph, and here we need to be more precise.

By the results in Section 3, G is a connected 4-regular bipartite graph, with bipartition (K, L), where K = {x;, x]|1 <
i <6}, L ={[]l <i< 6}. We assume that the pairs {x;, x} and {/;, [/} are the cousin pairs, and that for each
ief{l,...,6}, x;l;xl} is a 4-cycle.

Without loss of generality, we assume that the two neighbours of x; besides /; and /] are [, and /5. Lemma 3.3
implies that [}, [} are neighbours of x|. Moreover, /; must have two neighbours other than x; and xj. None of them
is xz, as otherwise x; and x, would be cousins. Similarly, we can show that x}, x3, x; are non-neighbours of /;.
Without loss of generality, we may assume that x4 and x5 are the other neighbours of /. By Lemma 3.3, x} and x; are
neighbours of /.

Now, since L is a clique in sz], then l’z, [3 have a common neighbour. This common neighbour is not x;, as
otherwise x; and x, would be cousins. Similarly, we can show that this common neighbour is different from x’z, X3,
x’3, X4, x:‘, X5, x’s. So, one of xg and x’6 is a common neighbour of [, and l’3. Similarly, we can show that either /s or l’6 is
a common neighbour of x4 and xZ. Without loss of generality, we may assume that x¢ is the common neighbour of
and I5; I is a common neighbour of x4, x;. By Lemma 3.3, I, lg are neighbours of xg and x}, x5 are neighbours of lg.

Again, since L is a clique in GWJ, vertices [, and /4 must have a common neighbour. The neighbours of [, are
X1, X2, x5 and x. Because of the degree of x; and xs, €ither x; or X} is a neighbour of /4. Again both of them are not
neighbours of Iy, otherwise /; is a cousin of /4. Hence, |[N(l3) N {x2, x}}| = 1. Similarly, we can show that |[N(l4) N
{3, x50 = 1 = INWY N {xa, X33 = INW N {xs, X33 = INUs) 0 {x, 53 = INUs) N {xs, x5 = INUG) N {xg, x5} =
IN(5) N {x3, x5}|. Again, x, and x3 have a common neighbour, and x, and x} also have a common neighbour. Without
loss of generality, we may assume that x4, x3l4, xglg, x3l5 are edges of G. Thus, by Lemma 3.3, x31}, x}1, x}1s, x;lg
are also edges of G. Since L is a clique in G¥!, [; and s have a common neighbour. Again [, and I have a common
neighbour. Hence one of the vertices x4 or xs is a neighbour of /s and other is a neighbour of [;. Without loss of
generality, we assume that x5 is a neighbour of /g and x4 is a neighbour of I¢. Hence /i x5 and lx) are two edges. We
have obtained the graph of Fig. 2. O

It seems unlikely that the doubling construction used to create the graph of Fig. 2 from the Franklin graph H can
be extended. Indeed the cases of k = 2,3 are special since for k = 2 we have 20k + k) = (k+ 1)? + (k + 1). We now
show that for k = 4, 5 the only constructions are the ones arising from finite projective k-geometries.

Theorem 3.8. Let G be a graph of maximum degree 5 with w(G'"') = 20. Then, G has a subgraph isomorphic to the
incidence graph of a finite projective 4-geometry with one vertex deleted (that is, in ).

Proof. Assume by contradiction that G has no subgraph isomorphic to a graph in #;. Then, by Lemma 3.1 and the
results in Section 3, we may consider the 4-regular graph G’ of order 20 from Definition 3.4. Let x be any vertex of
G’. Let 1, 2 and 3 be the three neighbours of x other than ¢(x). Since none of the edges 1x, 2x and 3x are matched
by ¢, by Lemma 3.5, any two of these three vertices must have exactly two common neighbours, so each pair needs a
common neighbour besides x. For two of these vertices i and j, we denote by i; their second common neighbour. Any
two of these three new vertices, say 12 and 13, have a common neighbour (here, 1) and 1 ¢ {¢(12), ¢(13)}. Thus, again
by Lemma 3.5, 12 and 13 have a second common neighbour. It follows that 12, 13 and 23 (since each of them has
degree 3 when not considering the edges matched by ¢), have a single common neighbour, let us call it 123. Consider
the connected component containing x in the cubic graph G” obtained from G’ by deleting all edges matched by ¢.
This component is thus isomorphic to the hypercube of dimension 3. Repeating the same arguments, we obtain that
all connected components of G” must have eight vertices, thus the order of G’ must be divisible by 8, a contradiction
since it is 20. This completes the proof. O

Similar, but more involved arguments lead to the following.
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Figure 2: Doubling the Franklin graph: a 4-regular graph G with w(G#2) = 12.

Theorem 3.9. Let G be a graph of maximum degree 6 with w(G¥') = 30. Then, G has a subgraph isomorphic to the
incidence graph of a finite projective 5-geometry with one vertex deleted (that is, in ).

Proof. Assume by contradiction that G has no subgraph isomorphic to the incidence graph of a finite projective
5-geometry with one vertex deleted. Then, using Section 3, we consider the 5-regular graph G’ of order 30 from
Definition 3.4. Let x be any vertex of G’. Let us call 1, 2, 3,4 the four neighbours of x other than ¢(x). By Lemma 3.5,
any two of these four vertices must have exactly two common neighbours, so each pair needs a common neighbour
besides x. For two of these vertices i and j, we denote by ij their second common neighbour. By similar arguments,
we also deduce that 12 and 13 need a common neighbour besides 1, let us name it . Similarly, 12 and 14 also have
a common neighbour besides 1, say v. Note that u # v since otherwise there would be a K>3 in G’, contradicting
Lemma 3.5. We distinguish two cases following Lemma 3.5.

Case 1: 12 and 34 have only one common neighbour. (By Lemma 3.5, this means that this common neighbour is
matched to one of them by ¢.) Note that 12 and 23 have another common neighbour besides 2, which must be u or
v; without loss of generality, we can assume that it is u. Similarly, we can assume that v is adjacent to 24. Since 13
and 14 have 1 as a common neighbour through, they have another common neighbour, say w. Now, 14 and 34 also
need another common neighbour, which must be w. By similar arguments, 23, 24 and 34 have a common neighbour,
which must be a single vertex, say ¢. Finally, u, v, w, t need a common neighbour, which is also a single vertex. The
connected component containing x obtained from G’ by removing the edges matched by ¢ is now 4-regular, so no
other non-matched edge exists in it. But then, the unique common neighbour of 12 and 34 must be u, v, ¢ or w, which
in each case creates a K> 3, contradicting Lemma 3.5.

Case 2: 12 and 34 have two common neighbours. Note that 1 and v must have a second common neighbour with
3 and 4, respectively, and at least a common neighbour with both of them. A rapid case analysis implies (considering
the symmetries of the construction so far) that without loss of generality, we can assume that u# has two neighbours
among 23, 24, 34 and that v has one neighbour among them: say, u is adjacent to 24 and 34, and v, to 23. But then, we
also need v to be adjacent to 34 so that v and 4 have a second common neighbour. Now, any two of 13, 14, 23, 24 need
a second common neighbour, and so far, three of their four non-¢-matched neighbours are fixed. So, they must all
have a single common neighbour, say w. The connected component containing x in the 4-regular graph G” obtained
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from G’ by removing the edges of the ¢-matching is now fixed by the previous discussion, and is order is 14. By the
same arguments, this holds for all connected components of G”. But since 14 does not divide 30, this is impossible
and gives a contradiction. O

4. The case of exact powers for larger distances

We now turn our attention to exact distance powers for larger distances. As we will show, for odd values of
the distance p, f(k, p) seems much easier to settle than for even values. Moreover, interestingly, f(k,3) = f(k,2)
(whenever there exists a finite projective k-geometry).

Theorem 4.1. Let k, p > 2 be two integers. If G is a graph of maximum degree k + 1, then w(G#)) < (k + kP2 + 1,
and moreover this bound is tight for every odd integer p. In particular, f(k,3) = k> + k + 1.

Proof. Let x be a vertex of a clique K of G#1. There can be at most (k + 1)k'?/2) vertices at distance | p/2] + 1 of x.
Let N be the set of these vertices. Each vertex in K \ {x} is at distance p — (| p/2]+ 1) = [p/2] -1 of some vertex in N.
However, there cannot be two vertices of K both at distance [p/27] — 1 of a same vertex in N, as otherwise they would
be at distance less than p from each other. Thus, there are at most (k + 1)k?/?) vertices in K \ {x}, and the bound is
proved.

We now show that the bound is tight for every £ > 2 and odd p > 3 using the following construction. Let
t = (k + DKP/?) + 1 be the size of the clique we wish to construct, and consider a complete graph K; of order . Let
s = (k + 1)kP/21=1 We iteratively perform the following process on every vertex v of K;:

o delete the edges incident to v and replace v with a set S, of s vertices
e make each of the s vertices of S, adjacent to (# — 1)/s = k vertices of the original neighbours of v such that the
s sets of neighbours are pairwise disjoint.

Once all vertices of K, are processed, we have the property that any two sets S, and S, are connected by an edge, and
the resulting graph is k-regular. Now, we create a copy K of V(K;) (K is an independent set), and for each copy of a
vertex x of K;, we create a complete (k + 1)-ary tree T, of height | p/2] (with the root x of degree k + 1). This tree
has s leaves, and we identify each leaf of the tree with a distinct vertex of S , resulting in a (k + 1)-regular graph. The
vertices of K are all mutually at distance p, and so they form a clique of size (k + k1?2 + 1 in GI#7). O

5. Concluding remarks

We have seen that the question whether f(k,2) = k> + k + 1 is equivalent to the one whether there exists a finite
projective k-geometry. On the other hand, we have shown that cliques of size k> + k that do not come from such a
structure exist for k = 2,3 and do not exist for k = 4, 5. Perhaps they also do not exist for greater values of k. In that
case, there would be a “gap” in the values taken by f(k,2): either k> + k + 1, or less than k*> + k. If they do exist,
however, they would have to arise from highly symmetric graphs. Both these outcomes would be very interesting. If it
is true that f(k,2) < k* + k whenever no finite projective k-geometry exists, then this behaviour would be reminiscent
of a similar fact in the theory of Latin squares. Indeed, it is a well-known fact that the maximum number of mutual
orthogonal Latin squares of order n is n — 1, which is reached if and only if there exists a finite projective n-geometry.
Moreover, when this is not the case, it is known that this number is less than n — 2 (indeed it is known that n — 2 such
Latin squares imply the existence of an (n — 1)-th one), see [5].

The best general upper bound for f(k, p) for both p = 2,3 is k> + k + 1. But for f(k,2) to reach the upper bound,
there must exist a finite projective k-geometry, while f(k, 3) always reaches it. So at first glance, there seems to be a
contrast between f(k,2) and f(k, 3). However, there exists a stronger connection. If in the proof of the second part of
Theorem 4.1, after processing Kj2,;,1, we want the vertices of the newly constructed graph to be partitionable into
k> +k+ 1 cliques, then this is only possible if a finite projective k-geometry exists. In other words, for p = 2 all cliques
of high order must be highly symmetric and for p = 3, while cliques of large order always exist, to have ones in highly
symmetric graphs, we are still dependent on the existence of a finite projective k-geometry.
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