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Motivated by observations of heterogeneous domain structure on the surface of cells and vesicles and by domain forma-
tion due to the adsorption of complex molecules onto composite membranes, we consider a minimal quasi 2D-model
to describe the structure of binary mixtures on the surface of a spherical particle. We study the effect of miscibility
and adsorbing particle (AP) addition on the mixture structure. We define a new scalar quantity, the geodesic mixing
parameter Ξ, through which we detail the effect of miscibility and the role of preferential affinity of APs with one of
the two components of the mixture, distinguishing unambiguously between mixing and demixing solely induced by
APs. Finally, by inspecting the distributions of void sizes, we show how void formation is ruled by miscibility and
AP-mixture interactions, which control the transition from exponentially-tailed to fat-tailed distributions.a

I. INTRODUCTION

The investigation of the equilibrium properties of parti-
cles whose motion is confined to curved surfaces is surely
challenging, but it is essential to achieve a satisfactory un-
derstanding of processes such as the lateral diffusion of pro-
teins in membranes1–3, the controlled synthesis of colloidal
aggregates4, and demixing in lipid bilayers5–7. Confining par-
ticles to the surface of a sphere introduces several constraints
to their placement that are absent in Euclidean (flat) space.
Both the curvature and the topology of the sphere play a role in
the way particles can be arranged on it—most prominently, no
regular lattice can be fit onto its surface, as the topology of the
sphere requires the presence of 12 pentagonal disclinations8,
and introduces structural defects characterizing glassy fluids
at large area fractions9. The compactness of the sphere also
requires a careful treatment: instead of the straightforward
thermodynamic limit, configurations of finite (small) numbers
of particles become more relevant, and both the number of
particles and the size of the sphere need to be considered as
two independent parameters10. Among all possible spheri-
cal systems, multicomponent mixtures are of particular im-
portance since they represent the class of systems including
biological membranes in which the self-organisation of lipids
into different domains is critical for many cell properties such
as recognition, signalling, or endocytosis and exocytosis11.
Demixing and segregation in bulk systems can proceed via
a number of distinct physical mechanisms (such as spinodal
decomposition and nucleation), and it is generally well un-
derstood. However, the impact of spatial confinement and
the interaction with external agents on the structure of mul-
ticomponent mixtures are less clear. Confinement can arise
from the presence of external fields, produced, for example,
by substrates or random obstacles, but they can also be im-
posed by the geometry of the embedding space. The latter

a)The following article has been accepted by The Journal of
Chemical Physics. After it is published, it will be found at
https://aip.scitation.org/journal/jcp

type of confinement is particularly relevant to biological cells,
for which the mobile fluid particles constituting the cell mem-
brane are constrained to lie on the surface of a quasi-spherical
body. This has boosted the interest for a deep understand-
ing of multiphase fluids on smooth manifolds, especially on
spheres and spheroids, and so in the past 2 decades many
numerical studies have been focused on the particular prob-
lem of the phase separation of binary systems on surfaces
and its dependence on the surface curvature.12–15 Biological
membranes are indeed described as a quasi two- dimensional
fluids16,17 in which the different constituents flow within the
membrane manifold, being still partially free to move orthog-
onally to the membrane tangent plane and coupled to a less
viscous three-dimensional surrounding medium. They exhibit
very often stable domains, whose spatial distribution is impor-
tant for many cell properties18,19. One common view is that
the domains on the surface of a cell are a consequence of an
arrested or incomplete phase separation, however it remains
to be established whether the observed states are permanent or
metastable in character. If the heterogeneous domain structure
on the cell surface is an equilibrium state, then some stabiliz-
ing mechanism is required; the line tension present at inter-
faces between domains would make inhomogeneous phases
energetically unfavorable when compared to a fully phase-
separated system.

Many works have suggested that biological membranes are
close to a demixing line in the temperature-composition plane.
When the lipid mixture is close to the miscibility critical
point20,21 (the so-called weak-segregation limit) the tempera-
ture T is close to a critical temperature Tc. In this limit, density
fluctuations give rise to wide interfaces between fluctuating
lipid domains, which do not have a precise shape22.

As a matter of fact, if a membrane is composed of two or
more lipids (as most biomembranes are), the segregation of
one of the lipid components in a set of domains is often en-
countered, as for example rafts rich in cholesterol and sph-
ingolipids that have been implicated recently in signal trans-
duction and membrane trafficking pathways5,6. Veatch and
coworkers7 suggested that lateral heterogeneities in living
cells at physiological conditions correspond to critical fluc-
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tuations and that perturbations that alter the phase boundary
could have a large effect on the size, composition, and life-
time of fluctuations at physiological temperatures. Also, lipid
demixing due to the existence of a miscibility critical point
in red blood cell (RBC) membranes has been highlighted via
Langmuir trough and epifluorescence experiments by Keller
and coworkers23, who showed that monolayers of lipids ex-
tracted from RBC membranes at room temperature segregate
and form domains above a threshold surface pressure at the
air-water interface.

In addition to single membrane properties, the interaction
potential between a pair of cells is also strongly influenced by
the distribution and size of the domains covering its surface.
In this sense, cells may be regarded as a naturally occurring
type of “patchy particles,” which are particles with distinct
surface sites generating anisotropic interparticle interactions.
While synthetically fabricated patchy particles have attractive
patches strategically arranged on their surface24, the domains
covering a cell emerge as a result of self-organization. Re-
cent developments in the controlled fabrication of patchy par-
ticles have raised hopes that materials with desired properties
may be tailored by prescribing the number and geometrical
arrangement of the patches24. In this framework, confined
binary mixtures of active and passive particles on a sphere
have also been studied25 very recently, since particle activ-
ity coupled to the presence of intrinsic surface curvature frus-
trates local order, giving rise to novel phenomena26–28, such
as curvature-induced defects and unforced flow.

On top of the spontaneous formation of domains and
defects on spheres, both loss of miscibility and domain desta-
bilization in spherically confined fluids can be also caused by
the addition of adsorbing agents, like multivalent ions, poly-
electrolytes and polyampholytes whose adsorption-desorption
mechanism represents one the key problem tackled in soft
matter physics29,30. Induced-demixing has been widely inves-
tigated in the past. Domain and raft formation in membranes
has been found in the presence of bivalent ions31, RNA and
DNA strands32, charged proteins33, and oppositely charged
polyelectrolytes34. By contrast, induced mixing has been
documented much less and only very recently it has been
shown that the addition of functionalized nanoparticles35 or
thermoplastic polymers can indeed give rise to a suppression
of lipid segregation36. The general mechanisms dictating a
mixing induced by adsorbing molecules, polymers or colloids
and the thermodynamic conditions under which this occurs,
have not been explored neither understood in depth. Finally,
domain formation and lipid miscibility plays a crucial role
for the membrane permeability. Passive transport through
biomembranes and bilayer lipid membranes is in many cases
controlled by existing small holes (or voids) within them37,38.
There are several experimental evidences that proton, water
and potentially drug permeability of mixed lipid membranes
is enhanced by raft formation39–42, since inter-domain inter-
faces enhances ions and small molecules intrusion, and that
membranes can be even destabilized by lipid substitution39 or
multivalent ions43. In addition to biological membranes, hole
formation have been used to describe the rupture of bilayer
(Newtonian) black foam films44,45, the evaporation of liquids

through adsorbed monolayers46, as well as the thermody-
namic equilibrium of monolayers on liquid surfaces47.

This said, despite an undisputed relevance of liquid mix-
tures lying on spheres and void formation in them, a system-
atic investigation through simple models on the role played
by miscibility and its coupling to bulk particle adsorption in
determining the mixture structure and in triggering void nu-
cleation is still lacking.

In this work we introduce a minimal model to study the
structure across a consolute point48 of a symmetric Lennard-
Jones binary mixture confined on a spherical surface by a har-
monic potential, leaving particles free to oscillate along the
radial direction. Such a quasi-2D model is employed first to
characterize the structure of bare liquid mixtures at fixed tem-
perature (here T ∗ = 0.5) and varying miscibility parameter
(αAB) ruling the demixing of the two fluid components (A and
B). We compute both the total and the partial geodesic pair
correlation functions, and we introduce a geodesic mixing pa-
rameter (Ξ) through which we describe both the spontaneous
demixing and the effect of adsorbing bulk particle (AP) addi-
tion on the mixture structure. We focused on the role of the
AP preferential affinity with one of the two mixture compo-
nents and we give a simple structural criterion to distinguish
between AP induced mixing and demixing, showing that the
former occurs only for nearly demixed systems with large spa-
tial fluctuations of domain boundaries. For both AP-free mix-
tures and AP-decorated ones, we further investigate void size
distributions. We show that in the presence of spatially fluctu-
ating domains and inter-domain interfaces, large void forma-
tion is not favoured, and that AP adsorption can both enhance
and disfavour the onset of large voids, depending on the mis-
cibility of the two fluid constituents.

II. MODEL

The binary mixture studied in this paper consists of flu-
ids (A and B) made of spherical particles of the same size,
σAA =σBB, and at concentrations of 50% each. Particles of the
same type interact through a truncated 12–6 Lennard-Jones
(LJ) potential49:ULJ(ri j) = 4εi j

[(
σi j
ri j

)12
−
(

σi j
ri j

)6
]
, if r < 3σAA

0, if r > 3σAA

(1)

with a mixing rule

σAB =
1
2
(σAA +σBB), εAB = αABεAA, (2)

where εAA = εBB, and αAB is the parameter controlling the mis-
cibility of the two fluids. Notice that when, αAB = 0, we
obtain two independent LJ fluids while in the opposite case,
αAB = 1, the system reduces to a single LJ fluid. By choos-
ing, 0 < αAB < 1, the attractive part of the interaction between
dissimilar particles becomes weaker than that of the AA and
BB interactions, favouring demixing49. Each particle vibrates
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around the ideal surface of a sphere of radius Rs since they are
further confined via a parabolic potential:

Uc(ri) =
1
2

κc(ri−Rs)
2, (3)

where κcσ2
AA

2kBT = 10 and ri is the distance between particle i
and the center of the confining sphere. To check the in-
fluence of the system size on demixing, we simulated three
systems characterized by different particle numbers (Np =
250,500,1000) and the same area fraction occupied by the

particles φ =
Npσ2

AA
16R2

s
= 0.5, corresponding to a reduced density

ρ∗ = 4φ

π
= 0.63. The choice of the system size has been made

to ensure that the particle-to-sphere size ratio σAA/2Rs, rang-
ing here from 0.044 to 0.089, was comparable to the bilayer-
to-vesicle size ratios encountered in small lipid vesicles42, the
latter being ≈ 0.05. The attractive interaction between the
confined particles (≤ 2kBT , see section III) and the energy

scale ( κcσ2
AA

2 ) of the confining potential have been chosen to
reproduce the same order of magnitude respectively of the
in-plane lipid-lipid interactions (few kBT units50 for homo-
geneous systems and possibly less than kBT for dissimilar
lipids51) and the bending energy of membranes per lipid (from
few tens to hundreds of kBT per molecule52). The first allows
molecules to diffuse and structure itself as a fluid and its varia-
tion determines whether demixing occurs at room temperature
if more than one lipid type is present. The second gives rise
to membrane stability. The magnitude of the confining poten-
tial has been further selected so as to preserve equipartition of
kinetic energy during all the simulation runs and avoid flying
ice-cube artifacts.

Free unconfined APs interacting with the mixture via the
potential (1) with LJ diameter σPP = σAA have been further
added to mixtures composed by Np = 500 particles in order to
study the effect of physical adsorption on the structure of the
confined AB-system. The interaction between APs and the
mixtures is set by equation 1, where miscibility between APs
and A-type particles has been fixed by setting their miscibil-
ity parameter to αAP = 1, while that between APs and B-type
particles has been tuned by varying their mutual miscibility
parameter (hereinafter αBP) in the range 1− 0.025. In this
way the interaction between the adsorbing particles and the
confined mixtures is such as to be preferential (for αBP < αAP)
or, let’s say, symmetrical (for αBP = αAP) while the total ad-
sorption energy decreases when αBP is lowered. In such a way
the simulated systems mimic the weak physical adsorption of
small molecules whose adsorption energies do not exceed few
kBT units. The surface of the confining sphere has been fur-
ther made impenetrable to bulk APs via the purely repulsive
potential:

ULJ(rPS) = 4εPS

[(
2Rs +σPP

rPS

)12
]
, (4)

where εPS/(kBT ) = 2 ·10−4 and rPS is the center-to-center dis-
tance between an AP and the sphere confining the AB mixture.

III. SIMULATION DETAILS

We have carried out extensive MD simulations to investi-
gate the structural properties of this model binary mixture as
a function of αAB and αBP. The equations of motion were in-
tegrated using a velocity-Verlet algorithm with reduced time
step ∆t∗ = ∆t

σAA

√
εAA
mA

= 5 · 10−6. mA is the particle mass for
species A and mA = mB = mP. We fixed in all simulations the
reduced temperature at T ∗ = kBT

εAA
= 0.5, where 2D Lennard-

Jones fluids are in a condensed liquid state53,54. For the cho-
sen set of miscibility parameters (αAB,αBP) we equilibrated
the systems using the Berendsen’s thermostat with a large
coupling constant τT = 2 · 103∆t to obtain a stable trajectory
in equilibrium. Equilibration runs have been performed for
2 · 108 time steps and production runs have been carried out
in the NVE ensemble for 5.2 ·107 time steps during which
total and kinetic energy drifts were absent. To exclude the
presence of important ballistic collective motions of the con-
fined particles due to an eventual rigid rotation of mixtures on
the sphere, and energy transfer from high to low frequency
modes, we have further performed long NVT simulations for
Np = 1000 and Np = 500 at αAB = 1 to compute the mean
angular square displacements: a pure diffusive behavior has
been observed (see Appendix A). To minimize correlations
between measurements we calculated structural quantities ev-
ery ∆ts = 5 ·105 time steps (see Appendix D). Simulations in-
cluding NAP = 1000 free bulk particles have been carried out
only for mixtures with Np = 500. The choice of such an ex-
cess of bulk particles has been inspired by the experimental
system recently investigated by the author and coworkers42

in which lipid phase separation in mixed liposomes has been
observed in excess of Isoniazide, one of the primary drugs
used in the tuberculosis treatment. An investigation on the ef-
fect of bulk particle concentration, temperature and mixture
composition are currently in progress and will be the sub-
ject of a future publication. Bare mixtures confined on the
sphere have been simulated in a cubic box of size L = 10Rs
with no extra periodic boundary conditions, with the sphere
being at the center of the box. We underline here that the
main characteristic of such systems is to be finite but with-
out boundaries, with periodic boundary conditions being not
an artifact of the simulations, but an essential feature of it.
Hence, in this case there is no need for further assumptions
or corrections: the complete system is simulated. Conversely,
we carried out simulations including bulk APs in a box of size
L= 4.2Rs, correspondent to a reduced density for the bulk par-

ticles ρ∗ =
NAPσ3

CC
(L3−4/3πR3

s )
= 0.029, with cubic periodic boundary

conditions applied only to free APs.

IV. BARE MIXTURES

The structure of bare mixtures has been studied by inspect-
ing the total g(s) and the partial gm(s) pair correlation func-
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tions defined as:

g(s) =
1

2N2
psin(s)

dn(s)
ds

(5)

gm(s) =
1
2
(gAB(s)+gBA(s)) =

1
2

[
1

2N2
Asin(s)

dnAB(s)
ds

+

1
2N2

Bsin(s)
dnBA(s)

ds

]
(6)

where s∈ [0,π] is the normalized geodesic distance on the unit
sphere, dn(s) is the average number of particles at geodesic
distance comprised between s and s+ ds from one test parti-
cle and dnAB(s) (dnBA(s)) is the average number of particles
of type B (A) at geodesic distance comprised between s and
s+ ds from a test particle of type A (B). For homogeneous
mixtures (εAA = εBB = εAB) gm(s) = g(s), while the largest dif-
ference between the two functions is attained when the two
fluids are fully separated on the sphere in a Janus-like config-
uration.
Figure 1 shows snapshots of equilibrated samples of mixtures
for Np = 1000 with different mixing parameters αAB ranging
from 1 down to 0.05. A continuous transition from fully mis-
cible to Janus-like patterns characterizes the demixing transi-
tion with an intermediate regime 0.5≤ αAB ≤ 0.8 where large
spatial interfacial fluctuations and domains emerge.

aAB=1 aAB= 0.6

aAB= 0.3 aAB= 0.05aAB= 0.5

aAB=0.8

FIG. 1. Snapshots of binary 50:50 AB-mixtures (Np = 1000) con-
fined to move on a spherical surface with radius of curvature Rs =
11.18σAA and different miscibility parameters 0.05≤ αAB ≤ 1, as in-
dicated in the figure. All snapshots refer to equilibrium states.

By computing both g(s) (Figure 2) and gm(s) (Figure 3) we
follow both the structure of the whole fluid and the demixing
of the two components on the sphere. Though demixing does
not affect remarkably the local structure, we unambiguously
observe a weak melting of the mixture induced by the forma-
tion of large domains, as signalled by the global minimum of
the height of the first peak of g(s) as a function of αAB. The
decrease of the first peak reveals that the average local density

of the fluid in the immediate vicinity of any particle decreases
with respect to the homogeneous system when fluctuating do-
mains coexist (inset of Figure 2), since a complete structural
demixing is not achieved, the number of weak AB bonds is
still large and particles are on average less bound. On the con-
trary, when the Janus-like configuration is attained and small
spatial fluctuations characterize the interface between the A-
rich and the B-rich phases, the number of AB contacts de-
creases and the average particle-particle distance in the fluid
goes back to about the one obtained for αAB = 1.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 03 . 1 53 . 2 03 . 2 53 . 3 03 . 3 53 . 4 03 . 4 53 . 5 03 . 5 53 . 6 03 . 6 53 . 7 0

 � A B = 1
 � A B = 0 . 8
 � A B = 0 . 6
 � A B = 0 . 3
 � A B = 0 . 2

g(s
)

s

g(s
ma

x)

� A B

FIG. 2. Total pair correlation functions g(s) for Np = 1000 and se-
lected values of the miscibility parameter 0.2≤αAB≤ 1. Inset: height
of the first peak g(smax) for the whole set of miscibility parameters
investigated in this work.

The partial correlation functions gm(s) (Figure 3) follow
the demixing of the two components: when particles are fully
mixed gm(s) = g(s), while when αAB � 1 and full demixing
occurs, the probability to find an AB contact drastically de-
creases (small s region) and it increases progressively until it
reaches its maximum at angular distance s = π . This is ac-
companied by the disappearence of the correlation peaks of
gm(s) when αAB decreases, as shown in the inset of Figure 3
for representative values of αAB.
Since confining spherical surfaces are a closed manifold with

uniform curvature, we can describe in a nutshell the demixing
by defining a geodesic mixing parameter as the square dis-
tance between g(s) and gm(s) on [0,π]:

Ξ = ‖g(s)−gm(s)‖2 =
∫

π

0
[g(s)−gm(s)]2ds. (7)

Ξ is zero when the two components of the mixtures are fully
mixed and larger than zero to an extent depending on the struc-
tural demixing. In Figure 4 we show Ξ(αAB) obtained for the
three simulated system sizes (Np = 250,500,1000). Ξ(αAB)
smoothly passes from very low values compatible with zero
(given the simulation noise) for αAB = 1 to larger values, that
depends weakly on αAB when the latter is lower than ≈ 0.2
for each system size, pointing out that radius of curvature Rs
does not impact remarkably the structural demixing transition
apart from a very small shift of the critical miscibility param-
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0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5
- 0 . 5
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

 � A B = 0 . 4
 � A B = 0 . 3
 � A B = 0 . 2
 � A B = 0 . 1

g m(s
)

s

 � A B = 1
 � A B = 0 . 8
 � A B = 0 . 6
 � A B = 0 . 5

g m(s
)

s

FIG. 3. Partial pair correlation functions gm(s) for Np = 1000 and
selected values of the miscibility parameter 0.1 ≤ αAB ≤ 1. Inset:
Same data of the main panel for 0≤ s≤ 0.8.

eter αc
AB defined as the point where d2Ξ

dα2
AB

= 0, that we extract

as detailed in Appendix B. Actually, we expect that composi-
tional fluctuations start to play a role for very small radius of
curvatures impacting more the angular particle distribution,
favouring mixing. To gain a complementary insight on the

0 . 0 0 . 5 1 . 0

0 . 0

0 . 5

1 . 0

1 . 5
 N p = 1 0 0 0 ,  R s = 1 1 . 1 8  σA A
 N p = 5 0 0 ,  R s = 7 . 9 0  σA A
 N p = 2 5 0 ,  R s = 5 . 5 9  σA A

� A B

�

FIG. 4. Geodesic mixing parameter Ξ as a function of the mis-
cibility parameters αAB for the three different system sizes Np =
250,500,1000, and fixed area fraction φ = 0.5. Dashed line are fits
obtained via equation B1 (Appendix B).

structure of the mixtures and their stability against void for-
mation we computed the normalized large-void size distribu-
tion P(Ah/σ2

AA) defined as

P(Ah/σ
2
AA) =

N(Ah/σ2
AA)

∞

∑
h=1

N(Ah/σ2
AA)

, with Ah ≥
σ2

AA

4
(8)

where Ah is the area of a void with size hσ2
AA/4 and N(Ah/σ2

AA)
is the number of voids with normalized size Ah/σ2

AA. We there-
fore restrict the search of voids to those having area larger

than a particle radius square, since we are not interested to
the distribution of small interstitial spaces between particles
but rather to those voids that are compatible with inclusion of
adsorbing particles or molecules in real systems. Indeed the
minimal void-to-particle size ratio taken into consideration in
this work (Ah/σ2

AA = 1/4) is of the same order of magnitude of
that characterizing water molecules and lipid cross section in
membrane lipids55. To compute each void area Ah we applied
a spherical grid to the confining sphere, where Ng grid points
are almost-equidistant and have been generated following the
scheme proposed in56, with a lattice spacing a ' σAA/2. We
consider as a void a subset of ng grid points such that: i) each
point of the subset is far from any particles by a geodesic dis-
tance larger than 3/4σAA; ii) a void has ng > 1 if each point of
the subset have at least one grid point distant one lattice spac-
ing and belonging to the same subset (cluster of points). The
area of the void is then well approximated by Ah = ngσ2

AA/4,
with a minimum measurable value equal to σ2

AA/4. In figure 5
we report the normalized distribution of void sizes for selected
values of αAB. The reentrant behavior of the distribution tails
goes along with the already mentioned fluidization of the sys-
tem (Figure 2) when jagged domain boundaries characterize
the mixtures. In this regime, since AB contacts are maximized
and particles are on average less bound, the formation of large
voids is hampered. To describe exhaustively this behavior
we have fitted the void distributions with a phenomenologi-
cal function of the following type:

P(Ah/σ
2
AA) = P0 +

a

1+
(

b Ah
σ2

AA

)c · e−Ah/Ac (9)

where Ac is the exponential characteristic cutoff area of the
distribution, P0 is an offset set to zero for distribution show-
ing exponential tails and larger than zero when large voids are
created by bulk particle adsorption (see section V). Finally
a, b and c characterize the power law regime observed for
small void sizes. The choice of the fitting function has not
been made by chance. Boutreux and De Gennes57 first pos-
tulated exponential decays for void size distributions in gran-
ular matter and based on this, Caglioti and coworkers58 re-
lated quantitatively the characteristic dynamical properties for
the same systems to quasistatic quantities, e.g. free-volume
and configurational entropy. In our mixtures, however ther-
mal (and stress) fluctuations are important and the void for-
mation should also be related to the probability of sponta-
neous rupture events of a given size. Rupture events often
show power-law size distributions59 with an exponential cut-
off due to the finite size of the system, while shifted gamma
functions with exponential tails have proven to be appropriate
to describe the statistics of void sizes in packed protein cores
and jammed packings of amino-acid-shaped particles60 and
attractive emulsion droplets61. These Boltzmann-type distri-
bution tails are those maximizing configurational entropy in
packed systems61. Our results are in line with these previ-
ous findings and point to void distribution tails with two dis-
tinct regimes: a power-law decay followed by an exponen-
tial cut-off. Finally, the deviation from a simple power-law
at very low void areas (limAh→0 P(Ah/σ2

AA) = P0 + a) reflects
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the fact that the void size is limited by the interstitial space
between LJ sphere, so that the distribution must converge to 0
as Ah→ 060. Such a deviation is found systematically for all
the sets of parameters employed in our simulations, hence the
need to use equation 9 to fit satisfactorily all our data. A fi-
nite non-zero value for P0 further points to a non-exponential
(fat) tail of the distribution. This will be the case of some
of the mixtures in presence of APs. The inset of Figure 5-A
shows Ac/σ2

AA together with the probability to have unit voids
(Ah/σ2

AA = 1/4). The two quantities show two non-monotonic
trends with opposite concavity, corroborating the scenario in
which demixing on small confining spheres is structurally a
smooth process with the formation of small (large) voids be-
ing enhanced (suppressed) in the presence of fluctuating do-
mains. Similarly to what we observed for the cut-off areas, the

total (large-)void size Atot =
∞

∑
h=1

N(Ah/σ2
AA)shows a minimum

for mixtures with large fluctuating domain interfaces (Figure
5-B). This further suggests that the integrity of spherical mix-
tures is stabilized by compositional fluctuations. All in all, the

0 5 1 0 1 5 2 0

1 E - 4

0 . 0 0 1

0 . 0 1

0 . 1

1

0 . 7 1 0
0 . 7 1 5
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the smallest voids P(1/4) (blue circles) as a function of αAB. Panel
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driving forces dictating large void formation are two: the abil-
ity of particles to form long-lived clusters, that is enhanced by
increasing the total cohesive energy (here increasing αAB) and
dewetting, occurring for fully demixed fluids (αAB� 1) where

void formation is favored in the inter-domain regions.

V. MIXTURES WITH ADSORBING PARTICLES

The adsorption of particles on the confined mixtures mod-
ifies their structure and, largely affect the mixing-demixing
transition. Figures 6, 7 and 8 show selected equilibrium snap-
shot with NAP = 1000 APs for three representative cases: fully
mixed fluids (αAB = 1), fluctuating domains (αAB = 0.6) and
fully demixed fluids (αAB = 0.05). and we show also, for com-
parison, the configurations in the absence of APs. For fully
mixed fluids, the addition of bulk particles with decreasing
αBP coefficients gives rise to a progressive induced-demixing
on the sphere. This is due to the large energy loss attained
when bulk particles adsorb only on a condensed domain rich
in one of the two species on the sphere that hence tend to
segregate. In this case adsorbed particle can be viewed as en-
ergetic bridges between particles of type A.
In the intermediate regime (Figure 7), where large spatial

compositional fluctuations characterize the confined mixture,
particle adsorption induces contrasting effects, depending on
whether the interaction of APs with the particles belonging to
the mixtures is symmetric (αBP = 1) or not. When αBP = 1
large domains break up, pushing the mixture towards mixing.
Such a non-trivial behavior is the result of the subtle balance
between the configurational entropy of the APs, that adsorb
uniformly on the sphere when αBP = 1, lowering the line ten-
sion between the domains and causing their dissolution, and
the energy gain that takes place when more energetic AA (or
BB) bond are replaced by AB bonds. By contrast, when lower
values of αBP are used and AP interact preferentially with par-
ticle of type A, the mixture adopts a Janus-like (fully sepa-
rated) configuration, as already discussed for αAB = 1.
Finally for low miscibility (Figure 8) particle adsorption does
not affect much the mixture structure and only a very weak
effect can be observed when αBP is progressively lowered.
We quantify all these changes on the structure of the confined
mixture by computing the total pair correlation function g(s)
and the partial correlation function gm(s) for the AB-mixtures,
and the normalized structural mixing parameter

Ξ
∗ =

ΞAP

Ξbare
, (10)

where ΞAP and Ξbare are calculated according to equation 7 in
the presence and absence of adsorbing particles, respectively.
The visual inspection of the mixture structure can be substan-
tiated quantitatively in a first instance by comparing gm(s)
with and without APs. This is shown in figure 9 for αAB = 1
(panels A,D), αAB = 0.6 (panels B,E) and αAB = 0.3 (panels
C,F). We show the two representative cases of fully symmetric
interactions between the APs and two components of the mix-
ture (αBP = 1, panels A,B,C), and the most asymmetric case
investigated (αBP = 0.025, panels D,E,F). The remarkable ef-
fect of APs on the mixtures at αAB = 0.6 catches immedi-
ately the eye, with contrasting relative variations passing from
symmetric interactions (Figure 9-B) to strongly asymmetric
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a12=1.0

No AP aBP=1 aBP =0.5 aBP =0.025

FIG. 6. Snapshots of binary 50:50 AB-mixtures (Np = 500) confined to move on a spherical surface with radius of curvature Rs = 7.90σAA,
with αAB = 1.0 and 3 selected AP-mixture interaction parameter αBP. A snapshot taken in absence of AP is given for reference. All snapshots
refer to equilibrium states. By decreasing the affinity between APs and B-particles (snapshots from left to right), particle adsorption favours
particle demixing and domain formation on the sphere, until reaching a Janus-like configuration for αBP = 0.025.

No AP aBP =1 aBP =0.5 aBP =0.025

a12=0.6

FIG. 7. Snapshots of binary 50:50 AB-mixtures (Np = 500) confined to move on a spherical surface with radius of curvature Rs = 7.90σAA,
with αAB = 0.6 and 3 selected AP-mixture interaction parameter αBP. A snapshot taken in absence of AP is given for reference. All snapshots
refer to equilibrium states. Particle adsorption favours particle mixing first (αBP = 1) and then, by decreasing the affinity between APs and
B-particles (snapshots from left to right), domain formation is progressively promoted on the sphere until reaching a Janus-like configuration
(αBP = 0.025)

ones (Figure 9-E). This is not observed for the fully misci-
ble case (αAB = 1) or for Janus-like mixtures (αAB = 0.3), for
which a decrease in (αBP) gives rise to a progressive induced-
demixing, the extent of the latter being much more pro-
nounced for αAB = 1. In more detail, when large domain fluc-
tuation dominates and AP addition induces particle mixing
partial correlation functions show augmented local structure
peaks and lower values (closer to one) at large distance with
respect to the bare case. This is the case αAB = 0.6 and αBP = 1
(Figure 9-B). On the other hand when AP addition gives rise
to induced demixing, gm(s) show reduced correlation peaks
at small geodesic distance while it increases at large distance

with respect to the bare system. This is the case αAB = 0.6 and
αBP = 0.025 (Figure 9-E). For the other values of the miscibil-
ity parameter, namely αAB = 1 and αAB = 0.3, the AP addition
has a relatively weak effect on the structure of the mixtures
when αBP = 1 (Figure 9-A,C), while it produces an important
fluid demixing of the initially miscible system (αAB = 1) for
strongly asymmetric AP-mixture interactions (αBP = 0.025,
Figure 9-D). This, again, is reflected by the net decrease of
the structure peaks at small s and a continuous increase of
gm(s) at large s. To build up and visualize more clearly a gen-
eral scenario based on all our results we computed Ξ∗(αBP)
for all the investigated systems in the presence of AP. This
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a12=0.05

No AP aBP =1 aBP =0.5 aBP =0.025

FIG. 8. Snapshots of binary 50:50 AB-mixtures (Np = 500) confined to move on a spherical surface with radius of curvature Rs = 7.90σAA,
with αAB = 0.05 and 3 selected AP-mixture interaction parameter αBP. A snapshot taken in absence of AP is given for reference. All snapshots
refer to equilibrium states. In this case particle adsorption does not relevantly impact the initially demixed state of the confined fluid.
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FIG. 9. Partial pair correlation functions gm(s) for symmetric AP-mixture interaction parameter αBP=1 (panels A,B,C), large preferential
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on the AP effect on the local structure.

is shown in figure 10 for αAB = 1,0.8,0.5,0.3,0.05. We note
that: i) for large asymmetries of the AP-mixture interaction
(αBP� 1) the extent of the induced demixing increases for in-
creasing values of αAB; ii) the dependence of Ξ∗ on αBP weak-
ens when AB miscibility decreases, reflecting the fact that the

structure is affected by AP addition if particle segregation is
poor; iii) mixtures that are characterized by large fluctuating
domains and interfaces between A-rich domains and B-rich
domains show both induced demixing (Ξ∗ > 1) and induced
mixing (Ξ∗ < 1) depending on the magnitude of the asymme-
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FIG. 10. Normalized geodesic mixing parameter Ξ∗ in function of
the interaction parameter αBP for the αAB values indicated in the fig-
ure. Solid lines are only a guide to the eye.

try αBP of the AP-mixture interactions. This is quite remark-
able since many experimental systems are close to a demix-
ing line and shows that both mixing and demixing are pos-
sible in such systems when particles or complex molecules,
other than those composing the mixtures, are co-suspended.
Finally, as done for bare mixtures, we report the void size dis-
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FIG. 11. Void size distribution P(Ah/σ2
AA) with no preferential affin-

ity (αBP = 1) and varying miscibility parameter αAB as indicated in
the panels (A,B,C,D,E). Distributions obtained in absence of APs
are also reported for reference. Solid lines are best fits obtained via
equation 9. For each αAB value one snapshot of an equilibrium con-
figuration with αBP = 1 shows the biggest visible void. APs are not
shown for clarity.

tributions for representative systems in the presence of APs
and we separate the case αBP = 1 from the rest of the sys-
tems since only in the former case we observe the formation
of very large deviations from a simple exponential decay of

the distribution tails. Figure 11 (panels A,B,C,D,E) shows the
distributions P(Ah/σ2

AA) and five representative configuration
snapshots obtained for αBP = 1 and αAB = 1,0.6,0.5,0.3,0.05.
The distributions are further compared to those obtained for
bare mixtures. In all the cases, the effect of the AP addition
is to enhance the formation of large voids since particle ad-
sorption increases the cohesive energy between the particles
confined on the sphere. This results in the suppression of the
exponential tails of the void size distributions and the onset
of fat tails, that we attribute to the transition from a regime
where voids are uniformly distributed on the sphere (no APs)
to one where one very large void, whose size fluctuates, domi-
nates. In all such cases we find tails compatible with a power-
law decay (Ac = ∞) with P0 > 1 for αAB = 1 and αAB = 0.05
(Figure 11-A,E). However, such enhancement of large void
formation, though present for each αAB, does depend on the
mixture structure. First of all, a reduced distribution widening
is observed for intermediate αAB, where large compositional
fluctuations characterize the mixtures (see the αAB = 0.6 case
in figure 11-B). This is due to the large free energy cost that
a large void would produce, since it would suppress domain
fluctuations and enhance segregation while, in such a regime,
the bare mixture is on average less packed (see Figure 2) and
irregular interfaces between domains form. Thus, the appear-
ance of many voids of intermediate size is favoured at the
expense of one very large void with fluctuating size. Upon
decreasing further the value of αAB large voids develop again
and, for Janus-like configurations, are spatially located at the
interface between the A-rich domain and the B-rich domain,
since the weaker bonds are those between dissimilar particles.
Such interfacial void formation is reflected again by the ex-
tended (non-exponential) tails of the distributions P(Ah/σ2

AA).
For lower αBP (Figure 12-A,B,C,D,E) the AP addition affects

much less the distributions P(Ah/σ2
AA), that preserve their ex-

ponential tails. Notwithstanding this, it’s worth noting that AP
addition in mixtures at αAB = 1 and αAB = 0.6 give rise to con-
trasting effects: for the fully miscible system, an increase of
the asymmetry of the AP-mixture interaction (i.e. decreasing
αBP) reduces the void sizes for large enough interaction asym-
metry (small αBP), pushing the distributions towards narrower
tails; on the contrary when large irregular domains character-
ize the bare mixture, AP addition gives rise always to a widen-
ing of the distribution tails, reflecting the creation of larger
voids. In the first case (αAB = 1, Figure 12-A) the void size
reduction is principally due to the fact that, by progressively
breaking the interaction symmetry between particles, APs in-
duce demixing and trigger the formation of large fluctuating
domains. This suppresses, albeit weakly, large voids akin to
the case of the bare mixtures at intermediate αAB. In the sec-
ond case (αAB = 0.6, Figure 12-B), the enhanced particle adhe-
sion due to the AP presence dominates, favouring large void
formation as for the aforementioned αBP = 1 case. For the
other cases, namely αAB < 0.6 (Figure 12-C,D,E), the effect
of APs on P(Ah/σ2

AA), stay very weak but still detectable. The
relative variation of the power-law decay exponent ∆c/cbare
and the cut-off area ∆Ac/Abare

c are reported in figure 12 (bot-
tom panels), where ∆c = (c− cbare), ∆Ac = (Ac−Abare

c ), and
cbare and Abare

c are the power-law exponent and the cut-off
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for varying miscibility parameter αAB and AP-preferential affinity
(0.025≤ αAB ≤ 0.5) as indicated in the figure. Distributions obtained
in absence of APs are also reported for reference. Solid lines are
best fits obtained via equation 9 for αBP = 0.025 and for bare mix-
tures. Bottom panels: relative variation ∆c/cbare and ∆Ac/Abare

c of
the exponent and the cut-off area defined in equation (9)

area extracted from the distributions in the absence of APs,
respectively. We note that i) the power-law exponent varies
almost to the same extent for any values of αAB by decreas-
ing the AP-mixture interaction asymmetry (increasing αBP),
pointing in this case to a net reduction of the small void frac-
tion; ii) the cut-off area variation is maximum for αAB = 0.6
and decreases down to negative values for αAB = 1 and large
interaction asymmetry (low αBP), confirming that the largest
relative variation of the cut-off area, when APs interact pref-
erentially with one species of particles, occurs for intermedi-
ate values of αAB. This, we stress once more, is due to the
fact that bare mixtures with intermediate αAB values are char-
acterized the least number of large voids (small cut-off areas)
and the addition of APs with preferential interaction with one
of the two particle types (A here) gives rise to spatially lo-
calized (large) voids at the interface between the formed do-
mains, since AP addition induces particle demixing as well
as an increase of the cohesive energy in the system. The en-
tire set of best-fit parameters for the data shown in figures 11
and 12 are in Table II (appendix C). In line with the large
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FIG. 13. Ratio g(smax)/g(smax)|bare in function of αBP for different
miscibility parameters αAB as indicated in the figure. Solid lines are
a guide to the eye.

variation of the void distribution observed for miscible sys-
tems the local structure of mixtures is most affected by the
AP addition for αAB = 1. Figure 13 shows the height of the
first peak of the total pair correlation function g(smax) nor-
malized by its value in the absence of APs g(smax)|bare. For
αAB = 1 this quantity changes the most for varying αBP go-
ing from values larger than 1 (AP-induced condensation) for
αBP = 1,0.8 to values lower than 1 (AP-induced fluidization)
for αBP ≤ 0.5. In the other cases 0.05 ≤ αAB ≤ 0.6 the local
structure is less affected by the AP adsorption, though we may
note that in this case g(smax)/g(smax)|bare is always larger than
one for αBP = 1, for which the minimum value is attained at
αAB = 0.6, where the void size distribution resulted less af-
fected by AP addition (Figure 11). Finally, we may note that
the normalized peak height shows, albeit very weakly, a sys-
tematic non-monotonic behavior, suggesting a weak melting
of the structure for intermediate values of αBP. More detailed
simulations would be required to reach more quantitative con-
clusions on this aspect.

VI. CONCLUSIONS

In this paper we have studied the mixing-demixing transi-
tion of symmetric mixtures characterized by varying misci-
bility and confined to move on a sphere by using a minimal
quasi-2D model. By computing the total and the partial pair
correlation functions, and by employing a geodesic mixing
parameter Ξ, we have shown that: i) demixing on 3D-spheres
is a structurally smooth process, in which fully mixed and
Janus-like configurations are separated by states of spatially
fluctuating domains appearing for intermediate miscibility; ii)
void size distributions show exponential tails preceded by a
power-law decay with large void formation being hampered
by large compositional fluctuations, that instead favor the ap-
pearance of small (∼one-particle sized) voids. Such a sce-
nario does not vary remarkably in the range of system sizes
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investigated (Rs = 11.18σAA,7.90σAA,5.59σAA). iii) Particle
adsorption can give rise to both induced-mixing and induced-
demixing, depending on whether mixtures are characterized
by strongly fluctuating inter-domain boundaries or not. On
the one hand, when coexisting domains and fluctuating in-
terfaces characterize the fluids, uniformly adsorbed particles
(αBP = 1) enhance miscibility, while the latter is reduced for
a large preferential affinity of APs for one of the two compo-
nents of the mixtures (αBP� 1). On the other hand, for fully
miscible (αAB = 1) or Janus-like mixtures (αAB� 1) AP addi-
tion mainly produces particle demixing, whose extent, quanti-
fied by the normalized geodesic parameter Ξ∗, increases pro-
gressively with increasing miscibility, reaching its apex for
αAB = 1 and αBP� 1. Void size distributions are also affected
by AP addition. A transition from exponentially-tailed to fat-
tailed distributions, where one single large void dominates
over the others, is observed for uniform particle adsorption,
namely where AP-mixture cohesion energy is maximum. The
extent of such a transition also depends on the AB miscibility:
fat-tailed distributions are less pronounced by large domain
fluctuations occurring for intermediate αAB values, while for
large enough AP-mixture interaction asymmetry, we recover
exponentially-tailed distributions, with the largest tail widen-
ing and narrowing obtained respectively for an intermediate
miscibility (αAB=0.6) and fully miscible fluids (αAB=1). Our
model, albeit simple, allowed to discern under which mixing
conditions a quasi 2D multicomponent fluid confined to move
on a sphere is more susceptible to incur structural changes
due to the interaction with an external agent. Further studies,
based on the same model, will elucidate the role of mixture
composition, temperature and AP concentration, while the ef-
fect of local curvature can be inspected by changing the con-
fining manifold, passing from spheres to ellipsoids or tori. We
hope that our results can pave the way for more targeted ex-
periments to investigate the role of complex molecules and
particles on the mixing state of quasi-2D liquids.
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Appendix A: Mean squared angular displacement on the
sphere

We have performed long NVT simulations (5 ·108 and 109

time steps) for the two largest system investigated (Np =
500,1000) and αAB = 1 to compute the angular mean square

displacements (MSD) 〈(θ(t)− θ0)
2〉2p and 〈(ϕ(t)− ϕ0)

2〉p,
and to check whether our model produces diffusive trajecto-
ries over large runs. Here θ(t) and ϕ(t) represent the po-
lar and the azimuthal angle of each particle confined on the
sphere at time t > 0, θ0 and ϕ0 are their values at the initial
time t = 0, and the brackets 〈·〉p stand for the average over all
particles confined on the sphere. Figure 14 shows in a log-log
scale both the polar and the azimuthal squared displacements,
for which we observe 2 different saturation values as expected
for confined dynamics. Such values can be computed ana-
lytically. The angular MSD of one Brownian particle on the
sphere saturate to values that are dependent on their initial po-
sition (θ0,ϕ0)62:

(θ(t)−θ0)2 =
π2−4

2
+θ0(θ0−π) (A1)

(ϕ(t)−ϕ0)2 =
4π2

3
+ϕ0(ϕ0−2π) (A2)

where (·) is the average over different trajectories given an
initial angular position (θ0,ϕ0). For a crowded system parti-
cles are distributed over the whole spherical surface and we
must compute the saturation values of the MSD as the angular
average of equations A1 and A2, i.e.:

〈(θ −θ0)
2〉p =

∫ 2π

0
dϕ0

∫
π

0
(θ −θ0)2 sin(θ0)dθ0 =

π−8
2
(A3)

〈(ϕ−ϕ0)
2〉p =

∫
π

0
sin(θ0)dθ0

∫ 2π

0
(ϕ−ϕ0)2dϕ0 =

2π2

3
(A4)

The values obtained are in very good agreement with our sim-
ulations. We also note that the polar MSD is a linear func-
tion of t for small lag times in accordance with recent the-
oretical works62,63, while the azimuthal MSD shows a sub-
diffusive behavior 〈(ϕ − ϕ0)

2〉p ∼ t0.47±0.04, that, up to our
knoweldge, has not been observed so far. ϕ(t) in a spher-
ical set of coordinates isn’t in fact a variable satisfying the
Langevin equation and we attribute this feature to the space-
dependent azimuthal diffusivity62: particles close to the pole
θ = 0 move faster in ϕ with respect to particles moving
around the equator θ = π/2 for a fixed geodesic displacement.
Sub-diffusive motions are often observed in experiments and
simulations in systems characterized by space-dependent dif-
fusion constants64. This aspect, interesting per se, goes be-
yond the scope of this paper and surely deserves a deeper in-
vestigation. Finally the displacements obtained for the two
systems confined onto spheres of different radius Rs superim-
pose when a rescaled time t/R2 is considered, in agreement
with the general solution of the diffusion equation for spheri-
cal Brownian motion.63,65.

Appendix B: Fit of the geodesic mixing parameter Ξ(αAB)

We extracted the critical mixing parameter αc
AB from fits

of the geodesic mixing parameter Ξ(αAB) through the phe-
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FIG. 14. Azimuthal and polar mean squared displacement in function
of the rescaled time t/R2

s for Np = 500 and Np = 1000. Dashed
horizontal lines indicate the saturation values obtained analytically
(Eqs. A3 and A4).

nomenological function

Ξ(αAB) = α
0
AB +∆αAB tanh [(ψ(αAB−α

c
AB)]

+A(αAB−α
c
AB)+B(αAB−α

c
AB)

2 (B1)

We obtain the critical miscibility parameters αc
AB reported in

Table I.

Np αc
AB

250 0.40 ± 0.02
500 0.43 ± 0.04
1000 0.49 ± 0.01

TABLE I. Critical miscibility parameter αc
AB obtained by fitting

Ξ(αAB) via equation B1.

Appendix C: Best-fit parameters for P(Ah/σ2
AA)

We report below (Table II) the best-fit parameters obtained
by fitting the void size distributions shown in figure 11 and 12
via equation (9).

Appendix D: Sampling time

The sampling time (∆ts = 5 ·105 time steps) has been cho-
sen by computing the (spherical) self-intermediate scattering
function for the bare mixture with the lowest energy (Np =

1000 and αAB = 1) as defined in9:

Fs(k, t) =
1

Np

Np

∑
j=1

〈
PkR

[
cos
(

∆s j(0, t)
R

)]〉
(D1)

αAB αBP P0 a b c Ac/σ2
AA

1 1 2.95 ·10−5 1.95 4.68 2.24 ∞

0.6 1 0 1.25 3.28 2.33 ∞

0.5 1 0 0.28 6.04 2.48 ∞

0.3 1 0 1.53 4.08 2.12 ∞

0.05 1 4.5 ·10−5 1.40 3.64 2.32 ∞

1 0.5 0 1.35 3.52 2.10 9.17
0.6 0.5 0 1.40 3.56 2.07 9.24
0.5 0.5 0 1.34 3.72 2.01 8.68
0.3 0.5 0 1.35 3.56 1.97 6.32
0.05 0.5 0 1.44 3.88 1.95 8.92

1 0.25 0 1.38 3.6 2.06 7.66
0.6 0.25 0 1.33 3.48 1.99 5.73
0.5 0.25 0 1.57 4.24 1.88 7.45
0.3 0.25 0 1.52 4.13 1.90 7.75
0.05 0.25 0 1.65 4.52 1.79 6.00

1 0.1 0 1.41 3.65 2.02 5.50
0.6 0.1 0 1.76 4.56 1.89 6.00
0.5 0.1 0 1.70 4.56 1.78 5.00
0.3 0.1 0 1.74 4.72 1.74 5.00
0.05 0.1 0 1.84 5.08 1.74 6.00

1 0.025 0 1.62 4.22 1.91 5.50
0.6 0.025 0 1.55 4.14 1.90 6.25
0.5 0.025 0 1.58 4.24 1.88 6.50
0.3 0.025 0 1.75 4.80 1.76 5.75
0.05 0.025 0 1.49 4.16 1.80 6.00

TABLE II. Best fit parameters obtained via equation 9 for the void
size distributions shown in figures 11 and 12.

Where, PkR is the Legendre polynomial with kR being
rounded-off to the nearest integer, k−1 is the wavevector cor-
responding to the geodesic distance equal to one particle di-
ameter and ∆s j(0, t) is the geodesic displacement of particle j
over time t. We obtain the scattering function shown in figure
15 that is well fitted by a single exponential decay with a re-
laxation time of 8.29 ·104 time steps that is about 6 time less
than the fixed ∆ts.

1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

F s(k
,t)

t i m e  s t e p

∆t s

FIG. 15. Self-intermediate scattering function at a wavevector cor-
responding to a geodesic distance equal to one particle diameter for
Np = 1000 and αAB = 1.
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