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Abstract 12 

We present a new set of analytical solutions for analysing pumping tests in a well near a 13 

vertical fault zone, dyke or vein. We consider a fault zone with finite width, storativity and 14 

hydraulic conductivity, which can be anisotropic, and without limitation of the diffusivity 15 

contrast between the three aquifer domains (pumped aquifer, fault zone and opposite-side 16 

aquifer). This configuration, not described before, also considers flow transience within the 17 

fault zone. Drawdown solutions were developed for the three-aquifer domains based on an 18 

unconventional application of the well-image theory. Their comparison with numerical 19 

modelling results was very satisfactory. Drawdown behaviour at the pumping well is 20 

discussed for contrasted properties between the three-aquifer domains. Original analytical 21 

solutions for transient flow along both sides of the fault zone, and net transient flow from the 22 

fault itself, are proposed and discussed, with particular attention to flow reversal, from the 23 

pumped compartment to the fault zone, which occurs where the fault zone is the most 24 

transmissive. Finally, we extend the solutions to the case of a well intersecting and pumping a 25 

vertical fracture of finite length located near the same vertical geological discontinuity. 26 

 27 
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 30 

1. Introduction 31 

In hydrogeology, the oil-and-gas industry, and geothermal activities, well testing is an 32 

essential tool for assessing the hydrodynamic properties of a reservoir. The evaluation of 33 

these properties, as well as their variability in space, is essential for improving resource 34 

management (e.g., Raghavan, 2004; Dewandel et al., 2012). In addition, detailed groundwater 35 

flow conditions, particularly in fractured systems, are required for pressure and transfer 36 

modelling, for instance in the case of a nuclear-waste deposit, geothermal exploitation, or 37 

contaminant transport. Therefore, the design of an adequate conceptual model based on well-38 

test data prior to quantification of the hydrogeologic parameters has been a topic of interest 39 

for decades (Bourdet et al., 1983, 1989; Ehlig-Economides, 1988; Renard et al., 2009; Rafini 40 

and Larocque, 2012; Ferroud et al., 2019, etc.). 41 

A common case encountered in the field is a well located near a fault (Fig.  1a) that may act as 42 

a barrier or a conduit, or a combination of both, to flow (e.g., Maslia and Prowell, 1990, 43 

Haneberg, 1995, Bense et al., 2003). In sedimentary rock, but not only, faults may be 44 

permeable, or act as low- or non-permeable structures, because the throw along the fault plane 45 

may be such that a permeable layer on one side of the fault is completely, or partially, 46 

juxtaposed against an impermeable layer on the other side, or because of low hydraulic 47 

conductivity materials in the core of the fault zone. The reverse is also possible, where the 48 

rock’s hydraulic conductivity is enhanced because of unaltered fracturing along the fault zone 49 

(Caine et al., 1996). Other geological features, such as dykes, veins, or karst conduits, may 50 

locally enhance the hydraulic conductivity, and drain the surrounding aquifer, or act as a 51 

barrier or low-permeability discontinuity to flow (Dewandel et al., 2011, Perrin et al. 2011; 52 

Lachassagne et al., 2011, 2021, Maréchal et al. 2014; Xiong et al., 2017; Xu et al., 2018).  53 

Depending upon the properties of the fault or of the geological discontinuity, fluid flow may 54 

occur along the structure and across the structure’s planes. Several analytical studies have 55 

described transient pressure behaviour in the pumping well and flow processes; such work 56 

often refers to a pumping well near a fault of infinite length with finite-conductivity 57 

(Abbaszadeh and Cinco-Ley, 1995, Abbaszadeh et al., 2000; Escobar et al., 2013). Yaxley 58 

(1987) derived an analytical solution from Bixel’s et al. (1963) work for a well located near a 59 

partially communicating vertical fault. This model, dedicated to low-permeable barrier, does 60 

not account for flow along the fault plane. Abbaszadeh and Cinco-Ley (1995) presented a 61 
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solution for a well located near a finite-conductivity vertical fault, with fracture skin for 62 

simulating damage zones on the sides of the fault plane. Their solution allowed varying 63 

aquifer properties on both sides of the fault, considered flow along and across the fault plane, 64 

but assumed a small fault width and neglected fault storativity and thus flow transience in the 65 

fault zone, the net flux in/out of the fault being nil. This model was dedicated to fault zones 66 

with higher hydraulic conductivity than those of the surrounding aquifers. Later, Rahman et 67 

al. (2003) proposed a semi-analytical solution similar to Abbaszadeh and Cinco-Ley (1995)’s 68 

work, to account for transient flow in the fracture plane, but also assumed a greater hydraulic 69 

conductivity in the fault. Other solutions exist in the literature, such as that developed by 70 

Boussila et al. (2003) for a well near a linear leaky boundary in laterally infinite composite 71 

systems, or the one proposed by Althawad (2016) for a pumping well intersecting and 72 

pumping a finite conductivity fracture of infinite length near a finite conductivity fracture of 73 

infinite length. 74 

Vertical faults, or other vertical geological discontinuities, can also be conceptualized as 75 

vertically compartmented aquifers. Butler and Liu (1991) and Dewandel et al. (2014), 76 

proposed solutions for investigating the influence of a pumping well located in a linear strip 77 

aquifer—representing the geological discontinuity—bounded laterally by aquifers of differing 78 

properties. However, no analytical solution was provided for a pumping well located in one of 79 

the two external compartments and thus near the geological discontinuity. Anderson (2006), 80 

using the method of images, presented an analytical solution for a pumping well near such a 81 

discontinuity. His solution allows considering the anisotropy in hydraulic conductivity of the 82 

central compartment, the one representing a vertical fault zone, or another vertical geological 83 

discontinuity. However, this solution was established for steady-state flow only. Rafini and 84 

Larocque (2009) used numerical models for assessing the flow behaviour induced by a 85 

pumping test near a fault zone, embedded in a low-permeable matrix with various fault 86 

inclinations, but they did not consider the anisotropy in hydraulic conductivity of the fault 87 

zone. 88 

We propose new analytical solutions for drawdown induced by a pumping well near an 89 

infinite sub-vertical and anisotropic fault zone (or another vertical geological discontinuity). 90 

We consider a fault zone of finite width, storativity and hydraulic conductivity that can be 91 

anisotropic (Fig. 1a), without limitation of the diffusivity contrast between the three-aquifer 92 

domains (pumped aquifer, fault zone and opposite-side aquifer), which was not considered in 93 

earlier works. Our solutions are based upon an unconventional application of the well-image 94 
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theory. Solutions are first developed for an isotropic fault and then extended to the anisotropic 95 

case; they are given for the three-aquifer domains and are compared to numerical modelling. 96 

The hydrodynamic signatures of drawdown and flow behaviour at the pumping well are 97 

discussed. Analytical solutions for transient flow along both sides of the central compartment 98 

(the fault zone) are given in terms of spatial and transient evolution, with particular attention 99 

to reversed flow, i.e. flow from the pumped compartment entering the fault zone, which can 100 

occur under specific conditions. These new solutions allow discussing the transient behaviour 101 

of such flow, which has not been studied in the past. Finally, we show that the solutions can 102 

be extended to other cases, such as a well intersecting and pumping a vertical fracture of finite 103 

length located near an infinite vertical fault zone (Fig. 1b). 104 

The proposed solutions should be useful for examining and modelling drawdown created by a 105 

pumping well, or a well intersecting and pumping a vertical fracture, near a vertical fault 106 

zone, or another vertical geological discontinuity, such as dykes, veins, buried channels 107 

embedded in other materials, or even karst conduits. 108 

 109 

2. Theoretical method and mathematical model 110 

2.1. Conceptual model 111 

The problem of interest consists in evaluating drawdown as a function of coordinates x, y and 112 

time, caused by a pumping well near an infinite vertical fault (or geological discontinuity) 113 

with finite thickness, finite storativity and anisotropic hydraulic conductivity (Fig. 1a). 114 

Following Anderson’s (2006) nomenclature, the system is divided in three domains, D1, D* 115 

and D2, with L1 representing the boundary between D1 and D*, and L2 the one between D* 116 

and D2. Domain D*, the infinite vertical fault, separates two semi-infinite half-spaces. The 117 

pumping well is located in D1; it is at the origin of a Cartesian coordinate system (x=0, y=0) 118 

and is at a distance a from L1. The y-axis is parallel to the two boundaries L1 and L2. The 119 

well fully penetrates the aquifer and produces at a constant flowrate Q. The overall domain 120 

(D1, D*, D2) assumes a confined condition; each domain is characterized by its own 121 

transmissivity and storativity. D* has anisotropic hydraulic conductivity in the horizontal 122 

plane, while the two other domains are isotropic. Domain thicknesses can be different (not 123 

shown on Fig. 1a). Damage zones along the fault zones (D*) are not considered. 124 

 125 
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2.2. Method of images 126 

The method of images is a classic technique for tackling boundary-value problems, such as 127 

those encountered in heat conduction, electrostatics, and, particularly, in groundwater flow, to 128 

solve the problem of no-flow, constant boundaries, or leaky boundaries (Ferris et al., 1962; 129 

Kruseman et al., 1990; Bruggeman, 1999; Anderson, 2000, 2006). Solutions with this method 130 

have the advantage of providing convenient forms, compared to solutions from differential 131 

equations that may require numerical inversion of a Laplace transform. The proposed 132 

solutions are based upon an unconventional application of the well-image theory. This 133 

method, originally proposed by Fenske (1984) for the case of a boundary separating two 134 

aquifers with dissimilar diffusivities, and later extended by Dewandel et al. (2014) to a well 135 

located in an infinite linear strip aquifer limited on both sides by aquifers of differing 136 

properties, has been further developed for the case presented here. Though good and useful 137 

approximations, the proposed solutions are not shown to be exact solutions to the appropriate 138 

partial differential equations (Bixel et al., 1963; Butler and Liu, 1991; Appendix A, hereafter). 139 

We do believe, however, that—although it is not the method used here—drawdown solutions 140 

can also be obtained by numerical inversion of a Laplace transform. 141 

In a general manner and using the well-image theory for the case presented here, one can 142 

consider the drawdown in domain D1 to consist of two components: direct drawdown caused 143 

by the pumping well, and reflected drawdowns caused by the reflection of image-well 144 

drawdowns from the two boundaries onto D1. Total drawdown can be represented by a sum 145 

of drawdowns caused by the pumping well and that caused by image-wells located across the 146 

boundaries; each image-well is strengthened to consider the contrast in properties between the 147 

three domains. Figure 2a shows the solution for drawdown in D1, where each dot corresponds 148 

to an image well with its distance from the pumping well and its strength. This technique is 149 

widely used for solving the particular cases of no-flow and constant-head boundary conditions 150 

(e.g. Ferris et al., 1962; Kruseman et al., 1990); in these cases, image strength is 1 or -1. More 151 

information on the well-image theory can be found in Anderson (2000, 2006), or in 152 

Bruggeman (1999). 153 

The drawdown in domains D* and D2 is the transmitted drawdown across the boundaries. Its 154 

solutions depend upon the properties of the domain of interest and are analogues of the 155 

solution in D1. Consequently, drawdown can also be represented as the sum of drawdowns 156 

caused by the producing well, and one or two infinite well-image series—depending upon the 157 
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domain—lying outside the domain of interest, whereby each pumping- and image well was 158 

strengthened to cover the aquifer properties of each domain (Figs. 2b and 2c). 159 

Along the boundaries, conditions vary from boundary L1 (between D1 and D*) to boundary 160 

L2 (between D* and D2) and the following criteria must be satisfied: 161 

1). Drawdown must be equal on both sides of the boundaries: 162 

- then                     along boundary L1, 163 

- and                         along boundary L2, 164 

2). Unit discharge orthogonal to the boundaries must be equal on both sides as well: 165 

- then   
          

  
             

  
 along boundary L1, 166 

- and   
            

  
               

  
 along boundary L2, 167 

where s1(x,y,t), s*(x,y,t) and s2(x,y,t) are the drawdowns in each domain (D1, D* and D2), T1, 168 

T* and T2 are the transmissivity values of each domain, a is the distance from the pumping 169 

well to boundary L1, and h is the width of domain D*. 170 

 171 

2.3. General solutions for drawdown 172 

Here, we first considered the case where domain D* is isotropic. A second section deals with 173 

the anisotropy of this domain. All three domains are characterized by dissimilar diffusivity 174 

values (T1/S1≠T*/S*≠T2/S2). 175 

Using the well-image theory described above, the general solutions for drawdown valid for 176 

each domain are expressed as series (Fig. 2). For domain 1 (D1), drawdown is expressed by 177 

that of the producing well, that of one image-well at the opposite of L1 (at x=2a), and that of 178 

one infinite image-well series lying outside D1. For domain D*, drawdown is expressed by 179 

two infinite image-well series lying outside D*, and for D2 by one infinite image-well series 180 

lying outside D2. 181 

The general form of solutions for drawdown are as follows, for an observation well in domain 182 

D1: 183 
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            (1) 185 

For domain D*: 186 

          
 

    
    

   
  

    
                

 

       

      
  

    
              

 

       

  

            (2) 187 

And for domain D2: 188 

          
 

    
      

  

    
              

 

       

  

 189 

            (3) 190 

where W(u) is the well-function (or exponential integral function also noted -Ei [-u]); S1 and 191 

T1 (m
2
/s) are the storage coefficient and transmissivity of the aquifer in D1, respectively; S* 192 

and T* (m
2
/s) are those of the strip aquifer in D*, and S2 and T2 (m

2
/s) those of aquifer D2; 193 

a (m) is the distance from the pumping well to L1; and Q is the pumping rate (m
3
s

-1
); 0, n, 194 

i’, i and i are the image-well strengths. Now, we must evaluate the strength coefficients of 195 

each image-well. 196 

 197 

2.4. Drawdown solutions for the three domains 198 

2.4.1. Isotropic case 199 

We consider the first series of images according to L1 and L2 (Fig. 3a). The pumping well is 200 

first imaged according to L1. The result of applying the two boundary conditions at boundary 201 
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L1 (                    and   
          

  
=            

  
) is that the two strength coefficients 0 202 

and 0 depend upon the contrast of diffusivity between domains D1 and D*, the distance to 203 

the boundary (a) and time (t). Appendix B gives the detail of their solutions. This case refers 204 

to the influence of a partial hydrologic barrier that separates two domains with contrasted 205 

diffusivities, where the drawdown solutions for both domains D1 and D* correspond to the 206 

ones proposed by Fenske (1984). Then, considering the case of two parallel boundaries L1 207 

and L2, and thus that of a well pumping near an infinite strip aquifer, the pumping well must 208 

be imaged about the second boundary L2 (2
nd

 image), which allows evaluating strength 209 

coefficients 0’ and 0 (Fig. 3a), while applying the new boundary conditions (            210 

            and   
            

  
=              

  
).  211 

These strengths depend upon previous ones 0 for 0’, but also on the diffusivity contrast 212 

between domains D* and D2, on the width of domain D* (h), and on time (t); Appendix B 213 

gives the detail of their solutions. Then, as this last image-well does not respect the conditions 214 

at boundary L1, it must be imaged about L1 (3
rd

 image), which allows evaluating strength 215 

coefficients 1 and 1 according to boundary conditions in L1 (Fig. 3b). As the 3
rd

 image does 216 

not respect the condition along L2, it has to be imaged about L2 (4
th

 image) and strength 217 

coefficients 1’ and 1 should be evaluated according to boundary conditions in L2 (Fig. 3b), 218 

and so on. Therefore, each iteration results in a new image-well with a strength evaluated 219 

according to boundary conditions at L1 and L2. As the strength of the n
th

 image-well depends 220 

upon the product of all previous image-strengths, the strengths of each image-well series can 221 

be expressed as a combination of arithmetic and geometrical series. The drawdown for an 222 

observation well located in D1 is: 223 

          
 

    

 
 
 

 
 

  
  

    
         

         

         
  

  

    
             

 
       

         
 

   

         
 

         

         

   

       

 
    

      
 

    
      

 

   

       

  
  

    
                

 

       

 
 
 

 
 

 

            (4) 224 

with the second geometrical series (the one up to ‘n-2’) valid for n>2. 225 
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For a well located in D*, the drawdown is: 226 

          
 

    
 

       

         
 

 
 
 

 
 

 

 
         

         

   

       

 
    

      
 

    
      

 

   

       

  
  

    
                

 

       

   
         

         

   

       

 
    

      
 

    
      

 

 

       

  
  

    
             

 

       

 
 
 

 
 

 

            (5) 227 

with the second geometrical series of the first arithmetic series (the one up to ‘n-2’) valid for 228 

n>2, and both geometrical series of the second arithmetic series (the ones up to ‘n-1’ and ‘n’) 229 

valid for n>1. 230 

For a well located in D2, the drawdown is: 231 

          
 

    
 

       

         
 

 
 
 

 
 

 

           

             
 

         

         

   

       

 
    

      
 

    
      

 

 

       

  
  

    
             

 

       

 
 
 

 
 

 

            (6) 232 

with both geometrical series (the ones up to ‘n-1’ and ‘n’) valid for n>1. 233 

with :    
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 ;      
   

  

    
                 

   
  

    
                 

  238 

where W(u) is the exponential integral and e(u) is the exponential function. 239 

As a result, the strength coefficients depend upon geometrical series that are a function of 240 

each domain diffusivity, time, the distance a from the pumping well to the first boundary 241 

(L1), and the width h of the strip aquifer (width of D*). In each infinite series, the strength 242 

coefficient of each image well decreases with distance from both boundaries, and each series 243 

converges absolutely. To solve Eqs. 4 to 6, we used an algorithm based on an iterative 244 

process, where the number of images is determined when the absolute value of a certain 245 

metric given by the n
th

 computation (of the n
th

 becomes negligible (e.g. 10
-6

). This criterion 246 

ensures high computation accuracy. 247 

Note that for the case of time-constant strength coefficients (equal-diffusivity ratio between 248 

the compartments), the solutions are the same as those of the appropriate partial differential 249 

equation. Solutions of this particular case are given in Appendix (C) for the three-aquifer 250 

domains, and, as expected, strength coefficients are identical to the ones given in Anderson 251 

(2006), for a solution in steady-state condition. 252 

 253 

2.4.2. Anisotropic case 254 

Analytical solutions for the three domains can be obtained for the case where the geologic 255 

discontinuity (D*) has an anisotropic transmissivity (or hydraulic conductivity). These 256 

solutions are based on the isotropic solutions (Eqs. 4 to 6) and standard transformed 257 

coordinate techniques (e.g., Hantush, 1966; Ramey, 1975; Neuman et al., 1984). It is assumed 258 

that the main axes of transmissivity in D* are oriented along the x- and y-directions, thus Ty
*
 259 

and Tx
*
 are parallel and orthogonal to both boundaries, respectively, and       

   
 . As the 260 

pumping well fully penetrates the aquifer (in D1), flow lines are parallel to the bottom of the 261 

aquifer. Consequently, the anisotropy of hydraulic conductivity in the vertical plane is not 262 

considered. 263 

According to Bear and Dagan (1965) and Anderson (2006), the transformed coordinates in D1 264 

remain unchanged. However, in D2, x coordinate must be shifted to the right along the x-axis 265 

to account for the transformed width of D*, i.e.   
  
 

  
 . Therefore: 266 
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in D1,         and             (7) 267 

and in D2,           
  
 

  
     and           (8) 268 

In D*, the transformed coordinates are more complex because of rotational flow in D*. They 269 

are       
  
 

  
  and     , where    is a function of the real-coordinate system that assumes at 270 

boundary L1 (i.e. between D1 and D*):           , and at the second boundary L2 (i.e. 271 

between D* and D2):              
  
 

  
 ). These re-scaling relationships show that D* 272 

must also be shifted to the right along the x-axis to account for the transformed width   
  
 

  
 . 273 

According to Dewandel et al. (2014),    can be estimated empirically; it is found that    274 

     
  

 

  
    , which gives for axa+h: 275 

    
  
 

  
                (9) 276 

The evaluated relationship still depends on the anisotropy ratio in D* and is linear, which 277 

agrees with Baer and Dagan (1965). 278 

Drawdown solutions in the transform domains are not re-written as they use isotropic 279 

solutions (Eqs. 4, 5, 6), where h is replaced by   
  
 

  
  and T* by    

   
 . In Eq. 5 (for an 280 

observation well in D*) x is replaced by   , and in Eq. 6 (for a well in D2) x is replaced by   , 281 

according to the previous re-scaling rules (Eqs. 9 and 10). The y coordinates remain 282 

unchanged, as well as the x coordinates in Eq. 4 (for a well in domain D1). Re-scaling of all 283 

three domains also satisfies long pumping stages, when drawdown solutions are characterized 284 

by straight lines on semi-log plots whose slope values depend on the average transmissivity of 285 

domains D1 and D2. These solutions are compared with numerical modelling, particularly the 286 

one in D*, in Section 4. Comparisons between the developed solutions and numerical 287 

simulations). 288 

 289 

3. Drawdown and flow behaviour at the pumping well 290 
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3.1. Isotropic case 291 

As many type curves exist for describing flow behaviour near such a discontinuity (domain 292 

D*), some examples are given below to discuss the main flow behaviour characteristics. 293 

Figure 4 shows the result of Eq. 4 at a pumping well of radius rw (          ) using 294 

dimensionless time,            
   , and dimensionless drawdown,    

  
        295 

    

 
         , for the case where T1/S1=0.1, T2/S2=0.5, T1/T2=20.0, h= 5 m. Figure 4a presents 296 

the case where T*/T1 varies from 10
-2

 to 10
3
 with S*/S1 =20.0, and Figure 4b the case where 297 

S*/S1 varies from 10
-3

 to 10
3
 with T*/T1=100.0. Diffusivity in D* thus varies between 10

-2
 and 298 

10
3
. The dimensionless forms of the solutions (Eqs. 4 to 6) are provided as Supporting 299 

Information. 300 

A convenient starting point for the analysis of Eq. 4 is the log-log diagnostic plot developed 301 

by Bourdet et al. (1983). In this plot, both drawdown (sD) and its derivative (sD’) are shown 302 

with respect to the natural logarithm of time (            ). Among others, this log-log plot 303 

is commonly used for identifying flow regimes during a pumping test (Ehlig-Economides, 304 

1988; Bourdet et al., 1989; Spane and Wurstner, 1993; Renard et al., 2009; Ferroud et al, 305 

2019). For all presented derivative curves in this work, derivatives were computed 306 

numerically according to Bourdet’s et al. (1989) algorithm. 307 

During the early stages of pumping, when the cone of depression has not yet reached 308 

boundary L1 (tDL<0.2 on Figs. 4a and b), Eq. 4 is identical to the solution of an infinite 309 

homogeneous aquifer (Theis, 1935). For a large enough tDL, the condition for which Theis’ 310 

equation reduces to Cooper-Jacob’s (1946) equation, a straight line on a semi-logarithmic plot 311 

with a slope ½ characterizes dimensionless drawdown. Its logarithmic derivative is constant 312 

(value of ½), reflecting the first infinite-radial flow to the well (Fig. 4). Therefore, for short 313 

times, the logarithmic derivative of drawdown will converge to                 . 314 

Once the cone of depression begins to reach boundary L1 (tDL>0.2), transmissivity and 315 

storage-coefficient ratios between the pumped (D1) and the strip (D*) aquifers change the 316 

character of the drawdown curves. At that time, the drawdown propagates along boundary L1 317 

and within the strip aquifer. For high T*/T1 or S*/S1 ratios, the derivative slope tends to -1, 318 

showing that the fault zone acts as a steady-state source (i.e. constant head boundary; 319 

Abbaszadeh and Cinco-Ley, 1995, Abbaszadeh et al., 2000). The higher the T*/T1 or S*/S1 320 

ratios, the more the -1 slope is established and the longer it lasts. Note that this trend generally 321 

characterizes a fault zone with infinite hydraulic conductivity near a pumping well 322 
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(Abbaszadeh and Cinco-Ley, 1995, Abbaszadeh et al., 2000; Escobar et al., 2013). However, 323 

Fig. 4b also shows that a similar trend can be obtained for high S*/S1 ratios and not 324 

necessarily high T*/T1 ratios, as in the previously cited literature. Then, at medium-stages 325 

(tDL>10.0), when the fault begins to drain the whole aquifer system, derivatives follow a near 326 

¼ slope, which describes a bi-linear flow regime within D*, as mentioned in previously cited 327 

work. However, when S*/S1 ratios are high (>100.0 on Fig. 4b) the derivative’s slope tends to 328 

½, describing a linear flow regime within D*. It is also interesting to note that, for 329 

intermediate T*/T1 ratios (with T*>T1) or S*/S1 ratios, drawdown behaves similarly to 330 

naturally fractured media like dual-porosity aquifers (Abbaszadeh and Cinco-Ley, 1995), or 331 

dual-permeability media such as multilayer aquifers. 332 

When T*/T1 and S*/S1 ratios decrease (Figs. 4a and b), derivative curves rise up, and 333 

durations of the -1 derivative slope period and subsequent ¼ or ½ slope decrease (linear flow 334 

regimes), showing that D* is less able to drain the whole aquifer system. In the proposed 335 

examples, the derivative may form a hump at the end of the linear flow period within D* 336 

(tDL>30 on Fig. 4a or 6 000 on Fig. 4b). On Fig. 4a, it is the consequence of a decrease in the 337 

T*/T1 ratio (<1), and on Fig. 4b it is the result of a lower diffusivity contrast between domains 338 

D* and D2. The smaller the contrast, the greater the hump, which may cause boundary L1 339 

(Fig. 4a) and L2 (Fig. 4b) to appear temporarily as a no-flow boundary (see blue curves on 340 

Fig. 4a). 341 

At late pumping stages (tDL>10
5
 on Figs. 4a and 4b), drawdown has diffused through the 342 

whole domain D* and propagates significantly in the third domain (D2). This period is 343 

characterized by a second radial flow regime, illustrating the overall response of the aquifer 344 

system. 345 

During very late stages of pumping (i.e. t→∞ or tDL→∞), all strength coefficients i and i in 346 

Eq.4, but also in Eqs. 5 and 6, tend to 1. Therefore, and after rearranging Eq.  4, the 347 

logarithmic derivative of the dimensionless drawdown for late-pumping stages leads to: 348 

        
   

    
  

   

          
   

       
     

        
     

      
 
 
     

      
 

 
            349 

 (10) 350 

As  
     

       and  
     

       ratios are between -1 and 1, the series can be regarded as a Taylor 351 

series that tends, for n∞, to 
              

          
. Therefore, the last equation simplifies to 352 
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 , showing that the logarithmic derivative of the dimensionless 353 

drawdown depends only on the transmissivities of the pumped aquifer (D1) and of domain 354 

D2. Thus, the logarithmic derivative of drawdown,          , will converge to a constant 355 

value inversely proportional to the average transmissivities of D1 and D2, 
  

      
 356 

             . This shows that, for late-stage pumping, the drawdown slope does not 357 

depend on the transmissivity of the strip aquifer (D*, representing a fault, another geological 358 

discontinuity, or another compartment), but on those of the pumped compartment and of the 359 

compartment on the other side of the geological discontinuity. This behaviour agrees with 360 

previous work (Abbaszadeh and Cinco-Ley, 1995, Abbaszadeh et al., 2000; Rahman et al., 361 

2003; Escobar et al., 2013). 362 

 363 

3.2. Anisotropic case 364 

As discussed above, the solution with an anisotropic central compartment (D*) is similar to 365 

that for the isotropic case (Eq. 4, h being replaced by   
  
 

  
  and T* by    

   
 ). Therefore, 366 

drawdown and derivative curves are characterized by a similar behaviour (Fig. 5). During the 367 

early-stage pumping (tDL<0.2),                  (or                 )—or the first 368 

infinite-acting radial flow when boundary L1 has not been reached by the pumping—and for 369 

late-stage pumping,              always tends to 
   

     
 (or 

  

      
              ), which 370 

characterizes the overall response of the aquifer system. However, compared to the isotropic 371 

case (Tx
*
=Ty

*
, curves T*/T1=100.0 on Fig. 4a or S*/S1=20.0 on Fig. 4b), the Ty

*
/Tx

*
 ratio 372 

increase induces a decrease of the derivative slope, up to -1 for the highest ratios 373 

(Ty*/Tx*>100.0), because of the increasing transmissivity contrast (Ty
*
/T1) in a direction 374 

perpendicular to the central compartment (x-axis). This shows that the anisotropy increase of 375 

transmissivity in D*, increases the capacity of the central compartment to drain the entire 376 

system, and thus its capacity to supply water to the pumped D1 compartment. Consequently, 377 

at medium-stage bi-linear flow (¼ derivatives slope) or linear flow (½ derivatives slope), 378 

regimes are shifted in time. The higher the Ty
*
/Tx

*
 ratio, the greater the offset. 379 

Conversely, a decrease in the anisotropy ratio (Ty
*
/Tx

*
<1.0, Fig. 5) induces a lower 380 

transmissivity contrast between D1 and D* (Ty
*
/T1). This reduces both the exchange between 381 

domains and the capacity of D* to drain the whole system. For the lowest contrast 382 
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(Ty
*
/Tx

*
<10

-2
), D* may act as a semi-permeable boundary, even though the overall 383 

transmissivity value of D* is still significantly higher than that of D1 (T*/T1=100.0, Fig. 5). 384 

 385 

4. Comparison between developed solutions and numerical simulations 386 

We compared the performance of solutions with transmissivity anisotropy in D* with 387 

numerical modelling, to check their accuracy but also to evaluate Eq. 9 required for the 388 

drawdown solutions in D*. The numerical modelling was developed with the MARTHE_7.4 389 

©BRGM computer code (Thiéry, 2010, 2015, 2018). MARTHE allows 2D or 3D modelling 390 

of flow and mass transfers in aquifer systems, including climatic and human influences. 391 

Groundwater flow is computed by a 3-D finite volume approach, to solve the hydrodynamic 392 

equation based on Darcy’s law and mass conservation. The grid geometry used in the 393 

numerical model is a 40x40 km square grid with a constant-head boundary condition at each 394 

side. In the x, y plane, cell size varies from 1x1 m at the origin (pumping well) up to 395 

500x500 m near the limits of the model. Vertically, the pumped aquifer is a 100-m-thick layer 396 

subdivided into 25 4-m-thick layers. The aquifer is capped by an impermeable layer (no-flow 397 

condition), creating a confined condition for the pumped layer. 398 

Several diffusivity ratios between the three domains and widths of the strip aquifer were 399 

prescribed to test the isotropic and the anisotropic solutions at various observation-well 400 

locations, i.e. in the pumped compartment D1, the strip aquifer D*, and in the right-side 401 

compartment D2.  Figure 6 shows the results of two of these models for testing the anisotropic 402 

solutions. In the model, the pumping well fully penetrates the aquifer and is located at the 403 

centre of the grid (x=0; y=0) and at 12 m (a=12 m) from a 8-m-wide strip aquifer (h=8 m). In 404 

both cases, transmissivity in the pumped compartment D1, T1, is 10
-2

 m
2
/s (hydraulic 405 

conductivity k1=10
-4

 m/s), the storage coefficient S1 is 2.0x10
-2

 (specific storage Ss1=2x10
-4

 m
-406 

1
) and the transmissivity and storage coefficient of the right-hand side compartment (D2), T2, 407 

is 5x10
-3

 m
2
/s (k2=5x10

-5
 m/s) and S2 is 10

-3
 (Ss2=10

-5
 m

-1
), respectively. Only the properties 408 

of the strip aquifer (D*) differ, although the T
*

y/T
*

x anisotropy ratio is the same at 10.0. In 409 

Model 1, T* is 10
-1

 m
2
/s (k*=10

-3
 m/s) and S* is 10

-1
 (Ss*=10

-3
 m

-1
), and in Model 2, T* is 410 

3x10
-3

 m
2
/s (k*=3x10

-5
 m/s) and S* is 2x10

-2
 (Ss*=2x10

-4
 m

-1
). Thus, in Model 1 the strip 411 

aquifer is the most transmissive and capacitive of the whole domain, while it is the least 412 

transmissive and the least capacitive in Model 2. For the simulations, a constant pumping rate 413 
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of Q=1.11x10
-2

 m
3
/s (40 m

3
/h) was set up for up to 700 days (about 10

6
 min). In this context, 414 

the model’s boundaries were not reached, and the aquifer remained saturated. 415 

Figures 6a and b compare the results of numerical modelling with analytically computed 416 

drawdown values. As shown on the figures, drawdown values and derivatives computed with 417 

the proposed solutions (Eqs. 4 to 6 with the proposed re-scaling rules of Eqs. 7 to 9), for 418 

observation wells in the pumped aquifer (D1; curves A to D on figures), for the ones in the 419 

strip aquifer (D*; curves E and F) and for the ones in the right-side aquifer (D2; curves G and 420 

H), perfectly match the values from numerical modelling. The root mean square error 421 

(RMSE) was calculated for each numerical-analytical comparison of drawdown values (see 422 

inserted tables on Figures 6a and 6b). RMSE values range between 1.4x10
-3

 and 1.7x10
-2

 m, 423 

showing that the proposed analytical solutions agree with the numerical modelling, a good 424 

indication of their accuracy. 425 

 426 

5. Flow along and through boundaries L1 and L2 427 

As mentioned in earlier studies, flow through and across a fracture plane or geological 428 

discontinuity (domain D*) is complex, and may be locally reversed (Fig. 7), particularly 429 

where the fault-transmissivity is higher than that of other compartments (Abbaszadeh and 430 

Cinco-Ley, 1995, Abbaszadeh et al., 2000; Rahman et al., 2003). The aim of this section is to 431 

propose analytical solutions of such flows, and to highlight their spatial and transient 432 

evolutions under different diffusivity contrasts (T1/S1≠T*/S*≠T2/S2). The dimensionless forms 433 

of the following solutions are provided as Supporting Information. 434 

5.1. Analytical solutions for flows through L1 and L2 435 

Analytical solutions for flow through both boundaries can be derived from Eqs. 4 to 6 for an 436 

isotropic central compartment (D*), and with re-scaling rules presented in section 2.4.2. for 437 

the anisotropic case (Eqs. 7 to 9). 438 

The solutions for flow are normalized with respect to the pumping flowrate Q, thus 439 

representing the fraction of Q that flows through L1 and L2 (
    

 
; 

    

 
). Along boundary L1 440 

(x=a; between D1 and D*), according to Eq. 4 and for the anisotropic case, the solution is: 441 
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            (11) 442 

and for flow along boundary L2 (x=a+h; between D* and D2), according to Eq. 6 and for the 443 

anisotropic case, the solution is: 444 

         

 
 

  

 

            

  

 
      

            

 
 
 

 
 

 

           

             
 

         

         

   

       

 
    

      
 

    
      

 

 

       

 
         

                 
  

  
    

                 

 

       

 
 
 

 
 

 

            (12) 445 

where      
  
 

  
 ,       

   
 , and where coefficients  and  are determined from Eqs. 4 to 446 

6 (h is replaced by   
  
 

  
 , and T* by    

   
 ). Note that Eq. 11 and Eq. 12 can also be obtained 447 

from Eq. 5 (domain D*) at the corresponding boundaries. 448 

 449 

5.2. Flux profile along L1 and L2 450 

Equations 11 and 12 are complex functions whose behaviour was explored through numerical 451 

experiments. Figures 8a and b show the flow profile along both boundaries (i.e. along the y-452 

axis, with y0 both solutions being symmetrical about the x-axis) after 21 days of pumping 453 

(t=3x10
4
 min and Q=1 m

3
/h). For this experiment, the pumping well is located at 10.0 m from 454 

a 5-m-wide strip aquifer (a=10.0 m and h=5.0 m). In all cases, the hydraulic properties in D1 455 

are identical (T1=10
-3

 m
2
/s; S1 =5x10

-3
). For curves A to F, the properties of D2 are identical 456 
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to those of D1 (T1=T2; S1=S2), D* is isotropic but its properties differ, T* varies from 2x10
-4

 457 

to 2x10
-2

 m
2
/s and S* from 10

-3
 to 6x10

-1
, making compartment D* both the most or the least 458 

transmissive, or the most and the least diffusive aquifer. Curve G is similar to C, but D2 is the 459 

least transmissive, and storativity is the least (T2=10
-4

 m
2
/s; S2 =10

-3
). Curve H differs from G 460 

only because D* is anisotropic in transmissivity (Ty*/Tx*=50.0). 461 

Analysis of these curves shows that, as mentioned in earlier studies (Abbaszadeh and Cinco-462 

Ley, 1995, Abbaszadeh et al., 2000; Rahman et al., 2003), the flow through boundary L1 is 463 

mainly from the compartment D* to D1. Locally, however, it can also be reversed (from D1 464 

to D*) when the central compartment D* becomes the most transmissive aquifer (Fig. 8a, 465 

curves A, B, C, G and H). This flow reversal indicates that, at a certain distance along the y-466 

axis (or from the pumping well) and after a certain duration of pumping, the hydraulic 467 

gradient at the boundary between D1 and D* is reversed. This implies that streamlines are 468 

reversed, because drawdown within the central compartment propagates faster than in the 469 

surrounding compartments. Such behaviour stems from the higher transmissivity in D*, but 470 

not necessarily because of a higher diffusivity (curves: A, B). For curve E, D* is the most 471 

diffusive, but reversed flow is absent. Curve A presents the equal diffusivity ratio case in 472 

which flow reversal occurs. Regarding the storativity (S*), the higher the value, the greater the 473 

reversed flow (curves: A, B, C). When compartment D2 on the right-side is the least 474 

transmissive (curves G and H), the flow in D* and therefore the reversed flow (D1 to D*) 475 

increase, and an increase in transmissivity anisotropy of D* (Ty
*
>Tx

*
) enhances the flow 476 

reversal (curve H). When D2 is the least transmissive, reversed flow may occur even if T*T1, 477 

but with T*T2 (not shown on the figure), the increase in anisotropy of D* (Ty
*
>Tx

*
) will still 478 

increase such flow. Logically, when D* is the least transmissive, no reversed flow will occur 479 

(curves: D, E, F), as well as when T2 becomes the most transmissive aquifer (not shown on 480 

the figure).  481 

Other tests concerned the distance between the pumping well and L1 (a), and the width of the 482 

central compartment (h). They showed that, regarding distance ‘a’, the greater the distance, 483 

the greater the influence of pumping on the pumped compartment (D1), and therefore the less 484 

on D* and D2. Therefore, logically, flows along the two discontinuities are reduced as ‘a’ 485 

increases. An increase in the width of the central compartment (h) induces an increase in the 486 

lateral transmissivity of the central compartment, perpendicular to the x-axis, which facilitates 487 

the propagation of drawdown in this direction, to the detriment of the y-axis. Consequently, 488 
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drawdown within the aquifer of the central strip aquifer propagates less rapidly, reducing the 489 

reversal hydraulic gradient between D1 and D*, and therefore the reversed flow. 490 

Flow along boundary L2 (between D* and D2) is less complex as it is always positive, from 491 

D2 to D* (Fig. 8b). It increases when D* is the least transmissive compartment (curves: D, E, 492 

F), and decreases when D* is the most transmissive or anisotropic (with Ty*>Tx*) 493 

compartment (curves: A, B, C, H), or when D2 is the least transmissive (curves G and H). 494 

Logically, when D2 is the most transmissive compartment, flow increases (not shown on the 495 

figure). 496 

 497 

5.3. Time-variation of flux along L1 and L2 498 

Figures 9a and b show the evolution of flow profiles through both boundaries for case H on 499 

Figure 8 (the anisotropic case T
*

y/T
*

x=50.0), at time of pumping t=1, 7, 30, 200, 500, 3x10
3
, 500 

3x10
4
 and 10

8
 min. Up until 30 min, the flow at boundary L1 is only from compartment D* to 501 

D1, as the hydraulic gradient between D1 and D* is always positive. During this period, 502 

particularly from about 2 min, when drawdown begins to reach L1, to 30 min, drawdown does 503 

not propagate more rapidly in D1 than in D*. From t=30 min the flow reversal starts, as the 504 

drawdown begins to propagate faster in D*. The location of the point of reversed flow 505 

into/from D*, increases slightly with time. At t=200 min the reversal point is at about 48.0 m, 506 

and then converges to about 58 m (y=58.0 m at t=10
8
 min). Along L2, the flow from D2 to D* 507 

increases with time, particularly for the smallest values of y (0y150-200 m; t=1, 7 and 508 

30 min). Then, it flattens for longer time values, but total flow increases significantly. In fact, 509 

after 200 min, linear to bi-linear flow regimes start to occur in D* (Fig. 10c), which means 510 

that D* begins to drain the two surrounding aquifers (D2 and D1). 511 

The precise assessment of flow along L1 (Eq. 11; Figs. 7a and 8a) is a challenging task. It 512 

requires separation of the two flow components, the one from D* to D1 (positive flow), and 513 

the one from D1 to D* (negative or reversed flow). This implies separating the positive and 514 

negative values of the calculation of Eq. 11. The flow at each time t can be calculated by 515 

integrating Eq. 11 along the y-axis at the appropriate interval. For flow from D* to D1, the 516 

solution is: 517 

       

 
   

    

 
  

  

 
          (13) 518 

and the one from D1 to D* (flow reversal), is: 519 
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          (14) 520 

where 
    

 
 is given by Eq. 11 and yf is the location of the point of reversed flow into/from 521 

compartment D* onto the y-axis. However, no formal solution of the roots of Eq. 11 was 522 

found, and they were evaluated numerically using the Newton-Raphson method. 523 

For flow along L2, entering compartment D* from D2, Eq. 12 has to be integrated along L2 (-524 

∞<y<∞), which gives:  525 

       

 
   

    

 
  

  

 
         (15) 526 

where 
    

 
 is given by Eq. 12. 527 

Note that all integrals in Eqs. 13 to 15 are multiplied by two, to account for symmetrical 528 

properties of equations about the x-axis. Net flow from Domain D* is obtained by subtracting 529 

Eq. 13 from both Eqs. 14 and 15. 530 

Figure 10a shows the variations of the various flow components over time, for the anisotropic 531 

example given in Fig. 9 (T
*

y/Tx
*
=50.0) and for the case where the compartment D* is isotropic 532 

(T*y/Tx*=1.0; all other parameters remaining unchanged). Figure 10b presents the net flow 533 

from the strip-aquifer D* (net flow=Eq. 13-[Eq. 14+Eq. 15]). Figure 10c shows the 534 

corresponding drawdowns and their derivatives at the pumping well. Flow entering D1 from 535 

D*, or the one entering D* from D1 (flow reversal), increases sharply once drawdown begins 536 

to propagate significantly in D* (-1 or negative slope on derivatives). Then, once the bi-linear 537 

to linear flow regime is established in D* (t>100 min; Fig. 10c), and drawdown propagates in 538 

the right-side compartment (D2), the flow along L1 increases and then slows down, almost 539 

stabilizing over long times when the whole system responds to pumping (second radial flow 540 

regime). The contribution of the strip-aquifer to compartment D1 varies over time (net flow, 541 

Fig. 10b) according to the various flow components. It first increases rapidly due to the 542 

contribution of D* to D1 (positive flow) and then, once the feature begins to drain the system, 543 

it decreases as reversed flow and flow from D2 increase. Logically, an increase of the 544 

anisotropy ratio in D* increases the net contribution of D*. 545 

 546 

6. Extension of the proposed theory to a well intersecting and pumping a vertical 547 

fracture of finite length located near an infinite fault 548 
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We propose drawdown solutions for the case of a well intersecting and pumping a vertical 549 

fracture of finite length, 2l, making an angle  with the x-axis (Fig. 1b; Fig. 11) near an 550 

infinite vertical discontinuity. They are based on the drawdown solutions for the three 551 

compartments developed above for the isotropic and anisotropic cases. The pumping well is 552 

located at the centre of the fracture, at a distance a from L1. The fracture fully penetrates the 553 

aquifer, and should not cross domain D* (i.e. lcosa). Assuming that the pumping rate Q is 554 

uniformly distributed along the fracture, i.e. the rate of pumping per unit length of the fracture 555 

is        
 

   , according to Dewandel et al. (2018), drawdown solutions can be obtained 556 

by integrating the above solutions along the fracture axis. Solutions for the three domains then 557 

take the following general form: 558 

                        
  

  
        (16) 559 

where s(x,y,t) corresponds to Eqs. 4, 5 or 6 for the isotropic case, which, combined with 560 

Eqs. 7, 8 or 9 gives the solutions for the anisotropic case (or T
*

y/T
*

x≠1). Note that for the 561 

particular case where the distance of the pumped fracture to L1 is infinite (a∞; i.e. there is 562 

only one aquifer system, D1), Eq. 16 corresponds exactly to a known analytical solution 563 

(Gringarten et al. (1974), their Eq. 20) for drawdown in a well pumping a vertical fracture 564 

with uniform flux distribution that fully penetrates the aquifer (Dewandel et al., 2018). 565 

The integral in Eq.16 can be evaluated numerically with the Gauss-Legendre quadrature, as 566 

done here, or evaluated using a discretized form of Eq. 16 by dividing the fracture into small 567 

elements and placing the appropriate line-source solution at the centre of each segment 568 

(Dewandel et al., 2018, their Eq. 7). 569 

 570 

6.1. Drawdown and flow behaviours at the pumping well  571 

Figure 11 presents the result of Eq. 16 for a pumping well of radius rw intercepting a fracture 572 

parallel to domain D* (i.e. parallel to the y-axis, =90°). Dimensionless time according to 573 

fracture length,            
   , and dimensionless drawdown, 574 

    
 

        
    

 
          , are used for presenting the case where T1/S1=0.1, 575 

T
*
/S

*
=T2/S2=0.5, T

*
y/T

*
x=10.0, T

*
/T1=100.0; T1/T2=20.0, h= 5 m, and a/l ratios varying from 1 576 

to 10. This setting describes the behaviour of a fracture with increasing distance from 577 

boundary L1. 578 
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At the start of pumping, the flow is linear (half-unit slope of derivative curves) and 579 

corresponds to flow from aquifer D1 to the fracture intersected by the pumping well. For 580 

intermediate pumping stages, the derivative curves may describe the first infinite-acting radial 581 

flow, when both the boundary L1 has not yet been reached by pumping and the fracture is far 582 

enough from L1, a/l>4. For this case,                   or                     ). 583 

Then, once the cone of depression begins to reach boundary L1, the derivative slope 584 

decreases, and may tend to -1 when the half-fracture size is close to the distance between the 585 

centre of the fracture and L1 (a/l3). This shows that D* acts temporarily as a steady-state 586 

source. At times tDf>10.0 derivatives follow a near ¼ slope, describing the earlier-mentioned 587 

bi-linear flow regime within domain D*. As for the case of pumping in a well (without 588 

fracture), the derivative slope may also tend to ½ when S*/S1 ratios are high (linear flow 589 

regime within D*). For late pumping stages (tDf>2.10
5
 in Fig. 11), the drawdown has diffused 590 

through the whole domain D* and propagates significantly into the right-side aquifer (domain 591 

D2), indicating that D* drains the whole aquifer system. A second radial flow regime is 592 

encountered and characterizes the overall response of the aquifer system, the derivative 593 

always tending to 
   

     
 (or 

      

      
              ), as in previous solutions (see section 594 

3., above). 595 

 596 

6.2. Flow along and through boundaries L1 and L2 597 

As done previously for pumping in a well (without fracture), flow along and across both 598 

boundaries L1 and L2 can also be computed using the same procedure as described before 599 

(section 5.). Figures 12 and 13 show examples of flow profiles along L1 and L2 at 600 

t=3x10
4
 min, and time-variations of fluxes along L1 and L2, respectively, for pumping in a 601 

20-m-long fracture (2l=20 m) either parallel (=90°), perpendicular (=0°), or making a 45° 602 

angle with compartment D* (=45°). In all cases, the aquifer properties in all three 603 

compartments are identical to case H in Fig. 8 (T1=10
-3

 m
2
/s, S1 =5x10

-3
, T*=2x10

-2
 m

2
/s, 604 

S*=10
-2

, T*y/T*x=50.0, T2=10
-4

 m
2
/s, S2=10

-3
, h=5 m, a=10 m, Q=1 m

3
/h). The results are 605 

also compared to the case where the well that is pumped does not intersect a fracture. 606 

For pumping in a fracture, flow profiles along both boundaries L1 and L2 have a similar 607 

shape compared to the case of pumping in a well, and are logically symmetric to the y-axis 608 

when the fracture is symmetric to the y-axis ( =0° and 90°; Fig. 12). Compared to pumping 609 

in a well, flow along boundary L1 (Fig.  12a) is higher near the x-axis (x=0) when the fracture 610 
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is perpendicular to D* (=0°), and is logically less important when it is parallel to it (=90°). 611 

When the fracture makes a secant angle with D* (=45°), maximum flow shifts to the side 612 

where the fracture is closer to boundary L1 (here, to the right). Reversed flow (from D1 to 613 

D*) is similar in all cases, including the pumping well case, as the reversal point is far from 614 

the fracture, at about 50 m. 615 

Concerning flow along boundary L2 (Fig.  12b), the same remarks apply, except that for the 616 

fracture cases flux distribution is characterized by a sharp distribution almost centred along 617 

the x-axis (near x=0), and is locally higher than that for the well case. This shows that 618 

pumping in a fracture concentrates flow in a larger area, and then solicits more compartment 619 

D2 near the fracture. 620 

When pumping a fracture, time-variations of flow show similar behaviour to that of the 621 

pumping well case (Fig. 13a). In particular, flow reversal is almost identical for all cases. The 622 

main difference compared to the pumping well case occurs when the fracture makes a secant 623 

angle with D* (=0 and 45°), forcing D*, but also D2, to react more rapidly, even at early 624 

stages during the linear flow caused by pumping in the fracture (Fig. 13c). However, for late 625 

pumping stages, the flow from D* to D1 is less in the cases considering a fracture when 626 

compared to the pumping well case. This difference stems from the larger pumped area that 627 

facilitates the reaction of D1 near the pumped fracture. Consequently, the net flow from 628 

compartment D* to D1 (Fig. 13b) is less important when pumping is done through a fracture. 629 

 630 

7. Conclusions 631 

New analytical solutions for drawdown are proposed for a pumping well, and for a well 632 

intersecting and pumping a vertical fracture of finite length, near an infinite vertical fault zone 633 

or another vertical geological discontinuity (vein, dyke, strip aquifer) with finite width, finite 634 

storativity, and finite—and possibly anisotropic—hydraulic conductivity. Consequently, the 635 

solutions proposed can relate to a relatively large set of hydrogeological situations. However, 636 

the dip of the structure must be close to vertical and long enough (with regard to the pumping 637 

duration) to be considered as infinite for a good use of the solutions (see Fig. 1). 638 

The solutions are based on an unconventional application of well-image theory, without 639 

limitation on the diffusivity contrast between the aquifer compartments, and considering flow 640 

transience within the fault. Solutions were developed for the drawdown in three aquifer 641 
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compartments, the pumped compartment, the one within the fault zone, and the compartment 642 

on the other side of the fault. The solutions are good approximations of the corresponding 643 

partial differential equations, and comparison with numerical simulations showed high 644 

accuracy.  645 

Drawdown and flow regimes in the pumping well were analysed in various configurations 646 

and, overall, are similar to previous studies, especially when the fault zone is strongly 647 

permeable and anisotropic. In the last case and once the cone of depression reaches the fault, 648 

the slope of the logarithmic derivative of drawdown in the pumping well tends to -1, showing 649 

that the fault temporarily acts as a steady-state source. Later, when the fault begins to drain 650 

the whole aquifer system, the derivative follows typical ¼ or ½ slopes, depending upon the 651 

contrast in aquifer properties that describe bi-linear to linear flow regimes within the fault 652 

zone. For the late stages of pumping, the derivative forms a second radial flow regime that 653 

depends upon the average transmissivities of the two external aquifer compartments, but not 654 

on the fault zone. The first radial flow is established at an early stage, before the cone of 655 

depression reaches the fault zone. 656 

This application of image-well theory fits the need for other well functions, which should be 657 

derivable on x to get mathematical expressions of strength coefficients. Therefore, drawdown 658 

solutions were developed for a well intersecting and pumping a vertical fracture of finite 659 

length located near the same infinite vertical fault zone. In terms of flow regimes, behaviour 660 

was similar to the pumping well case, except for early pumping stages when a first linear-flow 661 

regime defines the response of the pumped vertical fracture. We also believe that other 662 

solutions can be derived for a partially penetrating well, or a partially penetrating fracture 663 

pumped by a well, located near a 3-D anisotropic fault using the Hantush and Hantush leaky-664 

well functions (Hantush, 1964, 1966; Dewandel et al., 2014). A 3-D geometry of the pumped 665 

fracture could be considered as well. 666 

An interesting point of the proposed solutions is the possibility to derive transient-flow 667 

solutions along both sides of the fault zone, and thus net transient flow from the fault itself. 668 

Depending on the contrast in aquifer parameters between the three compartments, flow 669 

reversal between the fault and the pumped aquifer occurs, as found in previous work, when 670 

the fault zone is the most permeable. We show that net flow from the fault into the pumped 671 

aquifer increases rapidly during the early pumping stage due to contribution of the fault zone, 672 

and then, once the fault begins to drain the system, it decreases as reversed flow and flow 673 

from the opposite-side aquifer increase. Logically, an increasing anisotropy of the fault zone 674 
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increases the net contribution of the fault. When the pumping takes place through a vertical 675 

fracture near a fault zone, net flow is less important because the fracture increases the reaction 676 

of the pumped compartment, compared to the fault zone and the opposite-side compartment. 677 

Furthermore, all results show that the net flow contribution is characterized by strong time-678 

variation that stabilizes by long pumping stages. This may influence the quality of the pumped 679 

water, especially when the water quality of the fault zone is different from that where the well 680 

is located. Future work should focus on such flow computations in an experimental site, using 681 

geochemical data for assessing the origin of water (or fluid) when pumping a well, or one that 682 

intersects and pumps a fracture near a vertical geological discontinuity. 683 
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List of symbols: 814 

a: distance to boundary L1 in m 815 

e
x
: exponential function 816 

h: width of domain D* (linear strip aquifer), in m 817 

l: half-fracture length (in Domain 1), in m 818 

Q: pumping flow rate, in m
3
s

-1
 819 

rw: well radius, in m 820 

S1, S*, S2: storage coefficients of the right-side compartment (D1), the strip aquifer (D*), and 821 
the left-side compartment (D2), respectively, dimensionless 822 

s1, s*, s2: drawdown of the right-side compartment (D1), the strip aquifer (D*), and the left-823 
side compartment (D2), respectively, in m 824 

sfrac: drawdown for a well intersecting and pumping a vertical fracture, in m 825 

sD: dimensionless drawdown for pumping in a well;    
  

        
    

 
          826 

sDf: dimensionless drawdown for a well intersecting and pumping a vertical fracture; 827 

    
 

        
    

 
           828 

tDL: dimensionless time according to the distance to the boundary (for pumping in a well); 829 
           

    830 

tDf: dimensionless time according to the fracture half-length (for a well intersecting and 831 

pumping a vertical fracture);            
    832 

t: time, in seconds 833 

T1, T*, T2: transmissivity of the right-side compartment (D1), the strip aquifer (D*), and the 834 

left-side compartment (D2) respectively, in m
2
/s 835 

T
*

x and T
*
y: principal axes of transmissivity anisotropy in the horizontal plane of the strip 836 

aquifer (D*), in m
2
/s 837 

x, y: coordinates of a Cartesian system, in m 838 

      
   

 
  

 

 
 with  a variable of integration. Well function. 839 

: angle of the fracture with the x-axis, radian 840 

  841 
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Appendices 842 

Appendix A  Partial differential equation 843 

In D1 (Bixel et al., 1963; Butler and Liu, 1991): 844 

    

   
 

    

   
 

 

  
         

  

  

   

  
.        (A.1) 845 

         is a combination of Dirac delta functions representing the pumping well as a line 846 

source at x=y=0. 847 

In D* (Butler and Liu, 1991): 848 

    

    
    

    
  

  

   

  
          (A.2) 849 

And in D2 (Butler and Liu, 1991): 850 

    

    
    

    
  

  

   

  
          (A.3) 851 

 852 

Appendix B  Calculation of strength coefficients for the first series of image-wells 853 

according to boundaries L1 and L2 (Fig. 3a) 854 

We first consider the first image according to L1 (boundary between D1 and D*; Fig. 3a). In 855 

this case, the problem refers to the influence of a partial hydrologic barrier on a well test 856 

(Bixel et al.,1963; Fenske, 1984; Maximov, 1962; Nind, 1965; Raghavan, 2010). 857 

Applying the first boundary condition, it results that drawdown in Domain 1 is: 858 

          
 

    
   

  

    
             

  

    
                 (B.1) 859 

and that drawdown in Domain D* is: 860 

          
 

    
    

  

    
               (B.2) 861 

Equating Eqs. (B.1) and (B.2), and for the condition x=a (i.e.                    ) at the 862 

boundary L1, we obtain: 863 

1+   
  

  

  

  
  with    

  
  

    
        

  
  

    
        

       (B.3) 864 
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Then, applying the second boundary condition at boundary L1,   
          

  
=            

  
, gives: 865 

     
  

  
 with    

   
  

    
        

   
  

    
        

       (B.4) 866 

Equating Eqs. (B.3) and (B.4) gives the strength coefficients 0 and 0: 867 

   
         

         
  and    

       

         
      (B.5) 868 

This case, which considers a system composed of only two domains (D1 and D*), is exactly 869 

the solution proposed by Fenske (1984) for various diffusivity contrasts (T1/S1≠T*/S*). 870 

Now, the pumping well must be imaged about the second boundary L2, and it results that 871 

drawdown in Domain D* is: 872 

          
 

         
  

    
           

   
  

    
                (B.6) 873 

and that drawdown in Domain 2 is: 874 

          
 

    
    

  

    
               (B.7) 875 

Equating Eqs. (B.6) and (B.7), and for the condition x=a+h (                       ) at 876 

the boundary L2, we obtain: 877 

  +  
  

  

  

  

  
 with    

  
  

    
            

  
  

    
            

       (B.8) 878 

Applying the second boundary condition at boundary L2,   
            

  
=              

  
, gives: 879 

  -  
  

  

  
 with    

   
  

    
            

   
  

    
            

       (B.9) 880 

Equating Eqs. (B.8) and (B.8) gives the strength coefficients ’0 and 0: 881 

  
     

         

         
 and    

       

         
                 (B.10) 882 

 883 

Calculation of strength coefficients for the second series of image-wells according to L1 and 884 

L2 (Fig. 3b). 885 
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Drawdown in Domain 1 is: 886 

          
 

    
    

  

    
                                                    (B.11) 887 

Drawdown in Domain D* is: 888 

          
 

       
   

  

    
                     

  

    
               889 

           (B.12) 890 

Drawdown in Domain D2 is: 891 

          
 

    
    

  

    
                   (B.13) 892 

Applying the two boundary conditions at each boundary, first at L1 and then at L2, results 893 

that strength coefficients 1, ’0, 1, ’1 and 1 are given by: 894 

     
    

         
 ,      

          

         
 ,   

     
         

         
 and      

       

         
 (B.14) 895 

with    
  

  
    

             

  
  

    
             

 ,    
   

  
    

             

   
  

    
             

 ,    
  

  

    
             

  
  

    
             

 and 896 

   
   

  

    
             

   
  

    
             

. 897 

and so on. 898 

 899 

Appendix C  Drawdown solutions for the equal diffusivity case (T1/S1=T*/S*=T2/S2=) 900 

For Domain 1: 901 

          902 

 

    
   

     

  
  

     

       
          

  
  903 

 
    

       
   

       
     

        
     

      
 

 
     

      
 

  
                  

  
  

          (C.1) 904 

For Domain D*: 905 
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  
  

        906 

 
   

        
     

      
 

 
     

      
 

  
           

  
  

             (C.2) 907 

And for Domain 2: 908 

          
 

    
 

   

       
   

         
     

      
 

 
     

      
 

  
          

  
  

          (C.3) 909 

Note that for this particular case, strength coefficients are identical to the ones given by 910 

Anderson (2006) for a steady-state solution. 911 

  912 
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Figure captions 913 

Figure 1. Conceptual sketches: a) of a pumping well and b) of a well intersecting and 914 

pumping a vertical fracture with finite length, located near a vertical infinite and anisotropic 915 

fault zone, (or another vertical geological discontinuity, strip aquifer). Domain D* (width h) 916 

separates two semi-infinite half-spaces of dissimilar properties (domains D1 and D2). The 917 

pumping well, or the pumped vertical fracture, is located in D1 and is not connected to D*. 918 

Figure 2. Graphical display of the image-well series. (a) Image-well according to L1 and L2, 919 

graphical display of the image-well series. (b) Observation well located in domain D1. 920 

(c) Observation well located in domain D*. (d) Observation well located in domain D2. 921 

Modified from Anderson (2006). The pumping well is located in D1. 922 

Figure 3. Graphical display of the first image-wells and calculation of the corresponding 923 

strength coefficients. (a) First series of image-wells according to L1 and L2. (b) Second series 924 

of images according to L1 and L2. 925 

Figure 4. Type-curves of dimensionless drawdown (sD) and derivatives sD’, and dimensionless 926 

time (tDL) for a pumping well near a vertical infinite and isotropic fault zone (D*). T1/S1=0.1, 927 

T2/S2=0.5, T1/T2=20.0, h= 5 m. (a) Variations of transmissivity contrast T*/T1 (10
-2

 to 10
3
) 928 

with S*/S1 =20.0. (b) Variations of storativity contrast S*/S1 (10
-3

 to 10
3
) with T*/T1= 100.0. 929 

Figure 5. Type-curves of dimensionless drawdown (sD) and derivatives sD’, and dimensionless 930 

time (tDL) for a pumping well near a vertical infinite and anisotropic fault zone. Anisotropy 931 

ratio varies (10
-3
T

*
y/T

*
x10

3
) T1/S1=0.1, S*/S1=20.0, T*/S*=T2/S2=0.5, T1/T2=20.0, h= 5m. 932 

Figure 6. Comparison of drawdown, s, and derivative, s’, computed with MARTHE software 933 

(plain dots: s; open dots: s’) and the analytical solutions (plain curves: s; dotted curves: s’) for 934 

the anisotropic case (Eqs. 4-6 with Eqs. 7-9). See figure and text for model parameters. The 935 

inserted tables show RMSE values for various observation-well locations (x, y coordinates). 936 

(a) Model 1: T*: 10
-1

 m
2
/s and S*:10

-1
. (b) Model 2 T*: 3x10

-3
 m

2
/s and S*: 2x10

-2
. In both 937 

cases, T
*

y/T
*

x=10.0. ‘’ 938 

Figure 7. Conceptual sketch of flow behaviour through boundaries L1 and L2, where the 939 

transmissivity of the central compartment (D*, fault zone) is higher than that of other 940 

compartments. Black arrows: normal flow from compartment D* to D1, or D2 to D*. Blue 941 

arrows: flow reversal from D1 to D*. Pumping is performed in D1. 942 
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Figure 8. Flow profiles through both discontinuities. (a) L1 and (b) L2 with various aquifer 943 

properties after 21 days of pumping (t=3x10
4
 min and Q=1 m3/h). The pumping well is 944 

located at 10.0 m from a 5-m-wide fault zone (a=10.0 m and h=5.0 m). See figure and text for 945 

model parameters. 946 

Figure 9. Flow profiles through both discontinuities. (a) L1 and (b) L2 at various times of 947 

pumping, t=1, 7, 30, 200, 500, 3x10
3
, 3x10

4
 and 10

8
 min. It corresponds to case H on Figure 7 948 

(the anisotropic case T
*

y/T
*

x=50.0). See figure and text for model parameters. 949 

Figure 10. (a) Time-variations of the various flow components through both discontinuities 950 

L1 and L2. (b) Net flow from strip aquifer D*. (c) Corresponding drawdowns and their 951 

derivatives at the pumping well. Two examples are shown, the one given on Figure 8 952 

(T
*

y/Tx
*
=50.0, case H) and the one where D* is isotropic (T*y/Tx*=1.0), all other parameters 953 

remaining unchanged. 954 

Figure 11. Type-curves of dimensionless drawdown (sDf) and derivatives sDf’, and 955 

dimensionless time (tDf) for a well intersecting and pumping a vertical fracture near a vertical 956 

infinite and anisotropic strip aquifer (Fig. 1b). Variations of a/l ratios (from 1 to 10), 957 

T1/S1=0.1, T
*
/S

*
=T2/S2=0.5, T

*
y/T

*
x=10.0, T

*
/T1=100.0; T1/T2=20.0, h= 5 m. 958 

Figure 12. Flow profiles through both boundaries: (a) L1 and (b) L2 for a well intersecting 959 

and pumping a vertical fracture near a vertical infinite fault zone at t=3x10
4
 min. T1=10

-960 

3
 m

2
/s, S1 =5x10

-3
, T*=2x10

-2
 m

2
/s, S*=10

-2
, T*y/T*x=50.0, T2=10

-4
 m

2
/s, S2=10

-3
, h=5 m and 961 

a=10 m, Q=1 m
3
/h, fracture length 2l=20 m, and =0°, 45° and 90° (a: angle of the fracture 962 

according to the x-axis). We also presented the case where a well is pumped without fracture 963 

(grey curve H on Fig. 8). 964 

Figure 13. (a) Time-variations of flux along L1 and L2. (b) Net flow from fault zone D*. 965 

(c) Corresponding drawdown and derivatives at a well intersecting and pumping a fracture. 966 

Aquifer properties are identical to the examples shown on Fig. 12. We also present the case 967 

where a well is pumped, without fracture (in grey, the same as on Fig. 9). 968 

 969 

  970 
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 971 
Figure 1

a) Pumping in a well b) Pumping in a well intersecting a 
vertical fracture with finite length

Fracture

Map view Map view

Infinite anisotropic strip-aquifer
(e.g. vertical fault zone, dyke, vein, other aquifer)
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Model2 x (m) y(m) RMSE

Dom.1 (A) 1 1 8.6E-03
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Dom.1 (D) -300 0 1.6E-03
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