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Abstract. In this work, we study the well-posedness and some stability properties of a PDE
system that models the propagation of light in a metallic domain with a hole. This model
takes into account the dispersive properties of the metal. It consists of a linear coupling between
Maxwell's equations and a wave type system. We prove that the problem is well posed for several
types of boundary conditions. Furthermore, we show that it is polynomially stable and that the
exponential stability is conditional on the exponential stability of the Maxwell system.
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1. Introduction. In order to accurately model the propagation of light in a nanostructured metal,
the recourse to dispersive models is mandatory in order to describe the non-instantaneous response
of the electrons of the metal to light. To be more complete, one has also to take into account for
the spatial dispersion that occurs through the electric polarization of the electrons: the response
of the electron depends on the electric �eld all around the position of the electron. The linearized
hydrodynamic Drude dispersive model is one of the most popular model that is able to tackle
these two e�ects using a semi-classical approach. The system consists in the linear coupling of
the set of Maxwell's equations to a wave type system driving the polarization source current and
charge. This system has been studied numerically on several occasions and proves its e�ciency
on real physical scenario (see e.g. [24], [26]). Theoretical works on well-posedness do exist for
this system on a bounded domain with standard boundary conditions. In this latter case, metallic
boundary conditions for the Maxwell electromagnetic part and either no �ux current or no charges
boundary conditions for the polarization unknowns are considered (see [16], [10] and [21]). In
[21], the authors furthermore investigated the stability properties but also numerical stability in
a discontinuous Galerkin framework. However, even if these results provide essential steps for a
complete understanding of the system, this precise setting still plays the role of a toy model. To
the best knowledge of the two authors, well-posedness and theoretical stability studies have not
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yet been addressed for more realistic settings. It requires especially to use more general boundary
conditions. The consideration of an exterior problem is a �rst signi�cant step toward future realistic
settings. Therefore, in this work, we propose an extension of the theory developed in [21] and we
focus on a particular setting that consists in an open metallic domain with a hole. We arti�cially
truncate the domain and impose absorbing boundary conditions on the arti�cial boundary. For the
Maxwell electromagnetic �eld, classical absorbing boundary conditions, that is to say �rst order
Silver Müller boundary conditions, are considered. For the polarization current and charge (solving
also a PDE), the question of the correct boundary conditions has not been investigated so far in the
literature. We propose to keep it as general as possible and study a continuum of possible boundary
conditions: from a "no charges" type boundary condition to a "no �ux" boundary condition passing
through a vanishing linear combination of the two. We show that the system is well-posed using
the classical theory of unbounded operators and semigroup theory. We furthermore investigate
the polynomial and exponential decay using a frequency domain approach. Since the kernel of the
associated unbounded operator is non-zero, we base our strategy on characterizing the orthogonal
of its kernel and prove that the restriction of the unbounded operator to this orthogonal generates
a C0-semigroup of contractions that is polynomially stable. Finally, we show that exponential
stability is conditioned to exponential stability of the Maxwell system alone.

The paper is organized as follows. In section 2, we introduce the notations and state some useful
preliminary results. In section 3, we concentrate on the proof of well posedness using semigroup
theory. In section 4, we study the polynomial decay and �nally section 5 focus on the study of the
exponential stability.

2. Notations and preliminary results.

2.1. Notations. As mentioned in the introduction, we consider an exterior scattering problem by
an obstacle. The obstacle will be denoted by O and is a bounded domain of R3 with a boundary
that we denote ΓS . Then the computational domain Ω of R3 is obtained by truncating R3 \ Ō with
an arti�cial boundary ΓA. The obtained domain is a bounded and simply connected open domain
with a Lipschitz boundary. Its boundary Γ consists in the union of the structure boundary ΓS and
the absorbing boundary ΓA, i.e. Γ = ΓA∪ΓS , with ΓA∩ΓS = ∅, see Figure 1 for a typical domain.

ΓA

ΓS

O

Ω

Figure 1. Type of considered domain

Remark 1. The arti�cial truncation of the domain is done �rst based on mathematical and
numerical motivations. However, since real media are always of �nite extension, through the
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truncation of the domain, we also intend to investigate and give some preliminary answer to the
di�cult question of the adequate physical boundary conditions one could impose in real scenario.

As usual, the unit outward normal vector along Γ will be denoted by n. We assume that ΓA is
C2 regular. Furthermore, we set D = O ∪ Ω. We will use the usual spaces L2(Ω) and Hs(Ω) for
s ∈ R+. The L2(Ω)-inner product (resp. norm) will be denoted by 〈·, ·〉 (resp. ‖ · ‖). The usual
norm and semi-norm of Hs(Ω) (s ≥ 0) are denoted by ‖ · ‖s,Ω and | · |s,Ω, respectively. For s = 0
we drop the index s. Furthermore, for shortness, if f ∈ L1(Ω), then we shall write

∫
Ω
f instead of∫

Ω
f(x) dx. Similarly if Γ0 is a subset of Γ, and if g ∈ L1(Γ0), then we write

∫
Γ0
g for

∫
Γ0
g(x) dσ(x).

If V is a Hilbert space and V ′ its dual, the duality pairing between V ′ and V will be denoted by
〈·, ·〉V ′−V . Finally by a . b, we mean that there exists a constant C > 0 independent of a, b, and
the time variable such that a ≤ Cb.

For further uses, let us introduce the following spaces:

H1
0 (Ω) := {u ∈ H1(Ω)|u = 0 on Γ}, and H1

0,ΓS (Ω) :=
{
v ∈ H1(Ω), v = 0 on ΓS

}
,

that is a Hilbert space for the inner product

∫
Ω

∇u · ∇v dx,∀u, v ∈ H1
0,ΓS (Ω).

We also de�ne usual spaces for �elds with L2-divergence and curl, see e.g. [14, 18]. For �elds
with square integrable divergence, we set

H0(div; Ω) = {χ ∈ L2(Ω)3|divχ ∈ L2(Ω) and χ · n = 0 on Γ},
K(Ω) = {χ ∈ L2(Ω)3|divχ = 0},

H0,ΓS (div,Ω) = {χ ∈ L2(Ω)3|divχ ∈ L2(Ω) and χ · n = 0 on ΓS},
K̂(Ω) = K(Ω) ∩H0,ΓS (div,Ω) = {χ ∈ K(Ω)|χ · n = 0 on ΓS}.

Similarly, for �elds with square integrable curl, we set

H(curl,Ω) = {χ ∈ L2(Ω)3| curlχ ∈ L2(Ω)3},
H0(curl,Ω) = {χ ∈ L2(Ω)3| curlχ ∈ L2(Ω)3 and χ× n = 0 on Γ},

H0,ΓS (curl,Ω) = {v ∈ H(curl,Ω), v × n = 0, on ΓS} .

We furthermore introduce the following subspaces of H(curl; Ω)

VΓA(Ω) = {χ ∈ H(curl; Ω)|χ×n ∈ L2(ΓA)3} and Hmix(curl,Ω) = {χ ∈ VΓA(Ω)|χ×n = 0 on ΓS}.

Similarly the space V(Ω) = {χ ∈ H(curl; Ω)|χ× n ∈ L2(Γ)3}, is a Hilbert space with the norm

‖χ‖2V(Ω) :=

∫
Ω

(|χ|2 + | curlχ|2) dx+

∫
Γ

|χ× n|2 dσ, ∀χ ∈ V(Ω).

Recall that the spaces

XT (Ω) := H(curl; Ω) ∩H0(div,Ω) and XN (Ω) := H(div,Ω) ∩H0(curl; Ω)

are Hilbert space with the norm ‖χ‖2X(Ω) =

∫
Ω

(| curlχ|2 + |divχ|2) dx.

If Γ0 is an open subset of Γ, we introduce the spaces

Vπ(Γ0) = {n× (G× n) : G ∈ H 1
2 (Γ0)3}, Vγ(Γ0) = {G× n : G ∈ H 1

2 (Γ0)3},

and the trace mappings

πτ : H1(Ω)3 → Vπ(Γ) : G→ G‖, γτ : H1(Ω)3 → Vγ(Γ) : G→ G× n,
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where we recall that G‖ = n× (G× n) is the tangential component of G on Γ. We recall from [9,

p. 855] that πτ and γτ are surjective and as ΓA is C2 (and is disjoint to ΓS), from [9, p. 850] that

Vγ(ΓA) = Vπ(ΓA) = TH
1
2 (ΓA)3 := {H ∈ H 1

2 (ΓA)3 : H · n = 0 on ΓA}, (2.1)

and that Vγ(ΓA)′ = Vπ(ΓA)′.

2.2. Useful Green's formulas. For further uses, let us now recall some useful Green's formulas.
First we recall that the normal trace mapping

H(div,Ω)→ H−
1
2 (ΓS) : R′ → R′|∂Ω · n

is continuous and surjective (see [14, Theorem I.2.5 and Corollary I.2.8]) and that the next Green's
formula holds (see [14, (I.2.17)])∫

Ω

(J · ∇φ+ φ div J) dx = 〈J · n, φ〉
H−

1
2 (Γ)−H

1
2 (Γ)

,∀φ ∈ H1(Ω), ∀J ∈ H(div,Ω). (2.2)

We go on with Green's formula related to the curl operator. Recall from [9, Theorem 4.1] that
for all E ∈ H(curl,Ω), we have

E‖ ∈ H−
1
2 (curlΓ,Γ) := {λ ∈ Vγ(Γ)′ : curlΓ λ ∈ H−

1
2 (Γ)}, (2.3)

E × n ∈ H− 1
2 (divΓ,Γ) := {λ ∈ Vπ(Γ)′ : divΓ λ ∈ H−

1
2 (Γ)}, (2.4)

from [9, (27)]1, for all E ∈ H(curl,Ω), and all F ∈ H1(Ω)3, we have∫
Ω

(E · curl F̄ − curlE · F̄ ) dx = 〈E × n, F‖〉Vπ(Γ)′−Vπ(Γ) = −〈E‖, F × n〉Vγ(Γ)′−Vγ(Γ). (2.5)

As D(Ω)3 is dense in H0(curl,Ω), this identity directly implies that∫
Ω

(E · curl F̄ − curlE · F̄ ) dx = 0,∀E ∈ H(curl,Ω), F ∈ H0(curl,Ω). (2.6)

We continue with a similar Green formula but for elements in V(Ω) (see Lemma 2.2 of [20]):

Lemma 2.1. For all E,F ∈ V(Ω), we have∫
Ω

(E · curl F̄ − curlE · F̄ ) dx =

∫
Γ

(E × n) · F̄‖ dσ. (2.7)

Corollary 2.2. For all E ∈ Hmix(curl; Ω) and F ∈ VΓA(Ω), we have∫
Ω

(E · curl F̄ − curlE · F̄ ) dx =

∫
ΓA

(E × n) · F̄‖ dσ. (2.8)

Proof. Fix a cut-o� function η ∈ D(R3) such that η = 1 in a neighborhood of ΓS and η = 0 in a
neighborhood of ΓA, then ηE belongs to H0(curl,Ω) and (1 − η)E belongs to V(Ω). Using (2.6)
for the pair (ηE, F ), we get ∫

Ω

(ηE · curl F̄ − curl(ηE) · F̄ ) dx = 0. (2.9)

Now we �x a cut-o� function ψ ∈ D(R3) such that ψ = 1 on a neighbourhood of the set {x ∈ R3 :
η(x) 6= 1} and ψ = 0 in a neighborhood of ΓS . In that way ψF belongs to V(Ω). The property of
ψ implying∫

Ω

((1− η)E · curl F̄ − curl((1− η)E) · F̄ ) dx =

∫
Ω

((1− η)E · curlψF − curl((1− η)E) · ψF ) dx,

1the reader is referred to this reference for the de�nition of surfacic divergence and curl operators.
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using (2.7) for the pair ((1− η)E,ψF ). Since 1− η = ψ = 1 on ΓA, we get∫
Ω

((1− η)E · curl F̄ − curl((1− η)E) · F̄ ) dx =

∫
ΓA

(E × n) · F̄‖ dσ.

Taking the sum of this identity with (2.9), we arrive at (2.8).

3. The system and its well-posedness. In this section we describe the PDE model on which
we focus and investigate its well-posedness.

3.1. The system of equations. The PDE model is obtained using a hydrodynamic description
of the metal. In this approximation, one models the collective behavior of the cloud of the free
electrons of the metal as a �uid. Focusing on the linear response of the system (we refer the
reader to [6] for the details), the resulting system of equations is a linear hyperbolic system of
PDE's. These equations write formally as:

ε∂tE − curlH = −J in O := Ω×]0,+∞[,

µ∂tH + curlE = 0 in O,

∂tJ − β2∇Q = ε0ω
2
pE − γJ in O,

∂tQ− div J = 0 in O.

(3.1)

The system of PDE thus consists in a linear coupling between Maxwell's equations (with (E,H)
denoting the electromagnetic �eld) and a PDE system that describes the evolution of the polar-
ization current J and the charge Q. As usual, we consider that ε0, the vacuum permeability, ε,
the permeability of the media and µ, its permittivity, are physical electromagnetic constants. In
addition, ωp denotes the plasma frequency and β is the so-called "nonlocal" parameter taking into
account the fact that the reaction of the electron depends on the electromagnetic �eld existing in
a vicinity of its position. One should notice that if β = 0, the system reduces to a linear coupling
between Maxwell's equation and a simple ODE describing the evolution of the polarization current
J : this is the so-called well-known Drude dispersive model. If β = 0, only time dispersion is taken
into account (the electron reaction is in�uenced by all the history of the electric �eld).
The full system (3.1) (with β 6= 0) has been studied theoretically in a bounded domain with
standard boundary conditions: metallic boundary conditions for the Maxwell electromagnetic part
(E×n = 0) and either no �ux (J ·n = 0) or no charges (Q = 0). Several works (already mentioned
in the introduction) exist: [16], [10] and [21]. In [21], a complete theoretical stability study is also
provided. Here, we propose a �rst extension of [21]. We consider a metallic domain with a hole
with physical properties described by the model (3.1).

3.2. Boundary conditions and spaces. On the structure boundary ΓS , we impose the electric
boundary conditions

E × n = 0, H · n = 0,div J = 0, Q = 0, (3.2)

On the absorbing boundary ΓA, we impose the Silver-Müller condition

E × n− z(H × n)× n = 0 on ΓA, and (3.3)

β1J · n + β2Q = 0 on ΓA, (3.4)

with two non negative real numbers β1 and β2 such that β1 + β2 > 0 and z =
√

µ
ε
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This allows to treat the boundary condition J · n = 0 and Q = 0 alltogether corresponding
respectively to the case β2 = 0 and β1 = 0. In the last case, β1 > 0 and β2 > 0, hence if we de�ne
r = β1

β2
> 0, we can eliminate J · n (or Q) since in this case (3.4) is equivalent to

Q = −rJ · n. (3.5)

Alltogether we �nd the problem

ε∂tE − curlH = −J in O := Ω×]0,+∞[,

µ∂tH + curlE = 0 in O,

∂tJ − β2∇Q = ε0ω
2
pE − γJ in O,

∂tQ− div J = 0 in O,

E × n = 0, H · n = 0,div J = 0, Q = 0 on ΣS := ΓS×]0,+∞[,

E × n− z(H × n)× n = 0, β1J · n + β2Q = 0 on ΣA := ΓA×]0,+∞[,

E(·, 0) = E0, H(·, 0) = H0, J(·, 0) = J0, Q(·, 0) = Q0, in Ω.

(3.6)

Note that these equations imply some hidden constraints on H and εE. Indeed the second
equation in (3.6) formally yields (divH)t = 0 in O, while the �rst and the fourth equations in
(3.6) formally yield (div(εE) +Q)t = 0 in O. Therefore

(div(εE) +Q)(x, t) = (div(εE) +Q)(x, 0) and divH(x, t) = divH(x, 0), ∀x ∈ Ω, t > 0, (3.7)

and if we assume the divergence free properties at t = 0, they will remain valid for t > 0.
Further in the case β2 = 0, the boundary condition β1J · n + β2Q = 0 on ΣA reduces to

J · n = 0 on ΣA. (3.8)

Hence if E and H are smooth enough, by multiplying the �rst equation by ∇ϕ, with ϕ ∈ H1
0,ΓS

(Ω)
such that ϕ = 1 on ΓA, and integrating in Ω, one has∫

Ω

(ε∂tE − curlH + J) · ∇ϕ = 0.

Integrating by parts, and taking into account (3.8) we then �nd

∫
Ω

(ε∂tE+J)·∇ϕ =

∫
ΓA

ε∂tE ·n, as

well as

∫
Ω

curlH ·∇ϕ =

∫
Γ

∇ϕ×n ·curlH = 0. These last properties then lead to ∂t(

∫
ΓA

E ·n) = 0.

and therefore if we assume that

∫
ΓA

E(x, t) · n = 0 at time t = 0, one has for t > 0∫
ΓA

E(x, t) · n =

∫
ΓA

E(x, 0) · n. (3.9)

We now de�ne the energy space. Contrary to [21], we do not directly integrate these constraints
in the energy space, they will be taken into account later on. We thus consider the Hilbert space

H = {(F,G,R, S)> ∈ L2(Ω)3 × L2(Ω)3 × L2(Ω)3 × L2(Ω)} ≡ L2(Ω)10,

with the inner product

((F,G,R, S)>, (F ′, G′, R′, S′)>)H :=

∫
Ω

(εF · F̄ ′ + µG · Ḡ′ + 1

ε0ω2
p

R · R̄′ + β2

ε0ω2
p

S · S̄′) dx. (3.10)
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We de�ne the unbounded operator A by

A(E,H, J,Q)> = (ε−1(curlH − J),−µ−1 curlE, β2∇Q+ ε0ω
2
pE − γJ,div J)>, (3.11)

with domain

D(A) :=
{

(E,H, J,Q)> ∈ H0,ΓS (curl,Ω)×H(curl,Ω)×H(div,Ω)×H1
0,ΓS (Ω)|

E × n + zH‖ = 0, β1J · n + β2Q = 0, on ΓA

}
. (3.12)

With this de�nition, introducing the vectorial unknown U = (E,H, J,Q)>, problem (3.6) can
then be formally rewritten as a �rst order evolution equation

∂tU = AU, U(0) = U0. (3.13)

3.3. The well-posedness result. The well-posedness of our problem is based on semigroup the-
ory, by showing that A generates a strongly continous semigroup.

Nevertheless, let us start with an hidden regularity for elements of D(A).

Lemma 3.1. Let (F,G,R, S)> ∈ D(A), then F × n, G × n ∈ H 1
2 (ΓA)3, in particular F belongs

to Hmix(curl,Ω) and G belongs to VΓA(Ω)

Proof. By its de�nition, for (F,G,R, S)> ∈ D(A), F and G belong to H(curl,Ω) but they are not
in H(div,Ω), so for any H ∈ L2(Ω)3, we consider ϕH ∈ H1

0 (Ω) the unique solution of∫
Ω

∇ϕH · ∇v dx =

∫
Ω

H · ∇v dx,∀v ∈ H1
0 (Ω),

whose existence follows from Lax-Milgram Lemma. This implies that F̃ = F − ∇ϕF and G̃ =
G−∇ϕG are divergence free, belong to H(curl,Ω) and satisfy F̃ ×n+ zG̃‖ = 0 on ΓA. These facts

imply that for any cut-o� function χ ∈ D(R3) such that χ = 0 in a neighborhood of ΓS and χ = 1

on ΓA, the pair (χF̃ , χG̃) belongs to 2 (as ΓA = ∂D)

V(D) = {(E,H) ∈ H(curl, D) ∩H(div, D) : E × n + zH‖ = 0 on ∂D}. (3.14)

As Lemma 4.5.5 of [12] (see [3] for a smooth boundary) shows that V(D) is continuously embedded

into H1(D)6, we deduce that F̃×n, G̃×n ∈ H 1
2 (ΓA)3. This yields the result because F×n = F̃×n

and G× n = G̃× n.

We now continue with the characterization of the adjoint operator ofA. First for any (F,G,R, S)> ∈
H, we set O(F,G,R, S)> = (F,−G,−R,S)>. Note that O is an isomorphism from H into itself
with O−1 = O.

Lemma 3.2. The domain of the adjoint A∗ of A is D(A∗) = {U ∈ H |OU ∈ D(A)}, and

A∗U = OAOU,∀U ∈ D(A∗). (3.15)

Proof. By de�nition, U = (F,G,R, S)> in H belongs to D(A∗) if and only if there exists X ∈ H
such that

(U,AU ′)H = (X,U ′)H,∀U ′ ∈ D(A), (3.16)

2as χF̃ and χG̃ are zero in a neighborhood of ΓA, we can extend them by zero in O



8 SERGE NICAISE AND CLAIRE SCHEID

and in that case A∗U = X. Using (3.11), (3.16) is clearly equivalent to∫
Ω

(
(curl Ḡ′ − R̄′) · F − curl F̄ ′ ·G+

1

ε0ω2
p

(β2∇S̄′ + ε0ω
2
pF̄
′ − γR̄′) ·R

+
β2

ε0ω2
p

div R̄′ · S
)
dx = (X,U ′)H,∀U ′ = (F ′, G′.R′, S′)> ∈ D(A). (3.17)

First taking U ′ ∈ D(Ω)10, we �nd

〈R− curlG, F̄ ′〉+ 〈curlF, Ḡ′〉 − 〈F +
1

ε0ω2
p

γR+
β2

ε0ω2
p

∇S, R̄′〉 − β2

ε0ω2
p

〈divR, S̄′〉 = (X,U ′)H.

Consequently U belongs to H(curl,Ω)×H(curl,Ω)×H(div,Ω)×H1(Ω) and X = OAOU (which
is meaningful due to the previous regularity of U). Using this identity and (3.17), we �nd

(U,AU ′)H = (A∗U,U ′)H,∀U ′ ∈ D(A). (3.18)

It remains to �nd the boundary conditions satis�ed by U . Let us start with the ones at ΓS .
Let us now choose U ′ = (0, G′, 0, 0) with G′ = ηG′′, with G′′ ∈ H1(Ω)3 and η is cut-o� function

(in D(R3)) such that η = 1 on ΓS and η = 0 on ΓA. In this way, U ′ belongs to D(A) and using
(3.18), we �nd

(F, curlG′) = (curlF,G′).

As G′ ∈ H1(Ω)3 and F ∈ H(curl,Ω), using Green's formula (2.5), we �nd (see [9] for the details)

〈F × n, G′‖〉Vπ(ΓS)′−Vπ(ΓS) = 0.

As πτ : H1(Ω)3 → Vπ : G→ G‖ is surjective (see section 2.2), we deduce that F × n = 0 on ΓS .

Similarly we take U ′ = (0, 0, R′, 0)> with R′ = ηR′′ with R′′ ∈ H(div,Ω) and η as before so
that R′ = 0 on ΓA. This yields an element of D(A), hence using this test function in (3.18) and
Green's formula (2.2), we obtain

〈R′ · n, S〉
H−

1
2 (ΓS)−H

1
2 (ΓS)

= 0.

As the trace mapping H(div,Ω) → H−
1
2 (ΓS) : R′ → R′|∂Ω · n is surjective (see section 2.2), we

conclude that S = 0 on ΓS .
Let us go on with the boundary conditions sati�ed by U at ΓA. First by the surjectivity of the

trace operators πτ and γτ for all H ∈ TH 1
2 (ΓA)3, we can �nd F ′′, G′′ ∈ H1(Ω)3 such that

F ′′ × n = H and G′′‖ = −zH on ΓA. (3.19)

Multiplying F ′′ and G′′ by 1− η, with η �xed below we �nd F ′ = (1− η)F ′′ and G′ = (1− η)G′′

such that U ′ = (F ′, G′, 0, 0) belongs to D(A). Choosing this element U ′ in (3.18) and using Green's
formula (2.5), and recalling (2.1) we deduce that

〈F × n, G′‖〉TH 1
2 (ΓA)′−TH

1
2 (ΓA)

+ 〈G‖, F ′ × n〉
TH

1
2 (ΓA)′−TH

1
2 (ΓA)

= 0.

With the help of (3.19), we arrive at

〈−zF × n +G‖, H〉TH 1
2 (ΓA)′−TH

1
2 (ΓA)

= 0,∀H ∈ TH 1
2 (ΓA)3.

Therefore we have �nd that F × n− zG‖ = 0 on ΓA.

For the last boundary condition, we take an arbitrary λ ∈ H
1
2 (ΓA). First we �x a lifting

Rλ ∈ H1(Ω) of λ, namely an element in H1(Ω) such that

Rλ = λ on ΓA, and Rλ = 0 on ΓS .



STABILITY PROPERTIES IN A DISPERSIVE DOMAIN WITH A HOLE 9

Second recalling that the boundary ΓA is C2, there exists a vector �eld N ∈ C1(Ω̄) such that
N(x) = n(x),∀x ∈ ΓA. We then readily check that (Rλ)N belongs to H1(Ω)3 and satis�es

(Rλ)N · n = λ|n|2 = λ on ΓA.

Then we take S′ = β1Rλ and R′ = −β2(Rλ)N , which yield U ′ = (0, 0, R′, S′) ∈ D(A). Choosing
this element U ′ in (3.18) and using Green's formula (2.2), we deduce that

〈R · n, S′〉
H−

1
2 (ΓA)−H

1
2 (ΓA)

+ 〈S,R′ · n〉
H−

1
2 (ΓA)−H

1
2 (ΓA)

= 0.

By their de�nition, we �nd

〈β1R · n− β2S, λ〉
H−

1
2 (ΓA)−H

1
2 (ΓA)

= 0,∀λ ∈ H 1
2 (ΓA),

and shows that β1R · n− β2S = 0 on ΓA.
Alltogether we have shown the inclusion D(A∗) ⊂ D∗ := {U ∈ H |OU ∈ D(A)}. But for

U ∈ D∗, by the di�erent Green's formula mentioned before, one readily checks that

(U,AU ′)H = (A∗U,U ′)H,∀U ′ ∈ D(A),

with A∗U de�ned by (3.15). This means that D∗ ⊂ D(A∗) and concludes the proof.

Theorem 3.1. The operator A de�ned by (3.11) with domain (3.12) generates a C0-semigroup
of contractions (T (t))t≥0 on H. Therefore for all U0 ∈ H, the problem (3.13) has a mild solution
U ∈ C([0,∞),H) given by U(t) = T (t)U0. If moreover U0 ∈ D(A), the problem (3.13) has a strong
solution U ∈ C([0,∞), D(A)) ∩ C1([0,∞),H).

Proof. We apply Corollary I.4.4 of [22] that guarantees that A generates a C0-semigroup of con-
tractions (T (t))t≥0 on H if A is a densely de�ned closed operator and if A and its adjoint A∗ are
dissipative.

Since D(Ω)10 is dense in (H, (·, ·)H) and since D(Ω)10 is clearly included into D(A), the domain
of A is therefore dense in H.

Concerning the closedness of A, since D(A) is dense in H, its adjoint A∗ is closed. Furthermore
Lemma 3.2 yields that

GA = ÕGA∗
where GA is the graph of A and

Õ(X,Y ) = (OX,OY ),∀X,Y ∈ H.

As Õ is an isomorphism from H×H into itself, we directly deduce that A is closed.
It remains to show that A and A∗ are dissipative operators. Let us start with the dissipativeness

of A. For U = (E,H, J,Q)> ∈ D(A), by Green's formulas (2.2) and (2.8), we �nd that

(AU,U)H =

∫
Ω

(H · curl Ē− curlE · H̄ +
β2

ε0ω2
p

(div J · Q̄−div J̄ ·Q) +E · J̄ −J · Ē− γ

ε0ω2
p

|J |2) dx

+

∫
ΓA

H · Ē × n +
β2

ε0ω2
p

∫
ΓA

QJ̄ · n.

Now using the boundary conditions, we deduce that

(AU,U)H =

∫
Ω

(H · curl Ē− curlE · H̄ +
β2

ε0ω2
p

(div J · Q̄−div J̄ ·Q) +E · J̄ −J · Ē− γ

ε0ω2
p

|J |2) dx

− z
∫

ΓA

H × n · H̄ × n− ΣA(J,Q).
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where ΣA(J,Q) = 0 if β1 = 0 or β2 = 0, and in the contrary ΣA(J,Q) := rβ2

ε0ω2
p

∫
ΓA
|J · n|2. In both

cases, we may notice that ΣA(J,Q) ≥ 0. Hence taking the real part of this identity, we obtain

<(AU,U)H = − γ

ε0ω2
p

∫
Ω

|J |2 dx− z
∫

ΓA

|H × n|2 − ΣA(J,Q). (3.20)

This shows that A is dissipative.
As for any U ∈ D(A∗), (A∗U,U)H = (AOU,OU)H, one directly gets <(A∗U,U)H ≤ 0.

4. Polynomial stability results. Our stability results are based on a frequency domain ap-
proach, namely for the exponential decay of the energy we use the following result, see [15, 25]:

Lemma 4.1. A C0-semigroup (etL)t≥0 of contractions on a Hilbert spaceH is exponentially stable,
i.e., satis�es

‖etLU0‖H . e−ωt‖U0‖H , ∀U0 ∈ H, ∀t ≥ 0,

for some positive constant ω if and only if

ρ(L) ⊃
{
iβ
∣∣ β ∈ R

}
≡ iR, and (4.1)

sup
β∈R
‖(iβ − L)−1‖ <∞, (4.2)

where ρ(L) denotes the resolvent set of the operator L.

On the contrary the polynomial decay of the energy is based on the following result stated in
Theorem 2.4 of [7] (see also [4, 5, 17] for weaker variants).

Lemma 4.2. A C0-semigroup etL of contractions on a Hilbert space satis�es

||etLU0|| . t−
1
l ||U0||D(L), ∀U0 ∈ D(L), ∀t > 1,

for some positive real number l if (4.1) holds as well as

lim sup
|ξ|→∞

ξ−l ‖(iξ − L)−1‖ <∞. (4.3)

We then �rst investigate the property (4.1). We start with the study of the kernel of A. First
we introduce the space

H1(Ω, β2) =

{
{v ∈ H1

0,ΓS
(Ω) : v is constant on ΓA} if β2 = 0,

H1
0 (Ω) if β2 > 0.

Lemma 4.3. By setting δ = β2

ε0ω2
p
, one has

kerA = {(−δ∇Q,∇ϕ, 0, Q)> |ϕ ∈ H1
0,ΓA(Ω) and Q ∈ H1(Ω, β2)}.

Proof. U = (E,H, J,Q)> ∈ D(A) belongs to kerA if and only if

curlH − J = 0, (4.4)

curlE = 0, (4.5)

β2∇Q+ ε0ω
2
pE − γJ = 0, (4.6)

div J = 0. (4.7)

Recalling (3.20), we get

0 = <(AU,U)H = − γ

ε0ω2
p

∫
Ω

|J |2 dx− z
∫

ΓA

|H × n|2 − ΣA(J,Q). (4.8)
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and since the three terms of this right-hand side are non negative, we obtain

J = 0 in Ω, (4.9)

H × n = 0 on ΓA. (4.10)

and if β2 > 0
Q = 0 on ΓA.

Now taking into account (4.9) in (4.6), we �nd that E = −δ∇Q. If β2 > 0 as Q is already in
H1

0,ΓS
(Ω), we deduce that Q indeed belongs to H1

0 (Ω). On the contrary if β2 = 0, since (4.10) and

the absorbing boundary condition (3.3) imply that E × n = 0 on ΓA, we deduce that ∇Q× n = 0
on ΓA, hence Q is constant on ΓA. As before, we then deduce that Q indeed belongs to H1(Ω, 0).

For H, we notice that (4.4) and (4.9) imply that H is curl free. As Ω is simply connected there
exists ψ ∈ H1(Ω) such that H = ∇ψ. With (4.10), we deduce that ψ = c on ΓA for some constant
c. We then conclude by setting ϕ = ψ − c.

Remark 2. Since A is a closed operator, kerA is a closed subspace of H. Alternatively this can
be directly checked by using the following Poincaré's type inequalities

‖ϕ‖Ω . |ϕ|1,Ω,∀ϕ ∈ H1
0,ΓA(Ω) and ‖ψ‖Ω . |ψ|1,Ω,∀ψ ∈ H1

0,ΓS (Ω),

and by noticing that H1(Ω, β2) is continuously embedded into H1
0,ΓS

(Ω).

The same arguments allow to characterize kerA∗ that in fact coincides with kerA, namely

Lemma 4.4. One has
kerA∗ = kerA.

Since kerA is far to be reduced to {0}, we introduce its orthogonal space (in H)
H̃ = (kerA)⊥,

that is an Hilbert space equipped with the same inner product than H. Note that
R(A) ⊂ H̃ and R(A∗) ⊂ H̃, (4.11)

because we always have [8, Corollary 2.18]

R(A) ⊂ R(A) = (kerA)⊥ = H̃ and R(A∗) ⊂ R(A∗) ⊂ (kerA∗)⊥ = H̃.
Owing to the �rst inclusion from (4.11), we can introduce the restriction Ã of A to H̃, that is

de�ned by
ÃU = AU,∀U ∈ D(Ã) = D(A) ∩ H̃.

Let us characterize the adjoint of the operator Ã.

Lemma 4.5. Ã∗ is the restriction of A∗ to H̃, namely

Ã∗U = A∗U,∀U ∈ D(Ã∗) = D(A∗) ∩ H̃. (4.12)

Proof. Let us start with the inclusion

D(Ã∗) ⊂ D(A∗) ∩ H̃. (4.13)

By de�nition U ∈ D(Ã∗) if and only if there exists X ∈ H̃ such that

(U, ÃU ′)H = (X,U ′)H,∀U ′ ∈ D(Ã). (4.14)

Now �x U ′′ ∈ D(A), then if we denote by P the orthogonal projection on H̃, owing to Remark 2
we have

U ′′ = PU ′′ + (I− P )U ′′,
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with PU ′′ ∈ D(Ã) and (I− P )U ′′ ∈ kerA. Therefore one has AU ′′ = A(PU ′′) = Ã(PU ′′) and

(X,U ′′)H = (X,PU ′′)H,

since X belongs to H̃. Using (4.14) with U ′ = PU ′′, we then �nd

(U,AU ′′)H = (X,U ′′)H,∀U ′′ ∈ D(A).

This means that U belongs to D(A∗) with A∗U = X = Ã∗U, which yields (4.13) and (4.12).
Let us prove the converse inclusion

D(A∗) ∩ H̃ ⊂ D(Ã∗). (4.15)

Let U ∈ D(A∗) ∩ H̃ then (U,AU ′)H = (A∗U,U ′)H, for all U ′ ∈ D(A). Note that A∗U belongs

to H̃ due to (4.11). As D(Ã) ⊂ D(A), we directly get

(U, ÃU ′)H = (A∗U,U ′)H,∀U ′ ∈ D(Ã).

As U belongs to H̃, this implies that U belongs to D(Ã∗) with Ã∗U = A∗U . This proves (4.15)
and concludes the proof.

Before going on, we want to give an explicit characterization of the space H̃. Denote for
simplicity

H0 := {(F,G,R, S)> ∈ H(div,Ω)× K̂(Ω)× L2(Ω)3 × L2(Ω) | div(εF ) = −S in Ω},
H00 := {(F,G,R, S)> ∈ H0 | 〈F · n, 1〉

H−
1
2 (ΓA)−H

1
2 (ΓA)

= 0}.

Lemma 4.6. If β2 > 0, one has H̃ = H0, while if β2 = 0, one has H̃ = H00.

Proof. Let (F,G,R, S)> ∈ H̃ or equivalently satisfying∫
Ω

(
−εδF · ∇Q̄+ µG · ∇ϕ̄+ δSQ̄

)
dx = 0,∀ϕ ∈ H1

0,ΓA(Ω), Q ∈ H1(Ω, β2). (4.16)

Taking �rst Q = 0 and ϕ ∈ D(Ω)3, we �nd divG = 0 in Ω, and hence G belongs to H(div,Ω).
Taking again Q = 0 and ϕ ∈ H1

0,ΓA
(Ω) and using Green's formula (2.2), we deduce as before that

G · n = 0 on ΓS , which means that G ∈ K̂(Ω).
Conversely by taking ϕ = 0 and Q ∈ D(Ω)3, we �nd div(εF ) + S = 0 in Ω. If β2 > 0, we get

no more conditions since D(Ω) is dense in H1
0 (Ω), on the contrary if β2 = 0 by taking ϕ = 0,

Q ∈ H1(Ω, 0) with Q = 1 on ΓA and again using Green's formula (2.2), we deduce that

〈F · n, 1〉
H−

1
2 (ΓA)−H

1
2 (ΓA)

= 0.

This proves the inclusion H̃ ⊂ H0 if β2 > 0 and H̃ ⊂ H00 else.
As the converse inclusions directly follow from (2.2) the proof is complete.

Remark 3. By Theorem 3.1, the restriction Ã of A to H̃ generates a C0-semigroup of contractions
(T̃ (t))t≥0 on H̃ (given by T̃ (t)U0 = T (t)U0, for all U0 ∈ H̃). Hence for U0 ∈ H̃, the problem (3.13)

has a weak solution U ∈ C([0,∞), H̃), in particular U(t) belongs to H̃ for all t > 0. This fact is in
accordance with the hidden properties (3.7) (and (3.9) if β2 = 0) mentioned before.

For further purposes, we need another hidden regularity for elements of D(Ã).

Lemma 4.7. Fix one cut-o� function χ ∈ D(R3) such that χ = 0 in a neighborhood of ΓS and

χ = 1 on ΓA. Then for any (F,G,R, S)> ∈ D(Ã), χF and χG belongs to H1(Ω)3 with the estimate

‖χF‖1,Ω + ‖χG‖1,Ω . ‖F‖H(curl,Ω)∩H(div,Ω) + ‖G‖H(curl,Ω)∩H(div,Ω). (4.17)
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Proof. The proof is similar to the one of Lemma 3.1, except that here by Lemma 4.6 for (F,G,R, S)> ∈
D(Ã), F and G are in H(div,Ω). Hence the pair (χF, χG) belongs to V(D) de�ned by (3.14). As
we have seen in the proof of Lemma 3.1 that V(D) is continuously embedded into H1(D)6, the
conclusion follows.

We are ready to start the proof of the property (4.1). First we show that iξI − Ã (and its

adjoint) is injective, for any ξ ∈ R. By the de�nition of Ã and Lemma 4.5 for Ã∗, the case ξ = 0
requires no investigation, so we distinguish these two cases.

Lemma 4.8. Ã and Ã∗ are injective, in other words

ker Ã = (kerA) ∩ H̃ = {0}, and ker Ã∗ = (kerA∗) ∩ H̃ = {0}.

Let us then concentrate on the injectivity of iξI− Ã, and iξI− Ã∗, for ξ ∈ R \ {0}.

Lemma 4.9. For all ξ ∈ R \ {0}, we have
ker(iξI− Ã) = ker(iξI− Ã∗) = {0}.

Proof. We have that U = (E,H, J,Q)> ∈ D(Ã) belongs to ker(iξI− Ã) if and only if

−iξE + ε−1 curlH − ε−1J = 0, (4.18)

−iξH − µ−1 curlE = 0, (4.19)

−iξJ + β2∇Q+ ε0ω
2
pE − γJ = 0, (4.20)

−iξQ+ div J = 0. (4.21)

As in the proof of Lemma 4.3 the dissipativeness of A yields (4.8) and then J = 0 (see (4.9)).
Using this property in (4.21) yields Q = 0 (since ξ 6= 0). Then by (4.20) we directly get E = 0 and

�nally (4.19) reduces to H = 0. This proves that ker(iξI− Ã) = {0}. The same and simple proof
yields the second assertion.

Let us go on with the surjectivity of iξI− Ã.

Lemma 4.10. For ξ ∈ R, iξI− Ã has a closed range and

R(iξI− Ã) = H̃. (4.22)

Proof. For the �rst assertion, we prove that 3

‖U‖H . ‖(iξI− Ã)U‖H,∀U ∈ D(Ã), (4.23)

which directly implies that the range of Ã is closed because the operator A is closed. We now
prove (4.23) by contradiction. Assume that (4.23) is false, this means that there exists a sequence

(Un)n∈N of elements of D(Ã) such that

‖Un‖H = 1,∀n ∈ N, and (4.24)

‖(iξI− Ã)Un‖H → 0 as n→∞. (4.25)

If we set Un = (En, Hn, Jn, Qn)>, we remark that (4.24) implies that the sequences (En)n, (Hn)n,
(Jn)n are bounded in L

2(Ω)3 and that the sequence (Qn)n is bounded in L
2(Ω). By these properties

and (4.25), we deduce that the sequences (En)n, (Hn)n are bounded in H(curl,Ω), while the
sequence (Qn)n is bounded in H1(Ω).

Furthermore as Un belongs to H0, we have

div(εEn) = −Jn and divHn = 0 in Ω. (4.26)

3within this proof the constants hidden in . may depend on ξ.
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Therefore the sequences (En)n, (Hn)n are bounded in H(div,Ω). By Lemma 4.7 (with χ de�ned
there), we deduce that (see (4.17))

‖χEn‖1,Ω + ‖χHn‖1,Ω . 1, (4.27)

By the compact embedding of H1(Ω) into L2(Ω), up to a subsequence still denoted by (Qn), (En)
and (Hn), there exists Q ∈ L2(Ω), XE , XH ∈ L2(Ω)3 such that

Qn → Q in L2(Ω) as n→∞, (4.28)

χEn → XE in L2(Ω)3 as n→∞, (4.29)

χHn → XH in L2(Ω)3 as n→∞. (4.30)

For the sequence ((1− χ)En)n (resp. ((1− χ)Hn)n), we may notice that it is bounded in XN (Ω)
(resp. XT (Ω)) and since these spaces are compactly embedded into L2(Ω)3 [27], up to a subsequence
still denoted by (En) and (Hn), there exists YE , YH ∈ L2(Ω)3 such that

(1− χ)En → YE in L2(Ω)3 as n→∞ and (1− χ)Hn → YH in L2(Ω)3 as n→∞.

Altogether setting E = XE + YE and H = XH + YH we have shown that

En → E in L2(Ω)3 as n→∞, (4.31)

Hn → H in L2(Ω)3 as n→∞. (4.32)

Finally for the sequence (Jn)n, the properties (3.20), (4.24) and (4.25) directly imply that

Jn → 0 in L2(Ω)3 as n→∞. (4.33)

At this stage owing to (4.28) and (4.31)-(4.33), we have shown

Un → (E,H, 0, Q)> in H̃ as n→∞. (4.34)

This convergence property combined with the de�nition of AUn, (4.25) and (4.26) allows to con-
clude that

En → E in H0,ΓS (curl,Ω) as n→∞,
Hn → H in H(curl,Ω) as n→∞,
Jn → 0 in H(div,Ω) as n→∞,
Qn → Q in H1

0,ΓS (Ω) as n→∞.

This implies that (E,H, 0, Q) belongs to D(Ã) and again owing to (4.25) that

(iξI− Ã)(E,H, 0, Q)> = (0, 0, 0, 0)>.

By Lemmas 4.8 and 4.9, we obtain (E,H, 0, Q)> = (0, 0, 0, 0)>, which is a contradiction because
(4.34) and (4.24) yield ‖(E,H, 0, Q)>‖H = 1. In conclusion (4.23) is valid.

For the second assertion, the �rst assertion is equivalent to (see [8, Theorem 2.19] for instance)

(ker(iξI− Ã)∗)⊥ = H̃,

where here the orthogonal is taken in H̃. As (iξI− Ã)∗ = −iξI− Ã∗, with the help of Lemmas 4.8
and 4.9, we conclude that (4.22) holds.

As a direct consequence of the previous Lemmas we get the

Corollary 4.11. The resolvent set ρ(Ã) of Ã contains the imaginary axis, namely (4.1) holds.
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We go on with the asymptotic behavior of the resolvent of Ã on the imaginary axis. Without
further assumption, we will show a polynomial stability. An exponential stability holds if the
Maxwell system with the electric boundary condition on ΓS and the Silver-Müller condition on ΓA
is exponentially stable but we postpone this result to the next section.

Lemma 4.12. If β2 > 0, then the resolvent of the operator Ã satis�es (4.3) with l = 2, i.e.,

lim sup
|ξ|→∞

ξ−2 ‖(iξI− Ã)−1‖ <∞. (4.35)

On the contrary if β2 = 0, then the resolvent of the operator Ã satis�es (4.3) with l = 6, i.e.,

lim sup
|ξ|→∞

ξ−6 ‖(iξI− Ã)−1‖ <∞. (4.36)

Proof. We use a contradiction argument, i.e., we suppose that (4.3) is false with some l ≥ 2. Then
there exist a sequence of real numbers ξn → +∞ and a sequence of vectors Zn = (En, Hn, Jn, Qn)>

in D(Ã) with

‖Zn‖H = 1,∀n ∈ N, (4.37)

such that

ξln ‖(iξn −A)Zn‖H → 0 as n→∞. (4.38)

By (3.11), this is equivalent to

ξln‖iεξnEn − curlHn + Jn‖Ω → 0, as n→ +∞, (4.39)

ξln‖iµξnHn + curlEn‖Ω → 0, as n→ +∞, (4.40)

ξln‖iξnJn − β2∇Qn − ε0ω
2
pEn + γJn‖Ω → 0, as n→ +∞, (4.41)

ξln‖iξnQn − div Jn‖Ω → 0, as n→ +∞. (4.42)

We now notice that

< ((iξn −A)Zn, Zn)H ≤ ‖(iξn −A)Zn‖H ‖Zn‖H = ‖(iξn −A)Zn‖H , (4.43)

and the dissipativeness of A yields

< ((iξn −A)Zn, Zn)H = −<
(
AZn, Z̄n

)
H =

γ

ε0ω2
p

∫
Ω

|Jn|2 dx+ z

∫
ΓA

|Hn × n|2 + ΣA(Jn, Qn).

We then obtain

γ

ε0ω2
p

∫
Ω

|Jn|2 dx+ z

∫
ΓA

|Hn × n|2 + ΣA(Jn, Qn) ≤ ‖(iξn −A)Zn‖H .

>From (4.38) we deduce that

ξln

∫
Ω

|Jn|2 dx→ 0, and ξln

∫
ΓA

|Hn × n|2 → 0 as n→ +∞.

Additionally if β2 > 0, then as ΣA(Jn, Qn) = rβ2

ε0ω2
p

∫
ΓA
|Jn · n|2, by (4.38), we get

ξln

∫
ΓA

|Jn · n|2 → 0, as n→ +∞. (4.44)

Using (3.5), we further deduce that

ξln

∫
ΓA

|Qn|2 → 0, as n→ +∞.
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This means that

ξ
l
2
n Jn → 0, in L2(Ω)3, as n→ +∞, (4.45)

ξ
l
2
n (Hn × n)→ 0, in L2(ΓA)3, as n→ +∞, (4.46)

and if β2 > 0, that

ξ
l
2
nQn → 0, in L2(ΓA), as n→ +∞. (4.47)

The property (4.45) and (4.41) (recalling that l ≥ 2) imply that

‖β2∇Qn + ε0ω
2
pEn‖ → 0, as n→ +∞. (4.48)

One has that (En) is bounded in (L2(Ω))3, so (4.48) implies that

‖∇Qn‖L2(Ω))3 . 1. (4.49)

Hence one has

|
∫

Ω

(
β2∇Qn + ε0ω

2
pEn

)
· ∇Q̄n| . ‖β2∇Qn + ε0ω

2
pEn‖, (4.50)

which implies that ∫
Ω

(
β2∇Qn + ε0ω

2
pEn

)
· ∇Q̄n → 0, as n→ +∞.

For the second term of this left-hand side, we apply Green's formula (2.2) to get (recalling Lemma
4.7)

β2‖∇Qn‖2 + ε−1ε0ω
2
p‖Qn‖2 + ε0ω

2
p

∫
ΓA

Qn(En · n)→ 0, as n→ +∞, (4.51)

where we used that εdivEn = −Qn. Now we want to show that the boundary term in this left-
hand side tends to zero as n goes to in�nity. For that purpose, we �rst use Cauchy-Schwarz's
inequality and a trace formula to get∣∣∣∣∫

ΓA

Qn(En · n)

∣∣∣∣ . ‖χEn‖1,Ω‖Qn‖ΓA ,
where the function χ is the cut-o� function from Lemma 4.7. By the estimate (4.17) from this
lemma, we therefore have∣∣∣∣∫

ΓA

Qn(En · n)

∣∣∣∣ . (‖En‖H(curl,Ω)∩H(div,Ω) + ‖Hn‖H(curl,Ω)∩H(div,Ω)

)
‖Qn‖ΓA . (4.52)

Now we show that

‖En‖H(curl,Ω)∩H(div,Ω) + ‖Hn‖H(curl,Ω)∩H(div,Ω) . ξn. (4.53)

Indeed by ‖Zn‖H = 1, and (4.39)-(4.40), we have

‖En‖H(curl,Ω) + ‖Hn‖H(curl,Ω) . ξn,

while by the conditions ε divEn +Qn = divHn = 0 and ‖Zn‖H = 1, we surely have

‖En‖H(div,Ω) + ‖Hn‖H(div,Ω) . 1.

These two estimates then yield (4.53). Using this estimate in (4.52), we get∣∣∣∣∫
ΓA

Qn(En · n)

∣∣∣∣ . ξn‖Qn‖ΓA . (4.54)
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In the case β2 > 0, by (4.47) we conclude that, with the choice l = 2,∫
ΓA

Qn(En · n)→ 0, as n→ +∞. (4.55)

For β2 = 0, we have to use another method. Namely by (4.42) and since ‖Qn‖ . 1 we have

ξ
l
2
n

∫
Ω

(iξnQn − div Jn) Q̄n → 0, as n→ +∞.

Integrating by parts in the second term and recalling that Jn · n = 0 on ΓA as β2 = 0, we �nd

ξ
l
2
n

∫
Ω

(
iξn|Qn|2 + Jn · ∇Q̄n

)
→ 0, as n→ +∞.

By (4.49) and (4.45), we deduce that

ξ
l
4 + 1

2
n ‖Qn‖ → 0, as n→ +∞.

Hence with l chosen such that l
4 + 1

2 = 2, or equivalently l = 6, we �nd

ξ2
n‖Qn‖ → 0, as n→ +∞.

Finally using the second trace formula

‖Qn‖2ΓA . ‖Qn‖‖Qn‖1,Ω,
by (4.49) and ‖Qn‖ . 1 we �nd that

ξ2
n‖Qn‖2ΓA → 0, as n→ +∞.

Using this property in (4.54), we again conclude that (4.55) holds but with the choice l = 6.
In both cases, using (4.55) in (4.51) we thus deduce that

Qn → 0 in H1
0,ΓS (Ω), as n→ +∞. (4.56)

As a consequence, by (4.48), we arrive at

En → 0 in L2(Ω)3, as n→ +∞. (4.57)

>From (4.39) and the above results:

ξ−1
n curlHn → 0 in L2(Ω)3, as n→ +∞. (4.58)

By Green's formula (2.8) and the Silver-Müller condition (3.3), one has∫
Ω

curlEn · H̄n dx =

∫
Ω

En · curl H̄n dx+ z

∫
ΓA

|Hn × n|2

and by (4.46) we get

ξ−1
n

∫
Ω

curlEn · H̄n dx = o(1). (4.59)

Now by (4.40) and the fact that ‖Hn‖ . 1, we have

ξ−1
n

∫
Ω

(iµξnHn + curlEn) · H̄n dx = o(1),

and by (4.59) we get Hn → 0, in L2(Ω)3, as n→ +∞.
In conclusion, we have shown that Zn → 0, in H, as n → +∞, which contradicts ‖Zn‖H =

1.

The previous Lemmas allow to check the hypotheses of Lemma 4.2 and then lead to the next
stability results.
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Theorem 4.1. Problem (3.13) is polynomially stable in H̃, more precisely

‖T (t)U0‖H . t−
1
l ||U0||D(A),∀t > 0, U0 ∈ D(Ã),

with l = 2 if β2 > 0, and l = 6 else.

5. An exponential stability result. As mentioned before this section is devoted to an expo-
nentially decay result based on a similar result for the Maxwell system.

Lemma 5.1. Suppose that the Maxwell system with Silver-Müller boundary condition on ΓA and
the electric boundary condition on ΓS

ε∂tE = curlH, ∂tH = − curlE in Ω× (0,+∞),

div(εE) = divH = 0 in Ω× (0,+∞),

E × n = 0, H · n = 0, on ΣS ,

E × n− z(H × n)× n = 0, on ΣA,

E(·, 0) = E0, H(·, 0) = H0, in Ω,

(5.1)

is exponentially stable in its energy space K(Ω) × K̂(Ω) (namely with initial data (E0, H0) in

K(Ω)× K̂(Ω)). Then the resolvent of the operator Ã satis�es condition (4.2) in H̃.

Proof. We again use a contradiction argument, i.e., we suppose that (4.2) is false. Then there exist

a sequence of real numbers ξn → +∞ and a sequence of vectors Zn = (En, Hn, Jn, Qn)> in D(Ã)
satisfying (4.37) and (4.38) (or equivalently (4.39)-(4.42)) with l = 0. Using the dissipativeness of
A, we directly �nd that (4.45) and (4.46) hold with l = 0, and if β2 > 0, that (4.47) holds with
l = 0. Coming back to (4.39)-(4.40), and using (4.45), we �nd

iεξnEn − curlHn = Fn − Jn → 0 in L2(Ω)3, as n→ +∞, (5.2)

iµξnHn + curlEn := Gn → 0 in L2(Ω)3, as n→ +∞. (5.3)

As Zn ∈ D(Ã), the pair (En, Hn) satis�es the boundary conditions from (5.1)

En × n = 0, Hn · n = 0 on ΓS , En × n− z(Hn × n)× n = 0, on ΓA.

Further Hn is divergence free, but as div(εEn) +Qn = 0, En is not divergence free. Hence in order
to use the exponential stability of (5.1), we then need to correct En. Therefore as in the proof of
Lemma 5.3 of [19] we consider ϕn ∈ H1

0 (Ω) such that∫
Ω

ε∇ϕn · ∇ψ dx =

∫
Ω

εEn · ∇ψ dx,∀ψ ∈ H1
0 (Ω), (5.4)

and set Ẽn = En −∇ϕn, that belongs to Hmix(curl; Ω) and satis�es div(εẼn) = 0 in Ω. Now the
identities (5.2) and (5.4) imply that∫

Ω

ε|∇ϕn|2 dx =
1

iξn

∫
Ω

(Fn + curlHn − Jn) · ∇ϕn dx =
1

iξn

∫
Ω

(Fn − Jn) · ∇ϕn dx,

since by Green's formula (2.6), one has

∫
Ω

curlHn ·∇ϕn dx = 0, because ∇ϕn ∈ H0(curl,Ω). Hence

by Cauchy-Schwarz's inequality we �nd that ‖∇ϕn‖ . ξ−1
n ‖Fn − Jn‖. By (5.2), we conclude that

‖iξn∇ϕn‖ → 0 as n→∞. (5.5)
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At this stage we remark that the pair (Ẽn, Hn) satis�es the Silver-Müller boundary condition on

ΓA, the electric boundary condition on ΓS , div(εẼn) = divHn = 0 in Ω and Maxwell's equations{
iξnεẼn − curlHn = F̃n = Fn − Jn − iξnε∇ϕn,
iξnHn + curl Ẽn = Gn.

(5.6)

With the help of (5.2) and (5.5), we have

F̃n, Gn → 0 in L2(Ω)3, as n→∞. (5.7)

As by assumption, system (5.1) is exponentially stable, applying Lemma 4.1, its resolvent is uni-

formly bounded on the imaginary axis. In other words, the solution (Ẽn, Hn) of (5.6) satis�es

‖Ẽn‖+ ‖Hn‖ . ‖F̃n‖+ ‖Gn‖.

The property (5.7) then yields ‖Ẽn‖+ ‖Hn‖ → 0, as n→∞. By (5.5), we conclude that

‖En‖+ ‖Hn‖ → 0, as n→∞. (5.8)

It remains to manage the L2-norm of Qn. As ‖Qn‖ . 1, by (4.42) with l = 0, we have

iξn

∫
Ω

|Qn|2 =

∫
Ω

div JnQ̄n + o(1).

Using Green's formula (2.2), we get

iξn

∫
Ω

|Qn|2 =

∫
Ω

Jn · ∇Q̄n + 〈Jn · n, Qn〉
H−

1
2 (ΓA)−H

1
2 (ΓA)

+ o(1). (5.9)

At this stage we again distinguish between the case β2 = 0 or not. In the �rst case, we have
Jn · n = 0 and hence

iξn

∫
Ω

|Qn|2 =

∫
Ω

Jn · ∇Q̄n + o(1). (5.10)

Conversely if β2 > 0, then by (3.5), (5.9) reduces to

iξn

∫
Ω

|Qn|2 =

∫
Ω

Jn · ∇Q̄n − r‖Jn · n‖2ΓA + o(1).

Due to (4.44) with l = 0, we conclude that (5.10) also holds in that case.
Now using (4.41) with l = 0 in (5.10) we �nd

iξn

∫
Ω

|Qn|2 =
−iξn + γ

β2

∫
Ω

|Jn|2 − δ
∫

Ω

Jn · Ēn + o(1).

By dividing this expression by iξn, we �nd∫
Ω

|Qn|2 =
−iξn + γ

iξnβ2

∫
Ω

|Jn|2 −
δ

iξn

∫
Ω

Jn · Ēn + o(1).

As ‖En‖ . 1, using (4.45) with l = 0, we arrive at

‖Qn‖ → 0, as n→∞.
Using this property, (4.45) with l = 0 and (5.8), we arrive at a contradiction with (4.37).

Remark 4. Due to [23, Theorem 4.1], system (5.1) is exponentially stable if in addition to our
previous assumptions, ΓA satis�es the Geometric Control Condition in the sense that there exists
T > 0 such that every ray of geometrical optics that propagates in Ω and is re�ected on its
boundary intersects ΓA in time less than T.

This last Lemma combined with Corollary 4.11 allows to apply Huang-Prüss Lemma 4.1 to get
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Corollary 5.2. If the Maxwell system (5.1) is exponentially stable in K(Ω)× K̂(Ω), then system

(3.6) is exponentially stable in H̃.

It turns out that the converse implication is also valid, namely we have the following result.

Lemma 5.3. Suppose that system (3.6) is exponentially stable in H̃, then the Maxwell system

(5.1) is exponentially stable in K(Ω)× K̂(Ω).

Proof. As our geometrical assumptions guarantee that the operator AM associated with (5.1)
satis�es (4.1), we are reduced to show that the resolvent of AM satis�es (4.2). As before we use
a contradiction argument, i.e., we suppose that (4.2) is false. Then there exist a sequence of real

numbers ξn → +∞ and a sequence of vectors (Ẽn, H̃n)> in D(AM ) satisfying

‖Ẽn‖+ ‖H̃n‖ = 1, (5.11)

and such that

iεξnẼn − curl H̃n = εF̃n → 0 in L2(Ω)3, as n→ +∞, (5.12)

iµξnH̃n + curl Ẽn = G̃n → 0 in L2(Ω)3, as n→ +∞. (5.13)

Recall that (F̃n, G̃n)> belongs to HM := K(Ω)× K̂(Ω) and that

D(AM ) =
{

(Ẽn, H̃n) ∈ HM ∩ (H0,ΓS (curl,Ω)×H(curl,Ω)) |E × n + zH‖ = 0, on ΓA

}
.

As before the dissipativeness of AM implies that (compare with (4.46))

H̃n × n→ 0, in L2(ΓA)3, as well as Ẽn × n→ 0, in L2(ΓA)3, as n→ +∞. (5.14)

Based on the sequence (Ẽn, H̃n)>, we want to build another sequence of elements Zn =

(En, Hn, Jn, Qn)> in D(Ã) satisfying ‖(iξn −A)Zn‖H → 0 as n→∞.
For the case β2 = 0, we consider the unique function θ ∈ H1

0,ΓS
(Ω) such that (for its existence,

see for instance [2, Proposition 3.18])
∆θ = 0 in Ω,

θ = 1 on ΓA,

〈∂nθ, 1〉
H−

1
2 (ΓA)−H

1
2 (ΓA)

6= 0.

(5.15)

Then we set

En = Ẽn − αn∇θ, (5.16)

where αn = 0 if β2 > 0, otherwise αn = (〈∂nθ, 1〉
H−

1
2 (ΓA)−H

1
2 (ΓA)

)−1〈Ẽn · n, 1〉
H−

1
2 (ΓA)−H

1
2 (ΓA)

.

so that 〈En · n, 1〉
H−

1
2 (ΓA)−H

1
2 (ΓA)

= 0.

Before going on, we may notice that En is divergence free, since Ẽn and ∇θ are, i.e.

div(εEn) = 0. (5.17)

Therefore the natural choice for Qn is Qn = 0. Note further that

ξnαn → 0 as n→∞. (5.18)

Indeed as Ẽn is divergence free, we have
∫

Ω
div Ẽnθ = 0, and using Green's formula (2.2), we get

−
∫

Ω

Ẽn · ∇θ + 〈Ẽn · n, θ〉
H−

1
2 (Γ)−H

1
2 (Γ)

= 0.
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Hence (5.15) yields

〈Ẽn · n, 1〉
H−

1
2 (ΓA)−H

1
2 (ΓA)

=

∫
Ω

Ẽn · ∇θ.

Now (5.12) implies that

〈Ẽn · n, 1〉
H−

1
2 (ΓA)−H

1
2 (ΓA)

=
1

iεξn

∫
Ω

(curl H̃n + εF̃n) · ∇θ.

Since ∇θ belongs to H0(curl,Ω), Green's formula (2.6) yields
∫

Ω
curl H̃n · ∇θ = 0, so we obtain

〈Ẽn · n, 1〉
H−

1
2 (ΓA)−H

1
2 (ΓA)

=
1

iξn

∫
Ω

F̃n · ∇θ.

By Cauchy-Schwarz's inequality and (5.12) we arrive at (5.18).
Note that (5.11) and (5.18) imply that

‖En‖ . 1. (5.19)

We further introduce the unique solution ηn ∈ H1
0,ΓS

(Ω) of∫
Ω

∇ηn · ∇v̄ = −ε0ω
2
p

∫
Ω

En · ∇v̄,∀v ∈ H1
0,ΓS (Ω). (5.20)

Hence Rn = ∇ηn satis�es 
divRn = −ε0ω

2
p divEn = 0 in Ω,

Rn × n = 0 on ΓS ,

Rn · n = −ε0ω
2
pEn · n on ΓA,

(5.21)

due to (5.17). By taking v = ηn in (5.20), we have∫
Ω

|Rn|2 = −ε0ω
2
p

∫
Ω

En · R̄n, (5.22)

and using Cauchy-Schwarz's inequality and (5.19) we �nd

‖Rn‖ . 1. (5.23)

As Ẽn × n belongs to L2(ΓA)3, Theorem 2 of [11] allows to conclude that Ẽn · n also belongs to
L2(ΓA)3 with the estimate (see [11, Remark, p. 367])

‖Ẽn · n‖ΓA . ‖Ẽn‖+ ‖ curl Ẽn‖+ ‖Ẽn × n‖ΓA .
Hence using (5.11), (5.13), and (5.14), we arrive at

‖En · n‖ΓA . ξn. (5.24)

Using the de�nition of En, we get ‖En ·n‖ΓA . ‖Ẽn ·n‖ΓA + |αn|. Hence using (5.18) and (5.24)
we arrive at

‖En · n‖ΓA . ξn. (5.25)

By (5.21), again Theorem 2 of [11] yields that Rn × n belongs to L2(ΓA)3 with

‖Rn × n‖ΓA . ‖Rn‖+ ‖Rn · n‖ΓA .
>From (5.21) we then have

‖Rn × n‖ΓA . ‖Rn‖+ ‖En · n‖ΓA .
By (5.23) and (5.25), we obtain

‖Rn × n‖ΓA . ξn. (5.26)
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Coming back to (5.22), using the de�nition (5.16) of En, we have∫
Ω

|Rn|2 = −ε0ω
2
p

∫
Ω

(
Ẽn − αn∇θ

)
· R̄n.

Using (5.18), and (5.23), we deduce∫
Ω

|Rn|2 = o(1)− ε0ω
2
p

∫
Ω

Ẽn · R̄n.

Taking into account (5.12) and again (5.23), we obtain∫
Ω

|Rn|2 = o(1)−
ε0ω

2
p

iεξn

∫
Ω

curl H̃n · R̄n.

As H̃n×n belongs to L2(ΓA)3 and H̃n ·n = 0 on ΓS , Theorem 2 of [11] guarantees that H̃n belongs
to V(Ω), hence Green's formula (2.7) yields∫

Ω

|Rn|2 = o(1)−
ε0ω

2
p

iεξn

∫
ΓA

(R̄n × n) · H̃n,‖.

By Cauchy-Schwarz's inequality, we get∫
Ω

|Rn|2 . o(1) + ξ−1
n ‖Rn × n‖ΓA‖H̃n × n‖ΓA .

The estimate (5.26) and the property (5.14) allow to conclude that

Rn → 0 in L2(Ω)3, as n→ +∞. (5.27)

Finally we set Jn = (iξn + γ)−1
(
ε0ω

2
pEn +Rn

)
that satis�es

Jn → 0 in L2(Ω)3, as n→ +∞, (5.28)

owing to (5.19) and (5.27). Further due to (5.21), we see that Jn ·n = 0 on ΓA, and that div Jn = 0.

In conclusion we have found elements (En, H̃n, Jn, Qn)> ∈ D(Ã) that satisfy

iεξnEn − curl H̃n + Jn = εFn, (5.29)

iµξnH̃n + curlEn = G̃n, (5.30)

iξnJn − β2∇Qn − ε0ω
2
pEn + γJn = Rn, (5.31)

iξnQn − div Jn = 0, (5.32)

withQn= 0, Fn = F̃n−iξnαn∇θ+ε−1Jn.This equivalently means that (iξnI−Ã)(En, H̃n, Jn, Qn)>=
(Fn, Gn, Rn, 0)> and by our assumption, we deduce that

‖(En, H̃n, Jn, Qn)>‖H ≤ ‖(Fn, G̃n, Rn, 0)>‖H. (5.33)

But due to (5.12), (5.18), and (5.28), one has

Fn → 0 in L2(Ω), as n→ +∞.
This property combined with (5.13) and (5.27) yield

‖(Fn, G̃n, Rn, 0)>‖H → 0, as n→ +∞,
and by (5.33), one gets

‖(En, H̃n, Jn, Qn)>‖H → 0, as n→ +∞.
Taking into account (5.16), and (5.18), this implies that

‖Ẽn‖+ ‖H̃n‖ → 0, as n→ +∞,
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which contradicts (5.11).

6. Conclusion. We have investigated a problem of light propagation in metal with a hole. The
light propagation properties inside the metal is described by a linearized hydrodynamical Drude
model that express the non-local reaction both in time and space of the electron cloud of the metal
through its polarization. We proved that for a whole range of possible boundary conditions on the
polarization unknowns, the problem is well posed, polynomially stable and exponentially stable if
the corresponding Maxwell system itself is. Furthermore, we obtain a smaller polynomial decay
when a no �ux type boundary condition is considered for the polarization current. The question
of numerical stability has not been addressed here and will be part of a future work. Finally,
this paper opens the route toward the study of more relevant physical settings such as a complete
scattering problem by a metallic structure, that will also be part of our future investigations.
For a complete scattering problem (that corresponds to an unbounded obstacle problem, i.e., if
Ω = R3 \ Ō), in analogy with [1, 13], we may expect to get a polynomial decay rate.
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