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Grenoble, France
paolo.torrini@inria.fr

Abstract—Embedded systems often need to react in a timely
manner. Life-critical or mission-critical ones require assurance
that they comply with these real-time requirements. In particular,
schedulability analysis is both essential and difficult to get right.
Formal methods can help as they are a powerful tool for ensuring
properties with the highest assurance level.

We describe a case study for the FPP and EDF policies
providing end-to-end assurance by connecting the schedulability
analysis tool Prosa and the real-time OS kernel RT-CertiKOS,
both using the Coq proof assistant to prove their results. An-
alyzing precisely the key ideas underlying this connection, we
improve it to make it more generic and reduce the associated
proof burden. We thus sketch a refined method which allows
for providing formal schedulability guarantees to other OSes or
low-level components with minimal effort.

Index Terms—Formal Methods, Proof Assistant, Real-Time
Scheduling, OS Kernel, Schedulability Analysis.

I. INTRODUCTION

A. Context and motivation

Decades after Liu and Layland’s seminar 1973 paper,
verification of real-time properties remains a very active
research topic. One major reason for this is that systems, and
the models used to analyze them, have become more and more
complex over time. From uniprocessor systems of periodic
tasks, we have moved to systems with multicore architectures,
GPUs, NoCs, complex task models such as DAGs, etc. There is
another reason though: real-time systems verification has almost
exclusively used pen-and-paper proofs, and has often relied
quite heavily on intuition and Gantt charts for key intermediate
results in such proofs — typically, for identifying the activation
scenario leading to the worst-case response time of a task.
This has made it difficult to build on top of existing results
when introducing a new feature in the system model. Although
similar to the state of the art, a new proof had to be written
from scratch. The similarity in the proof structure of many
schedulability analysis results was both an advantage (deriving
a new proof was not so difficult) and a drawback, because
it proved misleading several times [1], [2]. Following a few
independent attempts at providing a formal framework for
real-time systems analysis, Prosa [3], which is written in the
Coq [4]–[6] proof assistant, has established itself as the first
substantial library of computer-verified proofs in this area.

Meanwhile, formally verified software systems have become
a reality, with tools such as VST [7], [8] (for C code),
Iris [9], [10] (separation logic), RustBelt [11], [12] (for
Rust code) and achievements such as the verified optimizing
C compiler CompCert [13], [14], the verification of the
distributed consensus algorithms Paxos [15] and Raft [16] or
the verification of cryptographic protocols by EasyCrypt [17].

For example, proof assistants such as Isabelle/HOL [18], [19]
or Coq have been used for the verification of two microkernels,
respectively seL4 [20] and mCertiKOS [21], [22]. While
functional properties are at the core of the verification process
of such systems, real-time properties are also needed. In the
case of RT-CertiKOS (a real-time extension of mCertiKOS), a
schedulability analysis for the Fixed Priority Preemptive (FPP)
policy was obtained by connecting the kernel to Prosa [23].
This first effort towards applying Prosa to an actual system
proved promising: it did not require major changes to the
library of the kernel and only limited work was needed for
interfacing both.

B. Contribution

In this paper, we investigate how to go further in this
direction. Specifically, we connect the EDF scheduler of RT-
CertiKOS to Prosa to evaluate how much work is required
for such a rather straightforward extension. As we hoped, this
shows that the approach proposed in [23] smoothly applies
to other scheduling policies. In addition, this new connection
works with the latest version of Prosa, which is more modular
than the original one and is likely to serve as reference for the
next few years.

Second, based on lessons learned from these first experi-
ments, we propose a generic approach for connecting Prosa to
other systems. Such an approach relies on an intermediate layer
in Coq that is independent of the target system, thus providing
generic proofs that can be reused for different kernels.

C. Outline of the paper

First, related work are presented in Section II. Section III
presents Prosa, the schedulability analysis library which is in the
background of all the work discussed in this paper. Section IV
presents RT-CertiKOS, the certified real-time OS kernel of
which the scheduler we are verifying is part. An overview of



the technique used for the connection is given in Section V.
Then, Section VI presents the ProKOS approach to connect RT-
CertiKOS and Prosa on a case study for two scheduling policies:
fixed priority preemptive (FPP) and earliest deadline first (EDF).
Section VII analyzes the benefits and drawbacks of this method
and presents a novel, different approach to connect a concrete
scheduler with Prosa, relying on a state-based scheduler which
we expect to be more easily generalizable.

II. RELATED WORK

The work presented in this paper relates to computer assisted
proofs, to verification of OS kernels as well as to schedulability
analysis of real-time systems.

A. Computer assisted proofs
Proof assistants are computer programs used to help formal

proofs, which provide (a) a language for mathematical defi-
nitions and properties; (b) an interactive system assisting the
user in writing all details of the proofs, thus ensuring their
correctness by construction. They are well suited for building
large libraries of shared definitions for models, problems,
algorithms, and theorems, ensuring their mutual consistency,
and reusability. In the long run, this makes it possible to build
new and increasingly intricate but sound results.

In this paper, we use Coq [4]–[6], an interactive theorem
prover based on a very expressive type system called the Cal-
culus of (Co-)Inductive Constructions, whose implementation
is based on an advanced functional programming language
named Gallina. Coq provides strong support for reasoning
about functional programs and supports program extraction to
all-purpose functional languages such as OCaml and Haskell.
SSReflect is an extension of Coq, used in particular by Prosa,
which relies on the computational capabilities of the underlying
language and on reflection to deal more efficiently with Boolean
logic and decidable types.

B. Verification of real-time OS kernels
There is a lot of work about formal verification of software

systems, see for instance [24] for a survey about OS kernels.
Therefore, we restrict our attention to verification of real-time
OS kernels using proof assistants. We also do not consider
WCET computation, be it of the kernel itself (e.g., [25], [26])
or of the task set we consider. This is a complementary but
clearly distinct task to get verified time bounds.

The eChronos OS [27], [28] is a real-time OS running on
single-core embedded systems with a certified proof that the
scheduler always picks the highest-priority pending task. Xu et
al. [29] verify the functional correctness of µC/OS-II [30], a
real-time operating system with optimizations such as bitmaps.
PikeOS [31] is a commercial OS kernel proving functional
correctness of core parts of its implementation with respect
to its API. Unlike most other verification projects, it starts
from an existing kernel rather than building one specifically
designed for verification. Pip [32] is a minimalistic separation
kernel based on an executable Coq model, which delegates
scheduling to userland and therefore could be easily integrated
with different schedulers.
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Fig. 1. An overview of Prosa layers

C. Schedulability analysis

Schedulability analysis as a key theory in the real-time
community has been widely studied in the past decades. Liu
and Layland’s seminal work [33] presents a schedulability
analysis technique for a simple system model described as a
set of assumptions. A lot of research since then [34]–[38] has
aimed to capture more realistic (in terms of executions and
arrival model) and complex system models by generalizing
those assumptions.

In order to provide formal guarantees to those results,
several formal approaches have been used for the formalism
of schedulability analyses, such as model checking [39]–[41],
temporal logic [42], [43], and theorem proving [44], [45].
Still, existing work on formal proofs for real-time systems has
remained rather scarce until the Prosa library was introduced.

III. PROSA

The Prosa library1 [3], [48] was initially developed by
Cerqueira and Brandenburg for formally proving existing and
new schedulability analyses. The authors prioritize readability
to make the project accessible to researchers familiar with real-
time scheduling theories but without prior experience in formal
methods. This feature makes the formal specifications in Prosa
easily reviewed, understood and validated by the community.
The library has been developed with a focus on modularity
and extensibility, in accordance with its high-level character.

The library is now organized into five basic components as
shown in Figure 1.
System behavior The base representation of system behavior

is based on discrete time traces representing infinite se-
quences of events. There are two such kinds of sequences:
arrival sequences which record requests for service called
job activations and schedules which record processor
states, e.g., scheduled jobs, overhead. For instance, for
an ideal uniprocessor (in which there is no overhead), a
processor state denotes that there is a job scheduled or
that the processor is idle.

1It is (being) further developed through a French project CASERM [46]
and a French-German RT-Proofs project [47].



System model Based on system behavior, task models (arrival
patterns and execution time models), processors, schedul-
ing policies can be defined. A system model defines a set
of possible behaviors that satisfy it. These models and
policies are axiomatic in the sense that they are given
as predicates on arrival sequences and schedules, not as
generating and scheduling functions. In this component,
some properties of these models are provided and proved.

Analysis This part of the library contains definitions needed for
various analyses (e.g., busy window, schedulability) as well
as the actual proofs of response time and schedulability
analyses.

Result An additional component, relying on the Analysis com-
ponent, is used for collecting proven high-level analysis
results. It actually contains results of EDF optimality and
response time analyses for various policies such as EDF,
FPP, or FPNP.

Implementation This library component contains imple-
mented examples of arrival sequences and schedulers.
The main purpose of this part of the Prosa library is to
use concrete events/programs (e.g., schedulers, concrete
tasks, concrete arrivals) to validate the specifications
axiomatized in the system model component. For instance,
to validate the specification of the FPP scheduling policy,
we implement a FPP scheduler program and prove
that it satisfies indeed the properties described in that
specification. This component can be an interface between
concrete system schedules and the proven results in Prosa
in order to benefit from each other.

A. System Behavior

The basic definitions in Prosa relate to concrete system
behavior. Time is discrete and can be seen as scheduling ticks:
duration is given in numbers of ticks and instants are given as
numbers of ticks from the initialization. As key elements in
both arrival sequences and schedules, jobs (i.e., instances of
tasks) are characterized as follows.

Definition 1 (Job). A job  is defined by a task τ, a positive
cost c, and a unique identifier.

We do not use the identifier directly, it is only used to
distinguish jobs of the same task in traces. An arrival sequence
is a sequence of job activations, from which the actual workload
that must be scheduled at a given time instant can be deduced.

Definition 2 (Arrival sequence). An arrival sequence is a
function ρ mapping any time instant t to a finite (possibly
empty) set of jobs ρ(t). A given job appears at most once in
an arrival sequence.

The arrival time (in ticks) of a job  appearing in an arrival
sequence is written a. The fact that the job  appears at
instant t in the arrival sequence ρ is formalized as  ∈ ρ(t), so
that  ∈ ρ(t)⇒ a = t.

The scheduler is not modeled as a function, instead, we work
with schedules: traces of processor states reflecting schedule

information (e.g., scheduled jobs, cores on which jobs are
scheduled, overheads etc.).

Definition 3 (Schedule). A schedule is a function σ mapping
any time instant t to a processor state.

This definition is generic, and we obtain a schedule for
a specific platform by specifying the processor states. For
instance, a schedule for an ideal uniprocessor is defined as
follows:

Definition 4 (Uniprocessor schedule). A uniprocessor schedule
is a function σ mapping any time instant t to either the job
scheduled at time t or ⊥.

This reflects the fact that for uniprocessors, the processor is
either scheduling a job or idle (in other words, a uniprocessor
cannot schedule more that one job at a time). Given an arrival
sequence ρ and a schedule σ over ρ —that is, the scheduled
jobs in σ are from ρ—, a job  ∈ ρ is said to be scheduled at
an instant t if σ(t) = , the service received by  up to time t
is the number of instants before t at which  is scheduled (this
reflects the fact that all scheduling overheads are assumed to be
zero). A job  is said to be completed at time t if the service it
received up to time t is equal to its cost c. A job  is said to
be pending at time t if it has arrived before time t and is not
completed at time t. The response time of job  is defined as a
duration between its arrival time and its completion time. For
a task, its worst-case response time (WCRT) is the maximum
value among all its jobs’ response times. In a well-formed
schedule, only pending jobs can be scheduled. From now on,
we only consider well-formed schedules. A job  is said to
be schedulable if it is completed before its absolute deadline.
The absolute deadline d of a job  is defined by its arrival
time a plus its task’s relative deadline Dτ : d = a + Dτ .

B. System Model

In order to specify the behavior of the system we are
interested in, Prosa introduces predicates on traces for which
the response time analysis provides guarantees.

We now focus on the definitions related to the sporadic task
model and the two simple scheduling policies: FPP and EDF.

Definition 5 (Sporadic task). A sporadic task τ is defined by
a deadline Dτ ∈ N, a minimal inter-arrival time Tτ ∈ N, a
worst case execution time (WCET) Cτ , and a priority k ∈ N.
When Dτ is equal to Tτ , the deadline is said implicit.

The sporadic task model is specified by a sporadic arrival
model and a cost model.

In the sporadic arrival model, consecutive activations of a
task τ are separated by a minimum distance Tτ : an arrival
sequence ρ is sporadic if for any two distinct jobs 1, 2 ∈ ρ
of the same task τ , |a1 − a2 | ≥ Tτ . Periodic arrivals are a
particular case of this model where Tτ is the period and jobs
arrives exactly at intervals of Tτ . This is sufficient for us as
the schedulability analysis for FPP and EDF yields the same
bounds for sporadic and periodic activations.



The considered cost model is a constraint on activations:
jobs in the arrival sequence must respect the WCET of their
task, that is, for any  ∈ ρ, c ≤ Cτ .

Both the FPP and EDF2 policies are particular cases of the
JLPP one, which is modeled in Prosa as two constraints on the
schedule: it must be work conserving and respect the priority
preemption.

Definition 6 (Job-level preemption scheduling policy). A
schedule σ over an arrival sequence ρ respects the job-level
preemption scheduling policy (JLPP) if and only if the two
following conditions hold at any instant t:
• (Work conserving) If there is a pending job not scheduled

at time t, then there must be another job scheduled at
time t.

• (Priority preemption) If a job is scheduled at time t, then
it has the highest priority among all pending jobs at time t.
Specifically, for FPP the scheduled job is the job whose
task has the highest priority among all pending tasks,
while for EDF it is the job that has the smallest absolute
deadline.

C. Analysis
Prosa contains response time analyses of a set of sporadic

tasks dispatched on a uniprocessor respecting the JLPP schedul-
ing policy, hence also FPP or EDF.

We now focus on the specification of such analyses in Prosa.
Consider a set S of sporadic tasks and a task τk of priority k
from that set to analyze. The response time analysis computes
the WCRT of τk by maximizing all workloads requested by
tasks with a priority higher than or equal to k. The task
workload bound is defined as follows:

Definition 7 (Task workload bound). Given a specific task
τ ∈ S and a duration ∆, the maximum workload within ∆ is

wl+τ (∆) := d∆

Tτ
eCτ

Theorem 1 (FPP WCRT bound). Given a sporadic task set S
and a task τk ∈ S, then for any R > 0 such that R ≥ wl+S,k(R),
any job  of τk in a FPP schedule over an arrival sequence ρ
is completed by a +R, where

wl+S,k(∆) :=
∑
τj∈S
j≤k

wl+τj (∆)

Note that a response time bound R+
k for a task τk ∈ S can

be computed by the least positive fixed point of the function
wl+S,k(∆). It is the exact WCRT when deadlines are implicit,
while it is an upper bound when deadlines are arbitrary. Using a
response time bound, we can derive a schedulability criterion
by requiring this bound to be smaller than or equal to the
deadline of task τk.

The EDF WCRT bound is also provided in Prosa. We do
not present it here in detail because this will not impact the
following presentation of this paper. Interested reader can find
more details here [49].

2In this paper, we focus on fully-preemptive EDF.

IV. THE MCERTIKOS & RT-CERTIKOS OS KERNELS

A. mCertiKOS & RT-CertiKOS

mCertiKOS [21], [22] is a single-core sequential OS kernel
for the Intel x86 architecture whose functional correctness has
been mechanically verified by the Coq proof assistant, ensuring
that no incorrect behavior (w.r.t. the specification) can happen.
In order not to jeopardize the formal guarantees provided by
these proofs, the C code of the kernel is compiled using the
CompCert compiler [13], [14], which also enjoys a mechanized
formal proof of correctness ensuring that no miscompilation
occurs and that the behavior of the generated assembly code
is the same3 than the one of the starting C code. Thus, the
properties proved about the kernel are also valid at the assembly
level, giving end-to-end verification.

RT-CertiKOS [50], [51] is a real-time extension of the
mCertiKOS kernel, featuring preemptive interrupts, a timer,
and preemptive scheduling. The sequential restriction greatly
simplifies the implementation of the OS kernel. However, the
lack of kernel preemption can degrade the responsiveness of
the whole system.4 In addition to the functional correctness
inherited from mCertiKOS, RT-CertiKOS features mechanized
proofs of both spatial and temporal isolation (including
scheduling) between components (be it the kernel or user
code).

Both these kernels are decomposed into small parts, called
abstraction layers [52], that permits splitting the verification
of the whole kernel into the verification of each feature
independently of others. These layers are essentially a way to
combine code fragments and their interface with correctness
proofs. They consist of four elements:
(a) a piece of code (written in assembly or C);
(b) an underlay, the interface that the code relies on (written

in Gallina, the programming language of Coq);
(c) an overlay, the interface that the code provides (written

in Gallina);
(d) a simulation proof (done with the Coq proof assistant)

ensuring that the code running on top of the underlay
indeed provides the functionalities described by the
overlay.

Thanks to this technique, all implementation details can be
abstracted away and the reasoning is made on the interface
model only.

B. Scheduling inside RT-CertiKOS

RT-CertiKOS supports user-level preemptive scheduling,
with either fixed or dynamic priorities, following the FPP
or EDF policy. Its scheduler is invoked by timer interrupts
periodically, dividing CPU time into intervals, called time slots
or ticks.

3It is actually not an equivalence but a refinement between the assembly code
and the C code, meaning that every possible execution of the assembly code
is allowed by the C code. This is due to several factors, such as optimization
removing undefined behaviors or implementation-specific behaviors.

4This can be partly mitigated by delegating long interrupt-handling routines
to user mode, the kernel mode being used only to schedule these routines.



a) Task model: Real-time tasks are defined by a fixed
priority, a period and a budget (or WCET), the latter two being
given in ticks. They are assumed to be strictly periodic, with
hard implicit deadline, that is, the deadline is the start of the
next period and no deadline miss is allowed at all. We only
allow one task per priority level, so that priority levels can be
used as task identifiers and, in the case of the FPP policy, that
the schedule is deterministic. Following Prosa, the instance of
a task in a period is called a job and it is defined by its task
and a period index.

b) The RT-CertiKOS scheduler: By iterating over the jobs
in decreasing priority order (this order being the only difference
between the FPP and EDF policies), the scheduler selects the
next job to execute by picking the pending one with highest
priority. In order to enforce that no task can overrun, it keeps
track of the budget left to each task, and refill these (to the
WCET value) at the start of a new period. Its abstraction is a
Coq function that iterates over an array of task control blocks
(TCB), updates them, and returns the highest task identifier
available for scheduling using the TCB array for FPP and a
dedicated priority queue for EDF.

C. Simplified scheduling model

In order to simplify proofs related to scheduling, we create
an intermediate Coq model in which all the parts of the kernel
unrelated to scheduling are removed, such as context switching,
memory management and so on. We prove that it faithfully
represents the RT-CertiKOS scheduler by always generating
the same schedule, thus ensuring that all results (such as
schedulability analysis) on the schedule of this simplified model
are also valid on the full RT-CertiKOS one.

This simplified scheduling model contains five elements:
ticks the current time (in ticks);
cid the identifier of the running process (if any);
schedule the list of past scheduling decisions;
quanta the remaining budget for each task;
queue the priority queue containing pending jobs.

The queue is only required for EDF scheduling, we can do
without it for FPP as the priorities are static. Notice that
ticks and cid could be read off schedule (respectively as its
length and first element) and, because the scheduling policy is
simple (FPP or EDF), so could quanta and queue (albeit in
a less straightforward way). Nevertheless, they are explicitly
present in the RT-CertiKOS code because schedule is a logical
variable having no existence in the actual code. Finally, one
can remark that the schedule is always finite as it contains
information only about past scheduling decision. This is a
major difference with Prosa which considers infinite behaviors.

With this simplified scheduling model, the FPP scheduler is:
Definition scheduler (s: state) : state :=

(** increase time *)
let ticks’ := ticks s + 1 in
(** refill budgets at the start of new periods *)
let quanta’ := tick ticks’ (quanta s) in
(** find the highest priority pending task (if any) and schedule it *)
match highest_pending quanta’ with
| Some id ⇒ (** schedule task id *)

(** decrement id’s budget *)
let quanta’’ :=

ZMap.set id (quanta’[id] - 1) quanta’ in
(** extend the schedule with id *)
let schedule’ := Some id :: schedule s in
{ ticks := ticks’; quanta := quanta’’;

cid := id; schedule := schedule’ }
| None ⇒ (** no task to schedule *)

let schedule’ := None :: schedule s in
{ ticks := ticks’; quanta := quanta’;

cid := default; schedule := schedule’ }
end.

The EDF scheduler is the same except for the queue which is
used by highest_pending and must be updated.

This simplified scheduling model proves very valuable when
proving invariants about the scheduler, as it frees us from
handling all the details of an actual OS kernel that are irrelevant
to scheduling.

V. CONNECTING RT-CERTIKOS WITH PROSA

Our main goal is to use proven schedulability analysis from
Prosa to formally verify RT-CertiKOS schedules built on sets
of periodic tasks using a preemptive scheduling policy PP,
which in the following may either be FPP or EDF. However,
Prosa definitions cannot apply to RT-CertiKOS directly. Indeed,
there are significant differences between the RT-CertiKOS
representation of scheduling and the Prosa models of system
behavior. The challenge we face is therefore to bridge this gap.

Leaving aside technicalities related to the use of SSReflect
in Prosa, the more substantial differences are down to the fact
that Prosa models have a high-level, axiomatic character which
essentially builds on the notion of job, used as the fundamental
abstraction. On the other hand, the RT-CertiKOS scheduler is
defined as a stateful function. In RT-CertiKOS the notion of
job does not play any fundamental role: it can be derived from
the one of task, as each task only has one activation per period.
Therefore, in RT-CertiKOS we can safely refer to activations
by their task and omit jobs altogether, whereas the analysis in
Prosa is entirely based on jobs, tasks being merely a way to
create jobs.

The concept of schedule is central in Prosa as the scheduling
policies are defined as properties over an (infinite) schedule.
On the other hand, such a concept is computationally useless in
RT-CertiKOS as the scheduler has an internal state. A closely
related difference is the infinity of temporal representation.
Prosa models are based on infinite traces and Prosa analysis
only applies to them. On the opposite, even after adding the
schedule as a logical variable to RT-CertiKOS, the scheduler
will only give us a finite schedule at each time.

A. Modeling behavior in Prosa

In general, system behavior in Prosa is abstractly modeled
as a relation between infinite arrival sequences and infinite
schedules. By defining behaviors as pairs of arrival sequences
and schedules, we may as well say that a Prosa model is a
relation over behaviors. Both arrival sequences and schedules
are functions of discrete time, where time units can be chosen,



in our case, to correspond to the time slots of our quantum-
based scheduler.

The modeling relation is specified by properties which
characterize the specific scheduling policy, as well as by some
generic sanity conditions. In the case of PP, the specific property
can be formalized in Coq as follows:
Definition PP_at (arr_seq: arrival_seq)

(sched: schedule) : Prop :=
∀ (t: time) (j: job),
job_scheduled_at sched j t →
∀ (t’: time) (j’: job),

t ≤ t’ →
job_arrived_at arr_seq j’ ≤ t →
job_scheduled_at sched j’ t’ →
higher_or_equal_priority arr_seq j j’.

This can be read as saying that the job j scheduled at time t
has higher or equal priority than any job pending at time t, that
is, than any job j’ which arrived before t and is scheduled
at a later time t’. What is noticeable in this definition is its
conceptual economy: it relies indeed on the knowledge of the
infinite schedule (by referring to the future), but it does not
make any assumption on the existence of a scheduler state.
This is meant to ensure independence from implementation
details and architectural aspects – a common feature of the
properties defined in the Prosa library. Also notice that, given
that job_scheduled_at and job_arrived_at are defined
from an arrival sequence and a schedule, the only additional
information required are the job deadlines.

Other conditions which a valid behavior should satisfy
include a sanity property (only pending jobs are scheduled)
and a work conservation one (as long as there are pending jobs,
the processor cannot be idle). In the following, we will refer
to PP compliance as the conjunction of these properties (and
similarly for FPP and EDF). Given a system based on a set of
sporadic tasks and its model as a set of behaviors that satisfy
the compliance property, Prosa can carry out its schedulability
analysis.

Especially in the case of EDF, in order to avoid non-
determinism when two jobs have the same deadline, we further
constrain priorities by defining them as the lexicographic order
of deadlines and the task identifier. (Any other way to totally
order tasks would work as well.) Thanks to this trick, we make
sure that the schedule is deterministic, hence that the schedules
in Prosa and RT-CertiKOS are necessarily the same. Notice
that the problem does not arise with FPP, as we assume that
any two tasks have distinct priorities and we prove that there
is never more than one pending job for each task.

B. Defining the interface

In order to interface a concrete scheduler with Prosa,
intuitively speaking, we need to show that, at each point in
time, the scheduler satisfies PP compliance across a simple
simulation relation which consists of extending the finite traces
associated with the execution so far to infinite ones (as shown
in Figure 2). A natural way to ensure this is by proving that,
given an infinite arrival sequence arr_seq and a finite prefix
fin_arr_seq of arr_seq, the finite schedule fin_sched

fin arr seq fin sched

arr seq sched

prefix

S

prefix

R

Fig. 2. Simulation diagram

obtained by the scheduler S from its finite input fin_arr_seq
can be extended to an infinite one sched such that it satisfies
the compliance relation R with respect to arr_seq. There
are different ways in which the proof can be carried out. We
are going to consider two distinct approaches, which differ
essentially in the way they build the interface between Prosa
and RT-CertiKOS.

The first approach, which we call ProKOS, consists in
building a direct connection between RT-CertiKOS and Prosa
through an abstract scheduling interface. This approach has
been introduced for FPP in [23] (full details in Section VI),
and it has been modified here to deal with EDF. The second
approach consists in abstracting the concrete scheduler to an
PP-compliant one, further defining a behavior interface with
Prosa. This approach, detailed in Section VII, is less dependent
on Prosa and it is meant to be more easily generalizable.

VI. THE DIRECT INTERFACE APPROACH (PROKOS)

The basic rationale of ProKOS is to integrate RT-CertiKOS
and Prosa through an interface which allows for translating
to Prosa the outcome of each concrete scheduler execution
as a finite behavior. Prosa library functions and lemmas are
then used to extend finite traces to infinite ones and to prove
compliance with the PP policy. This connection is as direct
as possible, in the sense that it does not involve substantially
any intermediate abstraction. The scheduling interface used in
this approach answers to the purpose of clearly delineating
which pieces of information flow between RT-CertiKOS and
Prosa. It contains an inductive datatype that captures the PP
property (either FPP or EDF) for a finite behavior, and we can
use it as our representation in Prosa of the finite traces given
by RT-CertiKOS. The extension of the finite schedule into an
infinite one is performed by a logical scheduler implemented
in Prosa.

The key issue when connecting RT-CertiKOS with Prosa is
that the proven results in Prosa rely on two infinite traces of
events as shown in Figure 1: arrival sequences and schedules,
which RT-CertiKOS cannot provide as it only has access to
past scheduling decisions and not future ones.

Specifically, the theorem proven in Prosa that we want to
apply to RT-CertiKOS is:

Theorem 2 (Schedulability analysis for PP). Let S be a set of
sporadic tasks, ρ be any infinite arrival sequence of S, and σ
be any infinite schedule over ρ. If S passes the schedulability
criterion presented at the end of Section III, if ρ respects the
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Fig. 3. Steps of the connection between Prosa and RT-CertiKOS for EDF.
Logical elements are in red whereas code ones are in black.

sporadic model and σ satisfies the PP scheduling policy, then
that schedule σ is schedulable. Formally,

(∀τk ∈ S,R+
k ≤ Dk)

=⇒ Sporadic(ρ, S) ∧ PP(ρ, σ)

=⇒ (∀ ∈ ρ, ∀τk ∈ S, τ() = τk =⇒ R ≤ Dk)

where R is ’s response time, R+
k is a τk’s response time

bound proven in Prosa for sporadic tasks scheduled with PP5,
and Dk is τk’s deadline.

Note that the basis of the theorem is the two infinite traces ρ
and σ. In RT-CertiKOS, we can only obtain a (finite) schedule
prefix due to the fact that we do not have a priori information
about the execution time of future jobs. Therefore, to apply
Theorem 2 to the RT-CertiKOS schedule, we have to:

1) build an infinite arrival sequence and prove that it respects
the sporadic model; and

2) build an infinite schedule using that arrival sequence and
prove that it respects the PP scheduling policy.

Building an infinite arrival sequence is easy as tasks in RT-
CertiKOS are assumed to be strictly periodic. The idea of
building an infinite schedule, detailed in Section VI-C, is that
we use the schedule prefix and assume the worst-case scenario
for the future behavior.

A. Overview of the connection

This section and the next ones generalize the results of [23]
to PP, that is, to both FPP and EDF. The overall architecture
of the connection for EDF is depicted in Figure 3. The main
steps can be summarized as follows:

• On the RT-CertiKOS side. The simplified scheduling
model of RT-CertiKOS provides to the interface a finite

5Note that FPP and EDF do not share the same response time bound R+
k .

schedule prefix σIpref (the superscript I stands for inter-
face) as well as the proof that it satisfies the PP-prefix
property described below.

• At the interface. The job cost function is defined using
the schedule prefix σIpref in the past and the WCET for
the future (worst-case scenario). The PP scheduling policy
over a (finite) schedule prefix (Definition 9) is defined
here. Note that this PP definition is different from Prosa’s
(Definition 6) which is based on an infinite schedule;

• On the Prosa side. We build an arrival sequence ρc using
the schedule prefix σIpref and the job cost function from
the interface. Based on this arrival sequence and a PP
scheduler from Prosa, we construct an infinite schedule σc

with which we can apply the schedulability analysis. Then,
we prove that σIpref is a prefix of σc and is schedulable.

B. Handling main issues at the interface

Handling service and job cost. Prosa needs the arrival time
and cost of each job. The former can be easily defined using
its task period, but the latter is unknown. In RT-CertiKOS, and
more generally in any OS, we only assume a bound on the
execution time of a task, used as a budget. The exact execution
time of each of its jobs is not known beforehand and can be
observed only at runtime. On the opposite, Prosa assumes that
costs for all jobs of all tasks are part of the problem description
and thus are available from the start.

To fix this mismatch, we define a job cost function computed
from the schedule prefix σIpref .

Definition 8 (Job cost function). Let τ be a task, then the cost
cn(τ) of τ ’s n-th job is:

cn(τ) =


nTτ∑

t=(n−1)Tτ
(σIpref (t) = (τ, ))

if the job completes within σIpref
C otherwise

where the Boolean expression (σIpref (t) = (τ, )) is im-
plicitly converted to {0, 1} with true mapped to 1. The job
cost cn(τ) is the service received during its n-th period if the
job has completed (yielded) within σIpref ; otherwise, it is τ ’s
WCET.

This definition relies on the computation of service in any
period, which we also provide as part of the interface.
Handling infinite schedules. Prosa traces are based on an
infinite schedule whereas in RT-CertiKOS, only a finite prefix
can be known, up to the current time. Thus, we keep RT-
CertiKOS’s finite schedule σIpref as is in the interface and it
is up to Prosa to extend it into an infinite one, suitable for its
analysis.

In order to use the schedulability analysis results of Prosa,
two properties are needed: (a) the service received by each job
is at most the WCET of its task; (b) the infinite schedule indeed
follows the PP policy, that is, at each time, the scheduled job
is the pending one with highest priority.

These two properties are proved on σIpref in RT-CertiKOS.
The former is easy. To prove the latter, we have to specify



the PP scheduling policy over a schedule prefix (we call it
PP-prefix for short) in the interface.

Definition 9 (PP-prefix). The PP scheduling policy is defined
as an inductive predicate over a task set, an arrival sequence
(implicit below), and a schedule prefix as follows:
• The empty trace is a PP-prefix.
• If you take any PP-prefix such that there is no job pending

at its last time instant, then not scheduling any job at the
next time instant will yield a PP-prefix.

• If you take any PP-prefix such that there are jobs pending
at its last time instant, then one with the highest priority
will be scheduled next.

C. Connecting the interface with Prosa

The interface provides Prosa with a task set S, service and
job cost functions cn, and a schedule prefix σIpref satisfying
PP-prefix. We need to turn this information into the one used by
Prosa for its analysis, that is, an arrival sequence and schedule.

1) The concrete infinite arrival sequence ρc: We first build a
concrete (infinite) arrival sequence ρc from the schedule prefix
σIpref where the n-th job (n > 0) for a given task τk arrives
at time (n− 1)× Tτk with cost cn(τk). Note that jobs that do
not arrive within the prefix cannot have yielded yet so that
their costs are assumed to be the WCET of their tasks i.e., we
assume the worst case for the future. For instance, at time
instant t, the (bt/Tτkc+ 1)-th job of task τk arrives if t is a
multiple of Tτk .

2) The concrete schedule σc: Next, we need to turn the finite
schedule prefix σIpref provided by the interface into an infinite
one. There are two possibilities: either build a full schedule
from ρc using the Prosa PP scheduler, or start from σIpref and
extend it into an infinite schedule. The first technique gives for
free the fact that the infinite schedule satisfies the PP policy
from Prosa and the difficulty lies in proving that σIpref is a
prefix of this infinite schedule. The second technique is the
opposite: σIpref is by definition a prefix and the difficulty is
proving that it satisfies the PP policy as specified by Prosa.

The key to both techniques is to prove the equivalence of
both PP specifications: PP-prefix (Definition 9), defined in the
interface; the other defined in Prosa on an infinite schedule
(Definition 6 with the corresponding priority order).

Here, we present the first strategy: the concrete schedule σc

is built using the arrival sequence ρc and a Prosa PP scheduler.
For each time instant t, the Prosa PP scheduler computes all
pending jobs using the concrete infinite arrival sequence and
previous scheduling decisions up to t, and selects to execute
the job with the highest priority among all pending jobs at t.
Therefore, this concrete schedule σc naturally satisfies the
following property: any job  from the concrete arrival sequence
ρc is scheduled at time t if and only if it is pending and has
the highest priority among all pending jobs. Formally:

σc(t) =  ⇐⇒ Pending(, t)
∧ (∀′ ∈ ρc, P ending(′, t) =⇒ p ≥ p′)

where p ≥ p′ denotes that the priority of  is no less than
that of ′. This property directly implies that σc satisfies PP.

3) σIpref is a prefix of σc: In order to transfer the results
of Prosa back to RT-CertiKOS, we prove via two steps that
the schedule prefix σIpref provided by the interface and the
concrete infinite schedule σc match on the length of σIpref , that
is, σIpref is a prefix of σc.

First, we prove that any prefix of the concrete schedule σc

shorter than len(σIpref ) satisfies PP-prefix:

∀l ∈ N, l ≤ len(σIpref ) =⇒ PP-prefix(S,Prefix(σc, l))

Second, we use the fact that two PP schedule prefixes with
the same arrival sequence are the same (Note that here we
implicitly assume that all tasks have their own unique priority).

Prefix(σc, len(σIpref )) = σIpref

Finally, for a given task set accepted by the PP schedulability
criterion (i.e., ∀τk ∈ S,R+

k ≤ Dk), we know that the computed
infinite schedule σc is schedulable according to Theorem 2.
Since σIpref is a prefix of σc, we conclude that σIpref is
schedulable, as well as its extension to the end of the current
period of any task.

VII. DISCUSSION

A. Evaluation of the ProKOS approach for FPP and EDF

The ProKOS approach to connect Prosa and RT-CertiKOS
provides a scalable mechanized formal proof of the correctness
of the real-time scheduler of RT-CertiKOS. Furthermore, it does
not incur any performance overhead as the C and assembly
source code of RT-CertiKOS were not modified at all. The proof
effort is also smaller compared to a dedicated schedulability
proof within RT-CertiKOS (see [23]).

Switching the scheduling policy from FPP to EDF allows
for assessing the adequacy and flexibility of this approach.
Of course, some of the properties required by Prosa for EDF
schedulability analysis are different from the ones for FPP
so the interface should be adapted accordingly, in particular
PP-prefix. Nonetheless, the definition of the interface can be
almost kept as is, the only difference being in the computation
of priorities, which are no longer statically determined by the
task but dynamically computed depending on the absolute
deadline, hence priorities depend on arrival times. Here is a
summary of the changes:

1) The EDF scheduler also contains a priority queue to select
the highest priority job to schedule;

2) The simplified scheduling model requires proving a
coherence invariant between the queue and the quanta: a
job is in queue iff its current quota is positive;

3) The PP-prefix property is updated to reflect the new policy
(priorities depend on arrival times);

4) Proofs on the RT-CertiKOS and Prosa sides linking the
various elements are updated.

Overall, apart from unrelated issues (changes internal to Prosa
or RT-CertiKOS, mismatch over the Coq version between
Prosa and RT-CertiKOS, porting our interface to Prosa’s new
architecture) the changes worked exactly as expected.



B. Lessons learned

The ProKOS approach is attractive for a number of reasons.
On one hand, the proof that the EDF scheduling interface is
refined by the RT-CertiKOS scheduler is made reusing the one
for FPP with comparatively little change in the specification.
We see this as a confirmation that the ProKOS method and
abstractions are well-suited to this problem. Yet, the definition
of the interface has a bottom-up feel: it is designed to be
specific to a policy and we are embedding in Prosa finite traces
produced by the concrete scheduler, delegating as much as
possible to Prosa. Extending the traces is not trivial, but we can
rely on a simple extension strategy (by stipulating that all the
future jobs always execute up to the WCET of their task), and
we can take advantage of a generic extension function which
is already defined in Prosa. The high-level, modular character
of Prosa makes our results quite abstract and independent of
implementation details. Finally, by working in Prosa we can
generally reuse many schedulability lemmas.

Nonetheless, we think there is room for improvement, in
particular to avoid proof duplication. Indeed, we prove that
the simplified scheduling model of RT-CertiKOS essentially
satisfies the PP-policy (through invariants and the PP-prefix
property), which also needs to be done about the Prosa PP-
scheduler. One may even consider that having these two
schedulers is one too many: only one should be required.
Furthermore, all these proofs must be redone each time we
switch to a new scheduling policy. Finally, converting between
finite and infinite traces and between state-based and trace-
based reasoning is not that easy.

Thus, a better approach might be to factor some of these
efforts into more generic abstractions. One such solution could
be to have the interface be a state-based abstract scheduler
instead of a schedule.

C. The abstract scheduler approach

Reusing the terminology of Section V, this alternative
approach consists in proving compliance of a scheduler
independently of Prosa, then showing that this property is
preserved by translating behaviors to Prosa. We do this by
abstracting a concrete scheduler to a higher-level, yet state-
based one.

The design of this abstract scheduler as a stateful recursive
function is aimed at making the proofs as simple as possible
by making all the current information available through the
state. This is particularly true in proofs of simple time-
dependent invariants, which are more naturally expressed as
state properties rather than trace ones.
Record State := { scheduled : option job ;

service : job → nat ;
pending : list job }.

The state only needs to include information about the
received service, and the list of pending jobs (specifically
in order to avoid recomputation), in addition to the scheduled
job (if any). In particular, here we choose to maintain the
distinction between pending, as the list of jobs that have
already arrived and are not yet complete (representing the

information that is actually needed from the past schedule),
and service, as a total function defined on every job (in the
spirit of Prosa infinite traces). It would have been informatively
equivalent to have service as a partial function only defined
on the already arrived jobs.

We can directly define the scheduler input as a finite prefix
of an infinite arrival sequence. Then, given its time-recursive
definition, we naturally obtain an infinite schedule by iteration:
Fixpoint PP_sched (arr_seq: arrival_seq)

(t: time) : State :=
match t with
| 0 ⇒ initial_state arr_seq
| S n ⇒ let st := PP_sched arr_seq n

in state_update arr_seq (S n) st
end.

In this way, the problem of converting finite traces into
infinite one does not arise. It turns out quite easy to prove
for every state the following state-based property stating that
whenever there are pending jobs, the highest-priority one is
scheduled.
Definition PP_correct (arr_seq: arrival_seq)

(st: State) : Prop :=
∀ j: job,

In j (pending st) →
exists j’: job, scheduled st = Some j’
∧ In j’ (pending st)
∧ higher_or_eq_priority arr_seq j’ j.

As expected, from this property it is very easy to prove PP
compliance. The last step on the Prosa side consists of showing
that, under a natural translation of the infinite traces (only
needed to bridge the gap between different types), the resulting
ones satisfy PP compliance in Prosa, hence proving that
our stateful scheduler actually refines the Prosa specification
expressed by the abstract relation.

We experimented with this alternative approach for the EDF
policy. Although here our abstract scheduler is specific to EDF,
we believe that this approach can be naturally generalized by
allowing for richer notions of state and policy parameters. The
abstract scheduler is kept out of Prosa, both for technical
reasons (no need of SSReflect) and conceptual ones. The
kind of abstraction allowed by our design is not incompatible
but comparatively orthogonal to Prosa, where the notion of
processor state is intentionally kept minimal. On the other
hand, the abstract scheduler involves a computational as well
as declarative use of the state, and possibly the introduction
of a generic state-based notion of scheduler correctness (with
respect to which the PP_correct property in our example
would boil down to a special case). The development of a
generic scheduler model in Coq validating this approach is
currently ongoing work by some of the authors.

VIII. CONCLUSION & FUTURE WORK

Critical systems require strong assurance of timely response,
in particular for their schedulability analysis. The highest
assurance can be obtained through formal methods, for instance
via proof assistants such as Coq.

RT-CertiKOS is a real-time single-core OS-kernel whose
correctness has been verified in Coq. Prosa is a state-of-the-art



schedulability analysis library proven with Coq. By connecting
both, one can transfer the schedulability analyses of Prosa to
RT-CertiKOS, ensuring that job deadlines are always met.

We detail a case study (partly taken from [23]) connecting
Prosa and RT-CertiKOS for the FPP and EDF scheduling
policies, highlighting its key steps and abstractions: a simplified
scheduling model in RT-CertiKOS, an interface providing a
schedule satisfying the policy under consideration, the extension
of the schedule into an infinite trace.

Analyzing the similarities for these two policies, we observe
that these abstractions are well-suited to prove a schedulability
of RT-CertiKOS task sets, as most of the structure can be
reused. Nevertheless, proof duplication and having to redo
most proofs for each policy suggest other abstractions might
alleviate the proof burden.

We sketch such an abstraction featuring an abstract scheduler
rather than a schedule. This allows for a generic proof of
compliance with the scheduling policy and permits to more
easily provide certified schedulability analysis to other OSes.
Indeed, once we have the generic proof of compliance, only a
refinement proof between the implementation and this abstract
scheduler is required. Future work is required to understand
precisely the benefits of this new approach.
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