Christophe Christophe Cuny 
  
J Dedecker 
  
F Merlevède 
  
Deviation and concentration inequalities for dynamical systems with subexponential decay of correlation

Keywords: 37A25, 37A50, 60F10 Large deviations, Moderate deviations, Nonuniformly expanding maps, Young towers

We obtain large and moderate deviation estimates, as well as concentration inequalities, for a class of nonuniformly expanding maps with stretched exponential decay of correlations. In the large deviation regime, we also exhibit examples showing that the obtained upper bounds are essentially optimal.

Introduction

Let X be a bounded metric space and T : X → X be a transformation, preserving a Borel probability measure ν. Suppose that ϕ : X → R is a L 1 (ν) observable with ϕ dν = 0. We consider the Birkhoff sums

S n (ϕ) = n-1 k=0 ϕ • T k (1.1)
as a discrete time random process, defined on the probability space (X, ν). The Birkhoff ergodic theorem asserts that if T is ergodic then lim n→∞ n -1 S n (ϕ) = 0 ν-a.s. Deviation inequalities aim to quantify the rate at which the Birkhoff sum goes to zero. One of the purposes of this paper is then to derive estimates of the quantity

ν a n n |S n (ϕ)| ≥ x , x > 0 , (1.2) 
when a n → 0, in either the large deviation regime (so when a n = 1/n) or in the moderate deviation regime (so when na n → ∞ with a n → 0). In this paper, we shall consider nonuniformly expanding maps in the sense recalled in Section 2. It is well-known that the study of the deviation probability (1.2) is widely linked with the decay of correlations of some observables of the iterates of T (see for instance [START_REF] Melbourne | Large and moderate deviations for slowly mixing dynamical systems[END_REF][START_REF] Alves | From rates of mixing to recurrence times via large deviations[END_REF]), which is actually linked with the moments of the return time to the basis of the induced map (see again Section 2 for the definition of the induced map and its associated return times). When the return time to the basis has an exponential moment (this is the case for instance of the dispersing billards, see [START_REF] Chernov | Decay of correlations and dispersing billiards[END_REF]) and ϕ is an Hölder observable, it has been proved in [START_REF] Rey-Bellet | Large deviations in non-uniformly hyperbolic dynamical systems[END_REF] (see their Theorems B and C) that the following large/moderate deviation principles hold: there exists a strictly convex function I(x) vanishing only at x = 0 such that lim n→∞ a n log ν a n n S n (ϕ) ≥ x = -I(x) .

In the large deviation regime (i.e. a n = 1/n) we refer also to Theorem 2.1 in [START_REF] Melbourne | Large deviations for nonuniformly hyperbolic systems[END_REF]. Next, when the return time to the basis has a moment of polynomial order and ϕ is either an Hölder observable or a bounded variation function, the deviation probability is still well understood both in the large deviation regime and in the moderate one. Indeed, it follows from [START_REF] Dedecker | Large and moderate deviations for bounded functions of slowly mixing Markov chains[END_REF] that if the return time R to the basis has a weak moment of order p > 1 (so when m(R > n) ≤ Cn -p where m is the reference probability measure defined in Section 2), one has for any x > 0, lim sup

n→∞ n αp-1 ν |S n (ϕ)| ≥ xn α ≤ Cx -p ,
for any α > 1/2 such that 1/p ≤ α ≤ 1. Moreover it has been proved in [START_REF] Dedecker | Large and moderate deviations for bounded functions of slowly mixing Markov chains[END_REF] that this upper bound cannot be essentially improved.

However, when the return time R to the basis has subexponential (also called stretched exponential) moment of order γ ∈]0, 1[ (so when m(R > n) ≤ Ce -δn γ for some δ > 0), the situation is not so well understood. The recent paper [START_REF] Aimino | Large deviations for dynamical systems with stretched exponential decay of correlations[END_REF] considers this case, but when the dynamical system can be modeled by a Young tower, the obtained bounds turn out to be suboptimal (see our Remark 3.2). In Section 3, we improve the estimates of the quantity (1.2) both in the large deviation regime and in the moderate one, when the return time to the basis has stretched moment of order γ ∈]0, 1[ and when the observable ϕ is either Hölder continuous or with bounded variations. For instance, in case when T is the Viana map as introduced in [START_REF] Viana | Multidimensional nonhyperbolic attractors[END_REF], using that its associated return time to the basis exhibits stretched exponential moment of order at least 1/2 (so that γ = 1/2) as proved in [START_REF] Gouëzel | Decay of correlations for nonuniformly expanding systems[END_REF], it follows from our Corollary 3.1 that, for any Hölder observable ϕ there exist positive constants c 1 and c 2 such that for any x > 0, lim sup

n→∞ 1 √ n log ν S n (ϕ) n ≥ x ≤ -c 1 x 1/2 and lim sup n→∞ a n log ν a n n S n (ϕ) ≥ x ≤ -c 2 x 2 ,
where a n → 0 and a n n 1/3 → ∞.

Our strategy of proof will be first to estimate the τ -mixing coefficients associated with the observable of the nonuniformly expanding map (see our Section 2 for the definition of these coefficients) and then to apply previous known results for τ -mixing sequences. Moreover, considering the family of interval maps T γ , γ ∈ ]0, 1], introduced in [8, Appendix A] and which are such that the return time to the basis has stretched exponential moment (see also our Section 5) we will show that the large deviation upper bounds given in this paper are essentially optimal. Concerning the moderate deviation regime, we will also give in the Corollary 3.2 a moderate deviation principle, which implies (??) with a restriction (depending on γ) on the possible range of the sequence a n .

We shall also be interested in proving concentration inequalities in the spirit of those obtained in [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF][START_REF] Gouëzel | Moment bounds and concentration inequalities for slowly mixing dynamical systems[END_REF] but when the return time to the basis has stretched exponential moment of order γ ∈]0, 1[ (the case of exponential moment and strong polynomial moments is handled in [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF]; the case of weak polynomial moments is considered in [START_REF] Gouëzel | Moment bounds and concentration inequalities for slowly mixing dynamical systems[END_REF]). Section 4 is devoted to the statement of these concentration inequalities in case of stretched exponential moment of the return time. All the proofs are postponed to Section 6.

Mixing properties of nonuniformly expanding maps

Let (X, d) be a complete bounded separable metric space with the Borel σ-algebra. Let us introduce the class of dynamical systems that we consider in this paper. Suppose that T : X → X is a measurable transformation which admits an inducing scheme consisting of:

• a closed subset Y of X with a reference probability measure m on Y ;

• a finite or countable partition Γ = ∪ α∈E Γ α of Y (up to a zero measure set) with m(a) > 0 for all a ∈ Γ;

• an integrable return time function R : Y → {1, 2, . . .} which is constant on each a ∈ Γ with value R(a) and T R(a) (y) ∈ Y for all y ∈ a, a ∈ Γ. We require in addition that gcd{R(y), y ∈ Y } = 1.

Let F : Y → Y , F (y) = T R(y) (y) be the induced map. We assume that there are constants λ > 1 and K > 0 such that for each a ∈ Γ and all x, y ∈ a:

• F restricts to a (measure-theoretic) bijection from a to Y ;

• d(F (x), F (y)) ≥ λd(x, y); • d(T k (x), T k (y)) ≤ Kd(F (x), F (y)) for all 0 ≤ k ≤ R(a); • the inverse Jacobian ζ a = dm dm•F of the restriction F : a → Y satisfies log |ζ a (x)| -log |ζ a (y)| ≤ Kd(F (x), F (y)).
In addition to the standard assumptions above, we rely on non-pathological coding of orbits under F allowed by the elements of Γ. Let A be the set of all finite words in the alphabet Γ and

Y w = ∩ n k=0 F -k (a k ) for w = a 0 • • • a n ∈ A. We require that m(Y w ) = m( Ȳw )
for every w ∈ A.

(2.1)

We say that the map T as above is nonuniformly expanding. Recalling that F : Y → Y denotes the induced map, it is standard [START_REF] Aaronson | Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps[END_REF]Cor. p. 199], [24, Proof of Thm. 1] that there is a unique absolutely continuous F -invariant probability measure ν Y on Y with 1 c ≤ dν Y /dm ≤ c for some c > 0. Let ν be the corresponding T -invariant probability measure on X.

We shall say that the return times of T have a subexponential (or stretched exponential) moment of order γ ∈ ]0, 1], if e cR γ dm < ∞ for some c > 0.

The aim of this section is to provide estimates of the τ -mixing coefficients associated with (ϕ(T i )) i≥0 for a mesurable function ϕ : (X, ν) → R. More precisely, these coefficients are defined by

τ ϕ (n) = sup ≥1 1 sup 1≤i1<•••<i τ (σ(ϕ(T j ), j ≥ i + n), ϕ(T i1 ), . . . , ϕ(T i )) (2.2)
where, for any Z taking values in R k and any σ-algebra M,

τ (M, Z) = sup f (x)P Z|M (dy) -f (x)P Z (dy) , f ∈ Λ 1 (R k ) 1 .
Above Λ 1 (R k ) is the space of 1-Lipschitz functions from R k to R with respect to the 1 distance on R k . Note that compared to the τ -mixing coefficients as defined in [10, Section 7], there is a time inversion in the definition of the coefficients defined in (2.2).

For an Hölder function ϕ from X to R, with Hölder's index η, let

|ϕ| η = sup x,y∈X |ϕ(x) -ϕ(y)| d(x, y) η and ϕ η = ϕ ∞ + |ϕ| η
In case where X = [0, 1], and ϕ is a bounded variation (BV) function, let also

ϕ v = ϕ ∞ + dϕ ,
where dϕ is the variation norm of the measure dϕ.

Proposition 2.1. Assume that T is nonuniformly expanding with return time to the basis having a subexponential moment of order γ ∈ ]0, 1]. Then, on (X, ν), one has:

1. Let ϕ be an Hölder observable with Hölder's index η, then there exist two positive constants

c 1 , c 2 such that τ ϕ (n) ≤ c 1 ϕ η e -c2n γ . (2.3) 2. Let X = [0, 1] and ϕ be a BV observable from [0, 1] to [0, 1]
. Assume in addition that there exist η ∈ ]0, 1] and C > 0 such that, for any x, y

∈ [0, 1] with x ≤ y, ν([x, y]) ≤ C(y -x) η . (2.4)
Then there exist two positive constants c 1 , c 2 such that

τ ϕ (n) ≤ c 1 ϕ v e -c2n γ . (2.5) 
Remark 2.1. Following the lines of the proof of Proposition 2.1 and taking into account Lemma 5.7, Proposition 3.2 and inequality (3.6) in [START_REF] Cuny | Rates in almost sure invariance principle for slowly mixing dynamical systems[END_REF], we infer that if T is nonuniformly expanding with return time to the basis having a moment of order β > 1 (meaning that R β dm < ∞), then, for ϕ an Hölder observable, one has k≥1 k β-2 τ ϕ (k) < ∞.

Remark 2.2. Assumption (2.4) in Item 2 of the proposition above is satisfied for the class of transformations described in [START_REF] Holland | Slowly mixing systems and intermittency maps[END_REF], with the additional restriction that lim x→0 x ε φ(x) = ∞, for some ε > 0.

In particular it will be true for the example of Section 5.

Deviations inequalities and Moderate Deviation Principle for Birkhoff sums

Starting from Proposition 2.1 and using the deviations inequality stated in [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF][START_REF] Merlevède | Bernstein inequality and moderate deviations under strong mixing conditions[END_REF], the following corollary holds.

Corollary 3.1. Assume that T is nonuniformly expanding with return time to the basis having a subexponential moment of order γ ∈ ]0, 1]. Let ϕ be an Hölder observable. Let

S n (ϕ) = n-1 i=0 ϕ(T i ) - nν(ϕ) and V = Var ν (ϕ) + 2 i≥1 |cov ν (ϕ, ϕ • T i )|. Then, on (X, ν), 1. if γ ∈ ]0, 1[ then for any n ≥ 4, there exist positive constants C 1 , C 2 , C 3 and C 4 depending on (γ, C) such that, for any positive x, ν sup j≤n |S j (ϕ)| ≥ x ≤ n exp - x γ C 1 +exp - x 2 C 2 (1 + nV ) +exp - x 2 C 3 n exp x γ(1-γ) C 4 (log x) γ .
2. if γ = 1, then there exist positive constants C 1 , and C 2 such that, for any positive x,

ν sup j≤n |S j (ϕ)| ≥ x ≤ C 1 exp - x 2 C 2 (1 + nV + x(log n) 2 )
.

In addition, if X = [0, 1], ϕ is a BV observable and ν satisfies (2.4), then the upper bounds given in Items 1 and 2 are satisfied. If γ ∈ ]0, 1[, we deduce from Corollary 3.1 that the following large deviation estimate holds: for any x > 0, lim sup

n→∞ 1 n γ log ν S n (ϕ) n ≥ x ≤ -x γ C 1 . (3.1)
It follows from Section 5 that the exponent of n in (3.1) is optimal under our assumption on the return times.

Remark 3.2. Note that an application of Theorem 2 in [START_REF] Aimino | Large deviations for dynamical systems with stretched exponential decay of correlations[END_REF] gives the following large deviation estimate: for any x > 0, lim sup

n→∞ 1 n γ/(γ+1) log ν S n (ϕ) n ≥ x ≤ -x 2γ/(γ+1) C 1 ,
giving then a suboptimal power of n.

We also deduce that the following moderate deviation estimate holds: if a n → 0 and a n n γ/(2-γ) → ∞, then for any positive x,

lim sup n→∞ a n log ν a n n S n (ϕ) ≥ x ≤ -x 2 C 2 V . (3.2) 
In what follows, we shall give a more precise result than (3.2), and show that (S n (ϕ)/ √ n) satisfies a Moderate Deviation Principle (MDP). Let us recall the definition. Let (Z n ) n be a sequence of random variables defined on (X, ν). We say that the MDP holds for (Z n ) n with speed a n → 0 and good rate function I(•), if the level sets {x, I(x) ≤ λ} are compact for all λ < ∞, and for each Borel set A,

-inf t∈A o I(t) ≤ lim inf n a n log ν( √ a n Z n ∈ A) ≤ lim sup n a n log ν( √ a n Z n ∈ A) ≤ -inf t∈ Ā I(t) , (3.3) 
where Ā denotes the closure of A and A o the interior of A. Proposition 2.1 together with Corollary 1 in [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF] give the following result.

Corollary 3.2. Assume that T is nonuniformly expanding with return time to the basis having a subexponential moment of order γ ∈ ]0, 1[. Let ϕ be an Hölder observable. Let

S n (ϕ) = n-1 i=0 ϕ(T n ) - nν(f ) and σ 2 n = VarS n (ϕ). Assume that σ 2 n → ∞. Then lim n→∞ σ 2 n /n = σ 2 > 0.
Moreover, for all positive sequences a n with a n → 0 and a n n γ/(2-γ) → ∞, {n -1/2 S n (ϕ)} satisfies (3.3) with the good rate function I(t) = t 2 /(2σ 2 ). In addition, this Moderate Deviation Principle still holds if X = [0, 1], ϕ is a BV observable and ν satisfies (2.4). Remark 3.3. If γ = 1 and (a n ) n≥1 satisfies a n → 0 and na n → ∞, as n → ∞, the moderate deviations principle holds for Hölder observables, as shown in [START_REF] Rey-Bellet | Large deviations in non-uniformly hyperbolic dynamical systems[END_REF]Theorem 4.6]. However, as far as we know, this result has not yet been proved when X = [0, 1] and ϕ is a BV observable. But, applying Corollary 5 in [START_REF] Merlevède | Bernstein inequality and moderate deviations under strong mixing conditions[END_REF] together with Proposition 2.1, one gets (assuming also (2.4)) that, for all positive sequences a n with a n → 0 and na n /((log n) 2 (log log n) 2 ) → ∞, {n -1/2 S n (ϕ)} satisfies (3.3) with the good rate function I(t) = t 2 /(2σ 2 ).

Concentration inequalities

In this section, we follow the approach of Chazottes-Gouëzel [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF] to derive concentration inequalities in case of nonuniformly expanding transformations with return time to the basis having a subexponential moment.

Recall that a function K : X n → R is said to be a separately Hölder function on X n of order η ∈ [0, 1] if for all i there exists a constant L i with

|K(x 1 , . . . , x i-1 , x i , x i+1 , . . . , x n ) -K(x 1 , . . . , x i-1 , x i , x i+1 , . . . , x n )| ≤ L i d η (x i , x i ) ,
for all points x 1 , . . . , x n , x i in X.

The following deviation bound holds.

Theorem 4.1. Assume that T is nonuniformly expanding with return time to the basis having a subexponential moment of order γ ∈ ]0, 1[. Let K be a separately Hölder function on X n . Then, there exists a positive constant κ such that for any positive integer n and any t > 0,

ν x : K(x, T (x), . . . , T n-1 (x)) -E(K) ≥ t ≤ 2 exp - t 2 κ n-1 i=0 L 2 i + 1 + t 2-γ (4.1)
where E(K) = K(x, T (x), . . . , T n-1 (x))dν(x).

Remark 4.1. To prove (4.1), the assumption (2.1) on (T, m) is not needed.

Remark 4.2. When γ = 1, Chazottes and Gouëzel [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF] have proved the following concentration inequality: there exists a positive constant κ such that for any positive integer n and any t > 0,

ν x : K(x, T (x), . . . , T n-1 (x)) -E(K) ≥ t ≤ exp - t 2 κ n-1 i=0 L 2 i . (4.2) 
5 An example of nonuniformly expanding system with stretched exponential return times

Let us consider the following examples of interval maps, as defined in [8, Annex A], whose return times to the basis satisfy m(R > n) ∼ e -κn γ , where γ ∈ ]0, 1] is a parameter and κ = κ(γ) > 0.

Let T : [0, 1] → [0, 1],

T (x) = x 1 + c | log x| β , x ≤ 1/2 2x -1, x > 1/2 (5.1)
with β = γ -1 -1 and c = (log 2) β so that T (1/2) = 1. Note that this map belongs to the class of transformations considered in Holland [START_REF] Holland | Slowly mixing systems and intermittency maps[END_REF]. Further, there exist η 1 , η 2 > 0 such that for all n ≥ 1,

Let Y =]1/2, 1] be a base, R : Y → N, R(x) = inf{k ≥ 1 : T k (x) ∈ Y } be the first return time and F : Y → Y , F (x) = T R(x) (x)
d) e -η2n γ ≤ m(R ≥ n) ≤ e -η1n γ .
In addition, there exists a unique T -invariant measure ν absolutely continuous with respect to the Lebesgue measure, whose density ϕ is such that: ϕ is lower bounded by a strictly positive constant on [0, 1], ϕ is upper bounded on any interval [ε, 1] with ε > 0, and there exist positive reals δ, c 1 and c 2 such that,

c 1 ≤ | log(x)| -β ϕ(x) ≤ c 2 on ]0, δ].
Theorem 5.2. Let T be defined by (5.1). For any measurable function f :

[0, 1] → R, let S n (f ) = n-1 k=0 f (T k ) -nν(f ).
a) There exist a Lipschitz function f and positive constants c 1 , c 2 , κ 1 and κ 2 such that, for n > 2/ν(f ),

c 1 e -κ1n γ ≤ ν |S n (f )| > nν(f )/2 ≤ c 2 e -κ2n γ . 
b) There exist an unbounded measurable function 

f satisfying A 1 e -B1t 1/δ ≤ ν(|f | > t) ≤ A 2 e -B2t
c 1 e -κ1n γ/(1+γδ) ≤ ν |S n (f )| > n ≤ c 2 e -κ2n γ/(1+γδ) . (5.2) 
Remark 5.1. As it will be clear from the proof, for the function of Item b), one can take f (x) = | log(x)| δ . For this function, following the proof of Item b) and applying Theorem 1 in [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF], we derive that the following deviation Inequality holds: for any n ≥ 4, there exist positive constants C 1 , C 2 , C 3 and C 4 depending on (γ, C) such that, for any positive x,

P sup j≤n |S j (f )| ≥ x ≤ n exp - x γ0 C 1 + exp - x 2 C 2 (1 + nV ) + exp - x 2 C 3 n exp x γ0(1-γ0) C 4 (log x) γ0 ,
where

γ 0 = γ(1 + γδ) -1 and V = Var ν (f ) + 2 i≥1 |cov ν (f, f • T i )|.
From [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF], one can also get a moderate deviations principle for S n (f ). Some observables as x → | log(x)| δ are considered by Nicol and Török [START_REF] Nicol | A note on large deviations for unbounded observables[END_REF]. In particular, they obtained the lower bound of Item b) for the doubling map which corresponds to γ = 1 in (5.1).

Proofs

Proof of Proposition 2.1

From Corollary 2.5 in [START_REF] Cuny | Rates in almost sure invariance principle for slowly mixing dynamical systems[END_REF], recall that (ϕ(T n )) n≥0 = (ψ(g n , g n+1 , . . .)) n≥0 in distribution, where (g i ) i≥0 is a strictly stationary Markov chain. This chain is generated by a random variable g 0 and a sequence of iid innovations

(ε i ) i≥1 independent of g 0 . Let F k = σ(g i , i ≤ k) and G m = σ(g i , i ≥ m).
The chain is also β mixing in the sense that

sup k≥0 β(F k , G k+n ) = O(e -Bn γ
) . (6.1)

(See [START_REF] Bradley | Introduction to strong mixing conditions[END_REF]Chapter 3] for a definition of the β-mixing coefficients, Relation (3.6) in [START_REF] Cuny | Rates in almost sure invariance principle for slowly mixing dynamical systems[END_REF] and Lemma 2.1 in [START_REF] Cuny | Rates in almost sure invariance principle for quickly mixing dynamical systems[END_REF] for the upper bound (6.1)). Let X n = ψ(g n , g n+1 , . . .). We want to prove that

τ (n) = sup ≥1 1 sup 1≤i1<•••<i τ (G i +n , X i1 , . . . , X i ) = O(e -Cn γ ) , (6.2) 
which will imply (2.3). To do so, we need an independent copy (ε i ) i≥1 of (ε i ) i≥1 , this copy being also independent of g 0 . Let now

X i k = ψ(g i k , g i k +1 , . . . , g i k +[n/2] , g i k +[n/2]+1 , g i k +[n/2]+2 , . . .) ,
where the means that we have used the innovations (ε i ) i≥1 to continue the trajectory of the chain.

From [8, Proposition 2.3], we know that

X i k -X i k 1 ≤ K|ϕ| η e -δn γ ,
for some constant δ depending on η. Hence, from the definition of τ (n), we infer that

τ (n) ≤ K|ϕ| η e -δn γ + sup ≥1 1 sup 1≤i1<•••<i τ (G i +n , X i1 , . . . , X i ) . (6.3) Now, since ψ ∞ = ϕ ∞ , sup ≥1 1 sup 1≤i1<•••<i τ (G i +n , X i1 , . . . , X i ) ≤ ϕ ∞ sup k≥0 β(F k , G k+[n/2] ) (6.4)
where

F k = F k ∨ σ(ε i , i ≥ 1)
, and we have used that

β(F k , G k+[n/2] ) = β(G k+[n/2] , F k ). Since (ε i ) i≥1 is independent of (g i ) i≥0 , standard arguments (see [4, Theorem 6.2]) show that β(F k , G k+[n/2] ) ≤ β(F k , G k+[n/2] ) . (6.5) 
The estimate (6.2) follows from (6.1), (6.3), (6.4) and (6.5).

We turn now to Item 2; namely, the case of a BV function ϕ on [0, 1], when T : [0, 1] → [0, 1] is a nonuniformly expanding map with return time to the basis satisfying m(R > n) = O(e -δn γ ) for γ ∈ ]0, 1] and some δ > 0. We want to control τ ϕ (n), and we recall that

ϕ(x) = ϕ(0) + x 0 dϕ(t) . Let now f (t, x) = 1 t≤x + 1 (x + -t)1 x<t≤x+ and ϕ (x) = ϕ(0) + 1 0 f (t, x)dϕ(t) . Since ν satisfies (2.4), note that ϕ -ϕ 1,ν ≤ C η dϕ η .
On the other hand, using that

u → f ε (t, u) is 1 ε -Lipschitz, we have |ϕ (x) -ϕ (y)| ≤ 1 0 |f (t, x) -f (t, y)||dϕ|(t) ≤ dϕ |x -y| .
From the definition of τ ϕ (n) and Item 1, we infer that

τ ϕ (n) ≤ C η ϕ v η + K ϕ v (1 + ) e -Cn γ .
The upper bound (2.5) easily follows, with c 2 = (Cη)/(η + 1).

Proof of Theorem 4.1

First, we recall that we can associate to the transformation T a Young tower T and a transformation T . More precisely, T is the space

T = {(y, i) : y ∈ Y, i < R(y)}
and the map T on T is defined by

T (y, i) = (y, i + 1) if i < R(y) -1 (T R(y) (y), 0) if i = R(y) -1.
For any α ∈ E, define the height h α by h α = R(y) for y ∈ Γ α . One can then define the floors of the tower ∆ α,i for α ∈ E and i ∈ {0, . . . , h α -1}: ∆ α,i = {(y, i) : y ∈ Γ α }. These floors define a partition of T :

T = α∈E,i∈{0,...,hα-1} ∆ α,i .
On the tower, there exists a reference measure m defined as follows: if B is a set included in ∆ α,i , that can be written as B = B × {i} with B ⊂ Γ α , then m( B) = m(B). From Young [START_REF] Young | Recurrence times and rates of mixing[END_REF] (see also [START_REF] Gouëzel | Vitesse de décorrélation et théorèmes limites pour les applications non uniformément dilatantes[END_REF], Proposition 1.3.18)), it follows that on the tower, there exists a unique T -invariant probability measure ν which is absolutely continuous with respect to m. On another hand, the distance on the tower is defined by δ(x, y) = λ -s(x,y) where s(x, y) is the separation time, i.e. the number of returns to the basis Ȳ = {(y, 0), y ∈ Y } before the iterates of the points x and y are not in the same element of the partition. Let now π be the "projection" from T to X defined by π(y, i) = T i (y). Then, one has π • T = T • π and for any x, y in T , there exists C > 0, such that

Moreover it can be checked that the T -invariant measure ν defined in Section 2, is the image measure of ν by π. Let R be the function from Ȳ to R(Y ) such that R(y, 0) = R(y). The quantity ν({(y, 0) ∈ Ȳ : R((y, 0)) > k}) is exactly of the same order as m({y ∈ Y : R(y) > k}) (see [START_REF] Gouëzel | Vitesse de décorrélation et théorèmes limites pour les applications non uniformément dilatantes[END_REF], Proposition 1.1.24). From all these considerations, we infer that if T is nonuniformly expanding then T is also nonuniformly expanding with respect to the distance δ η whatever η ∈ ]0, 1]. On another hand, recalling that ν is the image measure of ν by π, and that π • T = T • π, we get, for any t > 0,

ν x : K(x, T (x), . . . , T n-1 (x)) -E(K) ≥ t = ν z : K(π(z), T • π(z), . . . , T n-1 • π(z)) -E(K) ≥ t = ν z : K(π(z), π • T (z), . . . , π • T n-1 (x)) -E(K) ≥ t . Next, defining K on T N by K(z 1 , . . . , z n ) = K(π(z 1 ), . . . , π(z n )) ,
one sees that it satisfies

K(z 1 , . . . , z n ) -K(z 1 , . . . , z n ) ≤ n i=1 L i δ η (z i , z i ) .
So K is separetely Lipschitz with respect to δ η . Hence, it suffices to proof Theorem 4.1 with K instead of K, T instead of T and ν instead of ν. Since the tower is also nonuniformly expanding with respect to δ η , we shall only consider the case η = 1 as in [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF].

From now on, we shall use the same notations as in [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF][START_REF] Gouëzel | Moment bounds and concentration inequalities for slowly mixing dynamical systems[END_REF]. Hence, we shall now use T, K, ν instead of T , K, ν It is convenient to consider K as a function defined on the space T = T N endowed with the probability measure ν = ν ⊗ δ T x ⊗ δ T 2 x ⊗ • • • . Let F k be the σ-algebra generated by indices starting with k. Let

K k (x k , . . .) = E(K|F k )(x k , . . .) = T k x=x k g (k) (x)K where g (k) (x) = g(x) • • • g(T k-1 (x)) is the inverse of the jacobian of T k . Next define D k = K k -K k+1 .
Clearly D k is F k -measurable and such that E(D k |F k+1 ) = 0. Hence (D k ) k≥1 is a sequence of reversed martingale differences w.r.t. the decreasing filtration (F k ) k≥1 .

As quoted after the statement of [5, Theorem 3.1], we can assume without loss of generality that sup i≥0 L i ≤ ε 0 for some ε 0 > 0 (the appropriate ε 0 will be chosen later and will appear in the constant κ of inequality (4.1)). Noticing that K -E(K) = n k=0 D k , inequality (4.1) will follow from the reversed martingale differences sequences version of Theorem 2.1 in Fan et al [START_REF] Fan | Deviation inequalities for martingales with applications[END_REF] (see also their inequality (1.5)). Note that [START_REF] Fan | Deviation inequalities for martingales with applications[END_REF]Theorem 2.1] is stated for sums of martingale differences but with the same proof it also holds for partial sums associated with reversed martingale differences sequences. Let us state it for reader convenience. Assume that (D p ) p≥1 is a sequence of reversed martingale differences with respect to the filtration (F p ) p≥1 (so D p is F p -adapted and such that E(D p |F p+1 ) = 0 a.s.), then setting

u n = max n p=1 E D 2 p e (D + p ) γ |F p+1 ∞ , 1 ,
one has, for any x > 0,

P max 1≤k≤n k i=1 D i ≥ x ≤ 2 exp - x 2 2(u n + x 2-γ )
.

Hence we need to prove that

n p=1 E D 2 p e (D + p ) γ |F p+1 ∞ ≤ C n i=1 L 2 i . (6.6) 
As noticed at the beginning of the proof of [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF]Lemma 3.3], if x p+1 / ∈ ∆ 0 = ∪ α∈E ∆ α,0 (hence when x p+1 is not in the basis of the tower), E D 2 p e (D + p ) γ |F p+1 (x p+1 , . . .) = 0. Now when x p+1 ∈ ∆ 0 , denoting by z α its preimages with respective heights h α , we have

E D 2 p e (D + p ) γ |F p+1 (x p+1 , . . .) = α g(z α )e (A + p (zα)) γ A 2 p (z α ) , where A p (z) := D p (z, x p+1 , . . .) = K p (z, x p+1 , . . .) -K p+1 (x p+1 , . . .) .
According to Lemma 4.2 in [START_REF] Gouëzel | Moment bounds and concentration inequalities for slowly mixing dynamical systems[END_REF] and taking into account that m(R > n) = O(e -δn γ ), for some δ > 0, it follows that if z is at height h and x k+1 = T z ∈ ∆ 0 , then there exist positive constants C and κ such that

|A p (z)| ≤ C p-h a=0 L a e -κ(p-h-a) γ + p a=p-h+1 L a . (6.7)
Since, it is assumed that sup i≥0 L i ≤ ε 0 , (6.7) implies that |A p (z)| ≤ c 0 (h + 1)ε 0 . Using again the upper bound (6.7), it follows that

E D 2 p e (D + p ) γ |F p+1 ∞ h≥0 ν(R = h + 1)e (c0ε0h) γ p-h a=0 L 2 a e -κ(p-h-a) γ + (h + 1) p a=p-h+1 L 2 a .
Hence, for ε 0 such that (c 0 ε 0 ) γ = A/2, using that m(R > n) = O(e -δn γ ), there exists a positive constant c 1 such that

E D 2 p e (D + p ) γ |F p+1 ∞ h≥0 e -c1h γ p-h a=0 L 2 a e -κ(p-h-a) γ + (h + 1) p a=p-h+1 L 2 a p a=0 L 2 a 0≤h≤p-a e -c1h γ e -κ(p-h-a) γ + h≥p-a (h + 1)e -c1h γ .
By splitting 0≤h≤p-a into two sums: 0≤h≤[(p-a)/2] and [(p-a)/2]<h≤p-a , we derive that there exists a positive constant c 2 such that

E D 2 p e (D + p ) γ |F p+1 ∞ p a=0 L 2 a e -c2(p-a) γ . Hence n p=1 E D 2 p e (D + p ) γ |F p+1 ∞ n a=0 L 2 
a p≥a e -c2(p-a) γ which leads to (6.6) and ends the proof of the theorem.

Proof of Theorem 5.2

We start with some preliminary considerations. Let S := T -1 ]0,1/2] be the inverse left branch of T and U := T -1 ]1/2,1] . For every n ∈ N 0 , set y n = S n (1/2), I n := (0, y n ] and

J n := U (I n ) = (1/2, y n /2 + 1/2].
It follows from [8, Annex A] that there exist υ 1 , υ 2 > 0 such that e -υ1n γ ≤ y n ≤ e -υ2n γ .

Then, using the control of the density ϕ, we infer that there exist K, L > 0 and υ 3 , υ 4 > 0 such that

Le -υ3n γ ≤ ν(I n ) ≤ Ke -υ4n γ
Proof of Item a). The upper bound given in Item a) comes from an application of inequality (4.1) when γ > 1 and of inequality (4.2) when γ = 1. To construct a Lipschitz function for which the lower bound holds the idea is to take the function 1 (1/2,1] and to extend it to a Lipschitz function.

For every x ∈ (1/2, 1], set f (x) = 1 and for every x ∈ I 1 set f (x) = 0. For every x ∈ (y 1 , 1/2] set f (x) = The lower bound may be proved similarly.

Let us prove the lower bound in (5.2). We start by noticing that ν(f ) ≤ (log 2) δ ν((1/2, 1]) + n∈N0 (υ 1 (n + 1) γ ) δ ν(I n \I n+1 ) ≤ C + K n∈N (υ 1 (n + 1) γ ) δ e -υ4n γ < ∞ .

Let 1 ≤ m ≤ n be integers. Let x ∈ I m (then T k x ∈ I m-k for every integer k ∈ [0, m -1]). We have

S n (f ) := n-1 k=0 (f • T k (x) -ν(f )) = n-1 k=0 f • T k (x) -nν(f ) ≥ m-1 k=0 (υ 2 (m -k) γ ) δ -nν(f ) ≥ υ δ 2 m 1+γδ 1 + γδ -nν(f ) .
Let ε > 0 and take

m = 1 + γδ υ δ 2 (ν(f ) + ε)n 1/(1+γδ)
, which is smaller than n, for n large enough since γδ > 0. It follows that, for every x ∈ I m , S n (f )(x) ≥ εn. Moreover, ν(I m ) ≥ Le -υ3m γ ≥ Ce -cn γ/(1+γδ) , which proves the lower bound. The upper bound in (5.2) will follow by applying Theorem 1 in [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF] with γ 1 = γ and γ 2 = 1/δ provided one can prove that τ f (n) = O(e -Cn γ ) where we recall that f := | log x| δ . With this aim, let ε ∈ [0, 1[ and define f ε (x) = (log(1/ε)) δ 1 [0,ε] (x) + f (x)1 ]ε,1] (x). Assume first that δ ≥ 1. In this case, note that f ε is a Lipshitz function with Lipshitz constant ε -1 δ| log ε| δ-1 . Hence, by Item 1 of Proposition 2.1, τ fε (n) ≤ Kε -1 | log ε| δ-1 e -Cn γ . On another hand, for ε small enough,

ν(|f -f ε |) ≤ C ε 0 ((log(1/x)) δ -(log(1/ε)) δ )dx ≤ Cε .
Hence, for n large enough, choosing ε = e -Cn γ /3 , and using the definition of τ f , we get that, if δ ≥ 1,

τ f (n) ≤ Cε + Kε -1 | log ε| δ-1 e -Cn γ
= O(e -κn γ ) .

Assume now that δ ∈]0, 1[. In this case, since the fonction x → |x| δ is δ-Hölder, we derive that f ε is a δ-Hölder function with Hölder constant equals to ε -δ , meaning that |f ε (x) -f ε (y)| ≤ ε -δ |x -y| δ . Using again Item 1 of Proposition 2.1 and arguing as above, the desired upper bound for τ f (n) follows.

Remark 3 . 1 .

 31 Item 2 of Corollary 3.1 without the supremum is a consequence of Inequality (2.3) of [19, Theorem 2]. The fact that it also holds for the maximum sup j≤n |S j (ϕ)| follows from [16, Example 2].

  be the induced map. Let Γ denote the partition of Y into the intervals where R is constant. Let m denote the Lebesgue measure. Items a)-d) of the next result have been established in [8, Theorem A.A.]. To prove its last part concerning the invariant density, it suffices to follow the lines of the proof of [15, Lemma 3]. Theorem 5.1. T is a nonuniformly expanding map with basis Y , return time τ and reference measure m. That is, there exists C > 0 such that for every a ∈ Γ and all x, y ∈ a, a) F : a → Y is a nonsingular bijection; b) F is expanding: |F (y) -F (x)| ≥ 2|y -x|; c) F has bounded distortion: | log F (y) -log F (x)| ≤ C|F (y) -F (x)|.

( 1 +

 1 x-y1 1/2-y1 . Let n ∈ N and x ∈ J n ⊂ (1/2, 1]. Then, f (x) = 1 and for every k ∈ [[1, n -1]], f • T k (x) = 0. So S n (f )(x) = 1 -nν(f ) and for n > 2/ν(f ), |S n (f )(x)| ≥ nν(f )/2. So, there exists a positive constant c > 0 such that ν(|S n (f )| ≥ nν(f )/2) ≥ ν(J n ) ≥ cy n ≥ ce -υ1n γ ,proving the lower bound.Proof of Item b). Let δ > 0 and f := (| log x|) δ . Note thatν(|f | > t) = ν(]0, e -t 1/δ [) ≤ C e -t 1/δ 0 | log x| β )dx ≤ Ae -Bt 1/δ .

  1/δ for some A 1 , A 2 , B 1 , B 2 > 0 and δ > 0, and positive constants c 1 , c 2 , κ 1 and κ 2 such that
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