
HAL Id: hal-03540379
https://hal.science/hal-03540379

Submitted on 13 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new deep learning method for multispectral image
time series completion using hyperspectral data

Cheick Tidiani Cissé, Ahed Alboody, Matthieu Puigt, Gilles Roussel, Vincent
Vantrepotte, Cédric Jamet, Trung-Kien Tran

To cite this version:
Cheick Tidiani Cissé, Ahed Alboody, Matthieu Puigt, Gilles Roussel, Vincent Vantrepotte, et al.. A
new deep learning method for multispectral image time series completion using hyperspectral data.
47th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2022), May
2022, Singapour, Singapore. pp.1546-1550, �10.1109/ICASSP43922.2022.9747895�. �hal-03540379�

https://hal.science/hal-03540379
https://hal.archives-ouvertes.fr


A NEW DEEP LEARNING METHOD FOR MULTISPECTRAL IMAGE TIME SERIES
COMPLETION USING HYPERSPECTRAL DATA
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2 Univ. Littoral Côte d’Opale, CNRS, LOG – UMR 8187, F-62930 Wimereux, France

ABSTRACT

The massive development of remote sensing allowed many
novel applications which bring new challenges. In particular,
some applications such as marine observation require a good
spatial, spectral, and temporal resolution. In order to tackle
the last issue, spatio-temporal fusion of remote sensing data
allows to complete a time series of multispectral images from,
e.g., hyperspectral images. In this paper, we propose a new
deep learning approach to that end. Our main contribution
lies in the error completion task which allows to improve the
completion performance. We show that our proposed method
is able to produce high fidelity predictions with better qual-
ity indices than state-of-the-art methods on true images taken
from the CIA / LGC database and Sentinel-2 / Sentinel-3 data.

Index Terms— Remote Sensing, Time-Series Comple-
tion, Spatio-Temporal Fusion, Deep Learning.

1. INTRODUCTION

The satellite observation of our planet knew significant in-
strumental advances for several decades, with consequent de-
velopments in terms of spatial resolution—e.g., in water re-
mote sensing with high spatial resolution (10–60 m)—and in
terms of spectral resolution (hyperspectral imagery). How-
ever, the Signal-to-Noise Ratio (SNR) of a Multispectral or
Hyperspectral Imaging (MSI/HSI) sensor is proportional to
the ratio between the sensor area and the number of observed
spectral bands. Therefore, to maintain a constant SNR, in-
creasing the number of spectral bands in an hyperspectral
image implies a decrease in spatial resolution. As a conse-
quence, our planet is currently observed by MSI systems hav-
ing a very good spatial resolution but a low spectral resolution
and by HSI systems having a very good spectral resolution
but a low spatial resolution. Moreover, the sampling rate of
remote sensing instruments may not necessarily be the same.
However, for some applications—e.g., land use/cover classi-
fication [1] or change detection [2]—it may be necessary to
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observe an area with (i) a good spatial resolution, (ii) a good
spectral resolution, and (iii) a good time resolution. Unfor-
tunately, none of the actual satellite combine the three above
properties. As an example, Sentinel-2 (S-2) has a high spatial
resolution—ranging from 10 to 60 m—but only 13 spectral
bands and a sampling rate around 5 days. On the contrary,
Sentinel-3 (S-3) provides 21 spectral bands and a sampling
rate around 1.4 days but with 300 m spatial resolution. While
the fusion of MSI and HSI data acquired at the same time
has been extensively investigated—see, e.g., [3, 4] for recent
surveys and [5] for an application on S-2/S-3 data—the com-
pletion of MSI time series from HSI ones has been less inves-
tigated [6]. We here focus on the latter.

Popular state-of-the-art techniques are based on weighted
filtering [7], weighted kriging [8], and/or weighted regression
[9]. Other methods are based on unmixing, and extend multi-
sharpening approaches to multi-temporal images [10]. Fur-
ther techniques are learning dictionaries to perform the time
series completion [11]. More recently, deep learning [12, 13]
or hybrid techniques [14] were proposed.

In this paper, we aim to propose a new method for com-
pleting a time series of MS images from an HS one. Our
proposed technique is based on a deep learning framework.
The remainder of the paper reads as follows. In Section 2, we
formally introduce the considered problem and our method.
An experimental validation is provided in Section 3 while we
conclude and discuss about future work in Section 4.

2. PROBLEM STATEMENT AND PROPOSED
METHOD

In this section, we introduce in detail the considered problem.
More specifically, we consider two time series of MS and HS
images. We further assume that the time rate for HSI data
is much lower than for MSI and that some HS images are
acquired almost at the same time—i.e., the same days—as
MS images. Without loss of generality, we consider in this
paper that for one given MS image to estimate at Time t2,
there exist two pairs of MS and HS images acquired at t1 and
t3, respectively, and one HS image acquired at t2, as shown
in Fig. 1. More specifically, we denote by M(ti) and H(ti)
the MS and HS images sensed at Time ti, respectively. As a



consequence, we aim to derive M(t2) from M(t1), M(t3),
H(t1), H(t2), and H(t3). Such an assumption was recently
considered in the literature [14].
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Fig. 1. Considered time sampling of MSI and HSI images.
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Fig. 2. Structure of the proposed approach.

In order to tackle this problem, we propose a deep learn-
ing method named Completion Spatio-Temporal Fusion
(CSTF) which is composed of two main parts. The gen-
eral structure of our proposed method is provided in Fig. 2. It
consists of two blocks—i.e., a fusion and a residual comple-
tion error block—which are alternatingly run several times.
Please note that the last time we run the latter, we run once
more the former in order to provide the predicted image
M(t2). The fusion block—whose structure is provided in
Fig. 3—may be seen as a 5-image extension of the strategy
proposed in [12] which used 3 images, i.e., 2 HS and 1 MS
images. Indeed, we estimate the difference between pairs of
HS images taken at adjacent times, that we then concatenate
with available MS images in order to predict M(t2). The loss
function considered in this paper is the mean squared error
between the predicted and the target MS images at Time t2.
Our main contribution resides in the second block. Using
the output of the fusion block, we get three MS images, i.e.,
M(t1), M(t3), and a first estimate of M(t2). These images
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Fig. 3. Structure of the fusion block of CSTF.

can be compared H(t1), H(t3), and H(t2), respectively.
More specifically, by spatially degrading the MS images and
by considering the shared wavelengths with the HS images,
we get quite similar images whose differences are used to
improve the estimation of M(t2)—both in terms of spatial
and spectral information—in another fusion block. This pro-
cedure is repeated several times. The general structure of this
residual completion error block is provided in Fig. 4.

From a mathematical point of view, the image M(t2)
which is predicted during the fusion block is related to the
available data through the following relationship:

M(t2) =h
(
f1
(
M(t1)

)
, f2

(
M(t3)

)
,

f3(H(t3))− f4(H(t2)),

f5(H(t1)− f4(H(t2))
)
,

(1)

where ∀i = 1, . . . , 5, fi(·) is a feature extraction function—
composed of 1 layer of convolution and 1 ReLu activation
function—and h(·) is a function which concatenates the fea-
tures of the different (differences of the) images and the resid-
ual networks. Please note that during the first pass in the
fusion block, we directly process the HS images to predict
M(t2). However, this predicted image is used as an input of
the residual error completion block whose outputs are used as
HS image inputs during the next passes of the fusion block.

The residual error completion block consists of three sim-
ilar functions gi(·) which are applied to M(ti) and H(ti) for
i = 1, . . . , 3, respectively. More precisely, for a given index
i ∈ {1, 2, 3}, this function reads

Hr(ti) = gi(H(ti),M(ti)) = H(ti)− f ′
i (M(ti)) , (2)

where f ′
i(·) is the feature extraction function applied to the i-

th MSI, and Hr(ti) is the residual HS image which is used as
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Fig. 4. Structure of the residual error completion block.

an input of the fusion block during the next step. Please note
that each function f ′

i(·) realizes a spatial degradation of the
MS images for making them comparable with their respective
HS ones but they also provide some specific processing, i.e.,
3 convolutional layers, each with a ReLu activation function.

3. EXPERIMENTS

In this section, we investigate the ability of our proposed
CSTF method to estimate a known MS image acquired at
Time t2 (not used in the estimation stage) from MS images
acquired at Times t1 and t3 and HS images acquired at Times
t1, t2, and t3. For that purpose, we consider several databases
and several methods. More precisely, we use two databases,
i.e., the CIA/LGC databases [15] and some S-2 and S-3 time
series. The former is a public database1 which consists of MS
and HS images with 25 m and 500 m spatial resolution and 6
spectral bands for both images. The latter consists of several
images which are pre-processed using the method in [16]
in order to remove atmospheric effects2. In this paper we
use the 60 m spatial resolution of S-2 data. Both databases
are then processed by several approaches, i.e., STARFM [7],
DCSTFN [12], DMnet [6], DL-SDFM [14], and our proposed
CSTF method. In particular, we extract patches from a time
series of 24 pairs of images for the training. In order to ap-

1The CIA and LGC databases may be found at http://dx.doi.
org/10.4225/08/5111AC0BF1229 and at http://dx.doi.org/
10.4225/08/5111AD2B7FEE6, respectively.

2Such a pre-processing stage then allows the comparison of remote sens-
ing data with in situ measurements, which is out of the scope of this paper.

Fig. 5. Padding effect on the predicted MS images. Left: zero
padding. Right: symmetrical padding.

ply several quantitative performance indices, we consider for
each database 3 MS images to predict for which we know the
ground truth, i.e., we have these images in the databases but
we do not use them either for learning nor for predicting.

Except DL-SDFM, the tested models like STARFM, DC-
STFN, DMnet use a time series of 2 time indices t1 and t2
to perform the completion. For the sake of computation, all
the deep learning models use patches for training. As a con-
sequence, in order to predict a large image, it is necessary to
cut it into 150 × 150 patches, to proceed to the prediction,
and then to reconstruct the entire image from the patches.
While it is the default strategy in several frameworks—e.g.,
Tensorflow—and is used in, e.g., DCSTFN, zero padding may
provide some artifacts—visible on the left plot of Fig. 5—if
the gaps between zero and the values at the border of the patch
are not negligible. In order to provide a fair comparison, we
replace it by symmetrical padding which removes this effect
as shown on the right plot of Fig. 5.

In this paper, we set the parameters of our proposed
method as explained in Tab. 1. The fusion block is run
6 times while the residual error completion block is run 5
times. In the fusion block, the size of the residual network is
set to 10 convolutions.

Feature Extraction parameters Kernel Filters
f1(M(t1)) Conv2D + Leaky ReLu 3× 3 64
f2(M(t2)) Conv2D + Leaky ReLu 3× 3 64
f5(H(t1)) Conv2D + Leaky ReLu 3× 3 32
f4(H(t2)) Conv2D + Leaky ReLu 3× 3 32
f3(H(t3)) Conv2D + Leaky ReLu 3× 3 32
f ′
1(M(t1)) 3 Conv2D + Leaky ReLu 1× 1 64
f ′
2(M(t2)) Conv2D + Leaky ReLu 1× 1 64

Table 1. Parameters of the functions in Eqs. (1) and (2).

In order to assess the performance of the tested methods,
we use some classical quantitative performance measures for
image quality assessment3 , i.e., (i) the Peak Signal-to-Noise
Ratio (PSNR) [17]—which is the ratio between the highest
possible signal power and the noise power—(ii) the Spectral
Angle Mapper (SAM) [18]—which is a pixelwise measure of
the angle between the reference spectrum and the fused one.

3The code can be found at https://github.com/
andrewekhalel/sewar.
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Fig. 6. Example of a predicted M(t2) image from CIA/LGC databases. From left to right: true image, outputs of STARFM,
DCSTFN, DMnet, DL-SDFM, and our proposed method.

Method PSNR SAM SSIM SCC UQI PSNR SAM SSIM SCC UQI
Tests with 25 m spatial resolution on CIA/LGC Tests with 60 m spatial resolution on S-2/S-3

STARFM 24.2 0.6897 0.3974 0.1712 0.5357 17.7 0.9165 0.0531 0.03155 0.0692
DCSTFN 23.6 0.2187 0.7309 0.1211 0.7434 25.6 0.4090 0.1816 0.02138 0.0791

DMnet 24.0 0.2147 0.7421 0.2012 0.7529 19.2 0.4096 0.0555 0.02521 0.07382
DL-SDFM 21.4 0.2591 0.31460 0.03589 0.1720 30.1 0.4878 0.50374 -0.0023 0.0008

CSTF 36.4 0.1277 0.92153 0.5225 0.9701 32.9 0.7891 0.6372 0.03107 0.0748

Table 2. Performance of the tested methods on the considered databases.

SAM values near zero indicate local high spectral quality and
we use the average SAM value with respect to pixels for the
quality index of the entire data set—(iii) the Structural SIMi-
larity (SSIM) [17]—which measures the similarity between
two given images and which appears more consistent than
MSE in terms of visual perception. SSIM is bounded between
0 and 1 and SSIM values near 1 mean a high similarity.—
(iv) the Spatial Correlation Coefficient (SCC) [19]—which is
defined as the average correlation between pixels intensity—
and (v) the Universal Image Quality Index (UIQI) which is
designed by modeling any image distortion as a combination
of three factors: loss of correlation, luminance distortion, and
contrast distortion [20].

Please note that the performance indices from S-2/S-3
may be carefully considered. Indeed, these images may be
cloudy, which generates two drawbacks. The first one is that
S-2 and S-3 images are not taken at the same time, which
implies that the cloud shapes and positions are not neces-
sarily the same. In particular, our predicted M(t2) images
have the same cloud shapes and positions than H(t2), which
lower the prediction performance indices. Moreover, the
pre-processing stage used in this database—to remove the
atmospheric effects for a better water column observation—
replaces the clouds by NaNs which are not taken into account
in the computation of the performance values.

Table 2 provides the performance obtained for each
database, for one unique spectral band at 60 m of spatial
resolution. Our proposed method outperforms all the tested
state-of-the-art methods for all the performance indices when
applied to the CIA/LGC database. Please note that, as ex-
plained above, we used the symmetrical padding for all the
methods, which allowed to improve the performance of state-

of-the-art methods which are using zero padding. When
applied to the S-2/S-3 database, our proposed approach pro-
vides the best performance for 2 performance indices, i.e.,
PSNR and SSIM. Except for the SAM index, the perfor-
mance values reached for the other indices is close to the
best ones. Let us stress again that our proposed method is
almost always outperforming DL-SDFM which is also using
5 images for predicting M(t2) but which does not use our
proposed residual error completion block.

As an example, we show in Fig. 6 some outputs obtained
for one MSI image, observed at one wavelength, from the
CIA/LGC database. One can notice that most of the spatial
details are lost when STARFM and DL-SDFM are applied.
The other approaches keep much more details but they appear
slightly sharpener with our proposed CSTF method than with
DCSTFN and DMnet. This shows the relevance of our work.

4. CONCLUSION

In this paper, we proposed a new deep learning method to per-
form time-series completion of MS images using HS ones.
The structure of our network combines two blocks, i.e., a
fusion and a residual error completion block, which are al-
ternatingly called. Our main contribution lies in the former
and the experiments conducted on real datasets show the rele-
vance of our proposed approach. Our proposed residual error
completion block can be applied to most of the state-of-the-
art deep-learning-based time-series completion methods. In
future work, we aim to better investigate the effects of its pa-
rameters as well as its application to other deep learning mod-
els, e.g., attention-based architectures. We would also like to
deeply investigate the effects of clouds in the predicted image.
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