
Simple negative sampling for link prediction in
knowledge graphs

Md Kamrul Islam, Sabeur Aridhi, and Malika Smail-Tabbone

Universite de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France,
{kamrul.islam, sabeur.aridhi, malika.smail}@loria.fr

Abstract. Knowledge graph (KG) embedding methods learn the low di-
mensional vector representations of entities and relations of a knowledge
graph, facilitating the link prediction task in knowledge graphs. Dur-
ing learning of embeddings, sampling negative triples is important be-
cause KGs have only observed positive triples. To the best of our knowl-
edge, uniform-random, generative adversarial network(GAN)-based, and
NSCaching, structure aware negative sampling(SANS) are four nega-
tive sampling methods in the literature. Unfortunately, they suffer from
computational and memory inefficiency problems. In addition, their pre-
diction performance are affected by the ‘vanishing gradient’ problem
because of poor quality of sampled negative triples. In this paper, we
propose a simple negative sampling (SNS) method based on the assump-
tion that the entities which are closer in the embedding space to the
corrupted entity are able to provide high-quality negative triples. Fur-
thermore SNS has a good exploitation potential as it uses sampled high-
quality negatives for improving the quality of negative triples in next
steps. We evaluate our sampling method through link prediction task on
five well-known knowledge graph datasets, WN18, WN18RR, FB15K,
FB15K-237, YAGO3-10. The method is also evaluated on a new biolog-
ical KG dataset (FIGHT-HF-23R). Experimental results show that the
SNS improves the prediction performance of KG embedding models, and
outperforms the existing sampling methods.

Keywords: knowledge graph embedding, link prediction, negative sam-
pling

1 Introduction

A knowledge graph (KG) is a graph-based representation of knowledge which
illustrates real-world entities and their relations covering various domains [1].
Formally, a KG is represented as a collection of RDF triples, (head,relation,tail)
where the head and the tail are two entities which are connected by a specific
relation, e.g.(Shakespeare, isAuthorOf, Hamlet). KGs are fundamental building
blocks for many applications, ranging from question answering to content-based
recommendation. Some of the notable KGs are FreeBase, WikiData, DBPedia,
Yago, NELL. Generally, KGs contain millions of entities and billions of triples.

2 Islam et al.

Despite of their huge size, the incompleteness of KGs is well known. For exam-
ple, birth place of more than 70% of person entities in Freebase is missing [2].
The incompleteness issue of KGs motivates researchers to study on how to add
new triples in KGs. This task is known as link prediction which infer new triples
based on the observed triples in KGs.
In recent years, many researchers have developed embedding models to learn vec-
tor representations (or embeddings) entities and relations in KGs. These models
perform the link prediction task based on the learned embeddings. The training
of these models requires positive triples as well as negative/non-observed triples.
However, only positive triples are available in KGs. Importantly, the quality of
negative triples does matter [3, 4]. This statement brings the importance of sam-
pling negative triples. Unfortunately, this important perspective of embedding
model is less focused in the literature. One way to sample negatives is designed
based on ’closed-world’ assumption where all of the non-observed triples are nec-
essarily false and used as negatives. However, this assumption is not entirely true
for KGs due to their incompleteness [5]. Alternatively, most of the KG embedding
models samples negatives from non-observed triples under ’open-world’ assump-
tion where a non-observed triple may be positive or negative. To the best of
our knowledge, there exist four negative sampling methods: uniform-random [6],
GAN-based [3, 7, 8], NSCaching [4], and SANS [9] . However, each of them has
its own pros-cons and the current state-of-art still lacks a good negative sam-
pling method. In this article, we propose a simple but efficient method called
SNS to sample high-quality negative triples in KG. In sampling, the trade-off
between exploration and exploitation is crucial in searching for a high-quality
samples [10]. Exploration corresponds to the capacity of the sampling method
to select high-quality negative triples from unexplored areas whereas exploita-
tion favours the utilization of already known negative triples to sample other
negatives. SNS makes a good balance between exploration and exploitation to
improve the quality of negative triples. We designed SNS as general sampling
method that can be plugged to any KG embedding model for link prediction.

2 State-of-art

High-quality negative triples, which are not readily available, contribute during
training of a KG embedding model. Generally, candidate negative triple set is
generated by positive triple perturbation where head/tail entities are replaced
with other entities [5] and then a sampler samples negative triples from the set.
’Uniform-random’ is the mostly used negative sampling method where negative
triples are randomly sampled from a uniform distribution of candidate nega-
tives [4]. Though ’uniform-random’ is simple, a sampled negative triple could
be completely unrelated to the corresponding positive triple and is easily classi-
fied as negative. Consequently, ’uniform-random’ method seriously suffers from
’zero-loss’/’vanishing- gradient’ problem [3]. Recently, the generative property of
GAN frameworks to generate high-quality negatives for avoiding the ’vanishing-
gradient’ problem is studied. The generator of GAN is trained to pick high-

Simple negative sampling for link prediction 3

quality negative triples whereas the discriminator part is trained to learn em-
beddings. IGAN [8], KBGAN [3], KSGAN [7] are three existing GAN-based sam-
pling methods for KGs. Compared to ’uniform-random’ sampling, these methods
improve the quality of negative triples undoubtedly. However, these methods in-
crease the number of model parameters and take extra costs on training for
parameter optimization [4]. In addition, they suffer from instability and degen-
eracy problems because of adopting the complex reinforcement learning to train
the generator [4]. To avoid the excessive training time of GAN-based methods,
Zhang et al [4] proposed a ’distilled’ version of GAN-based methods, namely
NSCaching which stores negatives with high scores in head and tail caches for
each positive triple, and then samples negatives directly from the caches. With
NSCaching sampling, KG embedding models show competitive link prediction
performance. However, the memory requirement increases exponentially with the
size of KGs. Also, the regular updating of caches increases the computational
time. Thus, scalablity is a big issue for NSCaching and it is not recommended for
large KGs. Apart from the above-mentioned sampling methods, the hard neg-
ative mining in contrastive learning motivates Ahrabian et al. [9] to study the
neighborhood information of entities to sample negatives. They develop SANS
method based on an assumption that neighbor entities without direct relation
are good candidates for generating negatives. However, the one-time generation
of negatives prior to the start of the embedding learning process is expensive in
terms of memory requirements, as it requires the whole adjacency matrix of a
KG in main memory.

3 The proposed SNS method

For link prediction, KG embedding models are trained with positive and negative
triples to learn embeddings of entities and relations. In this section, we first
briefly describe a classical KG embedding model, and then our proposed SNS
negative sampling method. Throughout the paper, we use E to denote the set
of all entities, R to denote the set of all relations, S to denote the set of positive
training triples, D to denote the set of positive test triples, Q to denote the set
of all positive triples, d to denote embedding dimension size, m to denote the
batch size, Sm and S′m to denote a batch of positive and respective negative
triples. The architecture of a classical KG embedding model is given in Fig. 1
which starts with initializing the embeddings of entities and relations randomly
from uniform/Gaussian distributions [5]. For the training of the model, a batch
of positive train triples Sm is fetched from the train triple set, S. A negative
sampling method is then used to generate a batch of negative triples. In the
architecture, we inject our SNS method(shaded by yellowish color in Fig. 1) to
generate the batch of negative triples, S′m for the batch of positive triples,Sm.
The batches of positive and negative triples are then used by the pairwise training
strategy to learn the embeddings. In pairwise training, the model tries to assign
more plausibility score to a positive triple than its corresponding negative triple.
The training objective is to optimize the embeddings of entities and relations

4 Islam et al.

Initialize embeddings of
entities and relations

Fetch all training
positive triples

Fetch a batch of
positive triples

Generate batch of negative
triples by the SNS negative

sampling method

Compute and back-propagate loss, update embeddings by
optimizer

Repeat for all batches

Repeat for all epochs

Fig. 1: Architecture of a classical KG embedding model with SNS sampling

for minimizing the total pairwise loss as designed Equation 1.

min
Θ

∑
∀(h,r,t)∈Sm,(h′,r,t′)∈S′

m

L(fr(h, t), fr(h
′, t′)) + λreg(Θ) (1)

Here, fr is the scoring function of the embedding model, (h, r, t) ∈ Sm is a posi-
tive triple and (h′, r, t′) ∈ S′m is the corresponding negative triple. The pairwise
loss for the positive and its negative triple is defined in Equation 2 [5].

L(fr(h, t), fr(h
′, t′)) =

[
λ− fr(h, t) + fr(h

′, t′)
]
+

(2)

Here, λ is the margin and [.]+ = max(0, .) is the hinge function. The embedding
updating process is repeated for all batches of positive triples(shaded by dark
gray color in Fig. 1), and the whole training process (shaded by light gray color
in Fig. 1) is repeated for T times (or epochs). The model training process is simi-
lar to a traditional KG embedding model except we adapt our negative sampling
method. We refer to [5] for more details about the traditional KG embedding.
In the following, we describe our proposed SNS method for negative sample
generation. The SNS method aims to generate high-quality negative triples for
avoiding the ’vanishing-gradient’ problem of uniform-random sampling, the com-
plex parameter optimization problem of GAN-based sampling and the excessive
memory requirement problems of NSCaching. Fig. 2a shows the basic steps of
SNS sampling. The steps are described in the following.

Step 1. Triple perturbation: From Fig. 2a, SNS starts with generating a
initial negative set for a positive triple by positive triple perturbation. This step
is similar to other sampling methods. In triple perturbation, the head/tail of the
positive triple is corrupted by replacing head/tail with other entities in the entity
set(E). In the same time, it is checked that the negative set does not contain
any positive triple. To illustrate, consider the positive triple q = (h, r, t) ∈ S.
Corrupting the tail(t) gives the initial negative set q′0(t) = {(h, r, t′) /∈ Q|t′ ∈ E}.

Step 2. Candidate set generation: Generally, the size of the set q′0(t) is
large as KG contains large number of entities. Zhang et al [4] describe that only

Simple negative sampling for link prediction 5

Pick a positive
triple

Generate initial
head/tail negative

triple set

Sample head/tail
candidate negative

triple set

Compute sampling
probabilities of head/tail

candidate negatives

Rank negatives in
head/tail

candidate set

Sample k negative(s)
from head/tail
candidate set

Update head/tail
candidate set with

head/tail LRS

Update head/tail
LRS

k negatives by
head/tail corruption

(a)

k negative(s) by tail

corruption

(Fig 2.a)

k negative(s) by head

corruption

(Fig 2.a)

Sample k

negative(s) from 2k

negatives

k

negative(s)

(b)

Fig. 2: The SNS sampling method (a) generation of k high-quality negatives by
corrupting head/tail, (b) k negative(s) sampling from 2k high-quality negatives

some of initial negatives of the set are of good-quality. As we need few negatives
for each positive triple, we randomly sample N1 triples from q′0(t) to generate
candidate negative set q′1(t)(i.e. q′1(t) ⊆ q′0(t)) for user defined parameter N1.
As the training progresses, it is desired that quality of the negative(s) for the
next step will be better or close to the quality of negative(s) in the current
step. For this purpose, the sampled negatives in the current step are stored in
a small structure called least recently selected(LRS). LRS[q′h, q

′
t] saves sampled

negatives where q′t and q′h are the sampled negatives by head and tail corruption
respectively in the previous step. The saved negatives are used in the next step
for sampling high-quality negatives. The candidate negative set, q′1(t) is updated
to include the LRS negative(s) as q′1(t) := q′1(t) ∪ LRS[q′t]. The use of LRS is
intended to favour the exploitation behavior of the proposed SNS method. It
ensures that the quality of the negative(s) at current step is better than or at
least close to the quality of the negative(s) at the previous step.

Step 3. Sampling probability computation: In this step, we compute
the sampling probability of each negative in the candidate negative set q′1(t).
Negatives with higher probabilities are considered as high-quality negatives. The
probability is defined based on the distance score of each negatives. The distance
score for the negative triple, (h, r, t′i) ∈ q′1(t) is computed as the distance between
the corrupted(t) and the new entities(t’) as Equation 3.

d(t, t′i) = ||t− t′i|| (3)

Here, t and t′i are embeddings of the entities t and t′i. A softmax function is
then used to compute the sampling probability score of each candidate negative
(h, r, t′i) ∈ q′1(t) as Equation 4.

P (h, r, t′i) =
exp(1

d(t,t′i)
)∑N1

j=1 exp(
1

d(t,t′j)
)

(4)

6 Islam et al.

The softmax function computes higher sampling probability for the candidate
negative triples with lower distance score.

Step 4. Negative triple sampling and LRS updating: The triples from
the candidate negative set,q′1(t) are ranked in decreasing order of their probabil-
ities and k negative(s) are sampled. A natural choice could be sampling top-k
(k=1 for pairwise training, k > 1 for maximum likelihood training) negative(s).
However, sampling top-k ranked negative(s) could arise two problems. Firstly,
there is a chance of high repeat sampling of the same negative(s) (even in many
consecutive steps) as the current candidate negative set also includes the least re-
cently sampled (LRS) high-quality negative(s). This case affects the exploration
of SNS sampling. Secondly, the existence of false negative triples (looks like high-
quality) is not ignorable [5]. To tackle these problems, SNS randomly samples k
negative triples from N2 top ranked triples in q′t as q′t = {(h, r, t′)|rank(h,r,t′)≤N2

}
for user defined parameter N2 where N2 > k.
SNS repeats the above described process (from initial negative set generation
to k negative(s) sampling) for head(h) corruption to sample k negative(s) as
q′h for the positive triple, q. The LRS[q′t, q′h] is updated with the sampled 2k
high-quality negative(s). Finally, we randomly sample k high-quality negative(s)
as q′h,r,t from 2k negatives in q′h ∪ q′t. The sampled k negative(s), q′ and the
corresponding positive, q are then used to train the KG embedding model.

4 Experiments

To evaluate the efficiency of SNS sampling, we plug it to a KG embedding model.
KG embedding models are broadly categorized into two main categories: (1)
translational models and (2) semantic matching models [5]. Translational models
consider each relation as a translation in the embedding space: adding relation
to the head gives a close position to the tail [6]. On the other hand, semantic
matching models define the plausibility of a triple by matching representations
of entities and relations embodied in their embeddings [5]. The main focus of this
paper is negative sampling for KGs. For evaluation, we choose TransH [11] to
represent translational and DistMult [12] to represent semantic matching model
as they are popular baselines for link prediction task in KGs. For details about
the models, we refer to the original papers. The scoring functions of the models
are given in Table 1. Each of the model is evaluated for three types of existing (i.e.
random, GAN-based, NSCaching) and for the proposed SNS methods. We do not
include SANS in the experiment due to its excessive memory requirement. For
GAN-based method, we choose KBGAN as it is the only GAN-based sampling
which has publicly available implementation (to best of our knowledge). We refer
to the original articles for details about the sampling methods.

4.1 Datasets

In the experiments, we use five widely used benchmark KG datasets, i.e., FB15K,
FB15K-237, WN18, WN18RR, YAGO3-10 for link prediction task [6, 3, 4]. WN18

Simple negative sampling for link prediction 7

Table 1: Scoring functions of KG embedding models: wr is the normal vector of
the hyperplane for the relation r, diag(r) is the diagonal matrix for the relation
r, and ||.||2 represents l2 norm.
Model Embeddings Scoring function,fr(h, t)

TransH [11] hd, td, rd, wd
r ||(h− wT

r hwr) + r− (t− wT
r twr)||22

DistMult [12] hd, td, rd hTdiag(r)t

Table 2: The experimental KG datasets
KG datasets #Entity #Relation type #Facts #Train #Valid #Test

WN18RR 40,943 11 93,003 86,835 3,034 3,134

WN18 40,943 18 151,442 141,442 5,000 5,000

FB15K-237 14,541 237 310,116 272,115 17,535 20,466

FB15K 14,951 1,345 592,213 483,142 50,000 59,071

FIGHT-HF-23R 90,430 23 948,298 853,482 47,402 47,414

YAGO3-10 113,273 37 1,089,040 1,079,040 5,000 5,000

is derived from the WordNet which is a large semantic lexicon for the English
language. FB15K is a subset of triples from Freebase KG which is a large collab-
orative general knowledge base. WN18RR and FB15K-237 datasets are derived
from WN18 and FB15K respectively after removing the inverse-duplicate rela-
tions. The YAGO3-10 dataset is extracted from the open source YAGO knowl-
edge base considering the entities with at least 10 relations.
We also provide a biological KG dataset, namely FIGHT-HF-23R. FIGHT-HF
is a biological knowledge graph which describes named relations among sev-
eral biological types such as proteins, genes, diseases, drugs [13]. The original
graph contains 246,672 biological entities and 24,601,110 relations of 37 types.
We extract a medium size dataset by considering only those relations which have
more than 50 facts and less than 500K facts. As a result, the dataset, naming
FIGHT-HF-23R, contains 90,430 entities, 23 relation types and 948,298 triples.
An example of extracted triple is (Cyclosporin A, drug indication, Pterygium).
The details about the dataset are available in GitLab repository1.
The KG datasets, except the new FIGHT-HF-23R, come with train/valid/test
splits. For FIGHT-HF-23R dataset, we split the dataset into train, validation,
test triples. Unfortunately, we do not find any standard rule for splitting KG
dataset. We split the dataset into 90/5/5 for train/validation/test triples so
that we have enough triples to train the model. We apply the split rule to re-
lation label where positive triples (facts) with a specific relation are also split
with 90%/5%/5% ratio. This split ensures that we have all types of relations in
all splits. We also check that no isolated entities exist in the training dataset as
in this case the entities will have low quality embedding. The split gives train,
test and valid triple sizes as in Table 2.

1 https://gitlab.inria.fr/kislam/sns

8 Islam et al.

4.2 Evaluation metrics

To evaluate the performance of any sampling method, we plug it to a KG embed-
ding model for link prediction task. The performance is defined with two widely
used metrics: Hit@z, and mean reciprocal rank (MRR) [14]. The metrics are
defined based on the rank of the positive test triple. Hit@z is defined as the av-
erage number of times a positive test triple is among the z highest ranked triples;
whereas MRR is the average reciprocal rank of the positive test triple [15]. The
range of both scores is 0 to 1. The higher value of MRR demonstrates the bet-
ter ranking of positive test triples and better ranking provides better prediction
performance. Also, higher Hit@z score indicates better performance. To illus-
trate, consider the positive test triple q = (h, r, t) ∈ D. A set of negative triples
q′t = {(h, r, t′) /∈ Q|t′ ∈ E} is generated by simple triple perturbation (replacing
tail with other entities) [6, 16] confirming that no positive triple exists in q′t. The
triples in q ∪ q′t are then ranked in decreasing order of their scores (computed
by embedding-based scoring functions in Table 1). The rank of the positive test
triple q in q ∪ q′t is defined as ranktq. Based on the rank of each positive test
triple q, the performance metrics are defined in Equations 5 and 6.

Hitt@z =
1

|D|
∑
q∈D

hittq, hittq =

{
1, if ranktq ≤ z
0, otherwise

(5)

MRRt =
1

|D|
∑
q∈D

1

ranktq
(6)

The whole evaluation process is also repeated by corrupting the head entity
of each positive triple as well and Hith@z, MRRh are computed. The final
Hit@z, MRR metrics are the average of head and tails metrics i.e. Hit@z =
(Hitt@z+Hith@z)/2 and MRR = (MRRt+MRRh)/2. We re-scale the Hit@z
score from the range 0-1 to 0-100 to facilitate the comparisons. As suggested by
the most of the literature for link prediction in KGs, we consider z ∈ {1, 3, 10}.

4.3 Results and discussion

The proposed SNS method is implemented in Python with well-known PyTorch
and run on a ’NVIDIA A100-PCIE-40GB’ GPU. We set training epoch number
to 200, embedding dimension to 100, learning rate to 0.0001, margin value to
4.0 for all the experiments. For the embedding optimization task, we use the
popular Adam optimizer[17]. We evaluate link prediction performance of em-
bedding models with SNS sampling, and compare to other sampling methods
in six KG datasets. Then, we do more analyses including parameter sensitivity,
performance in different epochs for the WN18RR dataset. The relation-wise pre-
diction performance and examples of sampled negatives for WN18RR dataset
are available in the same GitLab link as mentioned in Section 4.1.

Prediction Performance: We train the KG embedding models from scratch
for each of the sampling methods, Random-uniform, KBGAN, NSCaching, SNS.

Simple negative sampling for link prediction 9

For parameter setting, we follow the recommendations from the original paper
([4] for NSCaching, [3] for KBGAN). The prediction performance metrics are
tabulated in Table 3. Considering translational model(TransH), undoubtedly the
proposed SNS sampling method shows the best prediction metrics among all the
negative sampling methods with respect to most of prediction metrics in most
of the KG datasets. In WordNet KG datasets (WN18RR, WN18), NSCaching
is the second best methods and the performance improved by 2-5% for SNS
sampling considering Hit@k metrics when they are used with TransH. We find
the best results of SNS sampling for FB15K dataset where the Hit@k scores are
improved by 5-8% comparing to second best NSCaching sampling method. For
rest of two datasets, SNS also remains best or second best in almost all metrics.
Good balance between exploration and exploitation could be the most suitable
reason behind this success. When the sampling methods are used in DistMult
model, the hit@10 and hit@3 scores drop in all datasets except FIGHT-HF-23R.
Training the model for more epochs might improve the metrics. However, our
intention is not to compare different prediction models, rather different sampling
methods. We see nearly similar trend of improvement in prediction performance
for DistMult with SNS sampling. Surprisingly, the performance metric on the
new FIGHT-HF-23R KG dataset are poor for TransH with the sampling meth-
ods, but better for DistMult with the sampling methods. In the following, we
describe further analysis of prediction by TransH with different sampling meth-
ods in the smallest KG dataset, WN18RR.

Change in prediction performance for different epochs: To illustrate
how the prediction performance changes with varying number of training epoch,
we plot the MRR and Hit@10 scores of a embedding model with different sam-
pling methods from epoch 10 to 200 with a interval of 10 in Fig. 3. At the
initial point of epoch 10, the MRR score of SNS is nearly same (around 0.02)
as other sampling methods, except KBGAN which has the highest MRR score
(around 0.06). As the training epoch number increases, the embeddings quality
are improved and consequently the rise in MRR scores of all methods are seen.
The MRR improving rate is seen higher for SNS method. At the epoch 70, the
MRR score of SNS is best. Though the improvement rate is not constant, the
MRR scores of the proposed SNS method remain highest among all the sampling
methods in the following epochs. We see the worst MRR for ’uniform-random’
method as the method does not learn to pick high-quality negative triples. These
improvements in rank are reflected in Hit@10 scores curves where SNS has the
highest Hit@10 scores in later half of training epochs. These improvements in
performance prove that our sampling method is able to provide better ranks of
test triples than the state-of-art sampling methods.

Parameter sensitivity analysis: SNS sampling method has two param-
eters, N1 and N2. To describe the changes in performance for different values
of these parameters, we record Hit@10 and MRR scores for different values of
N1 with fixed N2 = 5 which are plotted in Fig. 4. As the value of N1 increases,
more initial negative triples are explored and the SNS sampling gets better ex-
ploration. As a consequence, the prediction performance improves as the value

10 Islam et al.

Table 3: Link prediction(LP) results: MRR, and Hit@z of different negative
sampling(NS) methods on KG datasets. The best and second best metrics are
marked in bold and underline faces.

LP models NS methods
WN18RR WN18

MRR hit@10 hit@3 hit@1 MRR hit@10 hit@3 hit@1

TransH

Random 0.1520 32.27 23.72 0.11 0.3199 79.43 64.25 11.85
NSCaching 0.1713 40.68 31.43 0.93 0.4171 88.65 74.05 17.48
KBGAN 0.1708 40.08 29.35 0.10 0.4183 87.34 73.67 18.09
SNS 0.1852 43.04 33.82 1.80 0.448 91.47 79.30 19.28

DistMult

Random 0.1918 32.16 23.88 14.22 0.3453 52.82 37.33 25.75
NSCaching 0.2262 37.37 29.11 17.84 0.3772 56.85 42.18 29.04
KBGAN 0.2285 33.42 27.23 17.34 0.3791 57.28 41.97 28.39
SNS 0.2333 37.83 25.12 18.49 0.3931 56.46 42.13 31.38

FB15K237 FB15K

TransH

Random 0.1988 36.68 22.50 11.50 0.3115 52.88 36.68 19.58
NSCaching 0.2476 40.39 26.59 17.33 0.3926 61.22 44.99 25.50
KBGAN 0.2162 40.58 23.52 15.23 0.3228 53.67 38.34 20.52
SNS 0.2514 42.90 29.44 15.18 0.4360 66.72 51.52 30.58

DistMult

Random 0.1918 31.82 20.71 12.96 0.2188 33.25 21.84 12.95
NSCaching 0.2205 34.87 25.69 15.72 0.2327 39.89 27.41 16.19
KBGAN 0.2282 36.23 27.23 13.02 0.2203 35.54 23.12 15.92
SNS 0.2471 38.18 26.97 17.80 0.2937 45.62 32.66 20.79

YAGO3-10 FIGHT-HF-23R

TransH

Random 0.0850 18.96 9.05 1.24 0.0200 3.95 1.86 0.63
NSCaching 0.1431 26.76 15.97 7.49 0.0294 6.96 1.97 0.66
KBGAN 0.1467 26.08 16.03 8.34 0.0342 7.24 2.89 0.59
SNS 0.1488 26.72 16.23 8.87 0.0410 8.92 2.06 0.64

DistMult

Random 0.0533 10.59 5.44 2.35 0.1439 26.01 14.29 8.75
NSCaching 0.0875 14.22 8.86 5.64 0.1863 30.36 20.13 13.10
KBGAN 0.0712 13.98 7.79 3.19 0.1681 28.25 18.64 14.38
SNS 0.0804 16.72 8.39 4.98 0.1899 33.78 22.19 12.63

of N1 increases from 20 to upper as seen from Figs. 4a, 4b. The prediction
performance is nearly stable for N1 = 50 and above. In the point N1 = 50,
SNS sampling has good exploration to sample sufficient number of high-quality
negatives. And this could be the cause of performance stability for N1 ≥ 50.
Again, to describe the sensitivity of the parameter N2, we plot the performance
metrics by varying N2 among {1, 2, 3, 4, 5, 6, 7} with fixed N1=50 in Fig. 5.
Figs. 5a and 5b show the change in Hit@10 and MRR for change in N2. With
setting N2=1, SNS samples the top-most ranked negative(s). In this case, the
chance of repeat sampling is high as SNS considers already known high-quality
LRS negative(s) in addition to other candidate negatives. In case of high repeat
sampling, SNS suffers from low exploration and high exploitation effect leading
to drops in MRR and Hit@10 metrics. With N2=1, we see lowest prediction
performance for SNS. As the value of N2 increases, SNS gets better exploration

Simple negative sampling for link prediction 11

(a) Epoch number vs MRR (b) Epoch number vs Hit@10

Fig. 3: Prediction scores of TransH with different samplings in different epochs

(a) N1 vs Hit@10 (b) N1 vs MRR

Fig. 4: Sensitivity of SNS to N1, size of candidate negative set

and the best balance between exploration and exploitation is found for N2=5
where the highest prediction metrics are recorded. However as the value of N2

increases, the chance of sampling of known high-quality triple decreases (poor
exploitation) and the chance of sampling less good-quality negative increases. As
a result, the performance drops as seen in Fig. 5 where both hit@10 and MRR
drop for N2 > 5.

Memory and computational efficiency Undoubtedly, random-uniform
is the simplest, fastest, memory efficient sampling method as it does not learn
or store any parameter. GAN-based sampling makes the prediction model more
complex, increases the number of training parameters, and makes the model
harder to train due to use of reinforcement learning [4]. As a consequence, KB-
GAN needs extra memory and computational cost to store and optimize the
parameters. NSCaching stores set of high-quality negative triples in each posi-
tive triple cache which makes it worst memory efficient. In addition, the method
takes additional time to update the cache periodically. The proposed SNS sam-
pling method does not increase the training parameter like GAN-based method.
It memorizes only the least recently sampled negative triple which takes very
small amount of memory. Thus, intuitively SNS sampling is more memory ef-

12 Islam et al.

(a) N2 vs Hit@10 (b) N2 vs MRR

Fig. 5: Sensitivity of N2

ficient than GAN-based sampling and NSCaching. The method does not use
complex learning method like GAN-based method or does not take extra cache
updating time like NSCaching. It takes very small amount of time to update the
LRS structure. We record the training time of each sampling method with the
TransH embedding model. The data on training time is available at in the same
GitLab link as mentioned in Section 4.1. We see that the training time increases
as the number of training samples increases, as expected. We find 7-40% and
3-14% improvement in training time for SNS when it is compared to KBGAN
and NSCaching respectively.

5 Conclusion

In this paper, we propose a simple and efficient negative sampling method for
knowledge graph embedding. The method is general and can be plugged to
any knowledge graph embedding method. The method is able to generate high-
quality negative triples and takes low computational time and memory while
anticipating the ’vanishing-gradient’ problem. Experimentally, we evaluate our
method on six knowledge graph datasets for link prediction task and also de-
scribe its parameter sensitivity. The results show that the proposed SNS sam-
pling brings consistent improvements in prediction performance.
The poor performance of the studied models on YAGO3-10 and FIGHT-HF-23R
datasets leaves the future work to explore other embedding models in the litera-
ture on these datasets. Implementing the models in a distributed environment to
improve computational efficiency is another potential perspective of this work.

References

1. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic web, 8(3), pp. 489-508 (2017).

2. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., ...: Knowledge
vault: A web-scale approach to probabilistic knowledge fusion. In: Proceedings of the

Simple negative sampling for link prediction 13

20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 601-610 (2014).

3. Cai, L., Wang, W. Y.: KBGAN: Adversarial Learning for Knowledge Graph Em-
beddings. In: 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 1470-1480 (2018).

4. Zhang, Y., Yao, Q., Shao, Y., Chen, L.: NSCaching: simple and efficient negative
sampling for knowledge graph embedding. In: 2019 IEEE 35th International Con-
ference on Data Engineering, pp. 614-625 (2019).

5. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowledge and Data Engineer-
ing, 29(12), pp. 2724-2743 (2017).

6. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, vol. 26, pp. 1-9 (2013).

7. Hu, K., Liu, H., Hao, T.: A knowledge selective adversarial network for link predic-
tion in knowledge graph. In: CCF International Conference on Natural Language
Processing and Chinese Computing, pp. 171-183. Springer, Cham (2019).

8. Wang, P., Li, S., Pan, R.: Incorporating gan for negative sampling in knowledge
representation learning. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 32, (2018).

9. Ahrabian, K., Feizi, A., Salehi, Y., Hamilton, W. L., Bose, A. J.: Structure Aware
Negative Sampling in Knowledge Graphs. In: Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing, pp. 6093-6101 (2020).

10. Chen, J., Xin, B., Peng, Z., Dou, L., Zhang, J.: Optimal contraction theorem for
exploration–exploitation tradeoff in search and optimization. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans, 39(3), pp. 680-691
(2009).

11. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 28(1), pp. 1112-1119 (2014).

12. Yang, B., Yih, W. T., He, X., Gao, J., Deng, L.: Embedding entities and relations
for learning and inference in knowledge bases. In: International Conference Learning
Representation (2014).

13. Bresso, E., Lacomblez, C., Pizard, A., Rossignol, P., Zannad, F., Smäıl-Tabbone,
M., Devignes, M. D.: A data science approach for exploring differential expression
profiles of genes in transcriptomic studies-Application to the understanding of ageing
in obese and lean rats in the FIGHT-HF project. In: JOBIM 2018-Journées Ouvertes
Biologie, Informatique et Mathématiques (2018).

14. Wang, M., Qiu, L., Wang, X.: A Survey on Knowledge Graph Embeddings for Link
Prediction. Symmetry, 13(3), p. 485, (2021).

15. Rossi, A., Matinata, A.: Knowledge Graph Embeddings: Are Relation-Learning
Models Learning Relations?. In: EDBT/ICDT Workshops, (2020).

16. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing, vol. 1, pp. 687-696 (2015).

17. Kingma, D. P., Ba, J.: Adam: A method for stochastic optimization. In: Interna-
tional Conference on Learning Representation, (2015).

