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We show L p -estimates for square roots of second order elliptic systems L in divergence form on open sets in R d subject to mixed boundary conditions. The underlying set is supposed to be locally uniform near the Neumann boundary part, and the Dirichlet boundary part is Ahlfors-David regular. The lower endpoint for the interval where such estimates are available is characterized by p-boundedness properties of the semigroup generated by -L, and the upper endpoint by extrapolation properties of the Lax-Milgram isomorphism. Our range is optimal, and upper and lower endpoints are sharp if they do not coincide with 1 or ∞.

Introduction and main results

Let L be a second order elliptic system in divergence form on an open set O ⊆ R d , d ≥ 2, formally given by

Lu = - d i,j=1 ∂ i (a ij ∂ j u) - d i=1 ∂ i (b i u) + d j=1 c j ∂ j u + du.
The function u takes its values in C m , where m ≥ 1 is the size of the system, and the coefficients a ij , b i , c j , d are valued in L(C m ) and are only supposed to be bounded, measurable, and elliptic in the sense of [START_REF] Auscher | The square root problem for second order divergence form operators with mixed boundary conditions on L p[END_REF]. We refer to d and m as dimensions, and to the implied constants in boundedness and ellipticity as coefficient bounds. The system L is subject to mixed boundary conditions in the following sense: We fix some closed subset D ⊆ ∂O, on which we impose homogeneous Dirichlet boundary conditions, and in the complementary boundary part N := ∂O\D we impose natural boundary conditions.

To make this more precise, denote by W 1,2 D (O) the first-order Sobolev space on O with a homogeneous Dirichlet boundary condition on D. A proper definition will be given in Section 2.2. Put W 1,2 D (O) := W 1,2 D (O) m and define the sesquilinear form a :

W 1,2 D (O) × W 1,2 D (O) → C by a(u, v) = O d i,j=1 a ij ∂ j u • ∂ i v + d i=1 b i u • ∂ i v + d j=1 c j ∂ j u • v + du • v dx.
Define L as the operator in L 2 (O) m associated with a. Then L is invertible, maximal accretive, and sectorial. We take a closed look on the properties of L in Section 2.3.

In particular, L possesses a square root L 1 2 . The question if D(L

2 ) = W 1,2 D (O) with equivalent norms became famous as Kato's square root problem, and could be answered in the affirmative, first on the whole space [START_REF] Auscher | The solution of the Kato square root problem for second order elliptic operators on R n[END_REF], and later under suitable geometric requirements [START_REF] Axelsson | The Kato square root problem for mixed boundary value problems[END_REF][START_REF] Bechtel | The Kato square root problem on locally uniform domains[END_REF][START_REF] Egert | The Kato Square Root Problem for mixed boundary conditions[END_REF]. and put q+ (L) := sup J (L). The precise formulation of our main theorem reads then as follows.

Theorem 1.1. Let O ⊆ R d be open, and D ⊆ ∂O be closed. Assume that (O, D) satisfies Assumption N and Assumption D. Then the system L satisfies the following:

(i) If p -(L) < r < p < 2, then L 1 2
is a p-isomorphism and implicit constants depend on p, r, r , dimensions, geometry, and coefficient bounds. If 2 < q < q+ (L), then L 1 2 is a q-isomorphism, 2 is not a p -(L)-isomorphism, and if q+ (L) < ∞, then L 1 2

(ii) if p ∈ [1, ∞] and L 1 2 is a p-isomorphism, then p -(L) ≤ p ≤ q+ (L), (iii) if p -(L) > 1, then L 1
is not a q+ (L)-isomorphism.

In the next section, we will introduce all necessary definitions and we will make precise our geometric assumptions. Sections 3 and 4 provide preliminary results, some of them taken from [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF] without proof. Therefore, we advise the reader to keep a copy of that article handy. In Section 5, we are going to prove a Sobolev Calderón-Zygmund decomposition (Theorem 5.5), whose proof relies on a new Hardy's inequality related to mixed boundary conditions (Theorem 5.1). The Calderón-Zygmund decomposition then leads to upper p-bounds for L 1 2 in the case p < 2 in Section 6. Finally, we prove Theorem 1.1 in the Sections 7-9.

Notation. Write diam(•) for the diameter of a set and d(•, •) for the distance between two sets. We employ the shorthand d E (x) := d(E, {x}). The (d -1)-dimensional Hausdorff measure is denoted by H d-1 . If ϕ ∈ (0, π), then write S ϕ for the (open) sector {z ∈ C \ {0} : | arg(z)| < ϕ}, and put S 0 := (0, ∞). For Ξ ⊆ C open, denote the space of bounded and holomorphic functions on Ξ by H ∞ (Ξ) and equip this space with the supremum norm. Inductively, we introduce the shorthand 2 [0] := 2 and 2 [j+1] := (2 [j] ) * for iterated Sobolev exponents.

Elliptic systems & function spaces

We properly introduce the (m × m)-elliptic system L on O ⊆ R d , d ≥ 2, from the introduction. To this end, we also need to define Sobolev spaces subject to mixed boundary conditions and we discuss geometric properties of the pair (O, D).

2.1. Geometry. Let O ⊆ R d be open and D ⊆ ∂O be closed. Fix the pair (O, D) for the rest of this article. In particular, implicit constants might depend on this choice of geometry, but we will not mention this further. The same is true for dimensions. Introduce the following set of geometric assumptions.

Assumption N. There are ε ∈ (0, 1] and δ ∈ (0, ∞] such that with N δ := {z ∈ R d : d(z, N ) < δ} one has the following properties.

(i) All points x, y ∈ O ∩ N δ with |x -y| < δ can be joined in O by an ε-cigar with respect to ∂O ∩ N δ , that is to say, a rectifiable curve γ ⊆ O of length (γ) ≤ ε -1 |x -y| such that d(z, ∂O ∩ N δ ) ≥ ε|z -x| |z -y| |x -y| (z ∈ γ). (ii) O has positive radius near N , that is, there exists λ > 0 such that all connected components O of O with ∂O ∩ N = ∅ satisfy diam(O ) ≥ λδ. Assumption D. There are constants C, c > 0 such that ∀x ∈ D, r ∈ (0, diam(D)] : cr d-1 ≤ H d-1 (B(x, r) ∩ D) ≤ Cr d-1 .
Assumption D'. There are constants C, c > 0 such that ∀x ∈ D, r ∈ (0, 1] :

cr d-1 ≤ H d-1 (B(x, r) ∩ D) ≤ Cr d-1 .
Assumption N means that O is locally uniform near N , see [6, Sec. 

C ∞ D (O) := {u| O : u ∈ C ∞ 0 (R d ) & d(supp(u), D) > 0},
where C ∞ 0 (R d ) denotes the set of smooth and compactly supported functions on R d . Then the closed subspace W Often, we will need that the space W 

E : W 1,p D (O) → W 1,p D (R d ).
Here, extension operator refers to the property that (Eu)

| O = u for any u ∈ L 1 loc (O). A consequence of Proposition 2.2 is that classical inequalities like the Sobolev embedding W 1,p (R d ) ⊆ L p * translate to W 1,p D (O).
Here, p * := pd d-p is the (upper) Sobolev exponent to p if p < d, otherwise put p * = ∞. Similarly, define the lower Sobolev exponent by p * := pd d+p . 2.3. The elliptic system. We give a precise definition for the elliptic system L from the introduction. Consider the coefficients a ij , b i , c j , d : O → L(C m ). Here, i and j refer to row and column notation and m ≥ 1 is the size of the system. We assume the upper bound

a ij (x) L(C m ) , b i (x) L(C m ) , c j (x) L(C m ) , d(x) L(C m ) ≤ Λ (x ∈ O) (1)
for the coefficients. Using the spaces from Section 2.2, define the sesquilinear form

a : W 1,2 D (O) × W 1,2 D (O) → C, a(u, v) = O d c b A u ∇u • v ∇v dx.
To ensure ellipticity of a, assume for some λ > 0 the (inhomogeneous) Gårding inequality

Re a(u, u) ≥ λ( u 2 2 + ∇u 2 2 ) (u ∈ W 1,2 D (O)). (2)
Associate with a the operator

L : W 1,2 D (O) → W -1,2 D (O), Lu, v = a(u, v).
In virtue of (2) and the Lax-Milgram lemma, L is invertible. Define L to be the maximal restriction of

L in L 2 (O) m in virtue of the inclusion L 2 (O) m ⊆ W -1,2 D (O).
Clearly, L is again invertible. By ellipticity and definition, it also follows that L is densely defined. Moreover, for some ω ∈ [0, π/2) that depends on coefficient bounds, the numerical range Θ(L) is contained in the closed sector S ω . This is a consequence of Θ(L) ⊆ Θ(a) together with ellipticity of a. Define ω as the infimum over all such ω . In particular, L is sectorial and maximal accretive, hence generates a contraction semigroup on L 2 (O) m . We will freely use the sectorial functional calculus of L and assume that the reader is familiar with this concept. The reader can consult the monograph [START_REF] Haase | The Functional Calculus for Sectorial Operators[END_REF] for further information on this topic.

The following theorem is the main result from [START_REF] Bechtel | The Kato square root problem on locally uniform domains[END_REF] and establishes Kato's square root property for L. 

u 2 + ∇u 2 ≈ L 1 2 u 2 (u ∈ W 1,2 D (O))
, where the implicit constants depend only on geometry, dimensions, λ, and Λ.

2.4. Decomposition of L. We present a well-known decomposition of L into two square roots. This decomposition will be the key ingredient for the case p > 2 in Theorem 1.1 (i). 

Lemma 2.4. One has the identity

Lu, v = (L 1 2 u | (L * ) 1 2 v) 2 (u, v ∈ W 1,2 D (O)). Proof. Let u ∈ D(L). Since D(L) is dense in D(L 1 
v ∈ W 1,2 D (O) = D((L * ) 1 
2 ) the identity

Lu, v = (Lu | v) 2 = (L 1 2 u | (L * ) 1 2 v) 2 . ( 3 
)
The left-hand side of (3) is continuous in u with respect to the topology of W 1,2 D (O) by definition of L, whereas the right-hand side depends continuously on u in virtue of Theorem 2.3 , applied to both L Given f ∈ L 2 (O) m , Theorem 2.3 permits the choice v = (L * ) -1 2 f to arrive at the following corollary. This identity also appeared in [10, Lem. 9.1].

Corollary 2.5. One has the identity

(L 1 2 u | f ) 2 = Lu, (L * ) -1 2 f (u ∈ W 1,2 D (O), f ∈ L 2 (O) m ). (4) 

Off-diagonal estimates

We investigate decay properties in L p of operator families related to L. Definition 3.1 also clarifies the notion that the family {e -tL } t>0 is L p -bounded, which was used in the definition of p -(L) in the introduction. The results obtained in this section will be used frequently in the course of this article.

Definition 3.1. Let Ξ ⊆ R d be measurable, m 1 , m 2 natural numbers and let U ⊆ C \ {0} and T := {T (z)} z∈U a family of bounded operators L 2 (Ξ) m 1 → L 2 (Ξ) m 2 . Given 1 ≤ p ≤ q ≤ ∞, say that T is L p → L q bounded if there exists a constant C > 0 such that for all u ∈ L p (Ξ) m 1 ∩ L 2 (Ξ) m 1 and z ∈ U one has T (z)u L q (Ξ) m 2 ≤ C|z| -d 2 1 p -1 q u L p (Ξ) m 1 .
If in addition there is c ∈ (0, ∞) such that, whenever E, F ⊆ Ξ and supp(u) ⊆ E, the more restrictive estimate

T (z)u L q (F ) m 2 ≤ C|z| -d 2 1 p -1 q e -c d(E,F ) 2 |z| u L p (E) m 1
holds, then say that T satisfies L p → L q off-diagonal estimates. Finally, if p = q in the above situations, we simply talk about L p -boundedness and L p off-diagonal estimates.

If T = {e -tL } t>0 and T is L p → L q bounded for some values 1 ≤ p < q ≤ ∞, then we say that the semigroup is hypercontractive.

The following result will be a vital tool to establish L 

f (T ) H→H ≤ 2 + 2 √ 3 f H ∞ (S ψ ) .
Using Davie's trick, we show L 2 off-diagonal estimates. The argument is well-known, but we want to use the opportunity to present the crucial parts of the proof in the situation where L is a divergence form operator with lower order terms and the underlying set is unbounded. In particular, our proof eliminates the dependence of the implicit constants on diam(O) that appeared in [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF].

Proposition 3.3. For ψ ∈ [0, π /2-ω), the operator families {e -zL } z∈S ψ , {z∇e -z 2 L } z∈S ψ , and {zLe -zL } z∈S ψ satisfy L 2 off-diagonal estimates, and the implied constants depend on L only via its coefficient bounds.

Proof. We only showcase the proof for the family {e -zL } z∈S ψ , the other two families can then be treated as in [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF]. Also, by a rotation argument, it suffices to consider real times z = t > 0 with implicit constants depending only on λ and Λ, see again [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF].

Let t > 0 and let ϕ : R d → R be a bounded Lipschitz function with ∇ϕ ∞ ≤ 1 and let ρ > 0, both to be specified later on. Consider the perturbed form

b ρ,ϕ : W 1,2 D (O) × W 1,2 D (O) → C, (u, v) → a(e -ρϕ u, e ρϕ v).
Observe that e ±ρϕ are again bounded Lipschitz functions, hence the associated componentwise multiplication operators preserve W 1,2 D (O) according to Remark 2.1, which makes the definition meaningful.

Expand a(e -ρϕ u, e ρϕ v) using the product and chain rules to obtain b ρ,ϕ (u, v) = a(u, v) + c ρ,ϕ (u, v), where c ρ,ϕ consists of the appearing error terms. Using the coefficient bounds in ( 1) and ( 2) together with Young's inequality with ε reveals that there exists a constant c > 0 that depends only on d, λ, and Λ such that

|c ρ,ϕ (u, u)| ≤ λ 2 u 2 W 1,2 (O) + cρ 2 u 2 2 . ( 5 
)
Observe that we also used Young's inequality with ε on the terms of order 0 in c ρ,ϕ that contain the factor ρ. This scaling allows us to get rid of the dependence on diam(O) that appeared in [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF]. As a consequence of (5), we find, keeping

λ/2 ≤ Λ in mind, that Re b ρ,ϕ (u, u) ≥ λ 2 u 2 W 1,2 (O) -cρ 2 u 2 2 , ( 6 
)
|b ρ,ϕ (u, u)| ≤ 2Λ u 2 W 1,2 (O) + cρ 2 u 2 2 . In particular, b ρ,ϕ (u, u) + 2cρ 2 (u | u) 2 ∈ S θ (u ∈ W 1,2 D (O))
, where θ := arctan(4Λ/λ + 3). Write L ρ,ϕ for the operator in L 2 (O) m associated with b ρ,ϕ . Then also Θ(L ρ,ϕ + 2cρ 2 ) ⊆ S θ . This and ( 6) together with the Lax-Milgram lemma show that L ρ,ϕ + 2cρ 2 is m-ω-accretive and hence has a bounded H ∞ (S θ+ε )-calculus with universal implied constant for all ε ∈ (0, π -θ) according to Proposition 3.2. In particular,

e -tLρ,ϕ u 2 e 2cρ 2 t (u ∈ L 2 (O) m ). (7) Next, let E, F ⊆ O and u ∈ L 2 (O) m with supp(u) ⊆ E. Put ρ := d /4ct, where d := d(E, F ), and define ϕ n := d E (x) ∧ n for n ≥ 1.
This truncation is necessary to ensure that ϕ n is bounded, since O might be unbounded. Abbreviate L n := L ρ,ϕn . By definition of b ρ,ϕn we derive the similarity formula L n = e ρϕn Le -ρϕn , which extends to the functional calculi of L and L n according to [6, Prop. A.5. (ii)]. Consequently, we calculate using similarity, the definition of ϕ n , and ( 7) that e -tL u L 2 (F ) m = e -ρϕn e -tLn e ρϕn u L 2 (F ) m ≤ e -ρ(d(E,F )∧n) e -tLn e ρϕn u 2 e -ρ(d∧n) e 2cρ 2 t e ρϕn u 2 = e -ρ(d∧n) e 2cρ 2 t u L 2 (E) m .

Take limit n → ∞ and plug in the definition of ρ to give

e -tL u L 2 (F ) m e -d(E,F ) 2 8ct u L 2 (E) m .
We continue with estimates in L p . The following result allows to translate L p -boundedness into L q → L 2 off-diagonal estimates up to a slight loss in the integrability parameter. Its proof can be obtained by concatenating the relevant parts in [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF]Prop. 4.4]. Note that geometry in that result is only needed for two reasons: 1) To ensure L 2 off-diagonal estimates. 2) To have an extension operator at ones disposal. These are ensured by Proposition 3.3 and Proposition 2.2 in our case.

Proposition 3.4 (Off-diagonal estimates from boundedness). Let q ∈ (p -(L), 2), p ∈ (q, 2), and let ψ ∈ [0, π /2 -ω). Then {e -zL } z∈S ψ satisfies L p → L 2 off-diagonal estimates,
and the implicit constants depend on p, q, q , ψ, and coefficient bounds.

To the contrary, the following result yields L p -boundedness from hypercontractivity. The argument is similar to that in [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF]Prop. 4.4] and we only present the necessary changes. Proposition 3.5 (Boundedness from hypercontractivity). Let 1 ≤ q < p < r ≤ ∞ be such that {e -tL } t>0 is L q → L r bounded. Then {e -tL } t>0 is L p -bounded, and the implicit constant depends on p, q, r, coefficient bounds, and the implicit constant in the assumption.

Proof. Let θ ∈ (0, 1) be such that 1 p = 1-θ 2 + θ r and define [q, 2] θ ∈ (q, 2) by 1

[q,2] θ := 1-θ q + θ 2 . Interpolate the L q → L r bounds from the assumption with the L 2 off-diagonal bounds from Proposition 3.3 to see that {e -tL } t>0 satisfies L [q,2] θ → L p off-diagonal estimates, where the implicit constants depend on p, r, and implied constants in the hypothesis. Then the claim follows from [10, Lem. 4.5] with the same choices of s and g as in the proof [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF]Prop. 4.4 (v)].

As an application [10, Thm. 1.6], one can derive upper bounds for p -(L) and lower bounds for p + (L). Geometry is only used to have an extension operator in hand.

Corollary 3.6. One has p

-(L) = 1 and p + (L) = ∞ if d = 2 and p -(L) ≤ 2 * and p + (L) ≥ 2 * if d ≥ 3.

Boundedness of the H ∞ -calculus and Riesz transforms

In this section, we recall results from [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF] on L p -boundedness of the H ∞ -calculus and Riesz transform for L. They are consequences of Proposition 3.4 and an extrapolation result due to Blunck and Kunstmann [START_REF] Blunck | Calderón-Zygmund theory for non-integral operators and the H ∞ functional calculus[END_REF]. The use of geometry is completely hidden in Proposition 3.4.

The following result is taken from [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF]Thm. 1.3]. Note that in the last line of [10, Thm. 1.3], the argument using the inclusion L 2 (Ω) ⊆ L p (Ω) has to be substituted by a standard argument using Fatou's lemma.

Proposition 4.1 (H ∞ -calculus). Let p -(L) < q < p + (L), p ∈ (q, 2) ∪ (2, q), and ϕ ∈ (ω, π). Then for every f ∈ H ∞ (S ϕ ) one has f (L)u p f ∞ u p (u ∈ L p (O) m ∩ L 2 (O) m ),
where the implicit constant depends on p, q, q , ϕ, and coefficient bounds.

In the same spirit, we obtain L p -boundedness of the Riesz transform, which upgrades to a p-lower bound for L 

4.2 (Riesz transform). Let p -(L) < q < p < 2. Then the Riesz transform ∇L -1 2 is L p -bounded.
Moreover, this bound can be upgraded to the lower bound

u W 1,p (O) L 1 2 u p (u ∈ W 1,p D (O) ∩ W 1,2 D (O)),
where implicit constants depend on p, q, q , and coefficient bounds.

Calderón-Zygmund decomposition & Hardy's inequality

The primary goal of this section is to show a Calderón-Zygmund decomposition for functions in the Sobolev space W 1,p D (O). This is the content of Theorem 5.5. To this end, we need to show a Hardy's inequality adapted to mixed boundary conditions first. Both results are new in unbounded sets. Observe that we only use Assumption D' here, even when D is unbounded.

Theorem 5.1 (Hardy's inequality). Assume that the pair (O, D) satisfies Assumption N and that D satisfies Assumption D', and let p ∈ (1, ∞). Then Hardy's inequality holds for

W 1,p D (O), that is, for all f ∈ W 1,p D (O) one has O f d D p dx f p W 1,p (O) .
Using the extension operator from Proposition 2.2, Theorem 5.1 is a consequence of the following whole-space version.

Lemma 5.2. Assume Assumption D', and let p ∈ (1, ∞). Then Hardy's inequality holds for

W 1,p D (R d ), that is, for all f ∈ W 1,p D (R d ) holds R d f d D p dx f p W 1,p (R d ) .
Proof of Theorem 5.1. Let E be the extension operator from Proposition 2.2. Then Lemma 5.2 and boundedness of E yield

O f d D p dx ≤ R d Ef d D p dx Ef p W 1,p (R d ) f p W 1,p (O) .
The proof of Lemma 5.2 relies on the following Hardy's inequality with pure Dirichlet boundary conditions, which is essentially contained in [START_REF] Lehrbäck | Pointwise Hardy inequalities and uniformly fat sets[END_REF], see also [START_REF] Haj | Pointwise Hardy Inequalities[END_REF]. Dependence of the implicit constants becomes apparent from an inspection of the proof. 

O f d ∂O p dx O |∇f | p dx (f ∈ C ∞ ∂O (O)).
The implicit constant depends on geometry only via the implied constants from Ahlfors-David regularity of ∂O. The inequality extends to W 

d-1 (B ∩ ∂O k ) ≤ H d-1 (B ∩ ∂(2Q k )) + H d-1 (B(x,
O k ) k that R d \D f d D p dx ≤ k O k χ k f d ∂O k p dx k χ k f p W 1,p (2Q k ) f p W 1,p (R d ) .
Note that at the first " " we crucially use the control of implicit constants in the Dirichlet Hardy inequality.

We continue with the Calderón-Zygmund decomposition for W 1,p D (O). To stay slightly more general, we introduce C m -valued Sobolev spaces subject to different mixed boundary conditions in the individual components.

Definition 5.4. Let p ∈ [1, ∞), Ξ ⊆ R d open and E k ⊆ Ξ for k = 1, . . . , m. With the array E := (E k ) m k=1 define the space W 1,p E (Ξ) := m k=1 W 1,p E k (Ξ),
equipped with the subspace topology inherited from W 1,p (Ξ). Moreover, introduce the abbreviation • W 1,p (Ξ) for the norm on W 1,p E (Ξ).

We (i) u = g + j b j holds pointwise almost everywhere, (ii) the family (Q j ) j∈J is locally finite, and every x ∈ O is contained in at most 12 d cubes,

(iii) j∈J |Q j | 1 α p u p W 1,p (O) , (iv) g ∈ Lip(O) m with g Lip(O) m α, (v) b j ∈ W 1,p D (O) with b j W 1,p (O) α|Q j | 1 p for every j ∈ J, (vi) if p < d, then b j ∈ L q (O) m for q ∈ [p, p * ] with b j q α|Q j | 1/p+(1-θ)/d , where θ ∈ [0, 1] is such that 1 /q = (1-θ) /p + θ /p * , (vii) g W 1,p (O) + j∈J b j W 1,p (O) u W 1,p (O) for all J ⊆ J, (viii) b j is supported in Q j ∩ O for every j, (ix) if 1 < q < ∞, u ∈ W 1,q D (O)
, and J ⊆ J, then j∈J b j converges unconditionally in W 1,q D (O).

Theorem 5.5 is an easy consequence of the following whole-space version. In particular, this shows that the only geometric ingredients for its proof is the availability of a Sobolev extension operator and Assumption D'.

Lemma 5.6 (Sobolev Calderón-Zygmund -whole space). Let D k ⊆ R d be closed and (d -1)-regular for k = 1, . . . , m, and let 1 < p < ∞. For every u ∈ W 1,p D (R d ) and every α > 0 there exist an (at most) countable index set J, a family of cubes (Q j ) j∈J and functions g, b j : R d → C m for j ∈ J such that the following holds.

(i) u = g + j b j holds pointwise almost everywhere, (ii) the family (Q j ) j is locally finite, and every x ∈ R d is contained in at most 12 d cubes,

(iii) j |Q j | 1 α p u p W 1,p (R d ) , (iv) g ∈ W 1,∞ (R d ) with g W 1,∞ (R d ) α, (v) b j ∈ W 1,p D (R d ) with b j W 1,p (R d ) α|Q j | 1 p for every j, (vi) g W 1,p (R d ) + j∈J b j W 1,p (R d ) u W 1,p (R d ) for all J ⊆ J, (vii) b j is compactly supported in Q j for every j, (viii) if 1 < q < ∞, u ∈ W 1,q D (R d ) and J ⊆ J, then j∈J b j converges unconditionally in W 1,q D (R d ).
Before coming to the proof, we shortly present how Theorem 5.5 follows from this lemma. Most properties listed in Theorem 5.5 are clear by definition, we only comment on the exceptions. For (iii) and (vii), use boundedness of the extension operator. In (iv), note that W 1,∞ (R d ) = Lip(R d ) by Rademacher's theorem.

Finally, to see (vi), we interpolate two bounds. First, we derive using the Poincaré inequality on cubes (take the compact support assumption (vii) into account) followed by (v) the estimate

B j L p (R d ) m |Q j | 1/d B j W 1,p (R d ) α|Q j | 1/p+1/d .
Second, the Sobolev inequality in combination with (v) gives the bound b j p * α|Q j | 1/p . Therefore, if 1 /q = (1-θ) /p + θ /p * = 1 /p -θ /d, then b j q α|Q j | 1/p+(1-θ)/d by the interpolation inequality.

Proof of Lemma 5.6. For brevity, omit R d in the notation for function spaces. If 1 ≤ k ≤ m, then we write u (k) for the kth component of u. Implicit constants expressed by the symbol " " are independent of the scale α. The proof divides into 6 steps.

Step 1: Adapted maximal function and Whitney decomposition. To start with, consider the set

U := x ∈ R d : M |u| p + |∇u| p + m k=1 u (k) d D k p (x) > α p ,
where M denotes the Hardy-Littlewood maximal operator. Since the maximal function is upper semi-continuous, U is open. If U is empty, put g = u and J = ∅. Then (i) is fulfilled by construction and all other assertions except (iv) are void. To show (iv), use the definition of U and the fact that a function is dominated by its maximal function almost everywhere to conclude

|g(x)| p + |∇g(x)| p ≤ M |u| p + |∇u| p + m k=1 u (k) d D k p (x) ≤ α p
for almost every x ∈ R d . This directly yields g ∈ W 1,∞ with the desired bound.

Otherwise, consider the closed set F := R d \ U . We claim that F is a proper subset of the Euclidean space, since then we can decompose U using a Whitney decomposition.

For the construction of the Whitney decomposition and further properties, the reader can consult [8, Lem. 5.1]. Indeed, it follows from the weak-type estimate for the maximal operator and Hardy's inequality (Lemma 5.2) that

|U | 1 α p u p W 1,p + m k=1 R d u (k) d D k p 1 α p u p W 1,p < ∞. (8) 
Starting from a Whitney decomposition of U and enlarging all cubes by the factor 9 /8, we arrive at a family of cubes (Q j ) j with the properties (a) Q j ⊆ U for every j, (b) (Q j ) j is locally finite, (c) 8

√ dQ j ∩ F = ∅, (d) j 1 Q j ≤ 12 d , (e) Q j ∩ Q k = ∅ implies diam(Q j ) diam(Q k ) ≤ 4.
Properties (b) and (d) yield (ii). For brevity, put d j := diam(Q j ). Moreover, using that we have enlarged the Whitney cubes above, we can construct a partition of unity (ϕ j ) j on U such that supp(ϕ j ) ⊆ Q j and

ϕ j ∞ + d j ∇ϕ j ∞ 1. (9)
We conclude this step with the proof of (iii), which follows readily from (a), (d) and ( 8) with the calculation

j |Q j | ≤ U j 1 Q j ≤ 12 d |U | 1 α p u p W 1,p .
Step 2: Estimates for u on cubes. In this short but crucial step we derive estimates for u using the maximal function. This will turn useful in the estimates for good and bad functions later on. For convenience, put Q * j := 8

√ dQ j .
Fix j and pick z ∈ Q * j ∩ F , which is possible owing to (c). Then it follows from the definition of F that

Q j |u| p + |∇u| p + m k=1 u (k) d D k p |Q j | |Q * j | Q * j |u| p + |∇u| p + m k=1 u (k) d D k p ≤ |Q j |M |u| p + |∇u| p + m k=1 u (k) d D k p (z) ≤ α p |Q j |. (10) 
Step 3: Definition of good and bad functions. Fix j and 1

≤ k ≤ m. Say that Q j is k-usual if d(Q j , D k ) ≥ d j and that Q j is k-special if d(Q j , D k ) < d j .
The nomenclature is motivated as follows. In the k-usual situation we can define and estimate the bad functions using a Poincaré argument and, hence, do not rely on the usage of boundary conditions. In the k-special case we will benefit from the Hardy term in the maximal function. Since different components of u are subject to different Dirichlet conditions, we get a coupling between j and k in the classification of the cubes.

This being said, define the bad function b j on Q j componentwise via b (k)

j := ϕ j (u (k) -u (k) Q j ) if Q j is k-usual, b (k) j := ϕ j u (k) otherwise.
Here, u (k)

Q j denotes the mean value of u (k) over Q j . Put g := uj b j , then the validity of (i) is by definition. Note that there is no issue of convergence according to (d). Furthermore, property (vii) holds by construction.

Step 4: Taking care of the bad functions. Fix again some j and 1 ≤ k ≤ m. First, consider the case that Q j is k-usual. Using the product rule and ( 9), start with

b (k) j p W 1,p = R d |ϕ j (u (k) -u (k) Q j )| p + |∇ϕ j (u (k) -u (k) Q j )| p + |ϕ j ∇u (k) | p Q j |u (k) | p + |u (k) Q j | p + 1 d p j |u (k) -u (k) Q j | p + |∇u (k) | p .
Using Jensen's inequality for the second term and Poincare's inequality for the third term, we obtain

Q j |u (k) | p + |∇u (k) | p .
This completes this estimate owing to (10) from Step 2.

To the contrary, assume that

Q j is k-special. Note that if y ∈ Q j , then d D k (y) ≤ d(Q j , D k ) + d j . So, by definition of k-special cubes, it follows 2d j > d D k (y) for all y ∈ Q j , which allows us to estimate b (k) j p W 1,p = R d |ϕ j u (k) | p + |∇ϕu (k) | p + |ϕ∇u (k) | p Q j |u (k) | p + 1 d p j |u (k) | p + |∇u (k) | p Q j |u (k) | p + u (k) d D k p + |∇u (k) | p .
Then we conclude using Step 2 as before.

To complete the proof of (v), we have to ensure the vanishing trace condition on D k . In any case, ϕ j u (k) ∈ W 1,p D k by assumption on u (k) and Remark 2.1. In the k-usual case, note that ϕ j u (k) Q j is a compactly supported Lipschitz function which vanishes around D k by the support property of ϕ j and the fact that Q j is a k-usual cube. Hence, by mollification, this term also lies in the correct subspace.

Step 5: Convergence of the series of bad functions. Let 1 < q < ∞ be such that u ∈ W 1,q D and let J ⊆ J be an arbitrary subcollection. Observe that ∇ j∈J b j = j∈J ∇b j due to (b). Hence, using (d) in combination with the equivalence of p -norms on finite sets and the calculations from Step 4, we get componentwise

j∈J b (k) j q W 1,q = R d | j∈J b j | q + | j∈J ∇b j | q j∈J Q j |b j | q + |∇b j | q R d j∈J 1 Q j |u (k) | q + u (k) d D k q + |∇u (k) | q .
The function j∈J 1 Q j is globally bounded owing to (d) and the Hardy term is under control owing to Hardy's inequality from Theorem 5.1. As a by-product, with J = J and q = p, this gives the estimate for b W 1,p in (vi). Of course, the estimate for g W 1,p is then a trivial consequence of g = u -b, which completes (vi). Next, assume that J inherits its ordering from the natural numbers. Then, if we replace J by J m := J ∩ {m, m + 1, . . . }, the sequence of functions j∈J m 1 Q j converges pointwise to zero, so that we can appeal to Lebesgue's theorem to conclude that the partial sums of j∈J b j form a Cauchy sequence. Hence, the series converges in W 1,q D . That the convergence is unconditional follows by a similar argument.

Step 6: Controlling the good function. Fix again some 1 ≤ k ≤ m. On F we have that g and u coincide by construction, so that the full Sobolev estimate on F follows the same lines as in Step 1 for the case U = ∅. So from now on, fix x ∈ U . First, we show |g (k) (x)| p α p , which completes the non-gradient estimates in (iv). Write J u,x and J s,x for the index sets of k-usual and k-special cubes which contain x. Both sets contain at most 12 d elements according to (d). Using that (ϕ j ) j is a partition of unity on U , we calculate

g (k) (x) = u (k) (x) - j b (k) j (x) = u (k) (x) - j∈Ju,x ϕ j (x)(u (k) (x) -u (k) Q j ) - j∈Js,x ϕ j (x)u (k) (x) = j∈Ju,x ϕ j (x)u (k) Q j .
Using the comparability of p norms on finite sets, Jensen's inequality, Step 2 and the bound on #J u,x , we derive

|g (k) (x)| p j∈Ju,x |u (k) Q j | p ≤ j∈Ju,x - Q j |u (k) | p j∈Ju,x - Q j |u (k) | p α p . ( 11 
)
Note that j ∇ϕ j (x) = 0 holds on U since (ϕ j ) j is a partition of unity and the sum is locally finite. Then a similar representation for the gradient follows using the product rule and reads

∇g (k) (x) = j∈Ju,x u (k) Q j ∇ϕ j (x).
Instead of estimating this term directly, put

h(x) := j∈Jx u (k) Q j ∇ϕ j (x) and h s (x) := j∈Js,x u (k) Q j ∇ϕ j (x).
Here, J x is the collection of cubes that contain x and coincides with the union of J u,x and J s,x . Consequently, ∇g (k) (x) = h(x) -h s (x), and the bound for g will follow from |h(x)| p + |h s (x)| p α p . We show this latter claim in the following.

With the same arguments as for [START_REF] Egert | The Kato Square Root Problem for mixed boundary conditions[END_REF], but taking the observation

d j d D k on k-special cubes from Step 4 into account, estimate |h s (x)| p j∈Js,x 1 d j - Q j |u (k) | p j∈Js,x - Q j u (k) d D k p α p .
To estimate |h(x)| p , fix some j 0 such that x ∈ Q j 0 , which exists by construction of (Q j ) j . If Q j is any cube that contains x, then the sizes of Q j and Q j 0 are comparable by (e).

In particular, there is a factor c > 0 that does not depend on j such that Q j ⊆ cQ j 0 . Furthermore, assume that c ≥ 8 √ d, so that Q * j 0 := cQ j 0 intersects F according to (c). Now, extend the defining sum of h(x) using the fact that j ∇ϕ(x) = 0 to obtain

h(x) = j∈Jx u (k) Q j ∇ϕ j (x) = j∈Jx u (k) Q j -u (k) Q * j 0 ∇ϕ j (x).
As before, estimate

|h(x)| p j∈Jx 1 d p j |u (k) Q j -u (k) Q * j 0 | p . ( 12 
)
We proceed by estimating a fixed term in that sum. To this end, pick some j ∈ J x . Using that u

(k) Q * j 0 is just a constant, |Q * j 0 | ≈ |Q j |, Q j ⊆ Q * j 0
, and Jensen's inequality, calculate

|u (k) Q j -u (k) Q * j 0 | p = - Q j u k (y) -u (k) Q * j 0 dy p - Q * j 0 |u k (y) -u (k) Q * j 0 | p dy.
Owing to the classical Poincaré inequality on Q * j 0 and the comparability diam

(Q * j 0 ) ≈ d j , we further estimate diam(Q * j 0 ) p - Q * j 0 |∇u (k) | p ≈ d p j - Q * j 0 |∇u (k) | p .
Plugging this back into [START_REF] Egert | The Kato Square Root Problem follows from an extrapolation property of the Laplacian[END_REF], the factors d p j cancel out. The mean value integral can be estimated against α p using the maximal operator trick from Step 2. Finally, the bound on #J x lets us conclude the estimates for (iv).

6. Upper bound for the square root when p < 2

In the case p < 2, we prove p-boundedness of the square root. The heart of the matter is the weak-type estimate in Lemma 6.1. A crucial observation is that we gain up to one Sobolev exponent in comparison to p -(L). We will benefit from this in Section 9 later on. Lemma 6.1. Let p -(L) * ∨ 1 < q < p < 2, then one has for all α > 0 the weak-type bound

x ∈ O : |(L 1 2 u)(x)| > α 1 α p u p W 1,p (O) (u ∈ W 1,p D (O) ∩ W 1,2 D (O)), ( 13 
)
where implicit constants depend on p, ω, coefficient bounds, and, if p * < 2, on q and q * . The proof of Lemma 6.1 is similar to that of [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF]Prop. 8.1] and we will only explain the necessary changes, so the reader is strongly advised to keep a copy of that article handy. A key difference is that the argument in [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF] assumes p * < 2, which is not feasible in d = 2. Property (vi) in our Calderón-Zygmund decomposition lets us circumvent this issue.

Proof. To start with, we claim that there exists r ∈ [p, p * ] satisfying

(a) {e -tL } t>0 satisfies L r → L 2 off-diagonal estimates, (b) the H ∞ (S ϕ )-calculus of L is L r -bounded for all ϕ ∈ (ω, π), (c) r ≤ 2.
Note that, of course, (c) is necessary for (a) to hold, but we will also need to use (c) in conjunction with (b). Indeed, if p * ≥ 2, chose r = 2, which is admissible by Proposition 3.3 and Proposition 3.2. Otherwise, when p * < 2, let

p -(L) * ∨ 1 < q < s * < r * < p < r.
Then, on the one hand, p -(L) < s < r. On the other hand, by assumption of this case, r < p * < 2. Hence, {e -tL } t>0 satisfies L r → L 2 off-diagonal estimates by Proposition 3.4, and the H ∞ (S ϕ )-calculus of L is bounded on L r for any ϕ ∈ (ω, π) according to Proposition 4.1. Since s ≤ q * by interpolation with the contraction semigroup on L 2 , implied constants depend on p, q, q * , ϕ, and coefficient bounds. Eventually, the dependence on ϕ will be replaced by a dependence on ω. Note also that, since p < r by construction, we have r ∈ [p, p * ]. Now let α > 0, u ∈ W 1,p D (O), and let u = g + j b j be the Calderón-Zygmund decomposition from Theorem 5.5. Refer with (i)-(viii) to the respective properties of the decomposition. As in [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF], the proof divides into 4 steps: Estimate of the good part, decomposition of the bad part into a local and a global integral, estimate of the local integral, and bound for the global integral.

Step 1: Handling the good part. Decompose with the Calderón-Zygmund decomposition

|L 1 2 u| > α ≤ |L 1 2 g| > α/2 + |L 1 2 j∈J b j | > α/2 .
We refer to the first term as the good part and to the second term as the bad part. With the exact same arguments as in [10, Step 1], we conclude

|L 1 2 g| > α/2 1 α p u p W 1,p (O) .
Step 2: Decomposition of the bad part. First of all, let us mention that it suffices to assume that J is finite, provided we can show a bound that does not depend on the size of J. This allows us to rearrange terms later on without worrying about convergence issues. Indeed, put

J n := J ∩ {1, . . . , n} for n ≥ 1, then j∈Jn b j → b = j∈J b j in W 1,2 D (O)
as n → ∞ by (viii), so we get from Tchebychev's inequality 

-n Le -t 2 L b j dt > √ πα 8 + j ∞ r j ∨2 -n Le -t 2 L b j dt > √ πα 8
for all n ≥ 1, where r j = 2 with the unique integer such that 2 ≤ j ≤ 2 +1 , and where j is the sidelength of Q j .

Step 3: Handling the local integral. Put γ := d( 1 /2 -1 /r) -1. We only show the bound

r j ∨2 -n 2 -n Le -tL 2 b j dt L 2 (C k (Q j )∩O) m α d/2 j 2 -kγ e -c4 k (14)
for all k ≥ 2, j ∈ J, and n ≥ 1. Then the bound for the local integral can be concluded as in [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF]Step 3].

So, let us show [START_REF] Haj | Pointwise Hardy Inequalities[END_REF]. Clearly, we can assume r j ≥ 2 -n for the rest of this proof. Note that the off-diagonal bounds for {e -tL } t>0 can be upgraded to off-diagonal bounds for {tLe -tL } t>0 by composition (see for example [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF]Prop. 4.4 (iv)]), and this imports no further dependence for the implied constants. With this in hand, and using the support property (vii), we calculate for the integrand of ( 14) that

Le -t 2 L b j L 2 (C k (Q j )∩O) m t -d 1 r -1 2 -2 e -c4 k-1 r 2 j /t 2 b j r .
Plugging this back into [START_REF] Haj | Pointwise Hardy Inequalities[END_REF] and using (vi) leads to

r j 2 -n Le -t 2 L b j dt L 2 (C k (Q j )∩O) m ≤ r j 2 -n Le -t 2 L b j L 2 (C k (Q j )∩O) m dt α d p +1-θ j r j 2 -n t -d 1 r -1 2 -2 e -c4 k-1 r 2 j /t 2 dt.
Using the substitution s = 4 k-1 r 2 j /t 2 , we obtain

α d p +1-θ j r -γ j 2 -(k-1)γ ∞ 4 k-1
s γ+ 1 2 e -cs ds.

Keeping in mind j ≈ r j and observing θ = d 1 /p -1 /r , the prefactor reduces to d 2 j . Then we split the exponential term and use s ≥ 4 k-1 to find

α d 2 j 2 -(k-1)γ e -c4 k-2 ∞ 0 s γ+ 1 2 e -cs /2 ds.
The integral in s is finite since γ > -1, which completes the proof of [START_REF] Haj | Pointwise Hardy Inequalities[END_REF].

Step 4: Estimate for the global integral. To this end, put J k := {j ∈ J : r j ∨ 2 -n = 2 k } for any integer k. Then, as in [10, Step 4], there exists a function f which belongs to H ∞ (S ϕ ) for any ϕ ∈ (ω, π /2), with which we can write

j∈J ∞ r j Le -t 2 L b j dt = k j∈J k 1 2 k f (4 k L)b j .
Plug this back into the definition of the global integral and use Tchebychev's inequality, followed by linearity (here, we use that J is supposed to be finite) to derive 

j ∞ r j Le -t 2 L b j dt > √ πα 8 1 α r k j∈J k 2 -k f (4 k L)b j r r = 1 α r k f (4 k L) j∈J k 2 -k b j r r . Now,
f (4 k L) j∈J k 2 -k b j r r k j∈J k 2 -k b j 2 1 2 r r .
Write out the L r -norm and employ (c) to give

= O k j∈J k 2 -k b j 2 r 2 dx ≤ O k j∈J k |2 -k b j | r dx.
Continuing as in [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF], we arrive at

j∈J -r j O |b j | r dx.
Plug this back in the calculation and use (vi) followed by (iii) to conclude

j∈J ∞ r j Le -t 2 L b j dt > √ πα 8 j∈J |Q j | -r d + r p +(1-θ) r d = j∈J |Q j | α -p u p W 1,p (O) .
Combining the bounds for the good part, the local integral and the global integral, this gives [START_REF] Haase | The Functional Calculus for Sectorial Operators[END_REF].

Using interpolation, we conclude upper bounds for L

1 2 . Corollary 6.2. Let p -(L) * ∨ 1 < q < p < 2, then L 1 2 u p u W 1,p (O) (u ∈ W 1,p D (O) ∩ W 1,2 D (O)),
where the implicit constants depend on p, q, ω, coefficient bounds, and, if p * < 2, on q * . Proof. Put r := (p+q) /2. Write L r,∞ (O) for the usual weak L r -space on O. Recall that L r,∞ (O) is a complete quasi-normed space. Owing to Lemma 6.1, L

1 2 extrapolates from W 1,r D (O) ∩ W 1,2 D (O) to a bounded operator L 1 2 : W 1,r D (O) → L r,∞ (O) m .
Here, the implied constant depends on p, q, ω, coefficient bounds, and, if p * < 2, on q * . Moreover, by Theorem 2.3, we have

L 1 2 : W 1,2 D (O) → L 2 (O) m .
Chose θ ∈ (0, 1) such that 1 /p = (1-θ) /r + θ /2. Real interpolation yields an extension

L 1 2 : W 1,r D (O), W 1,2 D (O) θ,2 → L r,∞ (O) m , L 2 (O) m θ,2 .
It remains to determine the interpolation spaces. For this, it suffices to argue componentwise [17, Sec. 

Extrapolation of the square root property

In this part, we prove Theorem 1.1 (i). Most of the work in the case p < 2 has already been done in Sections 4 and 6, so we mainly focus on the case p > 2.

Consider Figure 1. Lemmas 7.1 and 7.2 make precise the following heuristic: If two out of three arrows in the diagram correspond to p-isomorphisms, then all arrows are p-isomorphisms.

W 1,2 D (O) L 2 (O) m W -1,2 D (O) L 1 2 L L 1 2 Figure 1. Decomposition of L into two square roots
If L is a p-isomorphism, then Lemma 7.3 yields that the lower L 1 2 -arrow comes for free. This leads to the proof of Theorem 1.1 (i) in the case p > 2. In the same spirit, but using Lemma 8.1, we are going to show necessity in the next section. is a p -isomorphism, (L * ) 1 2 f ranges over an upper and lower bounded subset of W 1,p D (O) that is dense up to scaling. Hence, using (4) and taking the supremum over f yields

L 1 2 u p = sup f | Lu, (L * ) 1 2 f | ≈ Lu W -1,p D (O) . ( 15 
)
The implicit constants here are the upper and lower p -bounds of (L * ) The proof of the following lemma is literally the same, we only have to compare the right-hand side of (15) with W 1,p D (O) instead. We will use it in the next section to show necessity. Lemma 7.2. Let p ∈ (1, ∞) be such that L is a p-isomorphism and (L * ) 1 2 is a pisomorphism. Then L 1 2 is a p-isomorphism, and implicit constants depend only on those in the assumptions.

To verify in the proof of Theorem 1.1 (i) that Lemma 7.2 is applicable, we will rely on the following lemma. Recall the notation 2 [j] for iterated Sobolev exponents. Proof. According to Corollary 3.6 one always has p + (L) ≥ 2 * . Hence, let 2 * ≤ p < q+ (L) * . We show that {e -tL } t>0 is L p -bounded, for then p + (L) ≥ q+ (L) * . To this end, let r ∈ (p, q+ (L) * ). Since 2 ≤ p * < r * < q+ (L), we find that L is an r * -isomorphism. We want to show p + (L) ≥ r, since then {e -tL } t>0 is L p -bounded by choice of r. We follow an iterative scheme.

To this end, we make for k ≥ 1 the following Claim: Assume p + (L) ≥ 2 [k] , 2 [k] < q ≤ 2 [k+1] , and L is a q * -isomorphism. Then p + (L) ≥ q.

Proof of the Claim. Note that 2 * < q * * < q * ≤ 2 [k] ≤ p + (L). It follows from Corollary 3.6 and Proposition 4.1 that the H ∞ (S ϕ )-calculus of L is bounded on L q * * for any ϕ ∈ (ω, π /2). Using the Sobolev inequality twice, the q * -isomorphism property of L, and the bounded H ∞ (S ϕ )-calculus, calculate for u ∈ L q * * (O) m ∩ L 2 (O) m that e -tL u q L -1 Le -tL u

W 1,q * D (O)
Le -tL u

W -1,q * D (O)
t -1 tLe -tL u q * * t -1 u q * * .

That is to say, {e -tL } t>0 is L q * * → L q bounded. Now Proposition 3.5 yields, for s ∈ (2, q), that {e -tL } t>0 is L s -bounded, consequently p + (L) ≥ q. Now, consider the chain 2 → 2 * → • • • → 2 [ ] → r, where is the largest integer for which 2 [ ] < r. First, we show p + (L) ≥ 2 [ ] by induction over j = 1, . . . , -1. The initial case j = 1 is fine by Corollary 3.6. Then, use the claim with q = 2 [j+1] to go from j to j + 1, which is allowed since 2 < q * < r * , and hence L is a q * -isomorphism by interpolation. Second, apply the claim with k = and q = r to give p + (L) ≥ r.

Proof of Theorem 1.1 (i). Let us start with the case p -(L) < r < p < 2. We claim the two-sided estimate

L 1 2 u p ≈ u W 1,p (O) (u ∈ W 1,p D (O) ∩ W 1,2 D (O)). ( 16 
)
Indeed, the upper bound follows from Corollary 6.2 and the lower bound is provided by Proposition 4.2. Consequently, L . Of course, the lower bound also extends to this extension. This directly yields that L 
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 2 The result is taken from [10, Lem. 6.1 & Cor. 6.2]. As above, geometry is only used to provide off-diagonal estimates.
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  2r) ∩ D) and the estimate follows again from the (d -1)-regularity of the two portions of the boundary. Note that all constants are uniform in k. Now pick cutoff function χ k which are supported in 2Q k and equal 1 on Q k . Up to translation, we can use the same cut-off function for each k. Let f ∈ W 1,p D (R d ) and estimate using Proposition 5.3 and the bounded overlap of (
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 55 come to the Calderón-Zygmund decomposition for Sobolev functions. Such a decomposition was first shown by Auscher on the whole space [1, Appendix A]. This idea was refined in [2, 10] to work on domains, including the idea to use Hardy's inequality to include (partial) Dirichlet boundary conditions. The following version allows for unbounded open sets. Moreover, property (vi) is new and allows to treat the cases d = 2 and d ≥ 3 in Lemma 6.1 in a unified way. The proof is streamlined and eliminates the necessity to work with k-boring cubes that appeared in [10]. Sobolev Calderón-Zygmund -open set). Let O ⊆ R d be open, D k ⊆ ∂O be closed and (d -1)-regular for k = 1, . . . , m, such that O is a locally uniform domain near ∂O \ D k for all k, and let 1 < p < ∞. Then for every u ∈ W 1,p D (O) and every α > 0 there exist an (at most) countable index set J, a family of cubes (Q j ) j∈J , and functions g, b j : O → C m for j ∈ J such that the following holds.
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 55 Using the extension operators for W 1,p D k (O) componentwise, we get an extension U := Eu ∈ W 1,p D (R d ) of u. Apply the whole-space Calderón-Zygmund decomposition (Lemma 5.6) to U to obtain an index set J, cubes (Q j ) j∈J , and functions G, B j : R d → C m satisfying the properties in that lemma. Define g = G| O and b j = B j | O .

j∈Jn b j | > α/ 4 . 2 Furthermore, to control |{|L 1 2

 421 Now, the second term can be controlled by|L 1 j∈Jn b j | > α/4 1 α p u p W 1,2 (O)with an implicit constant independent of n, and, in the light of Theorem 2.3 and by convergence of j∈Jn b j to b in W 1,2 D (O), the first term vanishes as n → ∞. b| > α/2}|, it suffices as in [10, Step 2] to control the local and global integrals j r j ∨2 -n
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 7111 Let p ∈ (1, ∞) be such that L is a p-isomorphism and (L * ) is a pisomorphism. Then L is a p-isomorphism, and implicit constants depend only on those in the assumptions.Proof. Let u ∈ W 1,p D (O)∩W 1,2 D (O) and f ∈ L p (O) m ∩L 2 (O) m with f p = 1. Since (L * ) 1 2

1 2 .

 2 Compare the left-hand side of (15) with uW 1,p D (O) to see that L is p-upper and lower bounded on W 1,p D (O) ∩ W 1,2 D (O).The lemma then follows from a standard approximation argument, compare with the proof of Theorem 1.1 (i) for the details.

Lemma 7 . 3 .

 73 One has p + (L) ≥ q+ (L) * .

1 2

 1 extends to a bounded operator W 1,p D (O) → L p (O) m , which we denote again by L 1 2

1 2

 1 is one-to-one on W 1,p D (O). To see that L

1 2 1 2 1 2 u n → L 1 2 1 2 u n = L 1 2

 111111 is onto, let f ∈ L p (O) m and pick an approximating sequencef n ∈ L p (O) m ∩ L 2 (O) m that converges to f in L p (O) m . Owing to (16), u n := L -1 2 f n is a Cauchy sequence in W1,p D (O). Write u for the limit of u n in W 1,p D (O). Also, by Theorem 2.3, one has u n ∈ W 1,2 D (O). Now, on the one hand, continuity of L on W 1,p D (O) yields that L u in L p (O) m . On the other hand, it follows by definition of u n that L L -1 2 f n = f n → f in L p (O) m .

  The space W 1,p D (O) is invariant under multiplication with Lipschitz functions on O. This follows from a mollification argument, see[START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF] Lem. 4.3] for further details.

1

,p E (Ξ). Remark 2.1.

  Assume that O satisfies Assumption N. Then there exists a linear extension operator E on L 1

	1,p D (O) has the following (inhomogeneous) extension
	property.
	Proposition 2.2.

loc (O) that restricts for any p ∈ (1, ∞) to a bounded operator

  Let (Q k ) k be a grid of open cubes of diameter 1 /4. We consider the sets O k := 2Q k \ D. Each O k has an Ahlfors-David regular boundary where the implicit constants depend only on the implied constants in Assumption D' and dimension.

	1,p ∂O (O) owing to Fatou's Lemma.
	Proof of Lemma 5.2.

To see this, take a ball B centered in ∂O k with radius r at most 1 /2 (which equals the diameter of O k ). The lower bound follows from the (d -1)-regularity of ∂(2Q k ) or the (d -1)-regularity of D depending on the location of the center of B. The upper bound follows similarly if B doesn't intersect either ∂(2Q k ) or D. Otherwise, say B is centered in ∂(2Q k ) and intersects D in x. Then we estimate H

  use the square function estimate[START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF] Lem. 8.2] with ϕ ∈ (ω,

π /2), which is justified by (b), to give k
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By uniqueness of limits, L 1 2 u = f , which shows that L 1 2 is onto, and hence concludes this case.

Otherwise, let 2 < q < q+ (L). This means that L is a q-isomorphism. Then Lemma 7.2 provides [START_REF] Sneȋberg | Spectral properties of linear operators in interpolation families of Banach spaces[END_REF] provided we can ensure that (L * ) 1 2 is a q -isomorphism. To this end, we want to appeal to the first case above, but applied to L * instead of L. By duality, p -(L * ) < q < 2 if, and only if, 2 < q < p + (L). But this is true by Lemma 7.3. Hence, we can indeed apply the case above to complete the proof of [START_REF] Sneȋberg | Spectral properties of linear operators in interpolation families of Banach spaces[END_REF]. The rest of the argument from above applies verbatim.

Necessary conditions

We show Theorem 1.1 (ii). For its proof we will need the following lemma, whose proof is similar to that of Lemma 7.3.

Proof. In the light of Corollary 3.6, it suffices to treat the case d ≥ 3. We employ an iterative argument. To this end, we make for k ≥ 0 the following

Proof of the claim. We use the expansion e -t 2 L = L -1 2 L

1 2 e -t 2 L . Observe that 2 * < q * < 2 [k] ≤ p + (L). Hence, owing to Proposition 4.1 and taking Corollary 3.6 into account, the H ∞ (S ϕ )-calculus of L is bounded on L q * (O) m for any ϕ ∈ (ω, π /2). Using this in the last step, together with the Sobolev embedding and the q * -isomorphism property of L

This means that {e -tL } t>0 is L q * → L q bounded. We conclude q ≤ p + (L) with Proposition 3.5 as in Lemma 7.3.

is by interpolation a (2 [j] ) * -isomorphism for j = 1, . . . , . Hence, the claim yields by induction over j that p + (L) ≥ 2 [ ] . In a second step, the claim applied with k = and q = p gives the assertion.

Proof of Theorem 1.1 (ii). We divide the proof into two cases.

Case 1: p < 2. This part was already shown in [START_REF] Egert | L p -estimates for the square root of elliptic systems with mixed boundary conditions[END_REF]Thm. 1.2 (ii)]. Note that geometry in-there was only used to ensure the continuous embedding W 1,q D (O) ⊆ L q * (O) m , which is a consequence of Proposition 2.2 in our situation.

Case 2: p > 2. Assume that L 1 2 is a p-isomorphism. Clearly, we can assume that p < ∞. From p = (p * ) * and Lemma 8.1 it follows that p + (L) ≥ p * . In particular, 2 < p < p + (L), which translates to p -(L * ) < p < 2 by the duality formula (e -tL ) * = e -tL * . Hence, we obtain from the case p < 2 for L * in Theorem 1.1 (i) that (L * ) 1 2 is a p -isomorphism. Then, we conclude with Lemma 7.1 that L is a p-isomorphism, consequently q+ (L) ≥ p as desired.

Endpoint cases

To conclude this article, we show sharpness at the endpoints, provided they do not coincide with the extreme cases 1 or ∞. This is Theorem 1.1 (iii).

The following result is an application of Sneȋberg's theorem [START_REF] Sneȋberg | Spectral properties of linear operators in interpolation families of Banach spaces[END_REF]. Here, we exploit that (1,∞) , and {W -1,p D (O)} p∈(1,∞) are complex interpolation scales. For the second scale, this is clear. That the first scale is an interpolation scale was discussed in the proof of Theorem 1.1 (i) (note that the arguments in-there work both for the real and complex interpolation method). Finally, use duality to transfer the interpolation properties of the first scale to the last scale, see also [START_REF] Bechtel | Interpolation theory for Sobolev functions with partially vanishing trace on irregular open sets[END_REF]Prop. 5.2]. Proposition 9.1. Assume that Assumption D' holds. Let p ∈ (1, ∞) be such that L 1 2 is a p-isomorphism and suppose that there exists some ε > 0 such that L 1 2 is q-bounded for q ∈ [p -ε , p + ε ]. Then there is ε > ε > 0 such that L 1 2 is a q-isomorphism for all q ∈ (p -ε, p + ε). Similarly, if L is a p-isomorphism, then there is again some ε > 0 such that L is a q-isomorphism for all q ∈ (p -ε, p + ε). Remark 9.2. Observe that in Proposition 9.1 we did not assume that L is q-bounded in an interval around p. This is because L is automatically q-bounded for all q ∈ [1, ∞] by Hölder's inequality applied to the definition of L.

Proof of Theorem 1.1 (iii).

To begin with, assume that p -(L) > 1 and L The argument for q+ (L) < ∞ follows the same lines and is even easier as we do not need to argue for the existence of ε .