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Abstract

We study properties of positive functions satisfying (E) −∆u+m|∇u|q−
up = 0 is a domain Ω or in RN+ when p > 1 and 1 < q < 2. We give
sufficient conditions for the existence of a solution to (E) with a nonneg-
ative measure µ as boundary data, and these conditions are expressed
in terms of Bessel capacities on the boundary. We also study removable
boundary singularities and solutions with an isolated singularity on ∂Ω.
The different results depends on two critical exponents for p = pc := N+1

N−1

and for q = qc := N+1
N and on the position of q with respect to 2p

p+1 .
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1 Introduction

In this article we study the boundary behaviour of positive solutions of
the following class of quasilinear elliptic equations

−∆u+m|∇u|q − |u|p−1u = 0 (1.1)

in a domain of RN which can be either RN , or RN \ {0}, or RN+ , or
a bounded domain Ω with smooth boundary ∂Ω according the type of
phenomenon we are interested in. We assume that p, q > 1 and m ≥ 0.
We also consider the associated measure boundary data problem

−∆u+m|∇u|q − |u|p−1u = 0 in Ω
u = µ in ∂Ω

(1.2)

in the case where G = Ω and µ is a positive Radon measure on ∂Ω.

The wide variety of phenomena that exhibit the solutions of equation
(1.1) comes from the opposition between the forcing term |u|p−1u and
the reaction term m|∇u|q. Furthermore, in the specific case q = 2p

p+1 ,
the value of the coefficient m plays a fundamental role. This is due to
the equivariance the equation (1.1) under the transformation u 7→ T`[u]
defined by

T`[u](x) = `
2
p−1u(`x) where ` > 0. (1.3)

This equation has been introduced by Chipot and Weissler [11] is a
parabolic setting. They also studied the one dimensional case of (1.1).
Later on Serrin and Zou published two deep articles [26], [27] where
they concentrate on the existence of radial ground states, introducing
unexpected energy functions. In [25] they conduct a series of numerical
experimentations showing the extreme complexity of this equation, even
in the radial case, and many deep questions that they raised are still
unanswered. More recently, Alarcón, Garćıa-Melián and Quaas proved
several non-existence results of supersolutions in an exterior domain of
a large class of equations containing in particular (1.1). Their results
pointed out the role of some critical exponents, p = N

N−2 , p = N+2
N−2 and

q = N
N−1 as well as q = 2p

p+1 . A priori estimates of solutions have been

obtained in [23] in the case q < 2p
p+1 and p < N+2

N−2 , and then extended in

[4] to the case q = 2p
p+1 and p < N+2

N−2 under a condition of smallness of
m by a completely different method. The regular Dirichlet problem has
been investigaed in [24] in the subcritical case p < N

N−2 and q < 2p
p+1 , and

even extended to the m-Laplace equation, always in the corresponding
subcritical case, but to our knowledge, nothing has already been pub-
lished concerning the boundary behaviour of singular solutions and the
associated Dirichlet problem with data measure. The aim of this article
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is to fulfill some gaps in the knowledge of the properties of this equa-
tion, emphasizing the connection with sharp description of the boundary
behaviour.

We first prove an a priori estimate for positive solutions of

−∆u+m|∇u|q − up = 0 in Ω
u = 0 on ∂Ω \ {0}. (1.4)

when q ≤ 2p
p+1 . We set

α =
2

p− 1
. (1.5)

Theorem 1.1 Let Ω be a bounded smooth domain such that 0 ∈ ∂Ω.
Suppose 1 < p < N+2

N−2 and either 1 < q < 2p
p+1 and m > 0, or q = 2p

p+1
and 0 < m < ε0 for some ε0 > 0 depending on N and p. Then there
exists a constant c = c(N, p,Ω) > 0 such that if u is a positive solution
of (1.4), it satisfies

u(x) ≤ c|x|−α for all x ∈ Ω \ {0}, (1.6)

and
u(x)

ρ(x)
+ |∇u(x)| ≤ c|x|−α−1 for all x ∈ Ω \ {0}, (1.7)

where ρ(x) = dist (x, ∂Ω).

Thanks to this estimate we can describe the behaviour of positive
functions satisfying (1.4). For this purpose we say that the bounded
open set Ω ⊂ RN is in normal position with respect to 0 ∈ ∂Ω if ∂Ω is
tangent to ∂RN+ at x = 0 and if x

N
> 0 is the normal inward direction to

∂Ω. We set ∂B1 + := RN+ ∩ ∂B1, identified with SN−1
+ := SN−1 ∩ RN+ in

spherical coordinates (r, s). In the sequel we denote by ∆′ the Laplace-
Beltrami operator on SN−1 and by ∇′ the covariant gradient identified
with the tangential gradient to ∂B1.

Corollary 1.2 Let Ω be a bounded smooth domain in normal position
with respect to 0 ∈ ∂Ω. Suppose 1 < p < N+2

N−2 , 1 < q < 2p
p+1 and m > 0,

and u is a positive solution of (1.1) vanishing on ∂Ω \ {0}, then either
u can be extended as a continuous function in Ω, or one of the following
situations oocurs.

1- If 1 < p < N+1
N−1 , there exists k > 0 such that

lim
x ∈ Ω
x → 0

u(x)

PΩ(x, 0)
= k, (1.8)

where PΩ is the Poisson kernel in Ω× ∂Ω.

2- If p = N+1
N−1 ,

lim
x ∈ Ω
x → 0
x
|x| → s

|x|N−1

(
ln

1

|x|

)N−1
2

u(x) = λ
N
φ1(s),

(1.9)
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uniformly on any compact set of SN−1
+ , where φ1 is the first eigen-

function of −∆′ in W 1,2
0 (SN−1

+ ) with maximum 1 (actually φ1(x/|x|) =
sin(xN/|x|)), and λ

N
is a positive constant depending only on N .

3- If N+1
N−1 < p < N+2

N−2

lim
x ∈ Ω
x → 0
x
|x| → s

|x|αu(x) = ψ(s),
(1.10)

uniformly on any compact set of SN−1
+ , where ψ is the unique positive

solution of

−∆′ψ + α(N − 2− α)ψ − ψp = 0 in SN−1
+

ψ = 0 on ∂SN−1
+ .

(1.11)

In case 1, a solution which satisfies (1.8) is actually a weak solution
of

−∆u+m|∇u|q − up = 0 in Ω
u = c

N
kδ0 in D′(∂Ω).

(1.12)

where c
N
> 0 depends only on N and δ0 is the Dirac measure at 0. A

solution which satisfies (1.9) or (1.10) is a weak solution of (1.1) in Ω
with zero boundary value in the sense of distributions in ∂Ω, and this
property still holds even when N+1

N−1 ≤ p <
N+2
N−2 and q = 2p

p+1 .

The proof of Corollary 1.2 is based upon the fact that if 1 < q < 2p
p+1 ,

and thanks to the a priori estimates of Theorem 1.1, problem (1.4) is a
perturbation of

−∆u− up = 0 in Ω
u = 0 on ∂Ω \ {0} (1.13)

near x = 0, a problem which has been thoroughly studied in [3]. When
q = 2p

p+1 it is a consequence of the invariance of (1.1) under the trans-
formations T` that there could exist invariant solutions u which are the
ones such that T`[u] = u for any ` > 0. We first consider self-similar
solutions in whole RN . Using spherical coordinates (r, s) ∈ R+ × SN−1,
these self-similar solutions have the form

u(x) = u(r, s) = r−αω(s), (1.14)

where α is defined in (1.5). Then ω satisfies

−∆′ω + α(N − 2− α)ω +m
(
α2ω2 + |∇′ω|2

) p
p+1 − |ω|p−1ω = 0

(1.15)
in SN−1. Constant solutions are roots of the function

Pm(X) = α(N − 2− α)X +mα
2p
p+1X

2p
p+1 − |X|p−1X. (1.16)

In the study of the variations of Pm on R the following constant defined
if p < N

N−2 plays an important role

m∗ = (p+ 1)

(
N − p(N − 2)

2p

) p
p+1

. (1.17)
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Concerning the self-similar solutions in RN we recall the result stated
without proof in [4, Prop. 6.1],

Proposition 1.3 Assume N ≥ 2.

(i) If N ≥ 3, m > 0 and p ≥ N
N−2 there exists a unique constant positive

solution Xm to (1.15).

(ii) If N ≥ 2, 1 < p < N
N−2 and m > m∗ there exist two constant positive

solutions 0 < X1,m < X2,m to (1.15).

(iii) If N ≥ 2 1 < p < N
N−2 and m = m∗ there exists a unique constant

positive solution Xm∗ to (1.15).

(iv) If N ≥ 2, 1 < p < N
N−2 and 0 < m < m∗ there exists no constant

positive solution to (1.15).

A more complete study of equation (1.15) and its role in the descrip-
tion of isolated singularities is developed in the forthcomming paper [7].

WhenG is a domain with a non-empty boundary, it is natural to study
solutions of (1.1) with an isolated singularity lying on the boundary. The
understanding of boundary singularities is conditioned by the knowledge
of positive self-similar solutions in RN+ vanishing on ∂RN+ except at x = 0.
They are solutions of

−∆′ω + α(N − 2− α)ω +m
(
α2ω2 + |∇′ω|2

) p
p+1 − ωp = 0 in SN−1

+

ω = 0 on ∂SN−1
+ .

(1.18)
There, the critical value for p is N+1

N−1 . The main result concerning prob-
lem (1.18) states as follows,

Theorem 1.4 Let 1 < p < N+1
N−1 .

1-For any m ≥ m∗ there exists at least one positive solution ωm to (1.18).
2- There exists mp ∈ (0,m∗) such that for any 0 < m ≤ mp there exists
no positive solution to (1.18).

The value of mp is explicit.

In the next section of this article we study problem (1.2).

Definition 1.5 Let p, q > 0, m ∈ R and µ be a bounded measure on
∂Ω. We say that a nonnegative Borel function u defined in Ω is a weak
solution of (1.2) if u ∈ L1(Ω), up ∈ L1

ρ(Ω), |∇u|q ∈ L1
ρ(Ω) and∫

Ω

(−u∆ζ + (m|∇u|q − up) ζ) dx = −
∫
∂Ω

∂ζ

∂n
dµ, (1.19)

for all ζ ∈ X(Ω) :=
{
ζ ∈ C1

c (Ω) : ∆ζ ∈ L∞(Ω)
}

.

For a > 0 and 1 < b < ∞, we denote by Cap∂Ω
a,b the Bessel capacity

on ∂Ω. It is defined by local charts (see e.g. [18]). Our main existence
result is the following.

Theorem 1.6 Let p > 1, 1 < q < 2 and m > 0. Assume µ is a
nonnegative measure on ∂Ω. If µ satisfies

µ(K) ≤ C3 min

{
Cap∂Ω

2−q
q ,q′

(K), Cap∂Ω
2
p ,p
′(K),

}
for any compact set K ⊂ ∂Ω,

(1.20)
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then one can find ε3 > 0 such that for any 0 < ε ≤ ε3 there exists a weak
solution u to problem (1.2) with µ replaced by εµ.

The main idea for proving this result is to associate to (1.1) the two
problems

−∆v +m|∇v|q = 0 in Ω
v = µ in ∂Ω,

(1.21)

and
−∆w − wp = 0 in Ω

w = µ in ∂Ω.
(1.22)

We show that when (4.6) holds these two problems admit positive solu-
tions respectively vµ and wµ, such that 0 < vµ < wµ (with µ replaced by
εµ) which both satisfy the boundary trace relation

lim
δ→0

∫
{ρ(x)=δ}

vµZdS = lim
δ→0

∫
{ρ(x)=δ}

wµZdS =

∫
∂Ω

Zdµ, (1.23)

for any Z ∈ C(Ω). Since vµ and wµ are respectively a subsolution and a
supersolution of (1.1), we derive the existence of a solution u of (1.1) in
Ω which satisfies also the boundary trace relation (1.23). This approach
is linked to the dynamical construction of the boundary trace developed
in [20]. As an easy consequence of Theorem 1.6 we have the following
result.

Corollary 1.7 Let p > 1, 1 < q < 2 and m > 0. If µ is a nonnega-
tive measure on ∂Ω there exists a positive weak solution to (1.2) with µ
replaced by εµ under the following conditions.

1- If 1 < p < N+1
N−1 and 1 < q < N+1

N .

2- If p ≥ N+1
N−1 , 1 < q < N+1

N and µ satisfies

µ(K) ≤ C2Cap
∂Ω
2
p ,p
′(K) for any compact set K ⊂ ∂Ω. (1.24)

3- If 1 < p < N+1
N−1 , N+1

N ≤ q < 2 and µ satisfies

µ(K) ≤ C1Cap
∂Ω
2−q
q ,q′

(K) for any compact set K ⊂ ∂Ω. (1.25)

A more delicate corollary is based upon relations between Bessel ca-
pacities.

Corollary 1.8 Let p > 1, 1 < q < 2 and m > 0. If µ is a nonnega-
tive measure on ∂Ω, there exists a positive weak solution to (1.2) with µ
replaced by εµ under the following conditions.

1- If N+1
N ≤ q < 2p

p+1 , when

µ(K) ≤ C3Cap
∂Ω
2
p ,p
′(K) for any compact set K ⊂ ∂Ω. (1.26)

2- If p ≥ N+1
N−1 and q ≥ 2p

p+1 , when

µ(K) ≤ C4Cap
∂Ω
2−q
q ,q′

(K) for any compact set K ⊂ ∂Ω. (1.27)
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It is noticeable that the results of Corollary 1.7 and Corollary 1.8
cover the full range of exponents (p, q) ∈ (1,∞) × (1, 2). The sufficient
conditions of Theorem 1.6 are stronger than the necessary conditions
which are obtained below.

Theorem 1.9 Let p > 1, 1 < q < 2 and m > 0. Assume there exists a
nonnegative solution u of problem (1.4) for some µ ∈M+(∂Ω). Then µ
satisfies

Cap∂Ω
2−q
q ,q′

(K) = 0 =⇒ µ(K) = 0 if K ⊂ ∂Ω is a compact set,

(1.28)
and

Cap∂Ω
2
p ,p
′(K) = 0 =⇒ µ(K) = 0 if K ⊂ ∂Ω is a compact set. (1.29)

In the last section we study the boundary trace of positive solutions
of (1.1). The notion of boundary trace is classical in harmonic analysis
in the framework of bounded Borel measures. It has been extended to
semilinear elliptic equations by Marcus and Véron in [17], [18], [20] with
general Borel measures as a natural framework for the boundary trace.

Definition 1.10 Let Ω ⊂ RN be a smooth bounded domain, p > 1,
1 < q < p, m > 0 and O a relatively open subset of ∂Ω. We say
that a positive solution u of (1.1) in Ω admits a boundary trace on O,
denoted by TrO(u), if there exist a relatively open subset R(u) of O and
a nonnegative Radon measure µ on R(u) such that

lim
δ→0

∫
{ρ(x)=δ}

uZdS =

∫
∂Ω

Zdµ (1.30)

for every Z ∈ C(Ω) such that supp(ZbO) ⊂ R(u), and if for every z ∈
S(u) := O \R(u) and any ε > 0, there holds

lim
δ→0

∫
{ρ(x)=δ}∩Bε(z)

udS =∞. (1.31)

The boundary trace TrO(u) is represented by the couple (S(u), µ) or
equivalently by the outer Borel measure µ∗O on O defined as follows:

µ∗O(ζ) =


∫
R(u)

ζdµ ∀ζ ∈ C∞(∂Ω) s.t. supp(ζ) ⊂ R(u)

∞ ∀ζ ∈ C∞(∂Ω) s.t. supp(ζ) ∩ S(u) 6= ∅, ζ ≥ 0.
(1.32)

It is easy to prove that if a compact set K ⊂ Ω is such that up +
|∇u|q ∈ L1

ρ(K), then K ∩ ∂Ω ⊂ R(u). We first give a result where the
trace is a positive Radon measure.

Theorem 1.11 Let Ω be a bounded smooth domain and p > 1. Assume
either 1 < q < 2p

p+1 and m > 0, or q = 2p
p+1 and 0 < m ≤ m1 for some

m1 > 0 depending on N and p. If u is a positive solution of (1.1) in
Ω, then u ∈ L1(Ω), up + |∇u|q ∈ L1

ρ(Ω) and there exists a nonnegative
Radon measure µ on ∂Ω such that u is a solution of (1.23).
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The boundary trace of a positive solution of (1.1) may not be a Radon
measure, for example, if N+1

N−1 < p < N
N−2 , q = 2p

p+1 , m ≥ m∗ and u is the
restriction to Ω of a radial singular solution obtained in Proposition 1.3.
In that case

lim
δ→0

∫
{ρ(x)=δ}

uZdS =∞, (1.33)

for any Z ∈ C+(Ω), such that Z(0) > 0. We have the following result.

Theorem 1.12 Assume p > 1, 1 < q < p and m > 0. If u is a positive
solution of (1.1) in Ω and z ∈ ∂Ω, we have that:

1- If there exists ε > 0 such that |∇u|q ∈ L1
ρ(Bε(z) ∩ Ω), then up ∈

L1
ρ(Bε(z) ∩ Ω) and u admits a boundary trace on ∂Ω ∩ Bε(z) which is a

nonnegative Radon measure.

2- If there exists ε > 0 such that up ∈ L1
ρ(Bε(z) ∩ Ω), then u admits a

boundary trace on ∂Ω∩Bε(z) which is a nonnegative outer regular Borel
measure, not necessarily bounded.

The last assertion shows how delicate is the construction of solutions
with unbounded boundary trace. We give a few examples with one point
blow-up on the boundary. In particular we prove that when 0 ∈ ∂Ω,
p > 1 and 2p

p+1 < q < N+1
N there exists positive solutions u of (1.1) in Ω

(or Ω \K where K is compact), vanishing on ∂Ω \ {0} satisfying

u(x) = |x|−
2−q
q−1 υ̃( x

|x| )(1 + o(1)) as x→ 0, (1.34)

for some positive function υ̃ defined on the SN−1
+ . Such solution has

boundary trace Tr∂Ω(u) = ({0}, 0).
The existence of a boundary trace in the case q > 2p

p+1 for any positive

solution of (1.1) remains an open problem.

2 Solutions with a boundary isolated singu-
larity

2.1 A priori estimates

In this section Ω denotes a bounded smooth domain of RN such that 0 ∈
∂Ω. We prove a priori estimates for positive solutions of (1.1) vanishing
on ∂Ω \ {0}.

Proposition 2.1 Suppose 1 < p < N+2
N−2 and either 1 < q < 2p

p+1 and

m > 0, or q = 2p
p+1 and 0 < m < ε0 for some ε0 > 0 depending on N

and p. Then there exists a constant c = c(N, p,Ω) > 0 such that if u is
a positive solution of (1.4), it satisfies

u(x) ≤ c|x|−α for all x ∈ Ω \ {0}. (2.1)

The proof needs a series of intermediate results involving the Polacik
et al. method [23], a result of Montoro [21] and a previous Liouville
theorem proved in [4]. We first recall the doubling lemma.
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Lemma 2.2 Let (X, d) be a complete metric space, Γ  X and γ :
X \ Γ 7→ (0,∞). Assume that γ is bounded on all compact subsets of
X \ Γ. Given k > 0, let y ∈ X \ Γ such that

γ(y)dist (y,Γ) > 2k.

Then there exists x ∈ X \ Γ such that
1- γ(x)dist (y,Γ) > 2k,
2- γ(x) ≥ γ(y),
3- 2γ(x) ≥ γ(z), for all z ∈ B k

γ(x)
(x).

The next result is an extension of [3, Proposition 5.1]

Lemma 2.3 Suppose 1 < p < N+2
N−2 and either 1 < q < 2p

p+1 and m > 0,

or q = 2p
p+1 and 0 < m < ε0 for some ε0 > 0 depending on N and p. Let

0 < r < 1
2diam Ω. There exists a constant c > 0 depending on p, m, ζ

and Ω such that any function u verifying

−∆u+m|∇u|q = up in Ω ∩ (B2r \Br)
u ≥ 0 in Ω ∩ (B2r \Br)
u = 0 in ∂Ω ∩ (B2r \Br),

(2.2)

satisfies

u(x) ≤ c (dist (x,Γr))
−α

for all x in Ω ∩ (B2r \Br), (2.3)

where Γr = Ω ∩ (∂B2r ∪ ∂Br).

Proof. We proceed by contradiction. Then for every k ≥ 1 there exists
0 < rk <

1
2diam Ω, a solution uk of (2.2) with r = rk and yk ∈ Ω ∩

(B2rk \Brk) such that

uk(yk) ≥ (2k)−α (dist (x,Γrk))
−α

.

It follows from Lemma 2.2 applied with

X = Ω ∩ (B2rk \Brk) and γ = u
1
α

k ,

that there exists xk ∈ X \ Γk such that

(i) uk(xk) ≥ (2k)−α (dist (x,Γrk))
−α

,
(ii) uk(xk) ≥ uk(yk),

(iii) 2αuk(xk) ≥ uk(z), for all z ∈ BRk(xk) ∩ Ω with Rk = k(uk(xk))−
1
α .

(2.4)
Since (i) holds, Rk <

1
2dist (x,Γrk), hence

BRk(xk) ∩ Γrk = ∅.

Since dist (x,Γrk) ≤ 1
2rk <

1
4diam Ω we also have from (i),

uk(xk) ≥
(

8k

diam Ω

)α
→∞ as k →∞.
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Next we set

tk = (uk(xk))−
1
α , Dk =

{
ξ ∈ RN : |ξ| ≤ k and xk + rkξ ∈ Ω

}
,

and
vk = tαkuk(xk + tkξ) for all ξ ∈ Dk.

Then vk is positive in Dk and satisfies

−∆vk +mt
2p−(p+1)q

p−1

k |∇vk|q = vpk in Dk

0 ≤ vk ≤ 2α in Dk

vk(0) = 1.

(2.5)

We encounter the following dichotomy:
(A) Either for every a > 0 there exist ka ≥ 1 such that Batk(xk) ∩
∂Ω = ∅. The sequence {vk} is locally uniformly bounded in RN . Since
q ≤ 2, standard a priori estimates in elliptic equations imply that {vk}
is eventually uniformly bounded in the C2,τ (0 < τ < 1) local topolpgy
in RN . Up to a subsequence still denoted by {vk} it converges locally in
C2(RN ) to a positive function v which satisfies v(0) = 1, 0 ≤ v ≤ 2α and
either

−∆v = vp in RN (2.6)

if 1 < q < 2p
p+1 , or

−∆v +m|∇v|q = vp in RN (2.7)

if q = 2p
p+1 . In the first case it is proved in [13] that such a solution

cannot exist. If q = 2p
p+1 it is proved in [4, Theorem E] that there exists

ε0 > 0 depending on N, p such that if |m| ≤ ε0 no such solution exists.
Therefore if situation (A) occurs we obtain a contradiction.
(B) Or there exists some a0 > 0 such that Ba0tk(xk) ∩ ∂Ω 6= ∅ for all
k ∈ N∗. Denote x′k a projection of xk. Then |xk − x′k| ≤ a0tk. Since vk
is bounded in Dk, it follows that ∇vk remains locally bounded therein.
Since uk(x′k) = 0 and uk(xk) = 1 it implies that |xk−x′k| ≥ a1tk for some
0 < a1 < a0. Up to a subsequence, we can assume that t−1

k xk → x0,
t−1
k x′k → x′0 and that Dk → H where H ∼ RN+ is the half-space passing

through x′0 with normal inward unit vector e
N

, and x0 − x′0 = ae
N

with
a1 ≤ a ≤ a0. Let H̃ ∼ RN be the union of H and its reflection through
∂H. Performing the reflection of vk through ∂t−1

k Ω (see [29, Lemma
3.3.2]) we deduce that the function ṽk which coincides with vk in ∂t−1

k Ω
and with its odd reflection in the image by reflection of the set ∂t−1

k Ω
vanishes on ∂t−1

k Ω and converges locally in C2(RN ) to a positive function

ṽ defined in H̃, bounded therein, vanishing on ∂H and positive in H and
the function v = ṽbH is nonnegative and v(x0) = 1. If q < 2p

p+1 , v satisfies

−∆v = vp in H
v = 0 in ∂H.

(2.8)

By [13] such a function cannot exist. If q = 2p
p+1 , the function v satisfies

−∆v +m|∇v|
2p
p+1 = vp in H

v = 0 in ∂H.
(2.9)
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Since it is positive, bounded and ∇v is also bounded, it follows from [21]
that v is nondecreasing in the variable x

N
. But by [4, Theorem E], the

function v satisfies

v(x) ≤ 2
2
p−1x

− 2
p−1

N , (2.10)

which is impossible because x
N
7→ v(., x

N
) is nondecreasing. This ends

the proof.
�

Proof of Proposition 2.1. We use [3, lemma 4.4] with r = 2|x|
3 in Ω ∩(

B 4|x|
3
\B 2|x|

3

)
. �

Proof of Theorem 1.1. It follows from standard regularity results and
scaling techniques (see e.g. [29, Lemma 3.3.2]). �

2.2 Removability

Theorem 2.4 Let Ω be a bounded smooth domain such that 0 ∈ ∂Ω,
N+1
N−1 < p < N+2

N−2 and either 1 < q < 2p
p+1 and m > 0, or q = 2p

p+1 and

0 < m < ε∗. If u ∈ C1(Ω \ {0})∩C2(Ω) is a positive solution of (1.1) in
Ω vanishing on ∂Ω \ {0}, then u ∈ Lpρ(Ω), ∇u ∈ Lqρ(Ω) and the equation
(1.1) holds in the sense that∫

Ω

(−u∆ζ + (up −m|∇u|q) ζ) dx = 0 for all ζ ∈ X(Ω). (2.11)

Proof. Under the assumptions on p and q, there holds

u(x) ≤ c|x|−α for all 0 < |x| ≤ R. (2.12)

Since p > N+1
N−1 > N+2

N , the function u belongs to L1(Ω) ∩ Lpρ(Ω). It
follows by Theorem 1.1 that,

|∇u(x)| ≤ c|x|−α−1 for all 0 < |x| ≤ R

2
. (2.13)

Since q ≤ 2p
p+1 we have that |∇u(x)|q ≤ cq|x|−α−2. Hence ∇u belongs

to Lqρ(Ω). Finally, let {ζn} be a sequence of smooth functions such that
0 ≤ ζn ≤ 1, ζn(x) = 0 if |x| ≤ n−1, ζn(x) = 1 if |x| ≥ 2n−1 with
|∇ζn(x)| ≤ cn and |∆ζn(x)| ≤ cn2. Let φ ∈ X(Ω). We have that∫

Ω

u∆(ζnφ)dx =

∫
Ω

ζnu∆φdx+

∫
Ω

φu∆ζndx+ 2

∫
Ω

u∇φ.∇ζndx

= I(n) + II(n) + III(n).

(2.14)
Clearly

I(n)→
∫

Ω

u∆φdx as n→∞.

11



If φ ∈ X(Ω), ρ−1φ is bounded in Ω, hence

|II(n)| ≤ c1n2
∥∥ρ−1φ

∥∥
L∞

(∫
n−1≤|x|≤2n−1

upρdx

) 1
p
(∫

n−1≤|x|≤2n−1

ρdx

) 1
p′

≤ c′1n
2−N+1

p′
∥∥ρ−1φ

∥∥
L∞

(∫
n−1≤|x|≤2n−1

upρdx

) 1
p

.

Since p > N+1
N−1 , p′ < N+1

2 , hence |II(n)| → 0 when n→∞. For the last
term, we have from Theorem 1.1

|III(n)| ≤ c2n ‖∇φ‖L∞
∫
n−1≤|x|≤2n−1

udx

≤ c′2n ‖∇φ‖L∞
∫
n−1≤|x|≤2n−1

|x|−α−1ρdx

≤ c′′2nα+1−N ‖∇φ‖L∞ .

Since p > N+1
N−1 , α + 1 − N < 0, we deduce that |III(n)| → 0 when

n→∞. Therefore there holds∫
Ω

(up −m|∇u|q)φζndx→
∫

Ω

(up −m|∇u|q)φdx,

we obtain the claim. �

2.3 Proof of Corollary 1.2

The proof is an easy but technical adaptation of the computations in
[3, Theorems 1.1, 1.2] and [22, Theorem 3.25], but for the sake of com-
pleteness, we briefly recall its technique. Since Ω is in normal position
with respect to 0 there exist a bounded open neighborhood G of 0 and a
smooth function φ : G ∩ ∂RN+ 7→ R such that

G ∩ ∂Ω =
{
x = (x′, x

N
) : x′ ∈ G ∩ ∂RN+ and x

N
= φ(x′)

}
.

Furthermore φ(x′) = 0(|x′|2), ∇φ(x′) = 0(|x′|) and |D2φ(x′)| ≤ c if
x′ ∈ G ∩ ∂RN+ . If u satisfies (1.1), we set

u(x) = ũ(y) with yi = xi when 1 ≤ i ≤ N − 1 and y
N

= x
N
− φ(x′).

If we set r = |y|, s = y/r, t = ln r and v(t, s) = rαũ(r, s), then v is
bounded in C2((−∞, T0] × SN−1

+ ) and vanishes on (−∞, T0] × ∂SN−1
+ ).

Using the computations in [22, Theorem 3.25] and [3, Lemma 6.1], it
satisfies, with n = y

|y| ,

(1 + ε1)vtt + ∆′v − (N − 2 + 2α+ ε2)vt + (α(N − 2− α) + ε3) v

+ ∆′v +∇′v.−→ε 4 +∇′vt.−→ε 5 +∇′(∇′v.e
N
.−→ε 6 + vp

−me
2p−q(p+1)

p−1 t
[

(vt − αv) n +∇′v + ((vt − αv) n +∇′v.e
N

) .−→ε 7

]q
= 0,

(2.15)
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where we denote by {e1 , ..., eN } the canonical orthogonal basis in RN .
The functions εj (or −→ε j) are uniformly continuous and bounded for j =
1, ..., 7 and there holds

|εj(t, .)| ≤ cet for j = 1, ..., 7
|εjt(t, .)|+ |∇′εj(t, .)| ≤ cet for j = 1, 5, 6, 7.

(2.16)

By since v,vt and ∇′v are uniformly bounded, we infer by standard reg-
ularity theory the following uniform estimate,

‖v(t, .)‖
C2,τ (SN−1

+ )
+ ‖v(t, .)t‖C1,τ (SN−1

+ )
+ ‖vtt(t, .)‖C0,τ (SN−1

+ )
≤ c
(2.17)

for any t ≤ T0, for some c > 0 and τ ∈ (0, 1). Hence the limit set at

−∞ of the trajectory {v(t, .)}t≤T0
in C2(SN−1

+ ) is a connected non-empty

compact subset of
{
ω ∈ C2(SN−1

+ ) : ωb∂SN−1
+

= 0
}

. Next we write (2.15)

under the form

vtt + ∆′v − (N − 2 + 2α)vt + α(N − 2− α)v + ∆′v + vp = eθtΘ
(2.18)

where Θ is bounded and θ = min
{

1, 2p−q(p+1)
p−1

}
. Since N − 2 + 2α 6= 0,

the standard energy method (multiplication by vt) yields∫ T0

−∞

∫
SN−1

+

(v2
t + v2

tt)dSdt <∞.

Since vt and vtt are uniformly continuous, the above integrability condi-
tion yields

lim
t→−∞

(
‖vt(t, .)‖L2(SN−1

+ ) + ‖vtt(t, .)‖L2(SN−1
+ )

)
= 0. (2.19)

Therefore the limit set of the trajectory at −∞ is a connected subset of
nonnegative solutions of (1.11). This implies that either v(t, .) converges

to the unique positive solution ψ of (1.11) in C2(SN−1
+ ) or it converges

to 0. Note that the set of nonnegative solutions of (1.11) is reduced to 0
when 1 < p ≤ N+1

N−1 .

If N+1
N−1 < p < N+2

N−2 and v(t, .) does not converge to 0, then we have
proved (1.10). If v(t, .) converges to 0, then the proof of [3, Theorem
7.1] applies, the only difference being in the value of the term H therein
[3, (7.3)] which is replaced by eθtΘ defined above. The remaining of the
argument can be easily adapted.

If p = N+1
N−1 then v(t, .) converges to 0. The adaptation of [3, Theorem

9.1] is easy. We obtain that u satisfies

u(x) ≤ c|x|1−N
(

ln 1
|x|

)−N−1
2

for all x ∈ Ω. (2.20)

The completion of the proof follows by the same perturbation method
as in [3, Lemma 9.1], by decomposing the function v(t, .) into v(t, .) =
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v1 +v2(t, .) where v1 ∈ ker(∆′+(N−1)I) and v2 ∈ (ker(∆′+(N−1)I))⊥.
This yields

‖v1(t, .)‖L2(SN−1
+ ) ≤ c(−t)

−N−1
2 and ‖v2(t, .)‖L2(SN−1

+ ) ≤ ce
θ
2 t for t ≤ T0.

(2.21)

The function w(t, s) = (−t)N−1
2 v(t, s) satisfies

wtt −
(
N + N−1

t

)
wt +

(
N − 1 + N2−1

4t2

)
w + ∆′w

− 1

t

(
w
N+1
N−1 − N(N−1)

2 w
)

= (−t)N−1
2 Θ,

(2.22)
where Θ is bounded. The proof given in [3, Theorem 9.1] applies with
almost no change, but straightforward ones. The main step is to intro-
duce

z(t) =

∫
SN−1

+

w(t, s)φ1(s)dS,

and to prove that z(t) admits a nonnegative limit λ ≥ 0 when t→ −∞.
If this limit is positive its value λ is given in the proof of [3, Theorem
1.3]. If this limit is zero, then

lim
y→0
|y|N−1

(
ln

1

|y|

)N−1
2

ũ(y) = 0,

and the conclusion follows easily from the proof [3, Theorem 7.2] (only
the exponent in the perturbation term H therein is changed).

If 1 < p < N+1
N−1 , then v(t, .) converges to 0 and (2.18) can be written

under the form

vtt + ∆′v − (N − 2 + 2α)vt + α(N − 2− α+ ε(t))v + ∆′v = 0,
(2.23)

where ε(t) → 0 when t → −∞. It is therefore a very standard but
technical method of linearization [15, Theorem 5.1] to obtain first an
exponential decay of w(t, .) at −∞ and then the convergence of t 7→
e(N−1−α)tv(t, .) to kφ1 for some k ≥ 0, and then to infer the regularity
of u if k = 0. �

3 Separable solutions

3.1 Separable solutions in RN

Proof of Proposition 1.3. Constant positive solutions of (1.15) are roots
of

Φ(X) := Xp−1 −mα
2p
p+1X

p−1
p+1 − α(N − 2− α) = 0. (3.1)

Set
Φ(X) = Φ̃(X

p−1
p+1 ), (3.2)

where
Φ̃(Y ) = Y p+1 −mα

2p
p+1Y − α(N − 2− α). (3.3)
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Then Φ̃′(Y ) = (p + 1)Y p −mα
2p
p+1 , hence if m ≤ 0, Φ̃ is increasing and

if m > 0, Φ̃ is decreasing on [0, Y0) and increasing on (Y0,∞) with

Y0 =

(
m

p+ 1

) 1
p

α
2
p+1 . (3.4)

From now we always assume m > 0. Then

Φ̃(Y0) =

[
N − p(N − 2)− 2p

(
m

p+ 1

) p+1
p

]
2

(p− 1)2
,

and

Φ̃(0) = −α(N − 2− α) =
2(N − 2)

(p− 1)2

(
N

N − 2
− p
)
.

Therefore, Φ̃(0) ≤ 0 if and only if p ≥ N
N−2 . In that case there exists a

unique Xm > 0 such that Φ(Xm) = 0.
When

0 <
N

N − 2
− p < 2p

N − 2

(
m

p+ 1

) p+1
p

, (3.5)

then Φ̃(0) > 0 and Φ̃(Y0) < 0, thus Φ̃ admits two positive roots. The
same property is shared by Φ, hence there exist Xj,m, for j = 1, 2 such

that Φ(Xj,m) = 0 and 0 < X1,m < Y
p+1
p−1

0 < X2,m.
When

0 =
2p

N − 2

(
m

p+ 1

) p+1
p

⇐⇒
(

m

p+ 1

) p+1
p

=
N − p(N − 2)

2p
, (3.6)

then Φ̃ admits a unique positive root. Hence Φ > 0 on R+ \ {Xm∗} and
vanishes at Xm∗ , where

Xm∗ =

(
m∗

p+ 1

) p+1
p′p−1)

α
2
p−1 with m∗ = (p+ 1)

(
N − p(N − 2)

2p

) p
p+1

.

(3.7)
If 0 < m < m∗, Φ̃ and thus Φ are positive on R+, hence there exists no
root to Φ. The proof of Proposition 1.3 is complete. �

3.2 Separable solutions in RN
+

If u is a nonnegative separable solution of (1.1) in RN+ which vanishes on
∂RN+ \ {0}, the function ω is a nonnegative solution of (1.18).

Proof of Theorem 1.4. If 1 < 2p
p+1 <

N+1
N , equivalently 1 < p < N+1

N−1 , it is

proved in [22, Theorem 3.21] that there exists a unique positive function

η := ηm ∈ C2(SN−1
+ ) satisfying

−∆′η + α(N − 2− α)η +m
(
α2η2 + |∇′η|2

) p
p+1 = 0 in SN−1

+

η = 0 on ∂SN−1
+ .

(3.8)
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By uniqueness, ηm = m−
p+1
p−1 η1, and by the maximum principle

m−
p+1
p−1 sup

SN−1
+

η1 = sup
SN−1

+

ηm ≤
1

α

(
α+ 2−N

m

) p+1
p−1

. (3.9)

If ηm = sup
SN−1

+

ηm, then

−mα
2p
p+1 η

2p
p+1
m − α(N − 2− α)ηm ≥ 0.

Hence Φ(ηm) > 0, where Φ has been defined in (3.1). Therefore

(i) either ηm > X2,m (resp. ηm∗ > Xm∗),

(ii) or ηm < X1,m (resp. ηm∗ < Xm∗).

(3.10)
For ε ∈ (0, 1), εηm is a subsolution of (3.8), hence it is a subsolution of
(1.18) too. For ε > 0 small enough it is smaller than X2,m (resp. Xm∗)

and it belongs to W 1,∞
0 (SN−1

+ ). By the result of Boccardo, Murat and

Puel [10] there exists a solution ω ∈W 1,2
0 (SN−1

+ ) of (1.18), and it satisfies

εηm < ω ≤ X2,m (resp. εηm < ω ≤ Xm∗). (3.11)

For proving the second assertion, we set ω = φb for some b > 1, then

−∆′φ− (b− 1)
|∇φ|2

φ
− α(α+ 2−N)

b
φ− 1

b
φ1+b(p−1)

+
m

b
φ

(p−1)(b−1)
p+1

(
α2φ2 + b2|∇φ|2

) p
p+1 = 0.

(3.12)
Since (

α2φ2 + b2|∇φ|2
) p
p+1 ≤ α

2p
p+1φ

2p
p+1 + b

2p
p+1 |∇φ|

2p
p+1 , (3.13)

(3.12) implies

−∆′φ+
mα

2p
p+1

b
φ1+b p−1

p+1 +mb
p−1
p+1 φ

(b−1)(p−1)
p+1 |∇φ|

2p
p+1 ≥ (b− 1)

|∇φ|2

φ

+
1

b
φ1+b(p−1) +

α(α+ 2−N)

b
φ.

(3.14)
For any θ > 0 we have by Hölder’s inequality,

mb
p−1
p+1 φ

(b−1)(p−1)
p+1 |∇φ|

2p
p+1 ≤ mpb

p−1
p+1

(p+ 1)θ
p+1
p

|∇φ|2

φ
+
mb

p−1
p+1 θp+1

p+ 1
φ1+b(p−1),

we deduce the inequality

−∆′φ ≥

(
b− 1− mpb

p−1
p+1

(p+ 1)θ
p+1
p

)
|∇φ|2

φ
+

1

b

(
1− mb

2p
p+1 θp+1

p+ 1

)
φ1+b(p−1)

+
α(α+ 2−N)

b
φ.

(3.15)
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If the following two conditions are satisfied

(i) b− 1− mpb
p−1
p+1

(p+ 1)θ
p+1
p

≥ 0,

(ii) 1− mb
2p
p+1 θp+1

p+ 1
≥ 0,

(3.16)
we infer that there holds

(N − 1)

∫
SN−1

+

φφ1dS >
α(α+ 2−N)

b

∫
SN−1

+

φφ1dS, (3.17)

where φ1 denotes the first normalized and positive eigenfunction −∆′ in
W 1,2

0 (SN−1
+ ), with corresponding eigenfunction λ1 = N − 1. Hence, if

(3.16) is verified and there holds

N − 1 ≤ α(α+ 2−N)

b
, (3.18)

there exists no positive solutions. We proceed as follows for solving
(3.16)-(3.18). If 1 < p < N+1

N−1 , then α(α + 2 − N) > N − 1. We de-
fine bp > 1 by

bp =
α(α+ 2−N)

N − 1
. (3.19)

For such b = bp, the optimality is achieved in (3.16) when bp − 1 =

mpb
p−1
p+1
p

(p+1)θ
p+1
p

and 1 =
mb

2p
p+1
p θp+1

p+1 . This gives an implicit maximal value of

mp

mp =
(p+ 1)(bp − 1)θ

p+1
p

pb
p−1
p+1
p

=
p+ 1

b
2p
p+1
p θp+1

. (3.20)

Then the value of the corresponding θ := θp is expressed by

θp =
p

bp(bp − 1)
,

and we infer

mp =
p+ 1

b
2p
p+1
p θp+1

p

=
(p+ 1)

pp+1
(bp − 1)p+1b

p2+1
p+1
p . (3.21)

Hence if m ≤ mp problem (3.13) admits no positive solution. �

Remark. The case p ≥ N+1
N−1 is open. It can be noticed that the constant

solution Xm obtained in Proposition 1.3-(i) cannot be used as a super-
solution for solving problem (1.18) as it is done in Theorem 1.4. If ω is
a positive solution of (1.18) and ω is it maximal value, then

−∆ω = ωΦ(ω).

Hence Φ(ω) ≥ 0 which implies that ω > Xm.
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4 Boundary data measures

4.1 Sufficient conditions

We associate to (1.2) the following two problems

−∆v +m|∇v|q = 0 in Ω
v = µ in ∂Ω,

(4.1)

and
−∆w − wp = 0 in Ω

w = µ in ∂Ω.
(4.2)

Problem (4.1) has been solved in the case 1 < q < N+1
N in [22]. There, it

is proved that for any nonnegative bounded measure µ on ∂Ω there exists
a weak solution vµ to (4.1). Furthermore the correspondance µ 7→ vµ is
sequentially stable. When N+1

N ≤ q < 2 it is proved in [8, Theorem 1.6]
that if a measure µ satisfies

|µ|(K) ≤ C1Cap
∂Ω
2−q
q ,q′

(K) for any compact set K ⊂ ∂Ω, (4.3)

then there exists ε0 > 0 such that for any 0 < ε ≤ ε0 there exists a
solution vεµ to (4.1) (i.e. with µ replaced by εµ).
Problem (4.2) has been solved in the case 1 < p < N+1

N−1 in [9] where it
is proved that for any nonnegative measure µ there exists ε1 > 0 such
that for any 0 < ε ≤ ε1 there exists a positive solution w := wεµ to (4.2)
provided µ is replaced by εµ. In the supercritical case p ≥ N+1

N−1 it is
shown in [8, Theorem 1.6] that if a positive measure µ satisfies

µ(K) ≤ C2Cap
∂Ω
2
p ,p
′(K) for any compact set K ⊂ ∂Ω, (4.4)

then existence of a positive solution wεµ to problem (4.2) holds with µ
replaced by εµ, under the condition 0 < ε ≤ ε2, for some ε2 > 0 depending
on µ.

Proof of Theorem 1.6. We assume that (1.20) holds and we set ε3 =
min{ε0, ε1, ε2}, take ε ≤ ε3 and for the sake of clarity, replace εµ by µ.
We denote by vµ and wµ the solutions of (4.1) and (4.2) respectively with
boundary data µ. Since there holds

vµ ≤ PΩ[µ] ≤ wµ,

and vµ is a subsolution of (1.1) and wµ a supersolution in Ω, it follows
from [29, Theorem 1.4.6] that there exists a solution u to (1.1) such that
vµ ≤ u ≤ wµ. This implies that u ∈ L1(Ω) and up ∈ L1

ρ(Ω). Because v
and w satisfy

lim
δ→0

∫
{ρ(x)=δ}

vZdS = lim
δ→0

∫
{ρ(x)=δ}

wZdS =

∫
∂Ω

Zdµ (4.5)

for any Z ∈ C(Ω), it follows that

lim
δ→0

∫
{ρ(x)=δ}

uZdS =

∫
∂Ω

Zdµ. (4.6)
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Let φδ be the first eigenfunction of −∆ in W 1,2
0 (Ω′δ) (Ω′δ is defined in

(5.26)), normalized by 0 ≤ φδ ≤ 1 = max{φδ(x) : x ∈ Ω′δ} and λδ the
eigenvalue. Then

m

∫
Ω′δ

|∇u|qφδdx =

∫
Ω′δ

(up − λδu)φδdx−
∫

Σδ

∂φδ
∂n

u(x)dS. (4.7)

Because φδ → φ := φ0 and λδ → λ := λ0, and the left-hand side of (4.7)
is convergent, it follows by Fatou’s lemma that

m

∫
Ω

|∇u|qφdx ≤
∫

Ω

(up − λu)φdx−
∫
∂Ω

∂φ

∂n
dµ.

Hence ∇u ∈ Lqρ(Ω), thus (1.19) holds and this ends the proof. �

In several cases the sufficient condition can be weakened either by
comparison between capacities or because one at least of the two expo-
nents p or q is subcritical.

Proof of Corollary 1.7. It follows easily from [9], [22] and the previous
theorem. �

Proof of Corollary 1.8 1- As in the proof of [6, Corollary 1.5], we have
from [1, Theorem 5.5.1]

Cap∂Ω
2
p ,p
′(K) ≤ c∗Cap∂Ω

2−q
q ,q′

(K).

It implies the following inequality

µ(K) ≤ C3Cap
∂Ω
2
p ,p
′(K) = C3 min

{
Cap∂Ω

2
p ,p
′(K), c∗Cap∂Ω

2−q
q ,q′

(K)

}
≤ C3(1 + c∗)min

{
Cap∂Ω

2
p ,p
′(K), Cap∂Ω

2−q
q ,q′

(K)

}
.

2- Similarly, as in the proof of [6, Corollary 1.4], we have from [1, Theorem
5.5.1]

Cap∂Ω
2−q
q ,q′

(K) ≤ c∗∗Cap∂Ω
2
p ,p
′(K),

therefore

µ(K) ≤ C4Cap
∂Ω
2−q
q ,q′

(K) = C4 min

{
c∗∗Cap∂Ω

2
p ,p
′(K), Cap∂Ω

2−q
q ,q′

(K)

}
≤ C4(1 + c∗∗)min

{
Cap∂Ω

2
p ,p
′(K), Cap∂Ω

2−q
q ,q′

(K)

}
.

This completes the proof. �

4.2 Necessary conditions

Proof of Theorem 1.9.
Step 1: proof of (1.28). We follow the notations of the proof of [22,
Theorem 4-5]. Let η ∈ C2(∂Ω) be a nonnegative function with value 1
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in a neighborhood U of the compact set K, and ζ = (PΩ[η])2q′φ. Then
we have∫

Ω

(|∇u|qζ − u∆ζ) dx =

∫
Ω

upζdx−
∫
∂Ω

∂ζ

∂n
dS ≥ −

∫
∂Ω

∂ζ

∂n
dS.

Since η = 1 on K, there holds by Hopf boundary lemma

−
∫
∂Ω

∂ζ

∂n
dS ≥ c1µ(K).

The same computation as in [22, Theorem 4-5] yields, with λ = λ1(Ω),

c1µ(K) ≤
∫

Ω

(|∇u|q + λu) ζdx+ c2

(
1 + ‖∇u‖qLqρ

) 1
q ‖η‖

W
2−q
q
,q′ . (4.8)

Since Cap∂Ω
2−q
q ,q′

(K) = 0, there exists a sequence {ηn} ⊂ C2(∂Ω) sat-

isfying 0 ≤ ηn ≤ 1 and ηn = 1 in a neighborhood of K, such that
‖ηn‖

W
2−q
q
,q′ → 0 as n → ∞; thus ηn → 0 in L1(∂Ω) and ζn :=

(PΩ[ηn])2q′φ → 0 a.e. in Ω. This implies that the right-hand side of
(4.8) with η replaced by ηn tends to 0 as n→∞ and thus µ(K) = 0.

Step 2: proof of (1.29). We recall that a positive lifting is a mapping
η 7→ R[η] from C2(∂Ω) to C2(Ω) satisfying

R[η]b∂Ω= η and η ≥ 0 =⇒ R[η] ≥ 0.

If η ∈ C2(∂Ω) satisfies 0 ≤ η ≤ 1, η = 1 in a neighborhood of K we take
for test function ζ = (R[η])p

′
φ. We have

∆ζ = −λζ + p′φ(R[η])p
′−1∆R[η] + p′(p′ − 1)φ(R[η])p

′−2|∇R[η]|2

+ 2(p′ − 1)(R[η])p
′−1∇φ.∇R[η].

As in [18, Lemma 1.1] we have

−
∫

Ω

u∆ζdx ≤
(∫

Ω

upζdx

) 1
p

(
λ

(∫
Ω

ζdx

) 1
p′

+ p′
(∫

Ω

|L(η)|p′dx
) 1
p′
)
,

where
L(η) = |φ

1
p′∆R[η]|+ 2|φ−

1
p∇φ.∇R[η]|.

From (1.19) we have (see [18, formula (1.2)])(∫
∂Ω

ηdµ

)p′
+ Cµ

∫
Ω

upζdx ≤ mCµ
∫

Ω

|∇u]qζdx

+ Cµ

(∫
Ω

upζdx

) 1
p

(
λ

(∫
Ω

ζdx

) 1
p′

+ p′
(∫

Ω

|L(η)|p′dx
) 1
p′
)
,

(4.9)
where

Cµ =

∫
∂Ω

∣∣∣∣∂φ∂n

∣∣∣∣−
p′
p

dµ


p′
p

.
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The ”optimal lifting” introduced in [18] has the property that the map-

ping η 7→ L(η) is continuous from W
2
p ,p
′
(∂Ω) into Lp

′
(Ω). Note that with

R[η] = PΩ[η], which is a positive lifting, the continuity of the mapping L
holds only when 1 < p′ < 2. This is why the construction in [18] is much
more elaborate. We conclude as in Step 1 by considering a sequence
{ηn} ⊂ C2(∂Ω) such that 0 ≤ ηn ≤ 1, ηn = 1 in a neighborhood of K,
such that ‖ηn‖

W
2
p
,p′ → 0. Then ηn → 0 in L1(∂Ω), ζn → 0 a.e. and

L(ηn)→ 0 in Lp
′
(Ω). Thus the right-hand side of (4.9) tends to 0. This

ends the proof. �

Remark. We conjecture that (1.29) could be strengthened and replaced
by: There exists a constant c > 0 such that

µ(K) ≤ cCap∂Ω
2
p ,p
′(K) for any compact set K ⊂ ∂Ω. (4.10)

This is a necessary condition when m = 0 (see [8]).

5 The boundary trace

5.1 The regular boundary trace

Proof of Theorem 1.11. Set u = vb for some b > 1, then we have that

−∆v = (b− 1)
|∇v|2

v
+

1

b
v1+b(p−1) −mbq−1v(q−1)(b−1)|∇v|q := F. (5.1)

By Hölder’s inequality,

mbq−1v(q−1)(b−1)|∇v|q ≤ b− 1

2

|∇v|2

v
+mbq−1

(
2mbq−1

b− 1

) q
2−q

v
2b(q−1)

2−q +1.

(5.2)

Case 1: q < 2p
p+1 . There holds 2b(q−1)

2−q + 1 < 1 + b(p − 1) independently

of b. Hence for any δ > 0 there exists C = C(δ, b,m, p, q) > 0 such that

mbq−1

(
2mbq−1

b− 1

) q
2−q

v
2b(q−1)

2−q +1 ≤ δ

b
v1+b(p−1) + C. (5.3)

Therefore

F ≥ b− 1

2

|∇v|2

v
+

1− δ
b

v1+b(p−1) − C. (5.4)

If ψ = GBR [1] (ie. the solution of −∆ψ = 1 in BR vanishing on ∂BR),
we have

−∆(v + Cψ) ≥ b− 1

2

|∇v|2

v
+

1− δ
b

v1+b(p−1) ≥ 0.

By Doob’s theorem
|∇v|2

v
+ v1+b(p−1) ∈ L1

ρ(Ω). We put a = b−1 − 1,

then a < 0 and v = u
1
b = u1+a. Therefore

∇v = (1 + a)ua∇u , |∇v|
2

v
= (1 + a)2ua−1|∇u|2 and v1+b(p−1) = up+a,
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consequently
ua−1|∇u|2 + up+a ∈ L1

ρ(Ω).

Let 1 < ` < 2p
p+1 < 2, then∫

Ω

|∇u|`ρdx =

∫
Ω

|u a−1
2 ∇u|`u

(1−a)λ
2 ρdx

≤ ε
∫

Ω

ua−1|∇u|2ρdx+ C(ε)

∫
Ω

u
(1−a)`

2−` ρdx.

(5.5)

We fix a < 0 such that (1−a)`
2−` = p+ a, or equivalently

a = −p+ 1

2

(
2p

p+ 1
− `
)
.

Finally, we infer that for any ` < 2p
p+1 , |∇u|` ∈ L1

ρ(Ω). This implies in

particular that |∇u|q ∈ L1
ρ(Ω).

Let Ψ = mGΩ[|∇u|q], then Ψ > 0 and

−∆(u+ Ψ) = up.

Clearly the function u+Ψ is positive and superharmonic in Ω. By Doob’s
theorem (see [12]), it follows that [−∆(u + Ψ)] = up ∈ L1

ρ(Ω) and there
exists a nonnegative Radon measure µ on ∂Ω such that

u = GΩ[up]−Ψ + PΩ[µ] = GΩ[up −m|∇u|q|] + PΩ[µ],

where PΩ is the Poisson operator in Ω. This implies that (1.23) holds.

Case 2: q = 2p
p+1 . We proceed as in the proof of Theorem 1.11, setting

u = vb, b > 1. Since q = 2p
p+1 , inequality (5.2) becomes

mb
p−1
p+1 v

(p−1)(b−1)
p+1 |∇v|

2p
p+1 ≤ b− 1

2

|∇v|2

v
+mb

p−1
p+1

(
2mb

p−1
p+1

b− 1

)p
v1+b(p−1).

(5.6)
Defining m1 by the identity,

m1 =

(
b− 1

2b

) p
p+1

, (5.7)

we deduce that for 0 < m < m1 and some δ ∈ (0, 1), there holds

−∆v ≥ b− 1

2

|∇v|2

v
+
b− 1

2
v1+b(p−1). (5.8)

Again, by Doob’s theorem, |∇v|
2

v +v1+b(p−1) ∈ L1
ρ(Ω), which implies that√

v ∈ W 1,2
ρ (Ω). Using Sobolev type imbedding theorem for weighted

Sobolev spaces (see e.g. [16, Section 19]),(∫
Ω

(
√
v)

2(N+1)
N−1 ρdx

)N−1
N1

≤ c
∫

Ω

(
(
√
v)2 + |∇

√
v|2
)
ρdx. (5.9)
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If we choose in particular b = N+1
p(N−1) we deduce that up ∈ L1

ρ(Ω), but

actually, for any 1 ≤ p̃ < N+1
N−1 ), up̃ ∈ L1

ρ(Ω) and for any ε > 0, |∇u|
2

u1+ε ∈
L1
ρ(Ω). We have from (5.5) with ` = 2p

p+1 ,∫
Ω

|∇u|
2p
p+1 ρdx =

∫
Ω

u−
(1+ε)p
p+1 |∇u|

2p
p+1u

(1+ε)p
p+1 ρdx

≤ s
∫

Ω

|∇u|2

u1+ε
ρdx+ C(s)

∫
Ω

u(1+ε)pρdx.

(5.10)

If ε is chosen such that (1 + ε)p = p̃ < N+1
N−1 , we infer that |∇u|

2p
p+1 ∈

L1
ρ(Ω). We end the proof as in Case 1. �

Remark. The same regularity and boundary trace results hold if it is
assumed that u is a nonnegative supersolution of 1.1 in Ω.

5.2 The singular boundary trace

Proof of Theorem 1.12. Assertion 1. We assume that F := |∇u|q ∈
L1
ρ(Bε(z) ∩Ω). We set Fε = Fχ

Bε(z)∩Ω
and Ψε = GBε(z)∩Ω[Fε]. Then Ψε

has boundary trace zero on Bε ∩ ∂Ω and

−∆(u+mΨε) = up in Bε(z) ∩ Ω.

Thus u + mΨε is a positive super-harmonic function in Bε ∩ Ω. Hence
up ∈ L1

ρ(Bε(z) ∩ Ω) and there exists a Radon measure µε such that
u+mΨε admits for boundary trace µε on Bε(z)∩ ∂Ω. This implies that
u admits the same boundary trace on Bε(z) ∩ ∂Ω.

Assertion 2. We assume that H := upχ
Bε(z)∩Ω

∈ L1
ρ(Bε(z) ∩ Ω). If

Fε = |∇u|qχ
Bε(z)∩Ω

∈ L1
ρ(Bε(z) ∩ Ω), we deduce from Assertion 1 that u

admits the boundary trace µε ∈ M+(Bε(z) ∩ ∂Ω) on Bε(z) ∩ ∂Ω. If for
any ε′ ∈ (0, ε] ∫

Bε′ (z)∩Ω

|∇u|qρdx =∞,

there holds ∫
Bε′ (z)∩Ω

(m|∇u|q − up) ρdx =∞.

For 0 < δ < ε′

2 , set Θδ,ε′ = Bε′(z) ∩ Ω ∩ {x ∈ Ω : ρ(x) > δ} and
denote by φδ,ε′ the first eigenfunction of −∆ in H1

0 (Θδ,ε′) normalized
by supφδ,ε′ = 1 and let λδ,ε′ be the corresponding eigenvalue. Then

φδ,ε′ → φ0,ε′ , uniformly, λδ,ε′ ↓ λ0,ε′ and
∂φδ,ε′

∂n → ∂φ0,ε′

∂n in the sense that

∂φδ,ε′

∂n
(x+ δn)→ ∂φ0,ε′

∂n
(x) uniformly for x ∈ ∂Ω ∩Bε′(z).

Let vε′,δ be the solution of

−∆v +m|∇u|q − up = 0 in Θδ,ε′

v = u on ∂Θup
δ,ε′ := Θδ,ε′ ∩ {x : ρ(x) = δ}

v = 0 on ∂Θlat
δ,ε′ := ∂Θδ,ε′ ∩ {x : ρ(x) > δ}.
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Then u ≥ vε′,δ in Θδ,ε′ and∫
Θδ,ε′

(λδ,ε′v +m|∇u|q − up)φδ,ε′dx = −
∫
∂Θup

δ,ε′

∂φδ,ε′

∂n
udS. (5.11)

Since the left-hand side of (5.11) tends to∞ when δ → 0, we deduce that

lim
δ→0

∫
Ω∩Bε′ (z)

udS =∞. (5.12)

Thus z ∈ S(u). �

Remark. Note also that if p > 2, then up ∈ L1
ρ(Ω) implies u ∈ L1(Ω)

and the assertion 2 follows from [19, Lemma 2.8]. If p > N+1
N−1 and if we

assume that u satisfies

u(x) ≤ c(ρ(x))−
2
p−1 , (5.13)

then up ∈ L1
ρ(Ω).

In order to describe the boundary singularities of solutions we intro-
duce the following equation studied in [22]

−∆′υ̃ − β(β + 2−N)υ̃ +m
(
β2υ̃2 + |∇′υ̃|2

) q
2 = 0 in SN−1

+

υ̃ = 0 in ∂SN−1
+ ,

(5.14)
where m > 0 and

β =
2− q
q − 1

(5.15)

It is proved in [22] that if 1 < q < N+1
N , (5.14) admits a unique solution

υ̃m. The function Vυ̃m(x) = Vυ̃m(r, s) = r−β υ̃m(s) where (r, s) ∈ R+ ×
SN−1

+ is the only positive solution of

−∆v +m|∇v|q = 0 in RN+ (5.16)

which vanishes on ∂RN+ \ {0} and satisfies

lim sup
x→0

|x|N−1v(x) =∞. (5.17)

It is a consequence of uniqueness that

υ̃m = m−
1
q−1 υ̃1 := m−

1
q−1 υ̃. (5.18)

Furthermore, if vkδ0 is the unique positive solution of

−∆v +m|∇v|q = 0 in RN+
v = kδ0 on ∂RN+ ,

(5.19)

then vkδ0 ↑ vυ̃m when k → ∞. If RN+ is replaced by a bounded smooth
subset Ω, the previous statements still hold provided some adaptations
are performed. We assume that Ω is in normal position with respect to
0 ∈ ∂Ω. The next result is proved in [22].
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Theorem 5.1 Let Ω be as described above, m > 0 and 1 < q < N+1
N .

1- Then for any k > 0 there exists a unique positive weak solution vkδ0
of

−∆v +m|∇v|q = 0 in Ω
v = kδ0 on ∂Ω.

(5.20)

Furthermore

lim
Ω 3 x → 0
x
|x| → s

|x|N−1vk(x) = cNkφ1(s) locally uniformly in s ∈ SN−1
+ .

(5.21)
2- The function vk is stable in the sense that if {µn} is a sequence of
positive Radon measures on ∂Ω which converges weakly to kδ0, then the
corresponding sequence of solutions {vµn} of

−∆v +m|∇v|q = 0 in Ω
v = µn on ∂Ω,

(5.22)

converges locally uniformly in Ω to vkδ0 .
3- Finally, when k ↑ ∞, vkδ0 ↑ vυ̃m where vυ̃m is the unique positive
solution of

−∆v +m|∇v|q = 0 in Ω, (5.23)

which vanishes on ∂Ω\{0} and satisfies (5.17). Furthermore vυ̃m verifies
the following limits, locally uniformly on SN−1

+ ,

lim
x ∈ Ω
x → 0
x
|x| → s

|x|βvυ̃m(x) = υ̃m(s), (5.24)

and
lim

x ∈ Ω
x → 0
x
|x| → s

|x|β+1 x

|x|
.∇vυ̃m(x) = −βυ̃m(s),

lim
x ∈ Ω
x → 0
x
|x| → s

|x|β+1∇tangvυ̃m(x) = ∇tangυ̃m(s),
(5.25)

where ∇tang = r−1∇′ denotes the tangential gradient.

We set

Ω′δ = {x ∈ Ω : ρ(x) > δ} , Ωδ = {x ∈ Ω : 0 < ρ(x) < δ} and Σδ = ∂Ω′δ.
(5.26)

It is known that Σδ is smooth for δ small enough. The following variant
is proved in [22, Corollary 2.4].

Corollary 5.2 Under the assumptions on N , q and m of Theorem 5.1,
assume that {δn} is a sequence decreasing to 0, {µn} is a sequence of
positive bounded Radon measures on Σδn which converges in the sense
of measures in Ω to a measure µ on ∂Ω. Then the sequence {vµn} of
solutions of

−∆v +m|∇v|q = 0 in Ω′δn
v = µn on Σδn ,

(5.27)
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converges up to a subsequence locally uniformly in Ω to a positive solution
vµ of

−∆v +m|∇v|q = 0 in Ω
v = µ on ∂Ω.

(5.28)

Proposition 5.3 Let p > 1, 1 < q < N+1
N and m > 0. If u is a

positive solution of (1.1) in Ω such that there exist a sequence {zn} ⊂ ∂Ω
converging to z and two decreasing sequences {εn} and {δn} converging
to 0 such that

lim
n→→∞

∫
Bεn (zn)∩Σδn

udx =∞. (5.29)

Then there holds

lim inf
x ∈ Ω
x → z
x−z
|x−z| → s

|x− z|
2−q
q−1u(x) ≥ υ̃(s) locally uniformly in s ∈ SN−1

+ ,

(5.30)

Proof. For k > 0, there exists n0 such that for n ≥ n0,∫
Bεn (zn)∩Σδn

udx > k.

Hence there exists ` := `n > 0 such that∫
Bεn (zn)∩Σδn

min{u, `}dx = k.

We set µn,k = min{u, `}bΣδnχΣδn
∩Bεn (zn)

and denote by vµn,k the cor-

responding solution of (5.27) in Ω′δn . Then u ≥ vµn,k in Ω′δn . Up to a

rotation we can assume that ∂RN+ is tangent to ∂Ω at z. Using Corol-
lary 5.2 we obtain u ≥ vkδz . Letting k → ∞ and using Theorem 5.1-3
we deduce that

lim inf
x ∈ Ω
x → z
x−z
|x−z| → s

|x− z|βu(x) ≥ υ̃(s) locally uniformly in s ∈ SN−1
+ . (5.31)

�

In the sequel we denote υ̃1 = υ̃ and vυ̃1
= vυ̃. In the next theorem

we show the existence of positive singular solution of (1.4) with a strong
blow-up in |x|−β provided the function vυ̃1

has no critical point in Ω and
2p
p+1q <

N+1
N . If it is the case the constant M defined below is positive

because of (5.25) and Hopf boundary lemma,

Mvυ̃ = min
x∈Ω

|∇vυ̃(x)|q

vpυ̃(x)
. (5.32)

Theorem 5.4 Let Ω be a bounded smooth domain with 0 ∈ ∂Ω, p > 1
and 2p

p+1 < q < N+1
N . If

m > mvυ̃ =:
p− 1

p− q

(
p− q

(q − 1)Mvυ̃

) q−1
p−1

(5.33)
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then there exists a positive solution of (1.4) which satisfies

lim
x ∈ Ω
x → 0
x−z
|x−z| → s

|x|βu(x) = υ̃m(s) locally uniformly in s ∈ SN−1
+ . (5.34)

where υ̃m is the unique positive solution of (5.14).

Proof. The function υ̃ is the unique positive solution of (5.14), and since

it depends on m > 0 we denote it by υ̃m and clearly υ̃m = m−
1
q−1 υ̃.

Then vυ̃m = m−
1
q−1 vυ̃ is the solution of (5.23) which is obtained in

Theorem 5.1, since this solution is the unique positive solution of (5.23)
which satisfies (5.24)-(5.25). We also set

Lm,p,qu = −∆u+m|∇u|q − up.

The function vυ̃m is a subsolution of (1.4). Let 0 < m̃ < m, then vυ̃m <
vυ̃m̃ . Furthermore

Lm,p,qvυ̃m̃ = (m− m̃)|∇vυ̃m̃ |q − v
p
υ̃m̃

= (m− m̃)m̃−
q
q−1 |∇vυ̃|q − m̃−

p
q−1 vpυ̃

≥
(

(m− m̃)m̃−
q
q−1Mvυ̃ − m̃

− p
q−1

)
vpυ̃

≥

(
m−

(
m̃+

1

m̃
p−q
q−1Mvυ̃

))
m̃−

q
q−1Mvυ̃v

p
υ̃.

Then

min
X>0

{
X +

1

X
p−q
q−1Mvυ̃

}
=
p− 1

p− q

(
p− q

(q − 1)Mvυ̃

) q−1
p−1

:= mvυ̃ (5.35)

and it is achieved for

X = X0 =

(
p− q

(q − 1)Mvυ̃

) q−1
p−1

. (5.36)

If we fix m̃ = X0 it follows that for m > mvυ̃ , the function vυ̃m̃ satisfies
Lm,p,qvυ̃m̃ ≥ 0 in Ω and it is larger than the subsolution vυ̃m . Hence
there exists a solution u of (1.4) in Ω and it satisfies

vυ̃m ≤ u ≤ vυ̃m̃ in Ω. (5.37)

The end of the proof is standard. For ` > 0 we set S`[v](x) = `βv(`x).
Then u` := S`[u] satisfies

−∆u` +m|∇u`|q − `
q(p+1)−2p

q−1 up` = 0 in Ω` := 1
`Ω, (5.38)

and
S`[vυ̃m ] ≤ u` ≤ S`[vυ̃m̃ ] in Ω`.

By Theorem 1.1,

|∇u`(x)|+ `u`(x)

ρ(`x)
≤ c|x|−β−1 in Ω` \ {0}. (5.39)
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Since ∂Ω is smooth, there exists ε0 > 0 such that c2`ρ`(x) ≤ ρ(`x) ≤
c1`ρ`(x) for |x| ≤ ε0, where ρ`(x) = dist (x,Ω`). Since q(p+ 1)− 2p > 0,

`
q(p+1)−2p

q−1 up` → 0 when `→ 0, locally uniformly in Ω` ∩Bcδ for any δ > 0
and by standard elliptic equations regularity theory [14], D2u` is also
locally bounded in Ω` ∩ Bcδ . When `→ 0, S`[vυ̃m ] and S`[vυ̃m̃ ] converge
respectively to x 7→ |x|−β υ̃m( x

|x| ) and x 7→ |x|−β υ̃m̃( x
|x| ). Therefore, if

u = lim
n→∞

u`n for some sequence {`n} converging to 0, then u is nonneg-

ative and satisfies
−∆u+m|∇u|q = 0 (5.40)

in RN+ and there holds

|x|−β υ̃m(
x

|x|
) ≤ u(x) ≤ |x|−β υ̃m̃(

x

|x|
).

Since (5.40) admits a unique positive solution vanishing on ∂RN+ \ {0}
such that lim sup

x→0
|x|βu(x) > 0 (see [22, Proposition 3.24-Step 2 ]), it

follows that u(x) = |x|−β υ̃m( x
|x| ). Uniqueness implies that u` → u and

(5.34) holds. �

Remark. The assumption that vυ̃ admits no critical point in Ω is uneasy
to verify. At least it is easy to see that vυ̃ cannot have any non-degenerate
critical point in Ω. Furthermore because of Hopf boundary lemma and
the behaviour of vυ̃ near x = 0 given by (5.24), the critical points of vυ̃
are located in a compact subset N of Ω, possibly empty. For ε > 0 we
set

Nε = {x ∈ Ω : dist (x,N) < ε}.

If ε is small enough N ε ⊂ Ω. Denote

M ε
vυ̃ = min

x∈Ω\Nε

|∇vυ̃(x)|q

vpυ̃(x)
and mε

vυ̃ =:
p− 1

p− q

(
p− q

(q − 1)M ε
vυ̃

) q−1
p−1

.

(5.41)
The proof of the next result is similar to the one of Theorem 5.4.

Theorem 5.5 Let Ω be a bounded smooth domain with 0 ∈ ∂Ω, p > 1
and 2p

p+1 < q < N+1
N . If N denotes the set of critical points of vυ̃, then

for any ε > 0 small enough and m > mε
vυ̃ there exists a positive solution

of (1.1) in Ω \Nε which vanishes on ∂Ω and satisfies (5.34).
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