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We construct solutions to the Gardner equation in terms of trigonometric and hyperbolic functions, depending on several real parameters. Using a passage to the limit when one of these parameters goes to 0, we get, for each positive integer N , rational solutions as a quotient of polynomials in x and t depending on 2N parameters. We construct explicit expressions of these rational solutions for orders N = 1 until N = 3. We easily deduce solutions to the mKdV equation in terms of wronskians as well as rational solutions depending on 2N real parameters.

Introduction

We consider the Gardner equation in the following normalization

u t -6u(1 + u)u x + u xxx = 0, (1) 
where the subscripts x and t denote partial derivatives. The introduction of this equation is attributed to Gardner [START_REF] Miura | Korteweg-deVries equation andgeneralizations. II. Existence of conservation laws and constants of motion[END_REF] in 1968. It was first considered [START_REF] Miura | Korteweg-deVries equation andgeneralizations. II. Existence of conservation laws and constants of motion[END_REF] as an auxiliary mathematical tool in the derivation of the infinite set of local conservation laws of the Korteweg de Vries equation. This equation is a fundamental mathematical model for the description of weakly nonlinear dispersive waves. It can describe nonlinear wave effects in several physical contexts: for example, in plasma physics [START_REF] Watanabe | Ion Acoustic Soliton in Plasma with Negative Ion[END_REF][START_REF] Ruderman | Dynamics of modulationally unstable ion-acoustic wavepackets in plasmas with negative ions[END_REF], fluid flows [START_REF] Grimshaw | Environmental Stratified Flows, Topics in Environmental Fluid Mechanics[END_REF], quantum fluid dynamics [START_REF] Demler | Semiclassical solitons in strongly correlated systems of ultracold bosonic atoms in optical lattices[END_REF], in dusty plasmas [START_REF] Khater | Bäcklund transformations, a simple transformation and exact solutions for dustacoustic solitary waves in dusty plasma consisting of cold dust particles and two-temperature isothermal ions[END_REF], in ocean and atmosphere [START_REF] Grimshaw | Wave Group Dynamics in Weakly Nonlinear Long-Wave Models[END_REF]. It is fundamental tool to describe large-amplitude internal waves [START_REF] Grimshaw | Environmental Stratified Flows, Topics in Environmental Fluid Mechanics[END_REF][START_REF] Helfrich | Long nonlinear internal waves[END_REF][START_REF] Apel | Internal solitons in the ocean and their effect on underwater sound[END_REF]. These 1 waves are such that their vertical amplitudes underwater can exceed 170 meters as described in [START_REF] Alford | The formation and fate of internal waves in the South China Sea[END_REF].

Many methods have been used to solve this equation, as for example the Hirota method [START_REF] Wadati | Wave propagation in nonlinear lattice III[END_REF], the series expansion method [START_REF] Coffey | On series expansions giving closed-form solutions of Korteweg-de Vries-like equations[END_REF], the mapping method [START_REF] Lou | Solitary wave solutions and cnoidal wave solutions to the combined KdV and mKdV equation[END_REF] or the method of leading-order analysis [START_REF] Zhang | New Solitary Wave Solution of the Combined KdV and mKdV Equation[END_REF].

Here, we used the Darboux transformation to construct different type of solutions. We give a representation of solutions in terms of a quotient of a wronskian of order N + 1 by a wronskian of order N . We get what we will call N -order solutions which depend on 2N real parameters in terms of trigonometric or hyperbolic functions. Then we construct rational solutions in performing a passage to the limit when one of these parameters goes to 0. We obtain rational solutions as a quotient of polynomials in x and t, depending on 2N parameters. We give explicit solutions in the simplest cases N = 1, 2, 3.

We easily deduce solutions to the mKdV equation and their corresponding rational solutions depending on 2N real parameters.

2 Nth-order solutions to the Gardner equation in terms of wronskians 2.1 First type of solutions

Nth-order solutions in terms of wronskians of sine functions

We consider the Gardner equation

u t -6u(1 + u)u x + u xxx = 0.
In the following, we will use the wronskian of order N of the functions f 1 , . . . , f N which is the determinant denoted W (f 1 , . . . , f N ), defined by det(∂ i-1 x f j ) 1≤i≤N, 1≤j≤N , ∂ i

x being the partial derivative of order i with respect to x and ∂ 0 x f j being the function f j . We consider a j , b j , arbitrary real numbers 1 ≤ j ≤ N . Then, we have the following statement : Theorem 2.1 Let f j , f be the functions defined by

f j (x, t) = sin 1 2 a j x + 1 2 a 3 j t + b j , for 1 ≤ i ≤ N, f (x, t) = exp 1 2 (x -t) (2) 
then the function u defined by

u(x, t) = ∂ x ln W (f 1 , . . . , f N , f ) W (f 1 , . . . , f N ) - 1 2 (3) 
is a solution to the Gardner equation (1) depending on 2N real parameters a j , b j , 1 ≤ j ≤ N .

Remark 2.1 This result looks like to this given in [START_REF] Slyunyaev | Dynamics of large amplitude solitons[END_REF], but with another similar normalization of the Gardner equation

u t + 6u(1 -u)u x + u xxx = 0. (4) 
In this paper [START_REF] Slyunyaev | Dynamics of large amplitude solitons[END_REF], the generating functions are hyperbolic and the choice of the general solution f (x, t) gives another types of solutions to the Gardner equation.

Only solutions of orders 1 and 2 have been explicitly presented.

Some examples of solutions to the Gardner equation

To shortened the paper, we only give the solutions of order 1, 2 and 3 in the case of generating trigonometric sinus functions. 

a1 3 t + b1)) 2 + 2 a2 2 a1 2 + a1 4 cos(1/2 a2x + 1/2 a2 3 t + b2)a2 sin(1/2 a2x + 1/2 a2 3 t + b2) -cos(1/2 a1x + 1/2 a1 3 t+b1)a1 3 a2 2 sin(1/2 a1x+1/2 a1 3 t+b1)-a1 2 cos(1/2 a2x+1/2 a2 3 t+b2)a2 3 sin(1/2 a2x+ 1/2 a2 3 t + b2) + cos(1/2 a1x + 1/2 a1 3 t + b1)a1a2 4 sin(1/2 a1x + 1/2 a1 3 t + b1) and, d(x, t) = -2 (cos(1/2 a2x+1/2 a2 3 t+b2)) 2 a2 2 +2 (cos(1/2 a2x+1/2 a2 3 t+b2)) 2 a2 2 (cos(1/2 a1x+ 1/2 a1 3 t + b1)) 2 -2 sin(1/2 a2x + 1/2 a2 3 t + b2) cos(1/2 a2x + 1/2 a2 3 t + b2)a2 3 + 2 sin(1/2 a2x + 1/2 a2 3 t + b2) cos(1/2 a2x + 1/2 a2 3 t + b2)a2 3 (cos(1/2 a1x + 1/2 a1 3 t + b1)) 2 +4 sin(1/2 a1x+1/2 a1 3 t+b1) cos(1/2 a2x+1/2 a2 3 t+b2)a2 sin(1/2 a2x+1/2 a2 3 t+ b2) cos(1/2 a1x+1/2 a1 3 t+b1)a1 +2 sin(1/2 a1x+1/2 a1 3 t+b1) cos(1/2 a2x+1/2 a2 3 t+ b2)a2 3 sin(1/2 a2x + 1/2 a2 3 t + b2) cos(1/2 a1x + 1/2 a1 3 t + b1)a1 + 2 sin(1/2 a2x + 1/2 a2 3 t+b2)a1 2 cos(1/2 a2x+1/2 a2 3 t+b2)a2-2 sin(1/2 a2x+1/2 a2 3 t+b2)a1 2 cos(1/2 a2x+ 1/2 a2 3 t+b2)a2(cos(1/2 a1x+1/2 a1 3 t+b1)) 2 -2 a2 2 a1 2 (cos(1/2 a2x+1/2 a2 3 t+b2)) 2 + 4 a2 2 a1 2 (cos(1/2 a1x + 1/2 a1 3 t + b1)) 2 (cos(1/2 a2x + 1/2 a2 3 t + b2)) 2 + 2 sin(1/2 a1x + 1/2 a1 3 t+b1) cos(1/2 a1x+1/2 a1 3 t+b1)a1a2 2 -2 sin(1/2 a1x+1/2 a1 3 t+b1) cos(1/2 a1x+ 1/2 a1 3 t+b1)a1a2 2 (cos(1/2 a2x+1/2 a2 3 t+b2)) 2 -2 (cos(1/2 a1x+1/2 a1 3 t+b1)) 2 a1 2 + 2 (cos(1/2 a1x+1/2 a1 3 t+b1)) 2 a1 2 (cos(1/2 a2x+1/2 a2 3 t+b2)) 2 -2 a2 2 a1 2 (cos(1/2 a1x+ 1/2 a1 3 t + b1)) 2 -2 sin(1/2 a1x + 1/2 a1 3 t + b1) cos(1/2 a1x + 1/2 a1 3 t + b1)a1 3 +
is a solution to the Gardner equation ( 1) with a 1 , a 2 , b 1 , b 2 arbitrarily real parameters.

Solution of order 3

For this third order, we only present solution in the particular case where is a solution to the Gardner equation (1).

a 1 = 1, a 2 = 2, a 3 = 3, b 1 = 0, b 2 = 0, b 3 = 0 to

Other types of solutions

We obtain similar results with other types of generating functions whose proofs are identical.

Solutions with cosine generating functions

Theorem 2.2 Let g j , g be the following functions

g j (x, t) = cos 1 2 a j x + 1 2 a 3 j t + b j , for 1 ≤ i ≤ N, g(x, t) = exp 1 2 (x -t) (7) 
then the function u defined by

u(x, t) = ∂ x ln W (g 1 , . . . , g N , g) W (g 1 , . . . , g N ) - 1 2 (8) 
is a solution to the Gardner equation ( 1) with a j , b j 1 ≤ j ≤ N arbitrarily real parameters.

Solutions with hyperbolic generating functions

Theorem 2.3 Let h j , h be the following functions

h j (x, t) = sinh 1 2 a j x - 1 2 a 3 j t + b j , for 1 ≤ i ≤ N, h(x, t) = exp 1 2 (x -t) (9) 
then the function u defined by

u(x, t) = ∂ x ln W (h 1 , . . . , h N , h) W (h 1 , . . . , h N ) - 1 2 ( 10 
)
is a solution to the Gardner equation ( 1) with a j , b j 1 ≤ j ≤ N arbitrarily real parameters.

Theorem 2.4 Let k j , k be the following functions

k j (x, t) = cosh 1 2 a j x - 1 2 a 3 j t + b j , for 1 ≤ i ≤ N, k(x, t) = exp 1 2 (x -t) (11) 
then the function u defined by

u(x, t) = ∂ x ln W (k 1 , . . . , k N , k) W (k 1 , . . . , k N ) - 1 2 ( 12 
)
is a solution to the Gardner equation ( 1) with a j , b j 1 ≤ j ≤ N arbitrarily real parameters.

3 Rational solutions to the Gardner equation

Rational solutions to the Gardner equation as a limit

To obtain rational solutions to the Gardner equation ( 1), we are going to perform a limit when a parameter e tends to 0. For this we replace all parameters a j and b j , 1 ≤ j ≤ N by âj = N k=1 a k (je) 2k-1 and bj = N k=1 b k (je) 2k-1 with e an arbitrary real parameter. We get the following result : Theorem 3.1 Let ψ j , ψ be the functions

ψ j (x, t, e) = sin 1 2 N k=1 a k (je) 2k-1 x + 1 2 N k=1 a k (je) 2k-1 3 t + N k=1 b k (je) 2k-1 , for 1 ≤ j ≤ N , ψ(x, t) = exp 1 2 (x -t)
then the function u defined by

u(x, t) = lim e→0 ∂ x ln W (ψ 1 , . . . , ψ N , ψ) W (ψ 1 , . . . , ψ N ) - 1 2 (13) 
is a rational solution to the Gardner equation ( 1).

We have similar results with generating cosine or hyperbolic functions.

Degenerate rational solutions to the Gardner equation

We can give the expression of the rational solutions of the Gardner equation avoiding the presence of a limit. For this we consider another type of functions. We get the following result :

Theorem 3.2 Let ψ, ϕ j , ϕ be the functions

ψ(x, t, e) = sin 1 2 N k=1 a k e 2k-1 x + 1 2 N k=1 a k e 2k-1 3 t + N k=1 b k e 2k-1 , ϕ j (x, t) = ∂ 2j-1 ψ(x, t, 0) ∂ 2j-1 e , for 1 ≤ j ≤ N , ϕ(x, t) = exp 1 2 (x -t) then the function v defined by v(x, t) = ∂ x ln W (ϕ 1 , . . . , ϕ N , ϕ) W (ϕ 1 , . . . , ϕ N ) - 1 2 (14) 
is a rational solution to the Gardner equation ( 1) depending on 2N parameters a j , b j , 1 ≤ j ≤ N .

So we obtain an infinite hierarchy of rational solutions to the Gardner equation depending on the integer N .

In the following we give some examples of rational solutions. These results are consequences of the previous result. But, it is also possible to prove it directly in replacing the expressions of each of the solutions given in the corresponding equation and check that the relation is verified.

First order rational solutions

We have the following result at order N = 1 :

Proposition 3.1 The function v defined by v(x, t) = 2a1 2 (a1x + 2 b1) (-2 a1 + 2 b1 + a1x) , (15) 
is a rational solution to the Gardner equation ( 1) with a 1 , b 1 , arbitrarily real parameters.

Second order rational solutions

Proposition 3.2 The function v defined by v(x, t) = n(x, t) d(x, t) , (16) 
with n(x, t) = -6 a1a2(-a1 5 a2-a2 5 a1+2 a2 3 a1 3 )x 4 -6 a1a2(4 a2 5 a1+4 a1 5 a2-8 a2 3 a1 3 )x 3 -6 a1a2(-48 a2 3 ta1 3 -48 b2a1 3 +48 b2a1a2 2 +24 a1 5 ta2+48 b1a2a1 2 -48 b1a2 3 +24 a2 5 ta1)x-6 a1a2(-48 b2a1a2 2 -48 b1a2a1 2 +48 a2 3 ta1 3 +48 b2a1 3 -24 a1 5 ta2+48 b1a2 3 -24 a2 5 ta1), and, 

d(x, t) = (a 1 3 a 2 -a 1 a 2 3 ) 2 x 6 + (a 1 3 a 2 -a 1 a 2 3 )(-6 a 1 3 a 2 + 6 a 1 a 2 3 )x 5 + (a 1 3 a 2 - a 1 a 2 3 )(12 a 1 3 a 2 -12 a 1 a 2 3 )x 4 +2 (-12 a 2 3 ta 1 -24 b 2 a 1 +12 a 1 3 ta 2 +24 b 1 a 2 )(a 1 3 a 2 - a 1 a 2 3 )x 3 + (-12 a 2 3 ta 1 -24 b 2 a 1 + 12 a 1 3 ta 2 + 24 b 1 a 2 )(-6 a 1 3 a 2 + 6 a 1 a 2 3 )x 2 + (-12 a 2 3 ta 1 -24 b 2 a 1 +12 a 1 3 ta 2 +24 b 1 a 2 )(12 a 1 3 a 2 -12 a 1 a 2 3 )x+(-12 a 2 3 ta 1 - 24 b 2 a 1 + 12 a 1 3 ta 2 + 24 b 1 a 2 ) 2

Rational solutions of order three

The explicit solution depending on 6 real parameters being too long, we give only the rational solution without parameters. We get the following rational solutions given by : Proposition 3. is a rational solution to the Gardner equation ( 1).

4 Case of the mKdV equation

Solutions in terms of wronskians

As a consequence of the previous study, we easily deduce solutions to the modified Korteweg-de Vries (mKdV) equation in the following normalization (??)

w t -6w 2 w x + w xxx = 0.
We have the following result :

Theorem 4.1 Let f j ,f be the following functions

f j (x, t) = sin 1 2 a j x + 1 2 a 3 j t + b j , for 1 ≤ i ≤ N, f (x, t) = exp 1 2 (x -t) (18) 
then the function w defined by

w(x, t) = ∂ x ln W (f 1 , . . . , f N , f ) W (f 1 , . . . , f N ) (19) 
is a solution to the mKdV equation (??) depending on 2N real parameters a j , b j , 1 ≤ j ≤ N .

Rational solutions

We get the following statement :

Theorem 4.2 Let ψ j , ψ be the functions

ψ j (x, t, e) = sin 1 2 N k=1 a k (je) 2k-1 x + 1 2 N k=1 a k (je) 2k-1 3 t + N k=1 b k (je) 2k-1 , for 1 ≤ j ≤ N , ψ(x, t) = exp 1 2 (x -t)
then the function u defined by

u(x, t) = lim e→0 ∂ x ln W (ψ 1 , . . . , ψ N , ψ) W (ψ 1 , . . . , ψ N ) (20) 
is a rational solution to the mKdV equation (??).

We can also give the expression of the rational solutions of the mKdV equation without the presence of a limit. We get the following result : We get the following result : 

is a rational solution to the mKdV equation (??) depending on 2N parameters a j , b j , 1 ≤ j ≤ N .

Conclusion

We have given two types of representations of solutions to the Gardner equation. First, solutions as a quotient of a wronskian of order N + 1 by a wronskian of order N depending on 2N real parameters have been constructed. Then performing a passage to the limit when one parameter goes to 0 we get rational solutions to the Gardner equation depending on 2N real parameters. So we obtain an infinite hierarchy of multiparametric families of rational solutions to the Gardner equation as a quotient of a polynomials in x and t depending on 2N real parameters. As a byproduct, we easily deduce solutions to the mKdV equation in terms of wronkians and rational solutions, depending on 2N real parameters.

  is a rational solution to the Gardner equation (1) dependant on 4 real parameters a 1 , a 2 , b 1 , b 2 .

Theorem 4 . 3 2 N k=1 a k e 2k-1 x + 1 2 N k=1 a k e 2k-1 3 t + N k=1 b k e 2k- 1 ,

 432231 Let ψ, ϕ j , ϕ be the functions ψ(x, t, e) = sin 1ϕ j (x, t) = ∂ 2j-1 ψ(x, t, 0) ∂ 2j-1 e , for 1 ≤ j ≤ N , ϕ(x, t) = exp 1 2 (xt)then the function v defined byv(x, t) = ∂ x ln W (ϕ 1 , . . . , ϕ N , ϕ) W (ϕ 1 , . . . , ϕ N )

  shorten the paper.

	Proposition 2.3 The function u defined by
		u(x, t) =	n(x, t) d(x, t)	,	(6)
	with			
	n(x, t) = -30 sin(1/2 x+1/2 t) cos(1/2 x+1/2 t)-54 sin(3/2 x+ 27 2 t) cos(3/2 x+ 27 2 t)+
	96 sin(x+4 t) cos(x+4 t)+192 (cos(x+4 t)) 2 +60 (cos(1/2 x+1/2 t)) 2 +108 sin(1/2 x+
	1/2 t) cos(3/2 x+ 27 2 t) cos(1/2 x+1/2 t) sin(3/2 x+ 27 2 t)-252 sin(1/2 x+1/2 t) cos(x+
	4 t) cos(1/2 x+1/2 t) sin(x+4 t)-108 cos(x+4 t) sin(3/2 x+ 27 2 t) cos(3/2 x+ 27 2 t) sin(x+
	4 t)+84 (cos(1/2 x+1/2 t)) 2 (cos(3/2 x+ 27 2 t)) 2	-102 (cos(x+4 t)) 2 (cos(3/2 x+ 27 2 t)) 2	-
	234 (cos(1/2 x+1/2 t)) 2 (cos(x+4 t)) 2	-108 sin(x+4 t) cos(x+4 t)(cos(1/2 x+1/2 t)) 2	-
	24 sin(1/2 x+1/2 t) cos(1/2 x+1/2 t)(cos(3/2 x+ 27 2 t)) 27 2 t) sin(x + 4 t) +
	54 sin(1/2 x + 1/2 t) cos(3/2 x + 27 2 t) cos(1/2 x + 1/2 t) sin(3/2 x + 27 2 t) -56 sin(1/2 x +
	1/2 t) cos(x+4 t) cos(1/2 x+1/2 t) sin(x+4 t)-216 cos(x+4 t) sin(3/2 x+ 27 2 t) cos(3/2 x+
	27 2 t) sin(x+4 t)-54 sin(1/2 x+1/2 t)(cos(x+4 t)) 2 cos(3/2 x+ 27 2 t) cos(1/2 x+1/2 t) sin(3/2 x+
	27 2 t) + 56 sin(1/2 x + 1/2 t) cos(x + 4 t)(cos(3/2 x + 27 2 t)) 2 cos(1/2 x + 1/2 t) sin(x +
	4 t) + 216 (cos(1/2 x + 1/2 t)) 2 cos(3/2 x + 27 2 t) sin(x + 4 t) cos(x + 4 t) sin(3/2 x + 27 2 t) -
	86 (cos(1/2 x + 1/2 t)) 2 (cos(3/2 x + 27 2 t)) 2	-209 (cos(x + 4 t)) 2 (cos(3/2 x + 27 2 t)) 2	-
	84 sin(x + 4 t) cos(x + 4 t)(cos(1/2 x + 1/2 t)) 2 (cos(3/2 x + 27 2 t)) 2 + 156 sin(3/2 x +
	27 2 t) cos(3/2 x+ 27 2 t)(cos(1/2 x+1/2 t)) 2 (cos(x+4 t)) 2 +204 sin(1/2 x+1/2 t) cos(1/2 x+
	1/2 t)(cos(x+4 t)) 2 (cos(3/2 x+ 27 2 t)) 2 +214 (cos(x+4 t)) 2 (cos(3/2 x+ 27 2 t)) 2 (cos(1/2 x+
	1/2 t)) 2	-133 (cos(1/2 x+1/2 t)) 2 (cos(x+4 t)) 2 +30 sin(x+4 t) cos(x+4 t)(cos(1/2 x+
	1/2 t)) 2	-108 sin(1/2 x + 1/2 t) cos(1/2 x + 1/2 t)(cos(3/2 x + 27 2 t)) 2	-96 sin(1/2 x +
	1/2 t) cos(1/2 x + 1/2 t)(cos(x + 4 t)) 2	-96 (cos(x + 4 t)) 2 sin(3/2 x + 27 2 t) cos(3/2 x +
	27 2 t)+54 (cos(3/2 x+ 27 2 t)) 2 sin(x+4 t) cos(x+4 t)-60 (cos(1/2 x+1/2 t)) 2 sin(3/2 x+
	27 2 t) cos(3/2 x + 27 2 t)		

2 +54 sin(1/2 x+1/2 t) cos(1/2 x+ 1/2 t)(cos(x+4 t)) 2 -18 (cos(x+4 t)) 2 sin(3/2 x+ 27 2 t) cos(3/2 x+ 27 2 t)+12 (cos(3/2 x+ 27 2 t)) 2 sin(x + 4 t) cos(x + 4 t) + 72 (cos(1/2 x + 1/2 t)) 2 sin(3/2 x + 27 2 t) cos(3/2 x + 27 2 t) and, d(x, t) = 128 (cos(x+4 t)) 2 +81 (cos(3/2 x+ 27 2 t)) 2 +5 (cos(1/2 x+1/2 t)) 2 +276 sin(1/2 x+ 1/2 t) cos(x + 4 t) sin(3/2 x + 27 2 t) cos(1/2 x + 1/2 t) cos(3/2 x +

3

  The function v defined by + 360 x 8 + 8640 tx 5 + 64800 t 2 x 4 -259200 t 2 x 3 + 518400 t 2 x 2 + 518400 t 3 x -518400 t 3 and, d(x, t) = x 12 -12 x 11 + 60 x 10 + (120 t -120)x 9 -1080 tx 8 + 4320 tx 7 + (-1440 t 2 -60 t(120 -60 t) -1440 t)x 6 -12960 t 2 x 5 + (720 t 2 (120 -60 t) -60 t(1440 t + 720 t 2 ))x 3 + 259200 t 3 x 2 -518400 t 3 x + 720 t 2 (1440 t + 720 t 2 )

		v(x, t) =	n(x, t) d(x, t)	,	(17)
	with			
	n(x, t) = 12 x 10	-120 x 9		

sin(1/2 a1x + 1/2 a1

t + b1) cos(1/2 a1x + 1/2 a1 3 t + b1)a1 3 (cos(1/2 a2x + 1/2 a2 3 t + b2)) 2 + 2 cos(1/2 a1x + 1/2 a1 3 t + b1)a1 3 sin(1/2 a2x + 1/2 a2 3 t + b2) sin(1/2 a1x + 1/2 a1 3 t + b1) cos(1/2 a2x + 1/2 a2 3 t + b2)a2