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Abstract

In graph-based clustering, a relevant affinity matrix is crucial for good results.
Double stochasticity of the affinity matrix has been shown to be an impor-
tant condition, both in theory and in practice. In this paper, we emphasize
idempotency as another key condition. In fact, a theorem from Sinkhorn,
R. (1968) allows us to exhibit the bijective relationship between the set of
doubly stochastic and idempotent matrices of order n (modulo permutation
of rows and columns) on the one hand, and the set of possible partitions of
a set of n objects on the other hand. Thereby, both properties are neces-
sary and sufficient conditions for properly modeling the clustering or graph
partitioning tasks using matrices. Yet, this leads to a NP-hard discrete opti-
mization problem. In this context, our main contribution is the introduction
of a new relaxed model that efficiently learns a double stochastic and nearly
idempotent affinity matrix for graph-based clustering. Our approach lever-
ages existing properties between doubly stochastic and idempotent matrices
on the one hand, and their associated Laplacian matrices on the other hand.
The resulting optimization problem is bi-convex and can be addressed by
an Alternating Direction Method of Multipliers scheme. Furthermore, our
model requires less parameters to set in contrast to most of recent works.
The experimental results we obtained using several real-world benchmarks,
exhibit the interest of our method and the importance of taking into account
idempotency in graph-based clustering.
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affinity matrix, Idempotent matrix, ADMM.

1. Introduction

Given a set of objects, clustering aims to automatically find groups of
similar elements. The discovered partition allows one to have a synthesized
viewpoint of the different profiles among the objects, to gain knowledge from
these patterns and to take better decisions. Clustering is a core topic inves-
tigated in the data analysis and machine learning communities and related
textbooks are, for example, [20, 15, 17]. Clustering can also be apprehended
from a graph point of view. In this context, the goal is to separate the set of
nodes into several groups such that within each subset the nodes are densely
connected. In this case, the clustering task is related to the following prob-
lems: graph or clique partitioning (see for example [8]) and graph max-cut or
min-cut (see for example [13]). These problems have been studied by scholars
from the discrete mathematics and operational research communities as well
(see for example [14, 5]).

From a discrete point of view, the brute force approach for solving the
clustering problem is to enumerate all possible partitions, measure their re-
spective quality according to a given criterion and keep the best one(s). But
the number of possible partitions of a set of n objects is given by the Bell
number which grows exponentially with respect to n. For instance if n = 10
the number of possible cases is 115,975 while if n = 100 the number of solu-
tions increases to ≈ 4× 10115. Therefore, this näıve approach is not possible
in practice from a general perspective.
The clustering problem can also be expressed as a binary integer linear pro-
gram [23, 18]. However the number of constraints is of order O(n3) and thus,
the application of this exact procedure is not scalable either.

The complexity of the clustering problem depends on the criterion used
to assess the quality of the partitions [19]. In this paper, we focus on the
conventional Sum of Squared Errors (SSE) criterion (that we formally intro-
duce shortly after). In this instance, the clustering problem is NP-hard (see
[2] and references therein). As a consequence, when minimizing SSE, heuris-
tics have been developed in order to cope with the combinatorial nature of
the task. Moreover, the research activities in this domain have been stimu-
lated by the wide range of applications of cluster analysis. Indeed, clustering
algorithms are employed in many applied domains such as for image segmen-
tation in signal processing, for gene functional analysis in bioinformatics, for
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community detection in social network analysis or for pattern discovery in
computational social science, . . . (see for example [32] and references therein).
Regarding fields closer to operational research applications, cluster analysis is
used in marketing for customer segmentation and relationship management
(see for example [26] and references therein). Another example concerns the
design of manufacturing systems, where cluster analysis has been applied
for group technology and cell formation (see for example [9] and references
therein). Yet another application is in VLSI (Very Large Scale Integration)
design (see for example [1, 14]), where clustering methods can help optimize
efficiency.

There are different clustering heuristics and one way to categorize them
is by the type of input they deal with.
The well-known k-means algorithm is a feature-based approach. It takes as
input a feature matrix which represents the set of objects as vectors in an
Euclidean space. Then, it seeks a partition with k clusters that minimizes
the SSE criterion.
In contrast, graph-based clustering takes as input a pairwise affinity matrix.
It is the weighted adjacency matrix of an undirected graph whose vertices are
the objects and the edges weights are the similarity (or affinity) values be-
tween the connected pairs of objects. In this context, the clustering problem
becomes a graph partitioning one and the SSE objective function employed
in the k-means algorithm has strong relationships with the normalized cut
criterion used in balanced graph cuts [10, 35].

In this paper, we are interested in graph-based clustering and we par-
ticularly focus on the spectral clustering framework which is a modern and
elegant cluster analysis methodology which outperforms conventional clus-
tering techniques very often, as outlined in [35, 24]. This approach borrows
concepts and tools from spectral graph theory to solve graph partitioning
tasks approximately as exposed in [35, 24].
Spectral clustering proceeds in three steps: (ι) determine a suitable affinity
matrix of the objects; (ιι) compute the spectral decomposition of the Lapla-
cian matrix and; (ιιι) apply a feature-based clustering technique to a limited
number of leading eigenvectors. Step (ιι) can be interpreted as a spectral
embedding of the vertices into a low-dimensional Euclidean space. In step
(ιιι), the regular k-means algorithm is usually applied. Our work is mainly
concerned with step (ι) which is about learning a significant affinity matrix
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for clustering purposes. This step is crucial in order to obtain good results1.
It is interesting to interpret the spectral clustering algorithm from an

optimization standpoint. In fact, the three steps (ι), (ιι), (ιιι), form a pro-
cedure that is similar in spirit to the following common strategy used to
approximately solve a NP-complete discrete optimization problem: (i) de-
fine a continuous relaxation of the initial optimization problem; (ii) solve
the relaxed problem in polynomial time; (iii) apply a rounding procedure
in order to obtain a feasible solution to the initial problem. Accordingly,
from an optimization perspective, our work is related to step (i) and aims to
design a new continuous relaxation model of the clustering problem.

When attempting to bridge the gap between the affinity matrix in (ι) and
the partition one ultimately targets in (ιιι), a first important property arises
[39]: double stochasticity. A square matrix X = (xii′) in Rn×n, is said to be
doubly stochastic if X ≥ 0n and Xen = X>en = en, where 0n is the null
square matrix of order n, X ≥ 0n is a shortcut for xii′ ≥ 0,∀i, i′ = 1, . . . , n,
en is the n dimensional vector with 1 in all entries and X> is the transpose
of X.
In fact, the graph-based formulation of SSE shows that the solution to the
clustering problem that minimizes this criterion has to be doubly stochastic.
This observation have conducted several researchers to define in step (ι), un-
supervised learning algorithms that output a doubly stochastic matrix from a
given affinity matrix [40, 36]. They showed that learning a doubly stochastic
affinity matrix indeed improves the spectral clustering results. Some recent
works in this area, such as [37, 28], have exploited additional properties in
order to make the affinity matrix learnt in (ι) closer and closer to a ma-
trix which properly encodes a partition that is expected at the final stage
(ιιι). Nonetheless, these approaches lead to complex models with numerous
parameters to tune.

In this contribution, we introduce a new framework for learning a dou-
bly stochastic affinity matrix. A core characteristic of our model is that the
affinity matrix we search for, should be idempotent “as much as possible”
in addition to be doubly stochastic. Our framework can be briefly summa-
rized as follows. After having exhibited the relationships between SSE and
the Frobenius distance between the given affinity matrix and our variable,
we propose to apply this latter criterion as an objective function of our opti-

1Not only to spectral clustering but to all graph-based clustering techniques as well.
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mization problem. Then, by exploiting the fact that both a doubly stochastic
and idempotent affinity matrix and its related Laplacian matrix are orthog-
onal projection matrices, we design a new bi-convex optimization problem
that can be addressed by an Alternating Direction Method of Multipliers
(ADMM) scheme.

The rest of the paper is organized as follows. In section 2, we recall impor-
tant concepts and in particular, we stress a result from Sinkhorn [33] which
is central to our work. In section 3, we present our framework which takes
a distinct path from previous works. Our approach aims to learn a doubly
stochastic and nearly idempotent affinity matrix. In the goal of demon-
strating the interest of our approach we conducted experiments using nine
real-world clustering benchmarks. The results we obtained are depicted in
section 4 and show the superior performances of our method over two exist-
ing doubly stochastic affinity matrix learning techniques. Finally in section
5, we give a summary of our contributions and provide some future research
lines as concluding remarks.

2. Background and motivations

2.1. Doubly stochastic and idempotent matrices as clustering matrices

As stated in the introduction, double stochasticity is a property that has
been addressed in several papers for clustering purposes. Idempotency is
another property that we promote in this paper. X ∈ Rn×n is said to be
idempotent if X2 = X. Let Jn and In be two special square matrices of order
n. The former one has the value 1/n in all entries and the latter one is the
identity matrix.

For example, in the case n = 4, one has:

J4 =


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

 and I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Note that Jn and In are idempotent. The following result from Sinkhorn

[33] is at the core of our developments.

Theorem 1 ([33]). X ∈ Rn×n is doubly stochastic and idempotent if and
only if there are k positive numbers n1, n2, . . . , nk with n1 +n2 + . . .+nk = n,
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and a permutation matrix P such that:

X = P


Jn1 0 . . . 0
0 Jn2 . . . 0
...

...
. . .

...
0 0 . . . Jnk

P> (1)

Accordingly, any doubly stochastic and idempotent matrix X of order n
(modulo permutation of rows and columns) can be associated with a partition
of the integer n and vice-versa. In the context of graph partitioning, if X is
the weighted adjacency matrix of the affinity relationships among a set of n
objects, then each one of the k blocks Jn1 , . . . ,Jnk

in Theorem 1, corresponds
to a complete sub-graph (or a clique or an equivalence class). Clearly, these
blocks represent subsets that are mutually disjoint and, all together, they
form a partition of the set of objects in k clusters.

Note that, given any square matrix A and permutation matrix P, PAP>

rearranges the rows and columns of A in exactly the same manner. Conse-
quently, PAP> is symmetric if and only if A is symmetric. Applying this
reasoning to (1), we can state the following necessary condition.

Corollary 1. If X ∈ Rn×n is doubly stochastic and idempotent then X is
symmetric.

Furthermore, (1) indicates that Tr(X) = Tr(Jn1) + . . . + Tr(Jnk
) be-

cause for any square matrix A and permutation matrix P, Tr(PAP>) =
Tr(P>PA) = Tr(A). Moreover, it is clear that Tr(Jnj

) = 1,∀j = 1, . . . , k.
Hence, we have the following property.

Corollary 2. If X ∈ Rn×n is doubly stochastic and idempotent then Tr(X)
equals k the number of positive numbers that sum to n in the relationship
n1 + n2 + . . .+ nk = n in Theorem 1.

In other words, if X is doubly stochastic and idempotent then Tr(X)
equals the number of clusters of the associated partition of its rows (and
columns). Given these properties, any X ∈ Rn×n which is doubly stochastic
and idempotent is called a clustering matrix hereafter.

For illustration purposes, we give the following example: the partition
{{a, b, d}, {c}} of the set {a, b, c, d} in the two clusters {a, b, d} and {c}, is
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an instance of the integer partition2 3 + 1 = 4 and can be represented by:

X =



a b c d

a 1/3 1/3 0 1/3

b 1/3 1/3 0 1/3

c 0 0 1 0

d 1/3 1/3 0 1/3


This matrix is clearly doubly stochastic and idempotent. Moreover, if one
permutes the rows and columns of c and d using the permutation matrix P
below, it becomes block diagonal with each block J3 and J1 representing a
cluster:



a b c d

a 1 0 0 0

b 0 1 0 0

c 0 0 0 1

d 0 0 1 0


︸ ︷︷ ︸

P



a b c d

a 1/3 1/3 0 1/3

b 1/3 1/3 0 1/3

c 0 0 1 0

d 1/3 1/3 0 1/3




a b c d

a 1 0 0 0

b 0 1 0 0

c 0 0 0 1

d 0 0 1 0


︸ ︷︷ ︸

P>

=



a b d c

a 1/3 1/3 1/3 0

b 1/3 1/3 1/3 0

d 1/3 1/3 1/3 0

c 0 0 0 1


Besides, in this example, Tr(X) = 2, the number of clusters.

Note that J4 and I4 given as examples at the beginning of this paragraph,
can be interpreted as two clustering matrices of the set {a, b, c, d} respectively
representing the two opposite partitions {{a, b, c, d}}3 and {{a}, {b}, {c}, {d}}4.

2This partition corresponds to the case n = 4, k = 2, n1 = 3, n2 = 1, and n1 + n2 = n
in Theorem 1 and Corollary 2.

3This partition corresponds to the case n = 4, k = 1, n1 = 4 and n1 = n in Theorem 1
and Corollary 2.

4This partition corresponds to the case n = 4, k = 4, n1 = n2 = n3 = n4 = 1 and
n1 + n2 + n3 + n4 = n in Theorem 1 and Corollary 2.
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2.2. Graph-based formulation of SSE and the Frobenius distance criterion

Doubly stochastic and idempotent matrices naturally arise when one re-
casts the SSE criterion using inner-product matrices. Let {xi}i=1,...,n be n
vectors in an Euclidean space, representing the objects to cluster. Suppose
there is a mapping φ from the latter space to a higher-dimensional Reproduc-
ing Kernel Hilbert Space (RKHS). In the general kernel k-means framework
[10], one seeks a partition C = {C1, . . . , Ck} that minimizes:

SSE(C) =
k∑

j=1

∑
xi∈Cj

‖φ(xi)− cj‖2 (2)

where ‖.‖ is the distance in the RKHS and cj is the mean vector of elements
in Cj of cardinal nj in the RKHS: cj = 1

nj

∑
xi∈Cj

φ(xi).

In the conventional general k-means method, one represents a partition
C = {C1, . . . , Ck} by a n× k binary assignment matrix Y = (yij) of general
term yij = 1 if xi ∈ Cj and yij = 0 otherwise. Using Y, one has nj =∑n

i=1 yij and cj = 1∑n
i′=1 yi′j

∑n
i′′=1 φ(xi′′)yi′′j.The clustering model based on

the minimization of SSE can then be expressed as:

min
Y∈{0,1}n×k

SSE(Y) =
k∑

j=1

n∑
i=1

yij‖φ(xi)−
1∑n

i′=1 yi′j

n∑
i′′=1

φ(xi′′)yi′′j‖2 (3)

s.t. Yek = en,Y
>en ≥ ek.

where Yek = en states that each vector should be assigned to exactly one
cluster and Y>en ≥ ek indicates that each cluster should contain at least
one vector.

The SSE criterion is non-linear and non-convex in (yij). In addition, the
discrete nature of Problem (3) makes it NP-hard.
Problem (3) can be formulated from a graph viewpoint. Furthermore, the
kernel trick allows the k-means algorithm to be extended to kernel functions
(see [21] for example). For any mapping φ, one can define for all i, i′ =
1, . . . , n, the kernel function κ(xi,xi′) = 〈φ(xi), φ(xi′)〉 where 〈., .〉 is the
inner-product in the RKHS. Let denote κ(xi,xi′) by κii′ , and introduce the
kernel matrix K = (κii′). Then, by expanding (2) in terms of inner-products
it comes (see for example [41, 11]):

SSE(Y) =
n∑

i=1

κii −
n∑

i=1

n∑
i′=1

κii′
k∑

j=1

1

nj

yijyi′j
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Next, we introduce the pairwise comparison matrix of order n, X = (xii′)
whose general term xii′ =

∑k
j=1

1
nj
yijyi′j boils down to xii′ = 1

nj
if xi,xi′ ∈

Cj and xii′ = 0 otherwise. Using matrix notations one has the following
relationship (see for example [10, 31]):

X = Y(Y>Y)−1Y> (4)

Then it is possible to define SSE w.r.t. X:

SSE(X) = Tr(K(In −X))

where Tr(.) is the matrix trace operator. More specifically, [31] showed that
Problem (3) is equivalent to5:

min
X∈Rn×n

SSE(X) = Tr(K(In −X)) (5)

s.t. X ≥ 0n,X = X>,Xen = en,X = X2,Tr(X) = k.

In our case, since we follow the spectral clustering methodology, we as-
sume that K ≥ 0n (negative values are replaced by 0 if need be) is the
weighted adjacency matrix of an undirected graph whose vertices represent
the objects and the weight of edges the similarity (or affinity) value between
pairs of objects. Then, the graph partitioning problem consists in approxi-
mating K with a doubly stochastic and idempotent matrix X (a clustering
matrix), which properly encodes a partition using matrices.

Under the constraints of Problem (5), we can relate the graph-based for-
mulation of SSE and the Frobenius inner-product and distance between K
and X. Recall that for any two matrices A and B in Rn×n, the Frobenius
inner-product, denoted 〈A,B〉F , is given by Tr(A>B). The related Frobenius
norm is therefore defined by ‖A‖F =

√
Tr(A>A) for any A ∈ Rn×n.

Concerning the SSE objective function, observe firstly that minX Tr(K(In−
X))⇔ maxX Tr(KX)⇔ maxX〈K,X〉F , since K> = K. Secondly, according
to Corollaries 1 and 2, one has ‖X‖2F = Tr(X>X) = Tr(X2) = Tr(X) = k,
the number of clusters, which is a parameter and not a variable of the model.
Using this fact, it comes: minX Tr(K(In − X)) ⇔ minX ‖K‖2F + ‖X‖2F −
2〈K,X〉F ⇔ minX ‖K − X‖2F . Consequently, we can equivalently replace
minX Tr(K(In−X)) in Problem (5) with maxX〈K,X〉F or minX ‖K−X‖2F .

5Note that [31] was not aware of Sinkhorn’s result [33] that we recalled in Theorem 1.
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Thereby, as stated above, Problem (5) which is based on SSE, can actually
be seen as approximating the kernel matrix K by a clustering matrix X with
k clusters under the Frobenius distance criterion.

However, it is important to underline that if one removes the constraint
Tr(X) = k in Problem (5), then the equivalence between minimizing SSE(X)
and minimizing ‖K − X‖F does not hold any more. More precisely, if the
number of clusters is not fixed, then clearly, the SSE(X) criterion is mini-
mized for the trivial partition with n clusters, X = In, since SSE(In) = 0. On
the contrary, in this case, the Frobenius distance criterion naturally penal-
izes the number of clusters through the term ‖X‖2F since minX ‖K−X‖2F ⇔
maxX〈K,X〉F − 1

2
‖X‖2F . In our approach, we do not require the number

of clusters to be a parameter. More generally, we argue that without any
prior information on the number of clusters, one should favor the Frobenius
distance criterion instead of SSE. Therefore, the method we introduce in this
paper relies on the Frobenius distance as we shall further detail in section 3.

2.3. Clustering matrices, orthogonal projection matrices and necessary con-
ditions

Problem (5) is called 0-1 semi-definite programming (SDP) in [30]. The
idempotency constraint X2 = X echoes the integrality constraint x2 = x
in 0-1 integer programming. As highlighted in the introduction, in order to
approximately solve such a NP-hard problem, one can proceed in the three
steps (i), (ii), (iii) that we previously recalled. This paper focuses on step
(i).

In Problem (5), all types of constraints but one are linear. It is idem-
potency that particularly makes this optimization problem difficult to solve.
In this instance, several combinations of simpler necessary conditions can be
used. An important observation to make is the relationship between the as-
signment matrix Y and the clustering matrix X. Indeed, (4) brings to light
the fact that X is the orthogonal projection matrix on the subspace spanned
by the columns of Y. Consequently, X enjoys the following properties (see
[38] for example).

Proposition 1. Let X be an orthogonal projection matrix on a k dimensional
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subspace E of Rn, then the following relations hold:

X is symmetric : X> = X (6)

X is idempotent : X2 = X (7)

Rk(X) = Tr(X) = k (8)

There exists G ∈ Rn×k, k = Rk(X), such that X = GG>,G>G = Ik (9)

X has Rk(X) eigenvalues equal to 1 and n− Rk(X) equal to 0 (10)

X is positive semi-definite : X � 0n (11)

In −X is the orthogonal projection matrix on E⊥ (12)

X(In −X) = (In −X)X = 0n (13)

where Rk(X) denotes the rank of matrix X.

Properties (6) and (7) are in fact necessary and sufficient conditions for
orthogonal projection matrices. Note that clustering matrices are orthogonal
projection matrices that are doubly stochastic.

In fact, numerous clustering models can be understood as relaxed versions
of Problem (5) where one or several properties listed in Proposition 1 are
employed as constraints. In our case, relations (12) and (13) are particularly
relevant as we shall expose in what follows.

2.4. Relaxed clustering matrices and learning doubly stochastic affinity ma-
trices

We now turn our attention to prior works that further promote double
stochasticity. Indeed, unlike several clustering methods focusing on the or-
thogonality condition such as low-rank matrix factorization techniques [12],
Zass and Shashua in [39] underlined the non-negativity and double stochas-
ticity conditions by putting more emphasis on a probabilistic view of cluster
analysis. Accordingly, they proposed an algorithm for transforming a given
affinity matrix K ≥ 0n into a doubly stochastic one, or put another way,
for learning a doubly stochastic affinity matrix. The procedure consists in
iterating the following update formula until convergence:

Kt+1 ← D
1/2
Kt KtD

1/2
Kt (14)

where DKt is the degree matrix associated to Kt = (κtii′). Precisely, DKt

is a diagonal matrix whose ith term on its diagonal equals
∑n

i′=1 κ
t
ii′ . This
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procedure is in fact, a symmetrized version of the Sinkhorn-Knopp algorithm
[34] which will be denoted SSK for Symmetric Sinkhorn-Knopp in the sequel.

The SSK algorithm is actually an iterative procedure that solves the fol-
lowing optimization problem whose objective function is the Kullback-Leibler
divergence between X and the given K [40, 36]:

min
X∈Rn×n

KL(X|K) =
n∑

i=1

n∑
i′=1

xii′ log
xii′

κii′
+ κii′ − xii′ (15)

s.t. X ≥ 0n,X = X>,Xen = en.

Note that when using KL, it is mandatory to assume K > 0n.
Then, in [40], the same authors successfully introduced an alternative

optimization problem using the Frobenius distance in place of the Kullback-
Leibler divergence:

min
X∈Rn×n

‖K−X‖2F (16)

s.t. X ≥ 0n,X = X>,Xen = en.

Problem (16) is convex and can be efficiently solved by using Von Neumann
successive projection lemma [25] or its more general form known as Pro-
jections On Convex Sets (POCS) (that we shall employ afterward as well).
Their algorithm is denoted DSN for Doubly Stochastic Normalization, and
similarly to SSK, it is an iterative procedure. Problems (15) and (16) can be
solved efficiently and do not have any hyper-parameter to tune. They also
do not require to set the number of clusters.
In contrast, more recent works have integrated additional constraints in the
goal of further bridging the gap between a doubly stochastic matrix and
a clustering matrix. Unlike the iterative procedures SSK and DSN, but
similarly to low-rank matrix factorization techniques [12], these papers as-
sume that the number of clusters k is known and integrate the constraint
Rk(X) = k, following (8) and Corollary 2. Using spectral graph theory, one
can equivalently use the related Laplacian matrix LX instead of X in this
context. Recall that given a weighted adjacency matrix X = (xii′) of order
n, the related degree matrix DX = (dii′) is such that dii =

∑n
i′=1 xii′ and

dii′ = 0 whenever i 6= i′, and the related Laplacian matrix LX is the n × n
matrix given by LX = DX − X. In this case, if X contains exactly k con-
nected components then Rk(LX) = n− k. Nonetheless, the rank constraint
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makes the problem non-convex. To overcome this drawback, the sum of the
k smallest eigenvalues of LX is penalized and by applying Ky Fan’s Theorem
[16], [27] eventually proposes to solve the following problem:

min
X∈Rn×n,G∈Rn×k

‖K−X‖2F + 2λTr(G>LXsG) (17)

s.t.


X ≥ 0n,Xen = en,

Xs = X+X>

2
,LXs = DXs −Xs,

G>G = Ik.

where λ > 0 is a penalty hyper-parameter.
Constraining the Laplacian matrix rank while learning a doubly stochas-

tic matrix, has been studied in other papers [37, 28]. A common point of
these latter works is the combination of several conditions expressed through
different representations but which are mutually related. In that respect, X,
LX and G are used in a same model and this provides flexibility when fram-
ing the search space. However, this type of modeling leads to more complex
optimization problems.

In our approach, we only use X and LX and leverage relationships between
these two matrices that, to our knowledge, has not been studied in clustering
models so far. Moreover, our model does not require the number of clusters
for learning the affinity matrix. From this viewpoint, our main competing
methods are SSK and DSN to which we compare ourselves latter on.

3. Learning Doubly Stochastic and Nearly Idempotent affinity ma-
trix (DSNI)

3.1. Clustering matrices with no pre-defined number of clusters

Our approach, denoted DSNI, aims to obtain a Doubly Stochastic and
Nearly Idempotent affinity matrix. The number of clusters is not a parameter
of our model. Indeed, we argue that the relevance of an affinity matrix should
be independent of k and that the same affinity matrix could provide partitions
that are close to the ground-truth with varying number of clusters (such as
nested partitions of the ground-truth). In practice, we stick to the spectral
clustering methodology, where the question of setting k is addressed in steps
(ιι) and (ιιι) and not in step (ι).

As a result, we discard the constraint Tr(X) = k. Hence, X is a clustering
matrix whose number of clusters is assumed to be unknown. The graph
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partitioning we are interested in, relies on the Frobenius distance criterion
which, unlike the SSE criterion, avoids the trivial solution X = In as we
already pointed out in sub-section 2.2. Accordingly, DSNI addresses the
following optimization problem:

min
X∈Rn×n

‖K−X‖2F (18)

s.t. X ≥ 0n,X = X>,Xen = en,X
2 = X.

Problem (18) is NP-hard and our purpose in what follows, is to introduce a
new relaxed problem that can be efficiently solved.

3.2. Clustering matrices and their associated Laplacian matrices

Our approach relies on the following properties between a clustering ma-
trix X and its associated Laplacian matrix. Since X is doubly stochastic, its
degree matrix DX = In the identity matrix and thus LX = In−X. By using
this latter linear relationship between X and LX, it is easy to deduce, from
the already exposed properties of X, the conditions that LX should satisfy:

X + LX = In,
X ≥ 0n,
X = X>,
Xen = en,
X2 = X.

⇔


X + LX = In,
LX ≤ In,
LX = L>X,
LXen = nn,
L2

X = LX.

(19)

where nn is the n dimensional null vector.
LX is symmetric and idempotent thus it is also an orthogonal projection

matrix. More specifically, according to Proposition 1, LX is the unique com-
plementary orthogonal projection matrix of X and moreover, XLX = LXX =
0n.

Therefore, by applying X = In − LX and (19), Problem (18) can be
equivalently expressed w.r.t. LX as follows:

min
LX∈Rn×n

‖In −K− LX‖2F (20)

s.t. LX ≤ In,LX = L>X,LXen = nn,L
2
X = LX.

Note that in this latter model, we use the notation LX for the unknown in
order to employ already introduced notations. However, it should be clear
that the clustering matrix X is not involved in Problem (20). It can be
obtained afterwards through the relation X = In − LX.
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3.3. Joint learning of X and LX and the DSNI model

We can mix both Problems (18) and (20) into:

min
X,LX∈Rn×n

‖K−X‖2F + ‖In −K− LX‖2F (21)

s.t.

{
X ≥ 0n,X = X>,Xen = en,X

2 = X,
LX ≤ In,LX = L>X,LXen = nn,L

2
X = LX.

This does not seem interesting at first sight because X and LX are in-
dependent and solve twice the same problem but with possibly two distinct
solutions since the problem is not convex. Yet, we can link both orthogo-
nal projection matrices by making one the complementary of the other via
X + LX = In. Under this condition, X2 = X and L2

X = LX are equivalent
to XLX = 0n since one has:{

X + LX = In
X2 = X

⇔
{

X + LX = In
L2

X = LX
⇔
{

X + LX = In
XLX = 0n

(22)

As a consequence, a joint learning model of X and LX which is equivalent
to Problems (18) and (20) is:

min
X,LX∈Rn×n

‖K−X‖2F + ‖In −K− LX‖2F (23)

s.t.


X ≥ 0n,X = X>,Xen = en,
LX ≤ In,LX = L>X,LXen = nn,
X + LX = In,XLX = 0n.

Problem (23) is still NP-hard, but this formulation makes it possible to
relax the clustering problem in a new manner. We actually keep the linear
relationship X+LX = In in the set of constraints but we discard the quadratic
one XLX = 0n which is difficult to handle. In return, we add in the objective
function a penalization term, ‖XLX‖2F , to encourage X and LX to be nearly
idempotent. More formally, this results in the following model:

min
X,LX∈Rn×n

1

2
‖K−X‖2F +

1

2
‖In −K− LX‖2F +

µ

2
‖XLX‖2F (24)

s.t.


X ≥ 0n,X = X>,Xen = en,
LX ≤ In,LX = L>X,LXen = nn,
X + LX = In.
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where µ ≥ 0 is a penalty hyper-parameter.
Our model relies on two variables X and LX that are linked to each other

through the linear constraint X + LX = In. By dropping strict idempo-
tency of the unknowns, the search space consists of only linear constraints
which make the problem more tractable. Nevertheless, DSNI does emphasize
idempotency of X and LX through the penalization term ‖XLX‖2F .

In the goal of emphasizing the innovative points of our proposal w.r.t.
similar previous works, we indicate the main distinctions between DSNI on
the one hand, and DSN and SSK on the other hand.
Unlike SSK which is based on the Kullback-Leibler divergence, DSNI uses the
Frobenius distance as a loss function. It was already shown in [40, 36] that
the latter criterion provided better clustering performances in comparison to
the former one. Our experimental results provide similar evidences.
As far as the DSN approach is concerned, it uses the Frobenius distance
similarly to DSNI. In fact, our DSNI method generalizes the DSN approach
which is recovered from the former model by setting µ = 0.
Unlike SSK and DSN, DSNI emphasizes idempotency in order to encourage
the learnt affinity matrix to be closer to a clustering matrix. As we shall
see in the section devoted to experiments, this can indeed lead to better
performances.

3.4. Optimization using the ADMM

In order to solve Problem (24), we propose to apply an Alternating Direc-
tion Method of Multipliers (ADMM) scheme (see for example [4]). ADMM is
an efficient algorithm for convex optimization problems and is popular in the
machine learning community as mentioned in [4]. It relies on the properties
of the augmented Lagrangian and provides a flexible framework to deal with
several types of variables and/or constraints and can benefit from distributed
computing. In our clustering model, there are two variables and ADMM is
appropriate in this case, since it allows us to alternate the optimization pro-
cedure between X and LX in an efficient way. However, Problem (24) is not
convex but bi-convex: when X is fixed, the problem w.r.t. LX is convex and
vice-versa. More precisely, when X (LX) is constant, then the objective func-
tion and the constraints are, respectively, quadratic and linear in the variable
LX (X respectively). In this situation, an ADMM approach can still be ap-
plied as indicated in [4, Section 9.2] but convergence to a stationary point is
not guaranteed. More generally, the convergence of ADMM for non-convex
problems is still an active research topic (see [22] for example).
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The different steps of our (scaled) ADMM procedure are:

1. Update Lt+1
X with Xt fixed:

Lt+1
X ← arg min

LX∈Rn×n

1

2
‖In −K− LX‖2F +

µ

2
‖XtLX‖2F (25)

+
ρ

2
‖Xt + LX − In + Ut‖2F

s.t. LX ≤ In,LX = L>X,LXen = nn.

2. Update Xt+1 with Lt+1
X fixed:

Xt+1 ← arg min
X∈Rn×n

1

2
‖K−X‖2F +

µ

2
‖XLt+1

X ‖
2
F (26)

+
ρ

2
‖X + Lt+1

X − In + Ut‖2F
s.t. X ≥ 0n,X = X>,Xen = en.

3. Update Ut+1:

Ut+1 ← Ut + Xt+1 + Lt+1
X − In (27)

4. Repeat 1., 2., 3. until a stopping criterion is satisfied.

3.5. Solving sub-problems using POCS

Sub-problems (25) and (26) are convex and can be solved by a Projection
On Convex Sets (POCS) procedure. In brief, POCS algorithms are designed
for the convex feasibility problem where one seeks a point that belongs to
the intersection of several convex subsets of a given space. POCS typically
consists in projecting onto each convex subset in a sequential and cyclic
fashion until convergence to a fixed point (see [3] for a review and [7] for its
relationships with proximal splitting methods including ADMM).

To make easier the text to read, we introduce the following notations for
the convex subsets of Rn×n we deal with:

• UI = {X ∈ Rn×n : X ≤ In},

• L0 = {X ∈ Rn×n : X ≥ 0n},

• S = {X ∈ Rn×n : X = X>},
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• Dn = {X ∈ Rn×n : Xen = X>en = nn},

• De = {X ∈ Rn×n : Xen = X>en = en}.

Similarly, we denote the projection operators on these subsets by ΠUI , ΠL0 ,
ΠS , ΠDn and ΠDe , respectively.

We propose to address Sub-problem (25) as follows:

1. Solve the unconstrained problem:

L̂X ← arg min
LX∈Rn×n

1

2
‖In −K− LX‖2F +

µ

2
‖XtLX‖2F (28)

+
ρ

2
‖Xt + LX − In + Ut‖2F

2. Project L̂X onto S:

L̂X ←ΠSL̂X (29)

3. Project L̂X onto Dn:

L̂X ←ΠDnL̂X (30)

4. Project L̂X onto UI:

L̂X ←ΠUIL̂X (31)

5. Repeat 3., 4. until a stopping criterion is satisfied.

ΠDn and ΠUI preserve symmetry and thus there is no need to apply ΠS
after the first iteration. Interestingly, all Sub-problems (28)-(31) have closed-
form solutions.

Proposition 2. The solutions to (28), (29), (30) and (31) are respectively
given by:

L̂X ←
(
(1 + ρ)In + µ(Xt)2

)−1 (
In −K + ρ(In −Xt −Ut)

)
(32)

L̂X ←
L̂X + L̂X

>

2
(33)

L̂X ←(In − Jn)L̂X(In − Jn) (34)

L̂X ←min(L̂X, In) (elementwise min operator) (35)
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Note that (34) is the double centering operator.
The proof of Proposition 2 is given in the supplementary materials.
We now turn our attention to the second sub-problem with unknown X.

We proceed in a similar fashion in order to tackle Sub-problem (26):

1. Solve the unconstrained problem:

X̂← arg min
LX∈Rn×n

1

2
‖K−X‖2F +

µ

2
‖XLt+1

X ‖
2
F (36)

+
ρ

2
‖X + Lt+1

X − In + Ut‖2F

2. Project X̂ onto S:

X̂←ΠSX̂ (37)

3. Project X̂ onto De:

X̂←ΠDnX̂ (38)

4. Project X̂ onto L0:

X̂←ΠL0X̂ (39)

5. Repeat 3., 4. until a stopping criterion is satisfied.

The closed-form solutions are provided below.

Proposition 3. The solutions to (36), (37), (38) and (39) are respectively
given by:

X̂←
(
K + ρ(In − Lt+1

X −Ut)
) (

(1 + ρ)In + µ(Lt+1
X )2

)−1
(40)

X̂←X̂ + X̂>

2
(41)

X̂←(In − Jn)X̂(In − Jn) + Jn (42)

X̂←max(X̂,0n) (elementwise max operator) (43)

The proof of Proposition 3 is similar to that of Proposition 2.
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Algorithm 1 DSNI: Learning Doubly Stochastic and Nearly Idempotent
affinity matrix.

Require: K, µ (
√
n default), ρ (1 default)

Ensure: (X∗,L∗X)
1: t← 0, Ut ← 0n, Xt ← K . Initialization
2: repeat . ADMM loop
3: Update L̂X with (32) . Sub-pb (25)

4: Update L̂X with (33)
5: repeat
6: Update L̂X with (34)

7: Update L̂X with (35)
8: until Stopping criterion is satisfied
9: Lt+1

X ← L̂X

10: Update X̂ with (40) . Sub-pb (26)

11: Update X̂ with (41)
12: repeat
13: Update X̂ with (42)

14: Update X̂ with (43)
15: until Stopping criterion is satisfied
16: Xt+1 ← X̂
17: Update Ut+1 with (27)
18: t← t+ 1
19: until Stopping criterion is satisfied
20: (X∗,L∗X)← (Xt+1,Lt+1

X )

3.6. DSNI algorithm

We wrap up all previous results in Algorithm 1. Sub-problems (25) and
(26) are respectively carried out through lines 3 to 8 and 10 to 15. The

stopping criterion in these two cases is the convergence of L̂X and X̂ to
fixed points. As for the global ADMM scheme, the stopping criterion in
line 19 is primarily based on the convergence to 0 of the primal residuals
‖Xt+Lt

X−In‖F . However, since Problem (24) is not convex, the convergence
of ADMM in this case is not guaranteed and in practice, we also provide a
maximal number of iterations.

Algorithm 1 involves two kinds of penalty hyper-parameters, µ and ρ.
The former one concerns the penalization of XLX = 0n, while the latter
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one is inherent to ADMM which deals here with the bi-affine constraint
X + LX − In = 0n. As highlighted above, our approach does not require to
set a number of clusters for learning the affinity matrix.

3.7. Geometric property of DSNI affinity matrices

Problem (24) can also be used for kernel (or metric) learning, in the sense
that one can derive a positive semi-definite affinity matrix from its solutions.

Proposition 4. Let (X∗,L∗X) be a solution to Problem (24). Then the fol-
lowing matrix K∗ is non-negative, symmetric and positive semi-definite:

K∗ = 2In − L∗X = In + X∗ (44)

The proof of Proposition 4 is given in the supplementary materials.
In other words, adding 1 to the diagonal entries of X∗ leads to a positive

semi-definite matrix. Note, however, that this diagonal shift does not change
the eigenvectors which remain the same ones for both X∗ and K∗.

4. Experiments

4.1. Settings

We compared our approach to methods that aim to obtain doubly stochas-
tic affinity matrices without any prior on the number of clusters. More pre-
cisely, we compared the clustering outputs provided by the spectral clustering
approach but using the following different affinity matrices as input:

• K, a given initial affinity matrix which in our case is a kernel matrix,

• the affinity matrix of the k nearest neighbor graph, with k = dn/10e,
that is extracted from K,

• the doubly stochastic affinity matrix obtained when DSN is applied to
K,

• the doubly stochastic affinity matrix obtained when SSK is applied to
K,

• the doubly stochastic and nearly idempotent affinity matrix obtained
when DSNI is applied to K.
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These methods will be referred to as K, k-NN, DSN, SSK and DSNI,
respectively in what follows.
K and k-NN represent the baselines and correspond to two types of conven-
tional spectral clustering methods [35]. The former one uses the full kernel
matrix K, whereas the second one, by employing a sparsified K, assumes
that the data rather belong to a non-linear manifold (see for example [35]).
DSN [40] and SSK [39, 34] are two unsupervised learning methods whose goal
is to provide a doubly stochastic affinity matrix from K. They rely on two
distinct objective functions. They represent our main rivals. Finally, DSNI
is the method we promote in this work. From an empirical viewpoint, our
goal is to demonstrate that taking into account idempotency in addition to
doubly stochasticity is beneficial.

In all our experiments, the initial affinity matrix K = (κii′) is given by
the Gaussian kernel which can be considered as a default similarity function
in spectral clustering [35, 24]:

κii′ = exp
(
−γ‖xi − xi′‖2

)
,∀i, i′ = 1, . . . , n. (45)

where γ = 1/p by default, p being the dimension of the space the vectors
{xi}i=1,...,n belong to. Note that since our purpose is to compare the different
learning methods we have not tried to tune the hyper-parameter γ and chose
the default setting used in the LIBSVM tool [6].

Under these circumstances, K > 0n, and the SSK algorithm can be ap-
plied. SSK and DSN do not have any hyper-parameter unlike DSNI. For our
method, we used the default values µ =

√
n and ρ = 1 in all our experiments.

As for stopping conditions, we set an error precision threshold to 0.001. In
the case of DSN, if the difference between two subsequent objective function
values is lower than 0.001 then the procedure stops. Regarding SSK, the
algorithm stops when all the differences between each row sum and the value
one is lower than 0.001. Concerning DSNI, since it is based on ADMM,
we compute a relative error following the recommendation provided in [4,
Section 3.3.1]. In particular, the stopping condition is based on the primal
residuals and in this case both εabs and εrel in the previous reference are set
to 0.001.
In addition to the previous conditions on error measures, we also consider
a maximal number of iterations for DSN and DSNI. Regarding DSN, the
number of iterations cannot exceed 300. In the case of DSNI, the number of
maximal iterations for ADMM and for POCS is set to 100.
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Following the spectral clustering procedure, once step (ι) is carried out us-
ing one of the aforementioned method, the resulting affinity matrix is passed
to step (ιι) which computes the spectral decomposition of its related Lapla-
cian matrix. In the final step (ιιι), the k-means algorithm is applied on the
feature matrix composed of the k first eigenvectors, k being set to the number
of clusters which is provided by the ground-truth. Since the k-means results
depend on a random initialization phase, we ran 10 times the algorithm and
the partition obtaining the best objective value is selected.

Next, in order to assess the quality of the obtained partition, we com-
pared it with the ground-truth using the Normalized Mutual Information
(NMI) measure. Let C = {C1, . . . , Ck} be the partition found by spec-
tral clustering and let D = {D1, . . . , Dk} be the ground-truth. NMI is an
entropy-based measure. We denote by H(C) the entropy of C: H(C) =
−
∑k

j=1 P (Cj) log(P (Cj)) and by MI(C,D) the mutual information between

C and D: MI(C,D) =
∑k

j,j′=1 P (Cj, Dj′) log(P (Cj, Dj′)/(P (Cj)P (Dj′))).
The formal definition of NMI is given by:

NMI(C,D) =
2MI(C,D)

H(C) + H(D)

NMI values range from 0 to 1 and the higher the value is, the closer to the
ground-truth the partition is. Note that we also tested with the Adjusted
Rand Index (ARI) but found similar outcomes. Therefore, we chose to not
mention these experimental results.

4.2. Computing environment

We implemented DSNI, SSK and DSN in Python then use the sci-kit

learn library [29] to perform spectral clustering using the SpectralClustering
function. The sci-kit learn library offers tools for assessing the clustering
performances including the computation of the NMI measure. This is done
with the normalized mutual info score function.

4.3. Datasets

Our experiments focus on real-world case studies. We used nine datasets
freely available online. They are described in Table 1 and vary w.r.t. the
number of instances (n), dimensions (p) and number of clusters (k). All
datasets can be accessed using the sklearn.datasets utilities. The Olivetti
Faces, Breast cancer, Digits datasets are directly loadable. The same applies
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Dataset n p k
# instances # dimensions # clusters

Glass 214 9 6
Ionosphere 351 34 2

Olivetti Faces 400 4096 40
Vowel 528 10 11

Breast cancer 569 30 2
Vehicle 846 18 4
Yeast 1484 8 10
Digits 1797 64 10

Segment.scale 2310 19 7

Table 1: List of datasets.

to Vowel, Segment.scale, Ionosphere (scale) but these datasets were taken
from the LIBSVM dataset repository6. Using this module makes it possible
to fetch data from the openml.org repository as well. This is the resource
where the three remaining datasets listed in Table 1 come from.

4.4. Results

We report in Table 2, the NMI measures we obtained for each dataset
and each method. Then, we translate these performances into rankings of
the models for each dataset. These results are indicated in Table 3. In order
to have a global comparison of the different approaches, we computed their
respective average ranking. This overall evaluation is displayed in the last
row of Table 3.

The baseline K, which is the regular spectral clustering method using
the full Gaussian kernel matrix, is ranked the last with an average rank-
ing of 4.22. The three techniques involving double stochasticity, SSK, DSN,
DSNI, perform better than K. This confirms the benefit of applying unsuper-
vised learning methods for determining doubly stochastic affinity matrices in
graph-based clustering.

Among these three competing methods, our model performs the best.
Furthermore, DSNI provides robust results. Indeed, when it does not give
the best NMI value, it gives the second best one. DSNI average ranking is

6https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Dataset K k-NN SSK DSN DSNI
Glass 0.253 0.281 0.276 0.243 0.297

Ionosphere 0.038 0.082 0.066 0.076 0.131
Olivetti Faces 0.782 0.755 0.786 0.803 0.855

Vowel 0.382 0.412 0.321 0.206 0.423
Breast cancer 0.010 0.677 0.010 0.010 0.670

Vehicle 0.013 0.132 0.135 0.203 0.171
Yeast 0.070 0.329 0.258 0.256 0.263
Digits 0.015 0.552 0.044 0.743 0.767

Segment.scale 0.012 0.010 0.341 0.449 0.522

Table 2: NMI performances.

Dataset K k-NN SSK DSN DSNI
Glass 4 2 3 5 1

Ionosphere 5 2 4 3 1
Olivetti Faces 4 5 3 2 1

Vowel 3 2 4 5 1
Breast cancer 3 1 3 3 2

Vehicle 5 4 3 1 2
Yeast 5 1 3 4 2
Digits 5 3 4 2 1

Segment.scale 4 5 3 2 1
Average 4.22 2.77 3.33 3 1.33

Table 3: Rankings of methods.

1.33 and it clearly outperforms SSK and DSN whose average rankings are
3.33 and 3 respectively. This result accounts for the importance of integrating
idempotency in cluster analysis.

In the experiments we conducted, DSNI also outperforms the k-NN method
whose average ranking is 2.77.

5. Conclusion

Graph partitioning is a NP-hard problem. We have examined this topic
from the angle of the so-called clustering matrices, which are doubly stochas-
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tic and idempotent matrices. These two conditions are crucial when address-
ing the graph partitioning problem and many cluster analysis models actually
amount to search for relaxed clustering matrices.

In this context, we have introduced a new optimization model that lever-
ages the complementary relationships between a clustering matrix and its
associated Laplacian matrix. Our relaxed model, DSNI, allows us to fit a
given affinity matrix with a doubly stochastic and nearly idempotent affinity
matrix. Moreover, when comparing DSNI with similar techniques, SSK and
DSN, in the framework of spectral clustering, our experimental results ex-
hibit very good performances even without tuning the two hyper-parameters
it involves.

As for future work, it would be interesting to study the sensitivity of DSNI
w.r.t. its hyper-parameters. An adaptive ρ in the ADMM framework may
give even better clustering performances. More generally, the convergence
conditions of Algorithm 1 should be further analyzed. Furthermore, it seems
interesting to investigate DSNI’s ability to grasp the intrinsic geometry of
the data. The good behavior of DSNI as compared to k-NN is encouraging
in that respect.
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