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Abstract

The purpose of this paper is first to derive the expressions of various divergences
that can be expressed from the Chernoff coefficient in order to compare two
probability density functions of vectors storing k consecutive samples of a sum
of complex exponentials disturbed by an additive white noise. This includes the
Chernoff divergence and the a-divergence for instance. Tsallis, reversed Tsallis
and Sharma-Mittal divergences are also addressed as well as the (-, y- and
ay-divergences. The behaviors of the divergences are studied when k increases
and tends to infinity. Depending on the divergence used, the divergence rate or
the asymptotic normalized increment is considered. Expressions that encompass
the divergence rate or the asymptotic normalized increment of the divergences
are also given. Comments and illustrations to compare random processes are
then given. This study makes it possible to show the advantages of the Kullback-
Leibler divergence when studying this type of process.
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1. Introduction

Random processes can be modeled by different types of models depending on
their statistical properties in terms of correlation and spectrum. For instance, in
some speech enhancement applications, the signal can be modeled either by an
autoregressive process or by a sum of complex exponentials, both disturbed by
an additive white noise. Depending on the model chosen, Kalman and particle
filters or subspace methods can be used to estimate the signal from the noisy
observations. In spectrum analysis, some approaches based on an a priori model
can be considered. Once again, the models mentioned above can be considered.
In this paper, we will focus our attention on one of these models. It is defined by
a set of parameters, namely the normalized angular frequencies, the variances
of the magnitudes of the complex exponentials and the variance of the additive
noise.

When dealing with statistical change detection! or time series comparison, dif-
ferent approaches exist: comparing the model parameters, using a spectral dis-
tance or exploiting a divergence. Divergences are not only used in this case.
Indeed, a great deal of interest has been paid to the divergences by various
researchers working in different fields: signal and image processing but also
statistics and information theory. See for instance [4, 12, 25, 27, 28, 41]. Be-
sides the use of divergences in various applications, different topics dealing with
the divergences have been addressed for the last years. Among the recent the-
oretical contributions, some are highlighted below:

1/ Authors like Nielsen [31-34] presented closed-form expressions of divergences
for some families of distributions or studied new generalizations of existing di-
vergences [10, 22, 23, 32, 33, 44].

2/ The estimation of the divergence, when the data are Gaussian or not, is

another issue addressed by some researchers [8, 9, 30, 34, 42]. Indeed, when

IThe purpose is to detect when the statistical properties of the signal evolve. To this end,
the beginning of the signal serves as a reference and it is compared with another frame of the

signal, using a sliding window.



dealing with Gaussian processes, the mean and the covariance matrices could
be estimated from the data, but the number of samples available has a strong
impact on the accuracy of the estimates. The estimations of the Kullback-
Leibler (KL) divergence between two probability density functions (pdfs) that
are not necessarily Gaussian by using sets of data were studied in [8, 9] for
instance. When considering the KL importance estimation procedure (KLIEP),
the density ratio is estimated instead of estimating the distributions separately.
The reader may refer to the works proposed by Sugiyama et al. [42, 43, 45].
Tt should be noted that Nguyen et al. [30] also recall different works dealing
with the estimation of the divergence in the introduction of their paper before
presenting M-estimators for the KL divergence and the density ratio.

3/ In information theory, there are various quantities such as the entropy, the
conditional entropy, the mutual information, the cross-entropy and the diver-
gence. Very often, having information of this quantity per unit of time can be of
interest. It characterizes a growth rate. Thus, the entropy rate for a stochastic
process is the limit (when it exists) of the joint entropy of n samples divided
by n, when n tends to infinity. Depending on the properties of the process, it
can be related to the asymptotic equipartition property. When studying an in-
dependent identically distributed (i.i.d.) sequence, the corresponding Shannon
and Rényi entropy rates are the entropy of the distribution. When dealing with
a Markov chain respecting some conditions, the entropy rate depends on the
stationary distribution and the transition probabilities. In [35], Rached et al.
showed that the rate of the Rényi entropy of order « is related to the largest
positive eigenvalue of the matrix whose elements are the transition probabili-
ties at the power a. Formulas of entropy rates for (h, ¢)-entropy and ways to
estimate them are presented in [7]. It should be noted that the entropy rates
are still the core of research activities -See for instance [38] [15]- and can be
used in very different cases such as the characterization of complex networks
in the real world [16] or the analysis of the voice pathology evolution [40]. For
the last years, a great deal of interest has been paid to these "rates” and not

only to the entropy rates. Thus, in [36] and [37], the authors respectively de-



rived a formula of the Rényi and KL divergence rates when comparing two
time-invariant finite-alphabet Markov sources of arbitrary order. Moreover, the
divergence rates for stationary Gaussian processes was studied initially in [20]
and then in [13]. In these papers, the authors respectively provide the expres-
sion of the Kullback-Leibler (KL) divergence rate and the Rényi divergence
rate for zero-mean Gaussian processes by using the theory of Toeplitz matrices
and the properties of the asymptotic distribution of the eigenvalues of Toeplitz
forms. In [17], we recently show that using the KL divergence rate is equal
to the Itakura—Saito distance, up to a multiplicative factor when dealing with
Gaussian stationary ARMA processes.

The Kullback-Leibler (KL) divergence [24], related to the Shannon entropy, is
very popular but there are many other divergences that have been proposed
in the literature and many of them correspond to a generalization of the KL
divergence. See [2] for instance and figure 1.

In this paper, we propose to analyze how the divergences based on the Chernoff
coefficients between the pdfs of vectors storing k consecutive samples of Gaussian
processes modeled by sums of complex exponentials disturbed by white noises
(NSCE for noisy sum of complex exponentials) evolve when k increases. Among
them, the Chernoff, Bhattacharyya and Rényi divergences [3, 5, 39] are first
investigated. Then the a-divergences [1] that include the squared Hellinger
distance are studied. We also analyze the Tsallis, reversed Tsallis and Sharma-
Mittal divergences. Finally, the S-divergence, the ~y-divergence and the a-y-
divergences are considered [11] [6]. In each case, we provide the analytical
expression of the divergences when dealing with Gaussian processes. Then, we
analyze how the divergences evolve when the number of variates k increases.
In some cases, this makes it possible to deduce what is called the ”divergence
rate”, which corresponds to the asymptotic increment of the divergence, i.e.
the difference between the divergences computed for £+ 1 and k variates, when
k consecutive samples and tends to infinity. This means that the divergence
as a function of k tends to an asymptote, the slope of which is the divergence

rate. In other cases, we rather focus our attention on the asymptotic normalized



increment, i.e. the difference between the divergences computed for k£ + 1 and
k variates which is then divided by the divergence computed for k variates,
when k tends to infinity. We will see whether these quantities depend on all
the parameters characterizing the sums of complex exponentials disturbed by
an additive noise, or not. This will help us to conclude whether they can be
useful to compare random processes or to detect statistical change on data over
time. This work is hence a follow up of previous papers [19] [17] that dealt with
the behaviours of the Jeffreys and Rényi divergences.

The remainder of the paper is organized as follows: after recalling the properties
of Gaussian processes modeled by sums of complex exponentials disturbed by
white noises, the definitions of the divergences are recalled as well as the links
they have between them. Then, the Gaussian case is addressed. The expres-
sions of the divergences are given for this particular choice of pdf. We analyze
how the increments of the divergences between pdfs of random vectors storing
k consecutive samples of NSCE processes evolve when k increases and tends
to infinity. They correspond to the divergence rate. When dealing with the
Chernoff, Bhattacharyya, Rényi, v- and a~y-divergences, we provide a general
expression that encompasses all the expressions of the divergence rates. When
studying the a-divergences, the Tsallis, the reversed Tsallis and Sharma-Mittal
(SM) divergences, a general expression of the normalized increment is provided
and studied. Some illustrations as well as comments are then given. Three
appendices are provided. The first one makes it possible to obtain the analyt-
ical expressions of integrals of products of Gaussian pdfs at different powers.
This can be useful to get the analytical expression of the -divergence and the
~-divergence in the Gaussian case. The second one provides another way to get
the result in the Gaussian case based on [31]. The last one gives the mathemati-
cal details showing the link between the Rényi divergence and the KL divergence

when dealing with NSCE processes.



2. Some properties about the processes to be compared

In this paper, we propose to focus our attention on a class of random pro-
cesses that can be modeled by a sum of complex exponentials disturbed by an
additive white noise. This type of modeling has been often used in the field of
spectrum analysis when dealing with MUSIC and ESPRIT?. This model is an
illustration of the Wold decomposition because the sum of exponentials char-
acterizes a discrete spectrum while the additive white noise has a continuous
spectrum [29].

Let us assume that the i*" random process, with i = 1,2, is modeled by a sum

of M; zero-mean exponentials as follows:

M;
x;(n) = Z Am,iej”‘)m”‘ (1)
m=1
T
= |:€jn91’1 ca 6j7l9k{i"ii| |:A1’i A AMlz
where n refers to the n'" sample, j2 = —1, {0, ; }m=1....m, are the normalized

angular frequencies in the interval [—m, 7). For each process, they differ from
each other. However, the two processes to be compared can have common nor-
malized angular frequencies. In addition, {A,,;}m=1,... m are the zero-mean
Gaussian random magnitudes with variances {v i}tm=1,.. an;. These magni-
tudes are uncorrelated with each other.

The Toeplitz covariance matrix Qgcp ki of size k X k of the column vector

storing k consecutive samples of the process z; is then given by:

QSCE ki = Ski®iSH; (2)

2ESPRIT stands for ”estimation of signal parameter by rotational variance technique”
whereas MUSIC means ”"multiple signal classification”. They are widely used in spectrum

analysis and array processing.



In (2), Sk, is a matrix of size k x M; that stores M; column vectors as follows:

1 e 1
" 301, L IO, i
_ |aq1 | —
Sei=|[st, .. ostl=| , (3)
ed(k=1)01:  oi(k=1)0n,

In addition, ®; is a diagonal matrix of size M; x M; whose main diagonal is

defined by the variances {v,, i }tm=1,....m, of the magnitudes {A,, ;}m=1,... a;-

Remark. The vectors {S/?fi}mzl,‘..,Mi have the following properties that will be

useful in the rest of the paper:

H
% (S,'C',Ll) SL',Li =1
. ) (k= 1)(0py =01 3)
Sm<k(9m,1,2 97“)) ]< 2 . ) (4)
ksin(("m,iz—gn,i))e

S i sin(H0mi D)
ince lim | T )

k—+4o0  ksin( =
erties of the vectors {SJ";}m=1,...m, are:

)| =0 for any pair 0, ; # Om. i, the asymptotic prop-

m H m
% (Skz) Sk,z’ =1
: m H n
kETw% (S/m) Ski=0
The process defined above is then disturbed by an additive zero-mean white

noise with variance o2, leading to a covariance matrix denoted as:

Qri = Qscr i+ il (6)

where [, is the identity matrix of size k.
Among the other properties that will be useful in the mathematical development
that will follow, one can mention that the determinant of the covariance matrix

of size k + 1 can be expressed as®:

Qri R 1
Qrsril =| | = roi X |Qki — Rii— RE| (7)
H o s 70,4
ki 0,i

A B
3Let a matrix be defined as |: :| where D is assumed to be invertible. It is post-
C D



where 1 ; is the covariance function of the ith process for lag 0 while Ry is
a column vector storing the covariance function of the it" process from lags k
down to 1. Using the matrix determinant lemma?, this leads to:

1 _
|Qrt1,i| = |Q.i| X0, X (1= FRgiQkéRkﬂ') (8)

)

= [Qr.il X (ro; — RY;Qp i Ri.i) 9)

Therefore, the ratio of the determinants of the covariance matrices of consecutive

sizes satisfies:
Qk+1,i _
[Qkrr] =710, — R,’SfiQk IRy (10)
| Qi ’
Let us now look at the expression above when k increases and tends to infinity.
To this end, on the one hand, using the matrix inversion lemma® on (6), one
gets:
_ 1 _ -1
Qk,% =32 (Ik - Sk,i (02'2(1)1‘ 4+ SzfiSk,i) Sl?z) (11)

0;

In a previous paper [19], by applying again the matrix inversion lemma on the

matrix (J?(I);l + SﬁiSk,i) and by using the asymptotic properties (5), it was

I 0
multiplied by , with I the identity matrix and O is a matrix of zeros, leading

-D-lc 1

_|A-BD"'C B . .
to the matrix , where A — BD~1C is the Schur complement. Taking the
0 D

determinant and given the triangular structure of two of the three matrices, one has:
A B 1 0 A B A—-BD 'C B

= =|A - BD~'C||D|
¢ D||-pD~'c¢ 1| |€c D 0 D

4 Assuming A invertible and v and v two column vectors, one has:

I 0O||I+A 1w A-lu|| I 0 I A1y

oT 1 0 1 -7 1 0 1+v74 1

Therefore, |[I + A~ uvT| =1 +vT A7y and |A 4+ wvT| = |A|(1 +vT A= u).
5Given A, U, C and V be matrices with A and C assumed to be invertible. One has:

(A+Ucv) ™l =a"l—A U (CT 4+ VATIU) T vaTt



shown that:

1
ko?

k

1 1 o2\ "

: -1 _ : H . . i H

W @i =l <afk ™ o2 ki gy S (@ " ) Sk»z) (12)
On the other hand, let us express Ry ; from Qr11,; by considering that 0; ; is a

1 X j matrix of zeros:

Ox1
Ry = [Ik Ok,l} Qk+1, ) (13)

= |:I 0 ] (Sk 1 (I)SH -+J-2Ik 1) 0k71

(2),(6) LK PR TR L R
Ox1
= [Ik Ok,l] Sk1,i®iSil, )
‘ . H

=55 {eﬁkeu ej’f‘gMivi} = Sk7¢<I>i\I/kH7i

Consequently, using (12) and (13), one can express klil:r_l RkHiQ;Rk,i as the
—+00 ’ ’
sum of three terms given below:
1. The first one is defined as:

1
~2
7

)

lim Ry Rk = ZkEm Upe,i®iSK i Sk,i @iV, (14)
1

02 k—+oo 02 k—+oo

Due to the asymptotic orthogonal properties (5) between the columns of
the matrix Sy ;, S,f{iSM can be replaced by kI when k increases and
tends to infinity and hence one gets:

1 . . k

2. Concerning the second term, one has:

I 1
m ——7
k—+oc0 k(f?

1

k—+oco 0'1-2

W,i®i Sk’ Sk,i Sk iSk,i®: Uk, (16)

: k 2 H
= lim _72\Ilk:,1¢z\1]k,z
k— 400 3



3. Finally, the third term satisfies:

2
L RHs, (@ + %)_leiRk,i (17)

€

2
W S S (@ 4 Tiy1gH .S, ;W

k
= lim \I’k,iq:'i\llkH,i:TT(q)i)
k—+o0

where T'r(A) is the trace of the matrix A.
Consequently, given (12), (15), (16) and (17), the limit of RkH)iQ;’%RW when k
increases and tends to infinity can be rewritten as:

lim R{,Qp Ry = Tr(®;) (18)

k—+oco
Since ro; = Tr(®;) + 02, one can deduce that:

lim M =ro; —Tr(®;) =Tr(®;) + o —Tr(®;) =o? (19)
k—4o00 |Qk,i|

Remark.

o When k is larger than the number M; of complex exponentials, there are
M; predominant eigenvalues defining the so-called signal subspace and
k — M; eigenvalues equal to the variance of the additive noise, the as-
sociated eigenvectors spanning the noise subspace. Thus, when the process
is a complex exponential disturbed by an additive white noise, Q. ; has a
single predominant eigenvalue equal to ky1; + o2 and k — 1 eigenvalues

= (kn, +0?) x of(kfl)cmd one has:

equal to o2. Therefore |Qk.;

i k4 1)1 2) g2k
fim 1Qeval o (B D 4 0f)o = o2 (20)
k——+oco |Qk,i‘ k——+oco (k712+0_12)0_12(k—1)

o The weighted sum of the two covariance matrices Q1 and Q2 leads to
a covariance matriz® Quei (b, a) = bQx1 + aQy 2, with b >0 and a > 0
associated with a third process which is also a weighted sum of complex ex-

ponentials disturbed by an additive noise. If the two processes do not share

SSubscript e; refers to the fact that the matrix is a weighted sum of the covariance

matrices of the two processes.

10



a common normalized angular frequency, the number of complex exponen-
tials is equal to My +Ms. The variances {Ym 1 tm=1,...m, are multiplied by
b while {Ym.,2}m=1,.. .M, are weighted by a. When they have one common
normalized angular frequency, the number of complex exponentials reduces
to My + My — 1. When they have two common normalized angular fre-
quencies, the number reduces to My + Ms — 2 and so on. The variance of

the additive noise is equal bo? + ao?3.

When comparing two processes, different approaches can be considered. The
model parameters and/or the spectrum can be compared. An alternative con-
sists in using divergences. For this reason, in the next section, we propose a

brief state of the art on the divergence that will be addressed in this study.

3. Brief state of the art of the divergences addressed in this study

3.1. Definitions

To study the dissimilarities between pdfs, divergences can be used. In Fig-
ure 1 below, we propose a unified view of a wide class of divergences between
two pdfs denoted p; and p2. The most popular one is the KL divergence which

satisfies:

KL = /Xk p1(Xx)In (%) dXy (21)

Alternative divergences can be expressed as a function g of the Chernoff coef-

ficient C,, of order « that is computed between p; and ps, which is defined by:

Co (2 (X0, p2(X4)) = /X P (X (X)) dXs (22)

11
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Figure 1: Links between different divergences



Remark. [t corresponds to the integral Ii(p1,p2,a,b) = ka P (XR)PS(Xk)d Xy,

computed fora =« andb=1—«a with 0 < a < 1.

Using the above definition, it can be shown that the Chernoff coefficient is self

dual, meaning that:

Ca (p1(Xk), p2(Xk)) = C1-a (p2(Xk), p1(Xk)) (23)

When « is equal to 0 or 1, the Chernoff coefficient is equal to 1 due to the
property of the pdfs that sum to 1.

Let us now give some examples of divergences that are functions of the Chernoff
coefficient. When the function g(¢) = —In(t), the Chernoff divergence between
p1 and ps, denoted as CD{"? (a) , is defined as follows [5]:

D} (@) = —In (Ca(p1 (X0),p2(X)) .

Given the remark above, the Chernoff divergence is necessarily null when «
is equal to 0 or 1. By setting « to %, the Bhattacharyya distance denoted as
BD,(:’Q) can be deduced [3] and has the advantage of being symmetric:

)= =10 (04 (1 (X0), p2(X))) (25)

- (/X \/md)(k) = BD®Y

The Battacharyya distance depends on the so-called ”fidelity” equal to

BD{"Y =DM

p1(Xp)p2(Xy)dXy. The latter is in the interval [0, 1] and equal to unity
only if the two pdfs are identical. Hence, BD,(Cl’z) > 0.
When g(t) = — 1= In(t) , the Rényi divergence of order « [39] can be obtained

and corresponds to the Chernoff divergence up to a multiplicative factor equal

RD{"(a) = —

(e} —Q 1
[ B (X0 (X dXe = o CD( @) (20)
Xk

l-«
By using L’Hoéspital rule, the Rényi divergence is shown to tend to the KL
divergence when o tends to 1. Rényi divergence for several univariate and
multivariate distributions can be found in the paper written by Gil et al. [14].

In addition, the equalities in (26) can be rewritten this way:

Co(p1(X1), p2(Xi)) = exp (= CD? (@) = exp ((a — 1)RDL? () (27)

13



The a-divergence, denoted in this paper as Ag’z)(a), can be also considered

and derived from the Chernoff coefficient. Different definitions exist [1]:

AL (0) = ey [ 9 (Xpd™" (X0 = o (X0 + (0= Dpe (X)X (28

As the integrals of the pdfs are equal to 1, the above expression can be simplified

as follows:
),y 1 o 1-a B
A1) = s ([ o (xaxc-1) o)
1
= —m(ca (p1(Xk),p2(Xk)) - 1)
This means that g(t) = —ﬁ(t —1) is used to retrieve the a-divergence from

the Chernoff coefficient. Note that by combining (27) and (29), this leads to:

1

A](€1,2) (a) _ _m(exp ( — CD](CLZ)(O[)) — 1) (30)

- ‘ﬁ(exp (0= DRD (@) - 1)

Some other comments can be made at this stage:

(271)(1 _

1. The a-divergence is also self-dual because A,(Cl’Q) (a) = A} Q).

2. One can use the Amari notation, i.e. instead of defining the a-divergence

— (I1-aq)

5, Qg is used. When « takes values between 0

from the variate «
and 1, the value taken by o, varies from —1 to 1. In addition, using the
Amari notation, A,gl’Q)(aa) = A,(f’l)(—aa).

3. Using the L'Hoéspital rule on (28), it can be shown that the a divergence
tends to the KL between p; and ps when « tends to 1 and to the KL
between ps and p; when « tends to 0.

4. One can retrieve three other divergences, namely the Pearson divergence

)

P,El’2)7 the Neyman divergence N ,gl’Q and the squared Hellinger distance

SHS’Q) by setting o to —1, 2 and % respectively:

P =240 (-1) = /X ” (X];)l ?)?;)(Xk))Qka (31)

- / P2 (X pit (Xi) dXy — 1
Xi
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N =24 (2) = P& (32)

sH{? = 1AM =5 [ (VR - Ve (R0) axe 6

=1 / b1 (X0) p2 (Xp)d X, = SH
Xk
=1—exp ( — BDI(Cl’Z))

Note that the squared Hellinger distance SH 21,2) also depends on the
fidelity. It is symmetric and in the range [0,1]. Sometimes, the normal-
ization factor % is omitted.

5. The Tsallis divergence T,gl’Q) (c), the reversed Tsallis divergence rT,EM) ()
and the Cressie-Read divergence C’R,(Cl’Q)(a) are closely related to the

above family. Indeed given (29), one has:

T (0) = — ﬁ (Co o1 (X0).p2(X1)) —1) = @Al P (@) (39
1 ;
- —m(exp (o= 1)RD,(C1 2) (@) — 1)
7T () = — i 1 3 (Ca(p2(Xi), (X)) ~ 1) (35)
=~ (e (X pa(x0) ~1) = 041 )
CRM (a) = m(/x P (Xe) py @ (Xi) X — 1) (36)

1,2
= A" (a+1)= L(at1) Ojfi o)

Remark. The Pearson divergence, the Neyman divergence, the squared Hellinger
distance, the reversed Tsallis divergence and the Cressie-Read divergence are
special cases of Csiszar divergence also known as Csiszar-Morimoto or Ali-Silvey

divergence. Indeed, it is defined by:

p2(Xk)
p1(Xg)

Dy (1 (X0 2%0) = [ )axi (37)

Xk

(X0 £ (

15



where the function f(t) is convex and f(1) = 0. One can retrieve the expressions

of the divergence by respectively choosing the convex function f equal to (t—1)2,

t(% —1)2, 1/, tl(;lfl and ;;j;ll). Moreover, the Chernoff coefficient can be

expressed as Dy (py(Xy), pa(Xi)) + 1, where f(t) =t — 1,

Finally, the SM divergence of parameters g and a between p; and p. is given
by:

SM" (8, 0) = ﬁ (Ci%g (p1(X0),p2(Xi) — 1) (38)

When 8 = «, the SM divergence coincides with the Tsallis divergence:

SM® (a,0) = —— (Calpr(X0), p2(X0)) — 1) = - AP (0) =TV (a)  (39)

In addition, using (27) and (38), one can see that:

SMED(6.0) = 5 (e [0 - VRO @] - 1) "

B
The SM divergence encompasses various divergences. When 3 tends to 1,
SMIEI’Q)(B@) tends to RDS’Q)(OC). So, when 3 tends to 1 and « tends to 1,
SMlgl’Q)(ﬂ, «) tends to the KL divergence.

One can easily define symmetric versions of these divergences by taking the
minimum value, the sum or the mean of the divergence computed between p;
and p. and the one between p2 and p;. This is for instance the case when
dealing with the Jeffreys divergence [21] which is the symmetric version of the
KL divergence. An alternative is to sum the divergence between the first pdf
and the pdf mean and the divergence between the second pdf and the pdf mean.
Thus, the Jensen—Shannon divergence (JSD) is the illustration of this alternative

to get a symmetric version of the KL divergence [26].
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Two other families of divergence can be considered. One the one hand, the

B-divergence denoted as BeD,(CM)(ﬂ) can be expressed as follows:

B—1 _B-1 B _ B
BeD((8) :/ (P Ke) = (Xe) i (Xo) = pa (X
’ X5 g—1 B
(41)
L / P (X)X, + ! PE(Xp)dX
= k)AXy + = 1) dX,
BB-1) Jx, 8Jx. 2
1 51
T 51 . P1(Xk)py  (Xk)d Xy,
,
By introducing the function” Ing(t) = %, the above expression (41) can be
rewritten as follows:
1 P (X5)
BeD{M () = —= [ (P (Xp)Ins 22 + Y (X)) — P (Xp)dXy,  (42)
k 3 Xk(l Bpf(Xk)) 1 2

If I2(p1, B) = [y, P{(Xi)dXy and Ii(p1,p2, 1, 8) = [ p1(Xi)ps (Xi)dX), are con-
sidered, (41) becomes:

1 1 1
mfz(phﬂ) + 512(]9275) - ﬁ

Remark. It should be noted the B-divergence is a special case of the Bregman

BeD,(Cl’z)(ﬂ) = Il(p17p27 175 - 1) (43)

divergence, as shown on Figure 1.

Among the particular cases, one can notice that when [ tends to 0, the
B-divergence reduces to the Itakura-Saito divergence. Indeed, given (41) and

applying the L’Hoéspital rule to the second term, one obtains:

im 1.2) ) 4y 0 p2(Xi)y | (X)) _ 1012
f£—>0 Beby = (5) = /Xk (1 (p1(Xk)) " p2(Xk) l)ka =15 4

If B tends to 1, and considering (42), one gets:

p2(Xk)
p1(Xk)

_ npl(Xk>

tim BeD{"?(8) =~ [ o) 22 4y (X) - pa(X)dX (15)
Xk

"when 8 tends 1, Ing(t) tends to In(t)

17



One hence retrieves the KL divergence.

If 8 =2, (41) becomes:

BeD|"?(2) = % /X (pl(Xk) —~ pz(Xk))Qka = BeDV(2)  (46)

which can be seen as the 2-norm of the pdf difference up to a multiplicative
factor equal to % Note that it is symmetric.

Finally, let us introduce the y-divergence [11] denoted as G;@LQ) (7y) defined as :

L (ka pY(Xk)ka> (ka. pg(Xk)ka)%l
vy =1) (Jx, (X003~ (X))

1. L(p1, M (p2.7)
’7(771) Iiy(plap%lafyfl)

al?(y) = (47)

and the ay-divergence denoted as AG,(vl’z) (7) which is deduced from the defini-

tion (28) of the a divergence by considering the variable ~ instead of « and the

mapping « [ 2 (Xe)p] (Xp)dX), — aln (ka pf(Xk)pY(Xk)ka):

V(X )ph T (Xp)dX
AG](:’Q)(’V): 1 In kapl( k)Py (Xk)d Xy,

v(y—1) (ka pl(Xk)ka)v (ka pz(Xk)ka>
1

S v 1—y _ 1,09
T Ay — 1)1 </Xk p1(Xk)ps (Xk)ka> ,YRDI@ ()

(48)

since p; and po are pdfs whose integrals are equal to 1. It is hence proportional
to the Rényi divergence of order a by choosing oo = «. Therefore, when v tends
to 1, the ay-divergence tends to the KL divergence.

Given the definitions of these various divergences, let us now look at their ex-

pressions when dealing with the Gaussian case.

8.2. Ezxpressions of the divergences in the Gaussian case

Let us introduce the pdfs related to two real Gaussian random vectors defined

from k consecutive samples, i.e. Xy ; = [Te; Te—1,i -+ Te—pt1,4]” for i =1,2:

1 1 _
— [ Xi = pril " Qpo i [Xki — pwil)  (49)

Pi(Xp,i) = —(m)lek,i|1/2 exp ( 5
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with ug; = E[Xk,] the mean, |Qs,;| the determinant of the covariance matrix

Qri = E[(Xg,i — pi,i)(Xn,i — r)T] and E[] the expectation. Given®

Qrwei(l —a,a) = (1 — a)Qr,1 + aQ 2 (50)

and
Apr = fik,2 — fk,1 (51)
we can show, by substituting the pdfs by their expressions in the definition (24)

and after some mathematical developments (See Appendix A.2 and equation

(A.20) for proof), that the Chernoff coefficient is given by:
_ Qe =" |Qu2l
‘Qk,wei(l —Q, a)|%

X exp (—MAqu;ﬁwi(l —a, oz)Auk>

Ca (p1(Xx), p2(Xk)) (52)

This result can be obtained differently by using the approach proposed by
Nielsen in [31] and recalled in Appendix B. It should be noted that
Qk,wei(l — a, @) must be definite positive. Therefore, this result is only valid®

when « €]0,1[. Consequently the Chernoff divergence is the following;:

1 ‘Qk wei(l aaa)| (1 Oé) -1 T
D" (@) = S In ’ +2 Tr(Qpwei(1 — o, ) Ap Aps
CDy (e) 2 (|Qk,1|17‘1|Qk,2\‘1> 2 ( ’“’“’e’( @) k k)

(53)
The Bhattacharyya distance can be deduced as follows:
1 In

1 |Qrwes(3, 1)l

BD("? = cD{() (Zhrea
* f2T 2 Qa2 |Qual?

1 _ 11
)+ 577 a5 5)AmeAul) (54)

Concerning the expression of the Rényi divergence, given (26) which gives the

link with Chernoff divergence and provided that « is in the interval ]0, 1] to

8The definition of Qk,wei(l — @, @) amounts to saying that a third process is introduced

and corresponds to a linear combination of the two processes to be compared.
9For information, the KL divergence satisfies in the Gaussian case [14]:

Q1]
Q2]

1 —
KL = S Tr(Q 4Qka) — k —In

= +Tr(Q; Ak Aud)]
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ensure that Qg wei(1 — @, ) is not definite non-negative, this leads to:

(12), \ 1 |Qk wei(l — a, a)] a —1 _ T
RDk (Oé) - 2(1 — a) 1n( |Q1€71|1_&|Qk,2|a ) + 2TT(Qk,wei(l Oé,OZ)AMkAMk)

(55)
There are two consequences. On the one hand, the expression of the
ay-divergence can be deduced using (48). Provided that v is in the interval

10, 1[ to ensure that Q. wei(1 — 7v,7y) is not definite non-negative, this leads to:

1 ‘Qk wei(l_’%’Y)' 1 -1 T
AGH? () = 1 ’ +-T (1=, V) AuA
e 0) 21 =)y n( |Qra ' |Qr 2|7 ) 2 P(Qrwei1 =7 ) AmALL)

(56)

On the other hand, combining (29) and (52), the expression of the a-divergence

in the Gaussian case is:

A (a) (57)

l1—a e
1 |Qra| 2 |Qr2|2 ale—1) 7
- 1- 1=k : A (1—a,a)A

a<1*a>( |Qk,wei(1_a,a)|%e"p[ 3 Ak Queill —av) “k])

Therefore, using (33), (34) and (35), one can deduce the expression of the
squared Hellinger distance, the Tsallis and reversed Tsallis divergences, but
we cannot obtain the Pearson and Neyman divergences and the Cressie-Read
from the expression above since the values of a are not in the interval |0, 1]:

_ |Qr1 |7 Q2|

SH™ =1 1
b |Qk,wei(%a%)‘§

e[~ AW Qihailyp)dm)]  69)

7" (a) (59)

l1—a res
1 (1_ |Qra| 2 |Qr.2|2 exp[a(afl)

-« |Qkwei(1 — a, )| 2 2

AL Qi les(1 = @) Apue] )

rTi (a) (60)

o l1-a
_ 1 (1 @k |2 |Qr2| 2 exp [a(af 1)
l-a |Qk,wei(ayl—a)‘§ 2

Given (40), the SM divergence becomes:

AL Qe 1 = @) A )

SM{? (8,a) (61)

Bs—1
_ 1 (@l —a,a)|Z0m) a8 —1)
_571( e oxp [ S5

= - Apti Qi pei(1 — v, a)Auk] - 1)
|Qr,1] 2 |Qr,2| 20—
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For the 8 and ~y-divergences, we first propose to use two results we have detailed
in Appendix A and that deal with the analytical expressions of

L(p1,B) = [, Py (Xx)dXy, and Iy (p1,p2. 1, 8) = Ix. p1(Xi)ps (X3)d Xy in the
Gaussian case. Thus, given (41), (A.2) and (A.19) one has:

1 1 1
BeD{"? (8) = — — < o + = )> (62)
BEH(2m) T \ (B = 1D)|Qual T |Qua| T
1 1 -1 _
- 1 k(B—1) 1 5_2 SXP (_ (8 D) )Aquk,}uei(ﬁ -1, 1)AMk)
B=1 (20) 5 | Qpnei (B — 1, 1)|¥|Qra| 7

where Qg wei(8—1,1) = (8 — 1)Qk1 + Qk,2 (See Appendix A.2).
In the following, only values of 8 larger than 1 will be considered so that

Qkwei(8 —1,1) can be definite positive without any doubt. Thus, when 8 = 2,

one gets:
1 1
BeD{(2) = — [ ‘ikl’l'z *[Qhal? (63)
(2m)2 F\ 227 |Qk1[2[Qk.2]2
1 1 _
- m exp (_5Aquk,}uei(17 1)A/uc) }
k,wei 5
In addition, starting from (47) and using (A.2) and (A.19), one gets:
1
G(l,?) ('Y) —In |Qk,wei(’7 — 17 1)| 20-1 _ k lIl"}/ (64)
g Q1|27 |Qra| 0D 2(v—1)

1 _
+5Tr (ijuei(’y -1, 1)AukAuf)
where Qpwei(y —1,1) = (v — 1)Qr1 + Qr,2 (See Appendix A.2).

In the following, let us analyze how the divergences evolve when k increases

when dealing with two NSCE processes.

4. Analysis of the increments of the divergences

4.1. Expression of the increments
Taking into account (53), (54) and (55), let us first express the increments
ACD"(a) = CDYY (a) — D (@), ABD " and ARD{ (o) which are sim-
ilarly defined. Given (53), one has:

1 |Qk,21*  |Qkt1,wei(1 —, Q)| |Qr,1]' ™

ACDM P () = =1 : : : 65
@) = 5 (Gt T a ) @) (65)

a(l —« _ _

7( ) (Tr(Qkil,wei(l -G, a)Aﬂkﬁ-lAﬂgﬂ) - Tr(Qk,Lei(l - Q»Q)ANkAﬂg))

T
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1 (L1 3
ABD(? — %ln( \Qk-,2|2l |Qk+1,w%zi2’l2)| |Qk,1|2l) (66)
|Qk+1,2\2 ‘Qk,wez(zv 2)| |Qk+1,1|2
1 _ 11 _ 11
+ 3 (T‘r(Qkil,wei(§7 i)AﬂkHAﬂfﬁ—l) - Tr(Qkiuei(g» §)AMkAN{))
- AC’D,(;’Q)(%)
1 Q2| |Qri1wei(1—a,a)| |Qkal' ™"
ARD(1’2> a) = — In > ) 2 : 67
B (@) 2(a—1) (IQkH,z\o‘ |Qk,wei(1 — a, )] |Qk+1,1|l_a> (67)

«

3

(Tr(Q;Zil,m(l — 0, @) Apr 1 A1) — Tr(Qp vpei(1 — @, a)AukAuf))

In addition, given the link between the Rényi divergence and the ay-divergence,

one gets with 7 in the interval ]0, 1[:

1 1Qr2” 1Qkt1,wei(1—=7,7)| [Qral'™”
AAGT P () = - In ’ ’ ’ ’ 68
£ 2(y = 1)y (|Qk+1,2\7 |Qkwei(1 =, 7)] |Qk+1,1\1*7) (68)
1 _ _
+5 (TY(Qkil,wei(l — %A1 Aptig ) — Tr(Qp e (1 — %v)AukAuf))
_ARDI()
-

Note that one has necessarily:

ACD!(a) = (1 — a)ARD"? (a) = a(1 — ) AAG" P (@) (69)
and

1

1.1
ABD(M?) = ACD,(cl’Q)(i) = 5ARD,S’”(Q

1 12,1
)= 784G, (5)  (70)

Consequently, comparing two Gaussian processes using ACD,(;’Q) (), RD,(;’Q) (@)
or AAGECM)(a) is equivalent. Moreover, based on (64), one obtains for the

~-divergence the following increment provided v > 1:

1 Q2|1 Qrt1,wei (v = 1, |7 [Qr [T
AGM? () = ln( * * ’ 71
F @) 2y(y - 1) |Qr+1,2]|QE wei (v — 1, 1|7 |[Qrt1,1 |71 (7)
1 _ _
+5 (Tr(QkL,wei(v — L, DA Apig) = Tr(Qp ei (v — 1, 1)AukAuf))
~Iny
2(v-1)

When looking at this increment, we can see that a general expression can en-

compass all these results. If AD,(CM)(a, b) denotes the divergence rate, where a
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and b are chosen so that Qg wei(b, @) and Qx41,wei (b, a) are definite non negative,

one has:

AD{?(a,b)

a . a+b b
~ 1n< |Qk,2]" |Qr+1,wei (b, a) i |Qk 1 b) (72)
2ab(a + b) |Qr+1,2]7Qk,wei (b, @) |2 0| Qr1,1]

1 _ _
+ 5 (Tr(Qkil,wei(bv G)A#kHAﬂzﬂ) - Tr(Qkiuei(bv G)AﬂkAlﬁgﬂ

~ In(a+0)
2ab

Thus, one has '°:

AAG (y) = AD(M (1 — 7, 7) with v €]0,1]

ARD(M (a) o« AD"?(1 — a, @) with o €]0, 1]

AC’D,(:’Q)(Q) x AD,(cl’Q)(l — o, a) with a €]0, 1] (73)

ABD{"® oc AD{M)(
)

4.2. Behavior of the other divergences as functions of k

4.2.1. B-divergence
Concerning the analytical expression of the S-divergence increment, we propose

to write it this way:

ABeD{"?(8) = ABeD{'”(8) + ABeD\;” (8) + ABeD{'; () (74)
with:
B-1)
1 1 |Qral =
AB@D,(:f)(,B) = : {(B—1) [ ( G-1 BN CES 1)
’ (8- 1B 2m) 7 Qual 7 \B2(2m) T Quaral T
(75)
B-1)
1 1 |Qr2| 2
ABeD!'? (8) = - ~ ( _ ; ~ 1)
’ BEF 2m) 5 Qo T \ BEFI2m) T |Qurr] U
(76)

10For information, the increment of the KL divergence satisfies:

1 _ _
AKL? = 3 [TT(Qkilyg(QkJrl,l + App 1 Apf ) = Tr(Q 5(Qr1 + ApkApt))

\Qk+1,1l|Qk,2|]

—1—1In
|Qk,11|1Qk+1,2]
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1 1
E(B-1)

X
— 1 B=2
B =1 (2m) ™ 5 |Quwei (B — 1,1)|2|Qr 0| 2
B—2
|Qrawei(B = 1,1)|2 Q| =

ABeD{P(B) = - (77)

exp (— (Bg D Apti; Qppes(B—1, 1)Auk) [

B-1
2

GED) ) =)
2m) 7 |Qrr1wei(B—1,1)|2|Qry1,2] 2

(A:u’z:rlQI;il,wei(ﬁ - 17 1)Auk+1 - AM%Q;,},UG’L(/B - 17 1)A/.l,k)) - 1]

exp(—

It should be noted that when the processes are both zero-mean or when the

difference mean is null, the above expression reduces to:

1 1
ABeD{P (B) = — _ — (78)
’ B =1 20) 5 | Qroues (B — 1,1)[3|Qr 2| *F
1 B=2
o < |Qkwei(B = 1,1)|2|Qk,2| 2 _1>
B-1) 1 B—2
2m) 7 | Qi twei (B — 1,1)]2|Qr1,2] 2

4.2.2. Other cases

Due to the definition of some divergences like the a-divergence, the Tsallis
divergence, the reversed Tsallis divergence, the squared Hellinger distance and
the SM divergence, studying the increment when k increases is not necessarily
useful as these divergences as functions of k cannot tend to an asymptote. For
this reason, let us focus our attention on the normalized increment!!.

Let us start by the normalized increment of the a-divergence by expressing

AALY (@) = ALY (@) — AP (a). Using (30) and after simplifications, one has:

exp [(a — l)RD,(cl‘z)(oz)

1,2\ _
A4 o) = a(l—a)

(exp [(a - 1)ARD,§1*2)(a)] - 1) (79)
Therefore, the normalized increment of this divergence is equal to:

AAS’Q)(Q) _exp [(a — I)ARD](Cl’z)(oz)] -1
AS’Q)(&) 1 —exp [— (a— 1)RD,(€1’2>(04)]

(80)

1 The normalized increment is not useful for the divergences studied in the previous section.

Indeed, one has . hlf RD;:’Q) = 4o00. As studied in a recent paper, ARD](CI’% is finite in
—+oo

(1,2)
. ARD o
most of the cases. Therefore, . lim ——k_— = 0. Similar comments can be done for the

(1,2)
—+4o0 RDj
Chernoff divergence, the Bhattacharyya distance, the «y-divergence and the ay-divergence and

the KL divergence.
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Concerning the normalized increment of the squared Hellinger distance, the

Tsallis and the reversed Tsallis divergence, one obtains:

ASH’(CLQ) - AA,S’Q)(%) _exp [%(ARD,&I’Q)(%)] -1 ol
SHUD — 0Dy T T [;RDu,z) 1 (81)
k k 2 exp |3 k (2)
AT () _ A4 (o)
(1,2) e (82)
T, () A7 (a)
ArT P (@) AALP (1 a) (83)

T (@) AN (1 - a)
One can see that analyzing the normalized increment of the Tsallis divergence
and the a-divergence leads to the same result. Concerning the reversed Tsallis
divergence of order «, this amounts to looking at the behaviour of the normalized
increment of the a-divergence of order 1 —«a. When o = %, all these normalized
increments are equal and correspond to the normalized increment of the squared
Hellinger distance.
Finally, let us define the normalized increment of the SM divergence that is

equal to:

ASMOD (@, p) e [(B = DARDI ()] -1 (84)
SM,il’Q)(a,ﬁ) o exp [, (B — 1)RD£1,2)(a)]

Given the above expressions, one can provide the following general expression

that encompass the expression of the normalized increment:

exp (CAD,(:’Q)(CL7 b)) -1
(85)

1—exp ( - cD,(Cl’Q)(a7 b))

Let us address in the next subsection the limit when k& tends to infinity.

4.3. Asymptotic behaviour when dealing with NSCE processes
4.3.1. Divergence rate

Let us first look at the divergence rate of the Chernoff, Battacharrya and
Rényi divergence. As the processes are zero-mean, Apg and Apyy1 are null
vectors. In addition, using (19), one gets:

—a)o? + ao? (1—04)4'0475
(o) (1

2(1-a) 2a
0y 03

ACD,(;’Q) () = %ln
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and

0_2
1. /02402 1. 11+ 3 1,2),1
ABD(™ = S (TL272) = S (D7) = acp{ (g
k o 20109 . 2(03 3 CDy (2) (87)
#)

and

1 1 - a)o? + a0l
ARD{"?(a) = — In (( @oi + ) (88)

2(1-a) 24
0y 03

Moreover, one has for 7 in the interval ]0, 1[:

12,y 1 (1 —7v)o? +~o3
AAG) () = 2(y — 1)y In ( Jf(lfv)agv ) (89)
(1—7)+ v%g
- ()
2(y = 1)y

o2\
Iz
The divergence rate does not depend on the normalized angular frequencies.

Moreover, based on (64), one obtains for the y-divergence the following incre-

ment for v > 1:

(1L,2),\ _ 1 (v =Dof +03)7\  Iny
BOTO=snnh ( ot Vg2 ) 2(y—1) (40)
(y—1+%)

= ! ln( — ) _ Ity
2y(y—1) o 2(v—1)

pl
91

It should be noted that if the inverse of v was «, one would get:

1 o5
1 1 (z-1+23) Int
A (1.2) 1y _ 1 o o1 _ a 1
Ci (a) 2(L —1) n( (%) ) 2(L—1) (o)

2
a (1-a)+aZ
= ln( - -
2(1 — ) (%)
91

) — - O‘@ACD,S’” (@)

Depending on the values of v and «, the divergence rates of the Chernoff diver-

gence and of the y-divergence can be related to each other.
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ACD,(Cl’Q)(a), RDlgl’z)(a), AAGS’Q) () or AGSQ) () only depend on the ratio
of the additive-noise variances. Comparing two NSCE using these asymptotic
increments is hence not necessarily well-suited as it does not take into account
the normalized angular frequency. In a previous paper [18], we suggested using

the Jeffreys divergence, the symmetric version of the KL divergence defined as

JD? = 1 (KL,?’Q) + KL,?’”). We obtained!2:

1 1
AJD®:2) — 3 (1 + > [AT(Q’I) -+ AT(IQ)}) (92)
with:
» ’Ym ; 0’i2
AT(ZJ ) 1 - Z (SGm iy 671 il /2 (93)
m=1 i O—i

where 59m,i»9n,i/ denotes the Kronecker delta. It is equal to 1 if 6,,; = 6,4
and to 0 otherwise. In Appendix C, we have derived the expression of the KL
divergence rate when dealing with two NSCE processes. One obtains:

Mo

1 %1 2 %
AKL1?) = 5{2 n 1—25%17”2 —2—1—1 7 (94)

Remark. At first sight, we could wonder why the KL divergence rate depends
on the normalized angular frequency unlike the other divergences. To retrieve

this result, starting from the expression of the increment ARD(1 2)( )

, one can-
not directly compute the limit of ARD,(CI"Q)(a) when « tends to 1 because the
logarithm tends to 0 as well as the denominator —2(« — 1) of the expression.
Once again, L’Héspital rule must be used. This means that one has to analyze
the limit of the ratio of the derivates of both the logarithm and the denominator

—2(a— 1) when « tends to 1. The details of the mathematical development are

giwen in Appendiz C.2.

12Note the expression that was published had some error and is now corrected in the paper.

We apologize for the inconvenience.
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4.8.2. Asymptotic behaviour of the B-divergence increment

Given (74) one gets:

ABeD™?(8) = ABeD{"? (8) + ABeDS"? (8) + ABeDS"? () (95)
where:
1. The first term is given by:
ABeD{"(8) = : T é—l) -1 (96)
BB —1) \ g3 (2n) 2 6!
x lim L
k=too g& (o) TGN Qrn| @1
As |Qra| > o¥F, L —~ < =3 So, we propose to analyze the
k.1 71
following upper bound:
ABeD D (g) < — 1 - é,l) -1 (97)
=1 \pham) 5ol

1
.
o 5% (2m) 00 D)

Then the purpose is to analyze the value that ﬂ(ZW)ﬂflaf(B_l) takes with
1
_1

2w B—1

the limit ABeDgl’z) (B) is null. When 8 = 2, this amounts to saying

respect to o7 and 8 > 1. If 5(271')5_10?(571) > 1ide oF >

)

that ABeD§1’2)(2) is null when o > ;-. As the analysis is made on
the upper bound, this leads to a more restrictive condition that guaran-
tees that ABeDgl"Q)(ﬂ) = 0. In other words, there may be values of o?
smaller than ﬁ that could lead to the same result but we did not find
any proof for the moment. An alternative would be to express properly
the determinant of QJ;;. When k tends to infinity, we can show that
Q1 admits M; predominant eigenvalues equal to {Ym 1k + 0%}t a1,

and k — M; eigenvalues equal to o?. Therefore, when k tends to infinity,

|Qr.1| = gf(k_Ml) Hj\mﬁ:l Ym.1k + o%. Therefore (96) becomes:

(1.2) o 1
ABeD\"?(B) = - -1 98
V=56 e T %)
X lim !
et g8 (om) 5 oy TV [y ek + o)
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In this case, let us search for an upper bound of the denominator. One

has:
My M,
( H 'Ym,lk + U%)(Bil) = &Xp <(ﬁ - 1) Z 1n(7m,1k + U%)) (99)
m=1 77]1\4:11
<exp((8-1) 3 (mak + )
m=1

< (o3 X 3m0) w8 - Va1

One can deduce that:

1
lim —— — (100)
e g o) T O (T ko) CF

m=1

B 1 . 1

E—h—— 17
exp(@]\/luﬁ) koo k

8% (2m) K(B-1) Jf(ﬁ_l) (exp ((ﬂ ~1) 271\51:1 ’Ym,l)) 3

The purpose is then to look at the value taken by 3 ((2#)0% exp ( 2%1:1 'ym71)) i
and see when it is larger than 1. In this case, the limit tends to 0. This
constraint takes into account all the parameters of the first process.

. The second term satisfies:

1 1
ABeD(L2) _ 2 —1] x 101
k,2 (ﬂ) /B ﬂ%+1(27{') (Bgl) Uéﬂ—l) ( )

1

lim
koo g (o) E_1) Qral E_1)

Following a similar reasoning than above, if5(27r)'8’105(ﬁ_1) > lie 03>
L a limit equal to 0 for ABeDél’Q)(B) is guaranteed. Therefore,
2rBB—1

ABeDgl’Q)(2) is equal to 0 when o3 > ;-

. The last term is given by:

1 1
ABeD:Y(8) = — ( - - 1> (102)
P\ em " (8- Dot + o) iof 2
. 1
X lim

k(B—1)

K2 (2m) S | Quwes (B — 1,1 Qu ol 2
When (27)~1) ((5—1)02—1—02)02(572) > 1, we are sure that ABeD{"?) (B) =
11T02)0 , 3 =
0. For instance when 8 = 2, When o7 + 03 > 5, AB@D:(,)I’Q)(Q) = 0.
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Consequently, the normalized increment ABeD(?)(f) tends to 0 depending

on the values of the variances of the additive noises. Indeed, if both variances

satisfy o2 > %/Blﬁ%l for i = 1,2, then the last condition (27)#=1((8 — 1)o? +
03)05(5_2) > 1 also holds and ABeD"?)(3) is guaranteed to tend to 0. This
means that the convergence tends to a limit. The latter is equal to 0.

As a conclusion of this theoretical sub-section, the KL divergence rate and
the Jeffreys divergence rate depend on all the parameters characterizing the
NSCE processes. The others either depend on the variances of the additive
noises only -like the Chernoff divergence- or tend to 0 in some circumstances
like the B-divergence. This confirms the relevance of the KL and the Jeffreys
divergence for comparing the NSCE processes. Analyzing the results of different
divergences could be also relevant. In the next subsection, let us look at the

asymptotic normalized increment of some divergences for which the asymptotic

increment tends to infinity.

Divergences Divergence rates
(1-a)taZ
—a)ta—5
Chernoff ACD,(QIQ)(O&) =1ln ( — i )
2
(%)
1+
Battacharyya ABD,(CM) =1l (% 2"1)
o 2
(%)
(1—a)+a—%
Reényi ARD{?(0) = — 5ty n (a:-:)"g% )
)

ary-divergence AAG;(CLZ)(’Y) == 2(711)7 In (

(r-1+Z)"
. 1,2 o n
~-divergence AG,(c )(’y) = 2"/(’3*1) ln( . ) - Q(lel)
My My o2 o2
Kullback-Leibler AKL(1?) = %[ ) (1 - 2 O0m1000) + G~ 1 In é}
Jeffreys AJDED = L (—1 4§ [ATED 4+ AT(2)])

- M; My 2
with: AT = 37 i (1— 37 6, 0. ) + Tz

o
m=1 " n=1

i

Table 1: Divergences and corresponding divergence rates
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4.8.8. Asymptotic normalized increment

Concerning the asymptotic increment of the a-divergence, as the Rényi di-
vergence tends to infinity when the processes are dissimilar and % tends to
infinity, the a-divergence tends to ﬁ due to (30). Therefore, the asymp-
totic increment AAM2) tends to 0. Similarly, the squared Hellinger distance

tends to 1 when k increases due to (33). Therefore its asymptotic increment

1

tends to 0. Moreover, the Tsallis and reversed Tsallis divergences tend to ;=

when k increases due to (30) and (34). Therefore, the asymptotic increments

AT®2) and ArTM2) also tend to 0.

(1.2) (4 — iy 24P
AA2(a) =0 and | lim e 0 for o €]0,1]
ASH1? =0and lim 22— —9

koo SH"® (103)
AT(L?)(Q) =0and lim AT () =0 for « €]0, 1]
ety TIELQZgO;g )
. ArT, V" («

ArT02(a) =0 and lim 57058 = 0 for o €)0.1]

As a consequence, whatever the processes to be compared, these four asymptotic
increments and consequently the asymptotic normalized increments always pro-
vide the same values that are all null. Therefore, using these features to compare

NSCE processes does not bring in much.

(1.2) (1,2)
As mentioned in section 3.1, lim ASM,il’Q) = ARD,&LQ) and lim ASM’; 5 = ARD’; .

81 g—1 smfh? rN(MD)

In addition, one has:
) ASM,ELQ) exp |:(/8 — 1)ARD<1’2):| -1
Jim oD = ) (104)
—teo MY 1— lim exp [— (8 — 1)RD" ]
—+00

As RD,(:’Q) > 0 necessarily increases when k increases, . 111;{1 exp [(1 - ﬂ)RD,EM)]
—+oo

depends on the values of 5. This leads to three cases:

(1,2)
ASM .
—+00 k
(1,2) (1,2)
ASM ARD
im ——f4o- = lim ——45- =0 when f3 tends to 1 (105)

k—+oo SM.” k—+4o00 RD,”

asm{t?

_ -~ a2)] 4
k—{riloo S0P~ exp [([3 1)ARD ] 1ifg>1

Selecting # in the interval ]0, 1] does not help the practitioner to compare the

NSCE processes if he/she uses the asymptotic normalized increment because it
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is always equal to 0. Therefore, 8 must be chosen larger than 1. In this case

and for a given value of a, as exp [(5 — 1)ARD(1’2)]iS an increasing function of
. oasutD . . . .
when 8> 1, lim ——k.— is also an increasing function of g . However, when
k——+oo SMk ’

the ratio of the additive-noise variances is equal to 1, the divergence rate of the

Rényi divergence is equal to 0. Consequently, exp [(ﬁ - 1)ARD(1’2) =1 and

. ASMD
lim ——fo-
k—+oo SM"

5. Illustrations

In this section and given the length of the paper, we present the way the
divergences evolve for a single example. The reader can easily refer to the
expressions of the increments given in the previous section and simulate different
cases.

The two processes are characterized by the following parameters: the first NSCE
process is a sum of three complex exponentials whose normalized angular fre-
quencies are equal to ;1 = 2?”, o1 = 5 and 031 = 5. The variances of the
magnitudes are respectively equal to v11 = 5, 72,1 = 10 and 3,1 = 15. The
variance of the additive noise is equal to o7 = 2. The second NSCE process is
a sum of two complex exponentials whose first normalized angular frequency is
equal to 01 2 = 7. Regarding 02 o, it is first set at ¢. Then, we will analyze the
case where 03 5 is modified and becomes equal to {5 and T. The variances of the
magnitudes are respectively equal to 30 and 20. The variance of the additive
noise is equal to 03 = 1. Concerning the divergences, « is set at 0.7. 3 is equal
to 3. v is set at 2.

If the divergence rate is not null, this means that, when k increases and tends to
infinity, the divergence can be approximated by an affine function whose slope
is the divergence rate. Depending on the value of the slope, the shape of the
divergence as a function k may be different. Thus, when looking at Figure 2,
the increment Kullback-Leibler divergence converges to the KL divergence rate
when k increases. The variations around the divergence rate becomes smaller

and smaller when k increases, but the order of magnitude is always the same.
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In the illustration, the increment is rapidly close to the divergence rate, giving
the feeling to the practitioner the KL divergence -as a function of k- can be
approximated by an affine function even when k takes small values. Moreover,
when 6, 5 is modified, this has an impact on the variations of the increment
around the divergence rate and the speed of convergence toward the divergence
rate. However, as the orders of magnitudes of the increments for the different
values of 03 5 are more or less the same, the values of the divergence are quite
similar.

1500 Kullback-Leibler divergence and its increment with respect to k

1000

500 /
0 ! ! )

Value

0 50 100 150
k
200,/
é 15
% 10k AN
= 5 —— Increment
Asympt. increment|
0 1 1 ]
0 50 100 150

Figure 2: Kullback-Leibler divergence evolution and increment evolution for the given exam-

I
157

T i
1o and green curve for 022 = T.

ple. Blue curve for 62 2 = 5

red curve for 622 =

Chernoff divergence and its increment with respect to k

Value
o

0 50 100 150

—Increment
0.3+ ——Asympt. increment|

Increment
o
N
T

0 50 100 150

Figure 3: Chernoff divergence evolution and increment evolution for the given example. Blue

i

152

i

curve for 3 2 = red curve for 02 2 = 0 and green curve for 02 2> = %

When the divergence rate is small and close to zero, the increment of the diver-
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gence rate which was not necessarily small when k was small, is close to zero
when k becomes larger. The value of the increment varies much. Given the nu-
merical example we chose, this explains the shapes of the Chernoff divergence in
Figure 3 where the maximal value of the increment is almost 0.4 but the rate is
equal to 0.0272 (i.e. 15 times less). Therefore, the Chernoff divergence, which
can be approximated as an affine function whose slope is 0.0272 when k tends

to infinity, slowly increases and is not bounded.

a-divergence and its increment with respect to k

Value
o =2 N W A~ O
T

0 5 10 15 20 25 30 35 40 45 50

Increment
o
o
T

Figure 4: a-divergence evolution and increment evolution for the given example. Blue curve

for O3 20 = %, red curve for 02 2 = 1”—0 and green curve for A2 > = %

Regarding the a-divergence in Figure 4, it is confirmed that the a-divergence

tends to —— ~ 4.76 while the asymptotic increment AA®2) tends to 0.

a(l—a)
10 ~y-divergence and its increment with respect to k
. /
S 57
>
0 . . )
0 50 100 150
k
0.4
=03
[
Eo02
e
S / —increment
|—— Asympt. i L
I |

0 50 100 150

Figure 5: vy-divergence evolution and increment evolution for the given example. Blue curve

for 02,2 = {5, red curve for 02 2 = {;; and green curve for 22 = .
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In Figure 5, the ~-divergence slowly increases since its divergence rate is equal
to 0.0294. It is not bounded.

Let us now look at the ay-divergence presented in Figure 6 below. Since
(1,2) AcDM(y) .. . . .
AAG, 7 (v) = —{=5) it is no coincidence that the curves in Figure 6

look like those in Figure 3, except for a multiplicative factor.

a-y divergence and its increment with respect to k

40 _—
30 /
@
]
S20F
=
10
0 : \ ‘
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k
2
— Increment
cus
£
[
2
£os
L
0 I ‘ ‘
0 50 100 150

Figure 6: a~y-divergence evolution and increment evolution for the given example. Blue curve

_m _ 7 _x
for 02,2 = ot red curve for 022 = 0 and green curve for 02 2 = 5

In Figures 7 and 8, as expected, the Tsallis and reversed Tsallis divergences

tend to ﬁ ~ 3.33 when k increases. Therefore, the asymptotic increments

AT12) and ArT(:2) tend to 0.

Tsallis divergence and its increment with respect to k
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1 —Divergence
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0 1 1 | | )
0 5 10 15 20 25 30 35 40 45 50

Figure 7: Tsallis divergence evolution and increment evolution for the given example. Blue

curve for 03 2> = red curve for 022 = {; and green curve for 622 = £.

T
157 5
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Reversed Tsallis divergence and its increment with respect to k
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Figure 8: Reversed Tsallis divergence evolution and increment evolution for the given example.

Blue curve for 622 = red curve for 02 2 = 7= and green curve for 6290 = T

i
152 10 5°

In Figure 9, one can see that the squared Hellinger distance tends to 1 when
k increases, as mentioned in the theoretical part. Therefore its asymptotic

increment tends to 0, as expected.

Square Hellinger discrimination and its increment with respect to k

——SH divergence
— Limit
0 I I I I T )

0 5 10 15 20 25 30 35 40 45 50

01

Increment

Figure 9: Squared Hellinger distance evolution and increment evolution for the given example.

i
157

us

Blue curve for 02 2 = 5

red curve for 03 2 = 1”—0 and green curve for 02 5 =

Let us end up this section with the g-divergence in Figure 10. Its shape is
different from what we observed with the other divergences. The increment is
negative and the divergence tends to decrease.

Regarding the Sharma-Mittal divergence given in Figure 11, the normalized in-
crement converges to the asymptotic normalized increment equal to 0.1989.

This value coincides to the theoretical result we obtained when f > 1 in
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%10 p-divergence and its increment with respect to k
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Figure 10: B-divergence evolution and increment evolution for the given example. Blue curve

for 620 = red curve for 022 = {5 and green curve for 622 = Z.

i
152

(105). Indeed as ACD1? = 0.0272, ARD!?) = — L ACD™? = 0.0907
(1,2)

and lim 23Me — — exp[(8 — )ARD(12)] — 1 = 0.1989.
k

«10%*  Sharma-Mittal divergence and its normalized increment with respect to k
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Figure 11: Sharma-Mittal divergence evolution and normalized increment evolution for the

given example. Blue curve for 02 > = 1”—5, red curve for 02 2 = 110 and green curve for 62 2 = %
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6. Conclusions and perspectives

In this paper, we have deduced expressions of various divergences between
Gaussian processes modeled by sums of complex exponentials disturbed by addi-
tive noises. Among all the divergences that have been studied, it appears the KL
and Jeffreys divergence rate have the advantage of depending on the model pa-
rameters. Many others only depend on the ratio of the additive-noise variances.
Sharma-Mittal divergence can be also of interest, but the asymptotic normal-
ized increment must be considered in this case except when the variances of the
additive noises are the same. The illustrations confirm the theoretical analysis.
As a short-term perspective, we plan to analyze other divergences and other

types of random processes.

Appendix A. Derivation of quantities useful to get the analytical ex-
pression of the (-divergence and the ~-divergence in

the Gaussian case

Appendiz A.1. Expression of ka pf(Xk)ka
Given (49), one has:

Ix(p1, B) :/ Py (Xk)d Xk (A1)
Xk
_ 1 B T A1
= ——5 5 xp (— 5 Xk = pea]” Qe a [Xnk — fre,1]) A X
X (2m) 2 |Qral?
1) "7 |Qua | T

1 1 (1 -1
———exp ( — = [Xk — po,1] (*Qk,l) [Xk — pe1])d Xk
/xk enEiauls P 8 )
As the determinant of %Q;ﬂ is equal to ﬁ@kﬂ’ the above equality can be
rewritten this way:

1

L(p1,B) = 5 —5 X (A.2)
B (2m) 5 |Qua 7
k —1
B2 1 T (1
———exp(— s [Xe —pra] | 3Qrn (Xt — pr,1])d X

L o 5 )
. 1
- k(B—1) (B—=1)

2

BE(2m) "7 |Qra
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Appendiz A.2. Expression of ka 3 (X )5 (Xk)d X,
Let us now address the expression of the second integral defined by:

1
e
(V2m) K@+ | Qi 1% |Qu.z?

where a > 0 and b > 0. We will see why this assumption is required in the rest

%A) (A.3)

xp(—

Il(p17p27a7 b) = /

of the mathematical development. In addition, A can be expressed after some

mathematical developments as follows:
A= a[Xk — ] Qi 11Xk — p] + 0[Xk — pn2] " Qi p[ Xk — pik 2] (A.4)
= Xi (aQp +0Qp2) Xk — 2Xi (aQi 1pk1 + bQj nhin,2)
+ apie Qi 1 et + Dt 2Qp 5hk 2

At this stage, let us introduce the following two quantities:
Qap = aQi ) + Qi (A.5)

It should be noted that a and b are necessarily positive to guarantee that Q4
is definite non negative and exploit this property in the remainder of the math-

ematical development. In addition, one has:

Qo pbkab = aQp 1 pk1 + DQy bhtk 2 (A.6)
Given (A.5) and (A.6), (A.4) can be rewritten this way:

A= (Xi — pikap) Qromy(Xk — pkab) (A7)

T -1 T -1 T -1
- /ilc,a,ka@,ka,a,b + aMk,le,ﬂ’«k,l + bHIc,QQk,2Nk,2

Using (A.7), the next step is to rewrite I (p1, p2, a,b) by taking into account the
fact that [ m exp (— 2(Xi — uk,a,b)TQ,;}l’b(Xk — fi,ap))d X = 1.
This simplification implicitly implies that Q) 4,5 is invertible and has the prop-
erty of a covariance matrix of a Gaussian process. It is hence assumed to be
Hermitian and definite positive. Its inverse Q,:la , has therefore the same prop-
erties. When a and b are strictly positive and referring to (A.5), this assumption
holds. Indeed, as 2 Q,:%:z: >0 and 2 Qgéx > 0 for all non zero column vector

x of appropriate size, QTHQ];}Lb.’L’ = aa:HQ,ia: + belelzx > 0. In this paper,
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this constraint on a and b will be enough for the mathematical development we

are doing. One obtains:

|Qkya0]'? y
k(atb-1) Qk,1|%|Qk,2|%

T — T — T —
(aﬂk,le,llﬂk,l + b,uk,sz,lz/im - Mk,a,ka,}z,b/’Lkﬂ;b))

Ii(p1,p2,a,b) = (A.8)

(Var

exp (—

~—

N | =

Then, our purpose is to simplify the argument of the complex exponential in
(A.8). To this end, let us introduce a new matrix denoted as Q yei(b,a) and
defined by:

Qrk,wei(b,a) = bQr1 + aQr2 = Qe (b, ) (A.9)

Then, one has:
Quas ) 9@ + Qx> = Qe (alk +5Qr1 Qi) (A.10)

= Qr1(aQr2 +bQk1)Qrs = Qr1Qkuwei(b,a)Qx s

(A.9)

Note that:

Qi = Q)" and Qruwei(b,a) = Qr1Qp Q2 = Qr2Qp b ,Qr1 (A1)

Their determinants hence satisfy:

|Qk,11|Qk,2]
|Qk,wei (b, a)]

In addition, let us differently express the argument of the complex exponential

in (A.8), i.e.

|Qk,ab| = (A.12)

1 _ _ _
B = -3 (GN;le,lmk,l + bﬂg,sz,éﬂkz - :U/g,a,ka,}z,kaﬂyb)) (A.13)

by using (A.6) and by taking into account the fact that Q,;}l’b is symmetric.
This leads to:

T —1 T 1 1
Ph,a,6Qp,a,blk,0,0 = Hic,a,bQr,a,0@k,a,6Q, a,bHk,ab (A.14)

= (s @l bt 2Qi 3 ) Qua (@i b +6Qi 31k )

2 T -1 -1 2 T -1 -1 T -1 -1
=a" i1 Q1 Qk,a,b @k, 110k,1 + " i 2Qp 2 Q0 bQp 2 k,2 + 2abpte 1 Q1 Qk,a,b Q2 Hk,2

Therefore, one has:
1 _ - _
B=—3 (auf,le,lluk,l — a1 Qp ) Qo b Q1 i1 (A.15)

bl 2Qy b2 = b 2Qi 5 Qi Qi btk — 205 1 Qi) Qs Qi b2 )

40



However, given (A.5), Qﬁuei(b, a) can be expressed using the matrix inversion
lemma'3 provided the matrix is invertible. Two expressions can be deduced,

depending on the use of the lemma. On the one hand:

DQsei (00) = Qpt = 0Q1 1 Qi b Qi) (A.16)
On the other hand:

Qe (b, @) = Qiep = bQy 2Qk0,6 Q. 2 (A17)

By combining (A.11), (A.15), (A.16) and (A.17), one obtains:

ab _ - i 7
B = —5( E,le,}uei(l% a)pr1 + M£,2Qk,1uei(b7 a)lﬂm) + abl‘lek&Qk,a,kaéukyg
(A.18)
ab B
= _?(:u’k,l - Mk,?)TQk,}Uei(b, a)(pdk’l — ng)

Finally, by introducing App = pr1 — pr,2 and combining (A.8), (A.12) and
(A.18), one gets:

l1—a 1—-b
Qra| 2 [Qr2| 2
Il (p1>p27 a, b) = |k(a+h|—1) | ‘
(27[') 2 |Qk,wei (b7 ll)|

Therefore, when ¢ = a > 0 and b =1 — a > 0, meaning 0 < a < 1, one has:

11—« [e4
|Qr1l 2 |Qr,2|2 exp (704(1 —a)
|Qk,wei(1 - aaa)| 2

b _
o (<AL QR (b )An ) (A1)
2

Il(p17p25 Q, 1- Of) = AHZ‘Q’;L}G’L(]‘ —Q, CE)A,LL]Q)

=

(A.20)

When a =1and b= —1 > 0, meaning § > 1, this leads to:

1
Il(p17p27 Lﬂ - 1) = k(B—1) B—2
@) 7 |Qrwes(B—1,1)[2|Qual T

cep (O P A0k - 1 0Am,)

(A.21)

Appendix B. Another way to derive the results in the Gaussian case

Let us rewrite (49) differently:

(60 = exp (=5 10(2) = S 1nm) = J10(0Qur) - 51X — el Qi X~ )

(B.1)

131n the current case, it is given by (U+ V)" ! =U"1 — U~ (V-1 +Uu—H)~lu-1.
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This leads to:

k k 1 1 _
pr(X0) = exp (= 5 In(m) = SIn(2) = S I(Qual) = 5uEaQiies  (B2)

_ 1 _
+ M£,1Qk,11Xk - iXkTlele)
or equivalently:

k 1 1 _
pr(X0) = exp (= 5 n(m) — 2 (@ Qual) — S Tr(@ckmanly)  (B3)

+ (@i hpe) Xo = Tr((2Qua) ' X X))

or

k 1 1 1 _ _
pi(X) = exp (= 5 In(m) + 5 n(I5QiiD) = 5Tr(Qu i QuaQiimanka)  (BA)

+ (Qripwn) Xk — T?"((2Qk,1)_1XkaT))

The above expression can be rewritten as:

pi(X3) = exp (= S n(m) + 5 (2 Qe — 1 TrCQeaQi i (Qpdmen)™) (B)

+ (@) Xk = Tr((2Qu) " XiXT))

By introducing the scalar product between two symmetric positive definite ma-
trices X and Y as the trace of the product XY ie. < X,V >= Tr(XY),
the so-called sufficient statistics ¢(X) = (Xk, —XkX,z) and what is called the
natural parameters stored in © which is the set (6 = Qgﬁuk,l, = (2Qk1)7"),
we can conclude that (Q,;lluk’l)TXk —Tr((2Qk,1) ' XxX]) can be seen as the
scalar product between the sufficient statistics and the natural parameter ©,
i.e. < t(Xy),© >. In addition, what is known as the log normalizer can be
expressed as:

F(©) = {Tr(97100") — 2 In((]) + & In(x) (B.6)

Finally by setting the so-called carrier measure k(Xy) = 0, one has:
pl(Xk76) zexp(< t(Xk),@ > —F(6)+k(Xk)) (B7)

In [31] when dealing with pdfs belonging to the exponential family, respec-
tively characterized by the set of natural parameters ©; = (6 = Q;ll M1, =
(2Qk1)" ") and O = (6 = Q];é,ukg,(ﬁ = (2Qk,2)™'), Nielsen provided a closed
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form expression of the following integral when a + b = 1:
Ii(p1,p2,a,b) = /X P (Xx)ps(X5)d Xy, (B.8)
k
= exp (F (a1 + bb2) — aF(6,) — bF(62))
Therefore, the Chernoff coefficient can be deduced as follows:
Calpr (X0 p2 (X)) = [ 1 (X} ™™ (X dXs (B.9)

Xk

= L(p1,p2,a,1 —a) =exp (F (aO1 + (1 — a)O2) — aF(0©1) — (1 — a)F(02))

In this case, the following quantities must be taken into account to calculate
F(a®1 + (1 — a)O2):

Ocqu(a,1 —a) = aQ}Z}le,l + (1 - O‘)le,éﬂkﬂ
beulan1—a) =1 (aQi} + (1 - a)Qrh) = $Q0} (@Qua + (1 - @)Qua) Q1)

= 2Qn1Qrwei(l — @, )Qp
(B.10)

It should be noted that the inverse of ¢equ(a, 1 —a) = % (aQ,:j +(1- a)Q,;;)
can be expressed in three different ways. Among them, the inversion matrix

lemma can be considered twice. This leads to:

Pogu(@1 — @) = 2Qk2Qp hei (1 — @, @) Qi1 (B.11)
= 2 (Qui — (1~ )QeaQi (1 — ,0)Q1)
(Qk,Q — OéQk,2Q1:,1uei(1 -« Oé)Qk,2)

2
l1-«a
Therefore, given (B.6), the log normalizer F' (a©1 + (1 — «)Os) is equal to:

|Qr.1||Qk.2] k
Qw1 -] ¥ 2

1 _ _ _ _ _
+ - ((O‘Qk,llluk,l +(1- Of)QkéMkJ)T ¢>eq1u (an,llﬂk,l + (1 - a)Qk,lzﬂk,2))

F(a®) + (1 —a)0y) = %m@’ﬂ In(r) (B.12)

4

_1 |Qr.1||Qr 2] k k

=3 In( Orwer (1 — )] + 5 In(2) + 5 In(7)
1

+ 5 (2000 = )l Q1 boeguQi i + uE 1 Q1 L egu Qi s

+ (1= 0) il 2Qp 3 begu Qi bine.2)

I

At this stage, substituting ngqlu by successively using its three different expres-
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sions (B.11), one gets:

F(a®1 4+ (1 —a)07) = ln(—|Qk|(Djl;Elle§|a)\) + k

1 _ « —«
— 501(1 — a)Aquijm-(l — o, ) Apy + §u£1Qk,1uk,i + 5 )u;;r,sz,mk,Q

In(27) (B.13)

In addition, for ¢ = 1,2, one has:

1

1 k
= S Hii@uittis + 5 (| Qril) + 5 In(2m) (B.14)

F(©:i) =5

Therefore, exp(F (a©1 4+ (1 — a)O3) — aF(01) — (1 — a)F(03)) is equal to:
Co(p1 (Xk),p2 (Xk)) / T (Xk) dXk (B.15)

_1Qeal " [Qual
|Qwei (1 — a, )2

One hence retrieves the result given in (A.20).

exp <_MAMRQI;1U&'L(1 - a, a)AMk)

Appendix C. Derivation of the KL divergence for NSCE processes.
Proof of the link with the Rényi divergence

Appendiz C.1. Derivation of the KL divergence rate
Given the expression of the KL mentioned in the footnote 9 of the paper,

the increment of the divergence satisfies:

|Qr+1,1|Qk,2]
|Qr,1]|Qrt1,2]

+ T7r(Qa g1 Aptrr1 D) — Tr(Q;;AMkAu{)]

1 _ _
AKLY = 2 [Tr(Qit1 2Qus1) = TH(Qih@ka) = 1~ In (C.1)

As the processes under study are zero-mean, the above expression reduces to:

‘Qk+1 1]|Qk, 2|}
M 1Qkt|Qurrel

However, the limit of the logarithm of the determinant ratio has been addressed
n (19). Thus, one has:

1

ARKL = 3 [TF(QIZLQQkH,l) — Tr(Qr5Qk1) — (C.2)

|Qr+1,11|Qk,2] ol
=% = ]n — C.3
k=too  |Qr,1||Qry1,2] o3 (G:3)

Moreover, the limit of the trace difference was already addressed in one of our

previous papers [19]. This led to:

G Tr(Qit12Qri11) = AT (C4)
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where:

M; - M, 9
i’ m,i g,

AT( ) = Z o2 (1 - Zdﬂn,iﬁ"yi/) + ﬁ (05)
m=1 ? n=1 ®

with 59m,i79n,i/ the Kronecker delta. It is equal to 1 if 6,,; = 0, and to 0

otherwise. Note that we take advantage of this paper to fix a typo mistake that
appeared in [19]. Therefore, the divergence rate of the KL divergence when

dealing with NSCE processes is equal to:

@2 _ 17 Ama oi ot
ARLY® =3[ 3 20 =3 d000,2) + oy~ 1= 5] (CO)
m=1 2 n=1 2 ’

Appendiz C.2. Link with the Rényi divergence rate

Let us recall the expression of the increment of the Rényi divergence we
obtained in (67):

1 |Qr2® 1@kt wei(l —a,a)| |Qral'™®
ARD{"® (o) = — 1 ’ ’ ’
@) =~y (GiaF 10— ae)] [T
+ %(Tr(@gil,m(l — a,a)Aprr1Apii) — Tr(Qp ei(1 — @, a)AukAuZ))
_ E(o)
(@)
where
|Qk 2‘(1 ‘Qk+1 wei(l —Q, a)‘ |Qk,1|17a
E =1 . > C.7
k@) =In (\Qk+1,2|a |Qkwei (1 — a, )| |Qk+1,1|1_") ©7
|Qk+1,wei (1 — o, )] |Qk,2] |Qk 1
=1 > 1 . 1—a)l .
n(Coti—aan ) o (o) + 0 -om (i)
and
D(a) =—-2(a—1) (C.8)

AS Qi wei(1— o, &) and Q1 wei(1 — @, @) respectively tend to Q2 and Qp41 .2
when « tends to 1, E(a) tends to 0 when « tends to 1 while D(«) also tends
to 0. Therefore, one has to find another solution to deduce the limit of the first
part of the increment. The idea is to use L’Hospital Rule, i.e. to study the limit
of the ratio of the derivates E’(a) and D'(«) when « tends to 1. Given (C.8),
D’ (o) = —2. Let us now look at the derivate of Ej(a):

o) = 4 (1Qrt1wei(1 — @, a) o (A@r2l Yy ( 1@kl
Ek(a)_da(l ( |Qk,wei(l — a, a) >)+1 (|Qk+1,2|) : (|Qk+1,1|> (G9)

B, 1 (a) Bl 2 (o)
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According to (19), Ej ,(a) does not depend on a. It satisfies:
) / . |Qk 2| |Qr 1 ot
1 =1 In({——— ) —-In{———) =ln— 1
k—{rﬁr»loo Ek’Q(a) k~1>1}»1c>o n(‘Qk+1,2|) n(‘Qk+1,1|) na% (C 0)
Let us focus our attention on Ej | («) which can be rewritten according to (10)

and by adjusting the notations as follows:

/ d _
Eloa(@) = 5 (0(romer = Bl @i bei(1 = @,0) Rewes)) (C11)
with
T0,wei =1 —a)ro,1 + aro,2

Qk,wei(l - Ct,Oé) =

(
= (1—a)(Tr(¢1) + o1) + (Tr(¢2) + 03)
(1—-)Qr1+ aQr2

(

1 —a)(Sk,1®1SH + 0t 1) + a(Sk2®25¢ + 031))

Ok,1 C.12
Rk,wei = |:Ik Ok,1:| Qk+1,wei(1 -, a) ( )
1
H
=(1—a)Sk1P1 |ef*0r11 . ejk91,M1}
H
+OéSk12¢'2 |:ejk92,1 . ejk92,M2:|

= (1 — a)Sk,1¢1W£1 + Ozskyz‘l)z\lffg

In the following, our purpose is to express E,’c71(a) and look at its limit when &

tends to infinity and « tends to 1. Therefore, one has:

1
[N < C.13
k’l( ) T0,wei — Rﬁwei@lz,lwei(l — a, @) Riwei ( )

(—7“0,1 702 — RiweiQpmpei (1 — 0, @) Qp i (1 — 0, ) (—Qut + Qk,?)Rk,wei)

In (C.13), the limit of 70 i — RE. Q,;Lei(l — @, @) R wei when k tends to

k,wei
infinity is (1 — a)o? + ao?. Consequently, the limit when o tends to 1 is
o2. In addition, 70,2 — 70,1 does not depend on k and a and hence remains
unchanged when taking the limits. Therefore, one has to study the limit of
—R,ﬁweiQ;’fvei(l - a, oz)Q,;iUei(l — o, @) (—Qk,1 + Qr,2) Rk wei Wwhen k increases
and tends to infinity and « tends to 1. To this end, let us consider (12) and
adjust its expression to the current case. Introducing o2, = (1 — a)o? + ao3,

wet
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Terms to be studied lim L;
a—1

_ 1 pH P H H  oik 2y H
L= lim = RHQu1Riwe lim B0 @00 & AL, B, + Dhw, 030l
k—+4o0 wei ’ 400 92 ’ 2 v

k—
2
Ly= lim ——RH Q2R we — lim B, 030, + L, 00l
2 ey in k,uMQk.Z k,wei Eothe ol k2% ¥ o o2 k22 o
: 1 H H B k2 H H aik oq H
Ly=— lm =Ry, .i% weiSk wei Qk,1 Rk wei lim =25y 0®oAp 1 @1 Ay PoWy 'y — Zr Uy, @30
k—+o00 wei v ’ k—+o00 2 ’ 5 2 s
= — lim I,
a—1
2
Ly= lim —3—RE Sk weiStpeiQn2Riwei lim —5 0, , @30, — Ly ,020]
1= m = Ry i Sk wei eawei @k, 2 B wei Jim o la @3, — o e 2830,
= —lim Lo
" - a—1
1 Ry weiSkwei® i Skiwei Qr,1 Riwei M, M
Ls = kBI«Poo s Zmzl n=1 A/mr,ldr‘h‘m,@a,n,
. RE Sk wei®, 251, e 2 Riw .
L¢= lim koweiSk,wei w;é.zk"m”QkJ koawei lim \PA«42‘I)2\I’£I_2+O'§:TT(‘1>2):rU,Q*Ug
k—+o0 k—+oo ’

Table C.2: Terms to be studied and their equivalent expressions when « tends to 1 using the

asymptotic properties

one has:
lim  Qei(1 - a,q) (C.14)
k—too 1
o 1 1 H 1  Omein—1H
= kEToo (O’iei Ik @Sk,wezsk,wei + ?Sk,wez((bwez T) Sk,wei

Therefore taking advantage of the asymptotic properties of Sk ye; similar to

those of Sy ; for ¢ = 1,2, one has after development and simplification:

lim Qe (1 = @, ) Qi (1 — @, @) (C.15)
k—4o0 ’ ’
o 1 1 - 1 Coom
- kEToo (Uiei Ik - @Sk,weisk,wei + ﬁsk,weiéweisk,wei

The next step is to pre-multiply the above expression by —Rﬁwei and post-

multiply it by (Qk2 — Qr1)Rkwei- By introducing As; = lim %szshl
- ,

li
k—+
which is a matrix of dimension M, x M; whose elements are equal to 697.,)7”,9“
which denotes the Kronecker delta.'?, this amounts to looking at six limits. Af-
ter mathematical development and simplification one gets the following results

summarized in the table C.1.

Using the result given in table C.1, the limit of Ej ;(a) when « tends to 1

141n other words, this means that it is equal to 1 when when the normalized angular fre-

h

quency of nt? component of Sk,2 is equal to the m*" component of Sk,1 and zero otherwise
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verifies:

My M,

1
hm Ek 1(04) 7 (—TQJ + 70,2 + Z Z 7m,1691,m792,n —To,2 + O'S) (016)
2

m=1n=1

M,y 1 M
=—— (Z’Ym1+0'1 szmléelwne2n)+l

m=1n=1

Mo 2
27m1<12691m92n) 70_72

Consequently, the limit of Ej («) is equal to:

M> 5 5
o o

hm Ei(a E fyml(l— E 301 1 0o, n) _;§+ln;§ (C.17)
n=1 2 2

Finally, one obtains:

Mo 2 5
. Ep(a) o2 1. o
g;HgD,(a)——er—val 1—Zaglm v | F gy gy (C19)

The divergence rate of the KL divergence is hence retrieved for NSCE processes.

Appendiz C.3. Link between the beta-divergence and the KL divergence in the

Gaussian case

Let us recall the expression of the -divergence given in (62) and rewrite it

a bit differently:

1 1 .
Be D(l 2)(/3) 52+1( ) R(E=1) <( _ @E-1) + (521)> (C.19)
ﬁll( (1 ) 1)|l|Q lﬂ exp (_(ﬂ;1)A/L£Q;}wei(ﬁ—l7l)Auk>
] 2 k2| 2
or equivalently:
(1,2) 1 1
BeD, " (B8) = 52“( )k(ﬁfl) (* = (C.20)
1 ) N 1 )
B e TR e T
1 1

(B-1) 7 )
- k(B—1 1 —2 - Q,wei5_17lA
BT o B o B L DP |02 eXP( 3 1k Qi wei )Ap
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In the above expression, the first term tends to 0 when 5 tends to 1. Let us

now look at the sum of the last two terms:

1 1

Fi(B) = = < — (C.21)
(8- 1)(2m) "= (ﬁle,lIw?)
1 B=1) 7,1 )
- 1 5= SXP | — AM Q ,wei(ﬁ_ 171)AN‘
|Quwes (B —1,1)[2|Qr2| 2 ( 2 f * )
1
AL x Hy(B)
where:
lim Ju(8) = lim (5~ )(2m) "7 =0 (C.22)
and
lim Hy(f) = lim (; (C.23)
o B IQual '
1

- P (—MAJQ;L&-w -1, 1>Auk) )=0
|Qk,we7j(ﬂ - ].7 1)|2 |Qk,2‘ 2 2

Therefore, we suggest using L’Hospital rule once again. One has after expressing
(2m) o as exp (@ 1n(27r)):

lim Ji(8) = lim (2m) T + (8 - 1)%(2@ M (C.24)

B—1

Let us now look at élm1 H/(8). To this end, one must express the derivate of
—

hi(B) = m and then the derivate of the following quantity:
ha(B) = — \Qk,wei(ﬁ—l,ll>|%|czk,2\¥ exp (—@AM{Q;@W -1, 1)A.Uk>5
i)
M@ = iy a3 (©2)
= gi_)ml—gﬁ7%71|Qk,1\ 4 +57%\Qk,1|(155) X <—%1H\Qk,1|>
*g - ;1H|Qk,1|

Let us now decompose h2(f) as a product of three terms all depending on 5.

The first one hoy(8) is given by:

ha1(8) = —|Qkwei (B — 1,1)[ 7% = —|(8 — 1)Qr1 + Qra| 2 (C.26)
= (B = 1)QriQun + Tk 2 |Qua| 2
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with:
lim ha1 (8) = ~|Qual > (C.27)

Then, Q;;Qk,l can be expressed from the eigenvalue decomposition with the

eigenvalues {\; }i=1, . . Consequently, (C.26) can be rewritten this way:

=

ha1(B) = — (H((B - DA+ 1)) Qra| 2 (C.28)

i=1

Therefore, the limit of the derivate hf,(3) when 8 tends to 1 is equal to:

k -3 k
lim i (8) = —|Qxo|~# lim (H((ﬂ ~ DA+ ”) * (_; 2 m)

i=1 i=1 v

(C.29)
_1 0k 1
2 2 _
= 7@]6;' Z)\i = 7|Qk;| TT(QkéQkJ)
=1
Let us now look at the second term hoo(8) = |Qk72|¥ and the limit of its
derivate when (3 tends to 1. One can first notice:
lim hoo(B) = | Q2| (C.30)
B—1
In addition, its derivate satisfies:
1
. . 2= 1 2
lim R (8) = lim [Qkal 3 x L lQual = 920 miQual ()
Let us finally look at the third term defined as follows:
-1 _
s (3) = oxp (~ C At Qs - 10 ) (©32)
with:
lim th(ﬁ) =1 (033)
B—1
Its derivate satisfies:
. / T (6 - 1) T ~A—1
lim ho3(8) = lim exp | —~——Apk Qp wei (B — 1, 1) Api (C.34)
B—1 B—1 2 ?
1 — -1 dQ—iﬂei
x <—2Au£Qk,hei(ﬂ =1 A - P St g, 1)Auk>

1 _ 1 _
= —3 AL Qe (B = 1) A = =T (Qu A
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To end up the reasoning, one just has to express %13“1 hy(B) = élgll hbhaghas +

hglhIQthg + hglhgghég. One obtains:

1
1 ) ;
tim 15(9) = 222 (@b Qua) @l (C.35)
1
_1 2 _1 11 _
— |Qr,2| 2 % n|Qr2| +[@r.2| 2 |Qr.2|2 5T (Qk,leukAuf)

1 _ 1 1 _
= STr(Q3Qn) + 5 In[Qual + 5T (Qu3AumAut )

Finally, as lim H;(8) = lim h}(8) + h5(B), one can deduce that:
B—1 B—1

, 1 _ _
lim H(8) = (—k +Tr(QrsQk1) —In :g’;;l +Tr (QkéAukAuf)) (C.36)
and finally:
H;,.(B) 1 |Qk.1] 1 T
i <—k—+7W(Qk2QkJ)—ln|Qk2‘+—Tr(Qk2AukAuk)> (C.37)

-1
S 2
= AKLM
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