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Abstract

The purpose of this paper is first to derive the expressions of various divergences

that can be expressed from the Chernoff coefficient in order to compare two

probability density functions of vectors storing k consecutive samples of a sum

of complex exponentials disturbed by an additive white noise. This includes the

Chernoff divergence and the α-divergence for instance. Tsallis, reversed Tsallis

and Sharma-Mittal divergences are also addressed as well as the β-, γ- and

αγ-divergences. The behaviors of the divergences are studied when k increases

and tends to infinity. Depending on the divergence used, the divergence rate or

the asymptotic normalized increment is considered. Expressions that encompass

the divergence rate or the asymptotic normalized increment of the divergences

are also given. Comments and illustrations to compare random processes are

then given. This study makes it possible to show the advantages of the Kullback-

Leibler divergence when studying this type of process.
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1. Introduction

Random processes can be modeled by different types of models depending on

their statistical properties in terms of correlation and spectrum. For instance, in

some speech enhancement applications, the signal can be modeled either by an

autoregressive process or by a sum of complex exponentials, both disturbed by

an additive white noise. Depending on the model chosen, Kalman and particle

filters or subspace methods can be used to estimate the signal from the noisy

observations. In spectrum analysis, some approaches based on an a priori model

can be considered. Once again, the models mentioned above can be considered.

In this paper, we will focus our attention on one of these models. It is defined by

a set of parameters, namely the normalized angular frequencies, the variances

of the magnitudes of the complex exponentials and the variance of the additive

noise.

When dealing with statistical change detection1 or time series comparison, dif-

ferent approaches exist: comparing the model parameters, using a spectral dis-

tance or exploiting a divergence. Divergences are not only used in this case.

Indeed, a great deal of interest has been paid to the divergences by various

researchers working in different fields: signal and image processing but also

statistics and information theory. See for instance [4, 12, 25, 27, 28, 41]. Be-

sides the use of divergences in various applications, different topics dealing with

the divergences have been addressed for the last years. Among the recent the-

oretical contributions, some are highlighted below:

1/ Authors like Nielsen [31–34] presented closed-form expressions of divergences

for some families of distributions or studied new generalizations of existing di-

vergences [10, 22, 23, 32, 33, 44].

2/ The estimation of the divergence, when the data are Gaussian or not, is

another issue addressed by some researchers [8, 9, 30, 34, 42]. Indeed, when

1The purpose is to detect when the statistical properties of the signal evolve. To this end,

the beginning of the signal serves as a reference and it is compared with another frame of the

signal, using a sliding window.
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dealing with Gaussian processes, the mean and the covariance matrices could

be estimated from the data, but the number of samples available has a strong

impact on the accuracy of the estimates. The estimations of the Kullback-

Leibler (KL) divergence between two probability density functions (pdfs) that

are not necessarily Gaussian by using sets of data were studied in [8, 9] for

instance. When considering the KL importance estimation procedure (KLIEP),

the density ratio is estimated instead of estimating the distributions separately.

The reader may refer to the works proposed by Sugiyama et al. [42, 43, 45].

It should be noted that Nguyen et al. [30] also recall different works dealing

with the estimation of the divergence in the introduction of their paper before

presenting M-estimators for the KL divergence and the density ratio.

3/ In information theory, there are various quantities such as the entropy, the

conditional entropy, the mutual information, the cross-entropy and the diver-

gence. Very often, having information of this quantity per unit of time can be of

interest. It characterizes a growth rate. Thus, the entropy rate for a stochastic

process is the limit (when it exists) of the joint entropy of n samples divided

by n, when n tends to infinity. Depending on the properties of the process, it

can be related to the asymptotic equipartition property. When studying an in-

dependent identically distributed (i.i.d.) sequence, the corresponding Shannon

and Rényi entropy rates are the entropy of the distribution. When dealing with

a Markov chain respecting some conditions, the entropy rate depends on the

stationary distribution and the transition probabilities. In [35], Rached et al.

showed that the rate of the Rényi entropy of order α is related to the largest

positive eigenvalue of the matrix whose elements are the transition probabili-

ties at the power α. Formulas of entropy rates for (h, φ)-entropy and ways to

estimate them are presented in [7]. It should be noted that the entropy rates

are still the core of research activities -See for instance [38] [15]- and can be

used in very different cases such as the characterization of complex networks

in the real world [16] or the analysis of the voice pathology evolution [40]. For

the last years, a great deal of interest has been paid to these ”rates” and not

only to the entropy rates. Thus, in [36] and [37], the authors respectively de-
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rived a formula of the Rényi and KL divergence rates when comparing two

time-invariant finite-alphabet Markov sources of arbitrary order. Moreover, the

divergence rates for stationary Gaussian processes was studied initially in [20]

and then in [13]. In these papers, the authors respectively provide the expres-

sion of the Kullback-Leibler (KL) divergence rate and the Rényi divergence

rate for zero-mean Gaussian processes by using the theory of Toeplitz matrices

and the properties of the asymptotic distribution of the eigenvalues of Toeplitz

forms. In [17], we recently show that using the KL divergence rate is equal

to the Itakura–Saito distance, up to a multiplicative factor when dealing with

Gaussian stationary ARMA processes.

The Kullback-Leibler (KL) divergence [24], related to the Shannon entropy, is

very popular but there are many other divergences that have been proposed

in the literature and many of them correspond to a generalization of the KL

divergence. See [2] for instance and figure 1.

In this paper, we propose to analyze how the divergences based on the Chernoff

coefficients between the pdfs of vectors storing k consecutive samples of Gaussian

processes modeled by sums of complex exponentials disturbed by white noises

(NSCE for noisy sum of complex exponentials) evolve when k increases. Among

them, the Chernoff, Bhattacharyya and Rényi divergences [3, 5, 39] are first

investigated. Then the α-divergences [1] that include the squared Hellinger

distance are studied. We also analyze the Tsallis, reversed Tsallis and Sharma-

Mittal divergences. Finally, the β-divergence, the γ-divergence and the αγ-

divergences are considered [11] [6]. In each case, we provide the analytical

expression of the divergences when dealing with Gaussian processes. Then, we

analyze how the divergences evolve when the number of variates k increases.

In some cases, this makes it possible to deduce what is called the ”divergence

rate”, which corresponds to the asymptotic increment of the divergence, i.e.

the difference between the divergences computed for k+ 1 and k variates, when

k consecutive samples and tends to infinity. This means that the divergence

as a function of k tends to an asymptote, the slope of which is the divergence

rate. In other cases, we rather focus our attention on the asymptotic normalized
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increment, i.e. the difference between the divergences computed for k + 1 and

k variates which is then divided by the divergence computed for k variates,

when k tends to infinity. We will see whether these quantities depend on all

the parameters characterizing the sums of complex exponentials disturbed by

an additive noise, or not. This will help us to conclude whether they can be

useful to compare random processes or to detect statistical change on data over

time. This work is hence a follow up of previous papers [19] [17] that dealt with

the behaviours of the Jeffreys and Rényi divergences.

The remainder of the paper is organized as follows: after recalling the properties

of Gaussian processes modeled by sums of complex exponentials disturbed by

white noises, the definitions of the divergences are recalled as well as the links

they have between them. Then, the Gaussian case is addressed. The expres-

sions of the divergences are given for this particular choice of pdf. We analyze

how the increments of the divergences between pdfs of random vectors storing

k consecutive samples of NSCE processes evolve when k increases and tends

to infinity. They correspond to the divergence rate. When dealing with the

Chernoff, Bhattacharyya, Rényi, γ- and αγ-divergences, we provide a general

expression that encompasses all the expressions of the divergence rates. When

studying the α-divergences, the Tsallis, the reversed Tsallis and Sharma-Mittal

(SM) divergences, a general expression of the normalized increment is provided

and studied. Some illustrations as well as comments are then given. Three

appendices are provided. The first one makes it possible to obtain the analyt-

ical expressions of integrals of products of Gaussian pdfs at different powers.

This can be useful to get the analytical expression of the β-divergence and the

γ-divergence in the Gaussian case. The second one provides another way to get

the result in the Gaussian case based on [31]. The last one gives the mathemati-

cal details showing the link between the Rényi divergence and the KL divergence

when dealing with NSCE processes.
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2. Some properties about the processes to be compared

In this paper, we propose to focus our attention on a class of random pro-

cesses that can be modeled by a sum of complex exponentials disturbed by an

additive white noise. This type of modeling has been often used in the field of

spectrum analysis when dealing with MUSIC and ESPRIT2. This model is an

illustration of the Wold decomposition because the sum of exponentials char-

acterizes a discrete spectrum while the additive white noise has a continuous

spectrum [29].

Let us assume that the ith random process, with i = 1, 2, is modeled by a sum

of Mi zero-mean exponentials as follows:

xi(n) =

Mi∑
m=1

Am,ie
jnθm,i (1)

=
[
ejnθ1,i . . . ejnθMi,i

] [
A1,i . . . AMi,i

]T
where n refers to the nth sample, j2 = −1, {θm,i}m=1,...,Mi

are the normalized

angular frequencies in the interval [−π, π). For each process, they differ from

each other. However, the two processes to be compared can have common nor-

malized angular frequencies. In addition, {Am,i}m=1,...,Mi
are the zero-mean

Gaussian random magnitudes with variances {γm,i}m=1,...,Mi
. These magni-

tudes are uncorrelated with each other.

The Toeplitz covariance matrix QSCE,k,i of size k × k of the column vector

storing k consecutive samples of the process xi is then given by:

QSCE,k,i = Sk,iΦiS
H
k,i (2)

2ESPRIT stands for ”estimation of signal parameter by rotational variance technique”

whereas MUSIC means ”multiple signal classification”. They are widely used in spectrum

analysis and array processing.
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In (2), Sk,i is a matrix of size k×Mi that stores Mi column vectors as follows:

Sk,i =
[
S1
k,i . . . SMi

k,i

]
=


1 . . . 1

ejθ1,i . . . ejθMi,i

...
...

ej(k−1)θ1,i . . . ej(k−1)θMi,i

 (3)

In addition, Φi is a diagonal matrix of size Mi ×Mi whose main diagonal is

defined by the variances {γm,i}m=1,...,Mi of the magnitudes {Am,i}m=1,...,Mi .

Remark. The vectors {Smk,i}m=1,...,Mi
have the following properties that will be

useful in the rest of the paper:
1
k

(
Smk,i

)H
Smk,i = 1

1
k

(
Smk,i

)H
Snk,i =

sin(
k(θm,i−θn,i)

2
)

ksin(
(θm,i−θn,i)

2
)
e
j

(
(k−1)(θm,i−θn,i)

2

)
(4)

Since lim
k→+∞

| sin(
k(θm,i−θn,i)

2

ksin(
(θm,i−θn,i)

2

)| = 0 for any pair θn,i 6= θm,i, the asymptotic prop-

erties of the vectors {Smk,i}m=1,...,Mi
are:

1
k

(
Smk,i

)H
Smk,i = 1

lim
k→+∞

1
k

(
Smk,i

)H
Snk,i = 0

(5)

The process defined above is then disturbed by an additive zero-mean white

noise with variance σ2
i , leading to a covariance matrix denoted as:

Qk,i = QSCE,k,i + σ2
i Ik (6)

where Ik is the identity matrix of size k.

Among the other properties that will be useful in the mathematical development

that will follow, one can mention that the determinant of the covariance matrix

of size k + 1 can be expressed as3:

|Qk+1,i| =

∣∣∣∣∣∣Qk,i Rk,i

RHk,i r0,i

∣∣∣∣∣∣ = r0,i × |Qk,i −Rk,i
1

r0,i
RHk,i| (7)

3Let a matrix be defined as

A B

C D

 where D is assumed to be invertible. It is post-
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where r0,i is the covariance function of the ith process for lag 0 while Rk,i is

a column vector storing the covariance function of the ith process from lags k

down to 1. Using the matrix determinant lemma4, this leads to:

|Qk+1,i| = |Qk,i| × r0,i × (1− 1

r0,i
RHk,iQ

−1
k,iRk,i) (8)

= |Qk,i| × (r0,i −RHk,iQ−1
k,iRk,i) (9)

Therefore, the ratio of the determinants of the covariance matrices of consecutive

sizes satisfies:

|Qk+1,i|
|Qk,i|

= r0,i −RHk,iQ−1
k,iRk,i (10)

Let us now look at the expression above when k increases and tends to infinity.

To this end, on the one hand, using the matrix inversion lemma5 on (6), one

gets:

Q−1
k,i =

1

σ2
i

(
Ik − Sk,i

(
σ2
iΦ−1

i + SHk,iSk,i
)−1

SHk,i

)
(11)

In a previous paper [19], by applying again the matrix inversion lemma on the

matrix
(
σ2
iΦ−1

i + SHk,iSk,i

)
and by using the asymptotic properties (5), it was

multiplied by

 I 0

−D−1C I

, with I the identity matrix and 0 is a matrix of zeros, leading

to the matrix

A−BD−1C B

0 D

, where A−BD−1C is the Schur complement. Taking the

determinant and given the triangular structure of two of the three matrices, one has:∣∣∣∣∣∣ A B

C D

∣∣∣∣∣∣
∣∣∣∣∣∣ I 0

−D−1C I

∣∣∣∣∣∣ =

∣∣∣∣∣∣A B

C D

∣∣∣∣∣∣ =

∣∣∣∣∣∣A−BD
−1C B

0 D

∣∣∣∣∣∣ = |A−BD−1C||D|

4Assuming A invertible and v and v two column vectors, one has:∣∣∣∣∣∣ I 0

vT 1

∣∣∣∣∣∣
∣∣∣∣∣∣I +A−1uvT A−1u

0 1

∣∣∣∣∣∣
∣∣∣∣∣∣ I 0

−vT 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣I A−1u

0 1 + vTA−1u

∣∣∣∣∣∣
Therefore, |I +A−1uvT | = 1 + vTA−1u and |A+ uvT | = |A|(1 + vTA−1u).

5Given A, U , C and V be matrices with A and C assumed to be invertible. One has:

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1
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shown that:

lim
k→+∞

Q−1
k,i = lim

k→+∞

(
1

σ2
i

Ik −
1

kσ2
i

Sk,iS
H
k,i +

1

k2
Sk,i

(
Φi +

σ2
i

k

)−1

SHk,i

)
(12)

On the other hand, let us express Rk,i from Qk+1,i by considering that 0i,j is a

i× j matrix of zeros:

Rk,i =
[
Ik 0k,1

]
Qk+1,i

0k,1

1

 (13)

=
(2),(6)

[
Ik 0k,1

] (
Sk+1,iΦiS

H
k+1,i + σ2

i Ik+1

)0k,1

1


=
[
Ik 0k,1

]
Sk+1,iΦiS

H
k+1,i

0k,1

1


= Sk,iΦi

[
ejkθ1,i . . . ejkθMi,i

]H
= Sk,iΦiΨ

H
k,i

where Ψk,i =
[
ejkθ1,i . . . ejkθMi,i

]
.

Consequently, using (12) and (13), one can express lim
k→+∞

RHk,iQ
−1
k,iRk,i as the

sum of three terms given below:

1. The first one is defined as:

1

σ2
i

lim
k→+∞

RHk,iRk,i =
1

σ2
i

lim
k→+∞

Ψk,iΦiS
H
k,iSk,iΦiΨ

H
k,i (14)

Due to the asymptotic orthogonal properties (5) between the columns of

the matrix Sk,i, S
H
k,iSk,i can be replaced by kIk when k increases and

tends to infinity and hence one gets:

1

σ2
i

lim
k→+∞

RHk,iRk,i = lim
k→+∞

k

σ2
i

Ψk,iΦ
2
iΨ

H
k,i (15)

2. Concerning the second term, one has:

lim
k→+∞

− 1

kσ2
i

RHk,iSk,iS
H
k,iRk,i = lim

k→+∞
− 1

kσ2
i

Ψk,iΦiS
H
k,iSk,iS

H
k,iSk,iΦiΨ

H
k,i (16)

= lim
k→+∞

− k

σ2
i

Ψk,iΦ
2
iΨ

H
k,i

9



3. Finally, the third term satisfies:

lim
k→+∞

1

k2
RHk,iSk,i(Φi +

σ2
i

k
)−1SHk,iRk,i (17)

= lim
k→+∞

1

k2
Ψk,iΦiS

H
k,iSk,i(Φi +

σ2
i

k
)−1SHk,iSk,iΦiΨ

H
k,i

= lim
k→+∞

Ψk,iΦiΨ
H
k,i = Tr(Φi)

where Tr(A) is the trace of the matrix A.

Consequently, given (12), (15), (16) and (17), the limit of RHk,iQ
−1
k,iRk,i when k

increases and tends to infinity can be rewritten as:

lim
k→+∞

RHk,iQ
−1
k,iRk,i = Tr(Φi) (18)

Since r0,i = Tr(Φi) + σ2
i , one can deduce that:

lim
k→+∞

|Qk+1,i|
|Qk,i|

= r0,i − Tr(Φi) = Tr(Φi) + σ2
i − Tr(Φi) = σ2

i (19)

Remark.

• When k is larger than the number Mi of complex exponentials, there are

Mi predominant eigenvalues defining the so-called signal subspace and

k − Mi eigenvalues equal to the variance of the additive noise, the as-

sociated eigenvectors spanning the noise subspace. Thus, when the process

is a complex exponential disturbed by an additive white noise, Qk,i has a

single predominant eigenvalue equal to kγ1,i + σ2
i and k − 1 eigenvalues

equal to σ2
i . Therefore |Qk,i| = (kγ1,i + σ2

i )× σ2(k−1)
i and one has:

lim
k→+∞

|Qk+1,i|
|Qk,i|

= lim
k→+∞

((k + 1)γ1,i + σ2
i )σ2k

i

(kγ1,i + σ2
i )σ

2(k−1)
i

= σ2
i (20)

• The weighted sum of the two covariance matrices Qk,1 and Qk,2 leads to

a covariance matrix6 Qwei,k(b, a) = bQk,1 + aQk,2, with b > 0 and a > 0

associated with a third process which is also a weighted sum of complex ex-

ponentials disturbed by an additive noise. If the two processes do not share

6Subscript wei refers to the fact that the matrix is a weighted sum of the covariance

matrices of the two processes.
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a common normalized angular frequency, the number of complex exponen-

tials is equal to M1 +M2. The variances {γm,1}m=1,...,M1
are multiplied by

b while {γm,2}m=1,...,M2
are weighted by a. When they have one common

normalized angular frequency, the number of complex exponentials reduces

to M1 + M2 − 1. When they have two common normalized angular fre-

quencies, the number reduces to M1 +M2 − 2 and so on. The variance of

the additive noise is equal bσ2
1 + aσ2

2.

When comparing two processes, different approaches can be considered. The

model parameters and/or the spectrum can be compared. An alternative con-

sists in using divergences. For this reason, in the next section, we propose a

brief state of the art on the divergence that will be addressed in this study.

3. Brief state of the art of the divergences addressed in this study

3.1. Definitions

To study the dissimilarities between pdfs, divergences can be used. In Fig-

ure 1 below, we propose a unified view of a wide class of divergences between

two pdfs denoted p1 and p2. The most popular one is the KL divergence which

satisfies:

KL
(1,2)
k =

∫
Xk

p1(Xk) ln

(
p1(Xk)

p2(Xk)

)
dXk (21)

Alternative divergences can be expressed as a function g of the Chernoff coef-

ficient Cα of order α that is computed between p1 and p2, which is defined by:

Cα
(
p1(Xk), p2(Xk)

)
=

∫
Xk

pα1 (Xk)p1−α
2 (Xk)dXk (22)

11



Figure 1: Links between different divergences
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Remark. It corresponds to the integral I1(p1, p2, a, b) =
∫
Xk

pa1(Xk)pb2(Xk)dXk

computed for a = α and b = 1− α with 0 < α < 1.

Using the above definition, it can be shown that the Chernoff coefficient is self

dual, meaning that:

Cα
(
p1(Xk), p2(Xk)

)
= C1−α

(
p2(Xk), p1(Xk)

)
(23)

When α is equal to 0 or 1, the Chernoff coefficient is equal to 1 due to the

property of the pdfs that sum to 1.

Let us now give some examples of divergences that are functions of the Chernoff

coefficient. When the function g(t) = − ln(t), the Chernoff divergence between

p1 and p2, denoted as CD(1,2)
k (α) , is defined as follows [5]:

CD
(1,2)
k (α) = − ln

(
Cα(p1(Xk), p2(Xk))

)
(24)

Given the remark above, the Chernoff divergence is necessarily null when α

is equal to 0 or 1. By setting α to 1
2
, the Bhattacharyya distance denoted as

BD
(1,2)
k can be deduced [3] and has the advantage of being symmetric:

BD
(1,2)
k = CD

(1,2)
k (

1

2
) = − ln

(
C 1

2
(p1(Xk), p2(Xk))

)
(25)

= − ln
(∫

Xk

√
p1(Xk)p2(Xk)dXk

)
= BD

(2,1)
k

The Battacharyya distance depends on the so-called ”fidelity” equal to∫
Xk

√
p1(Xk)p2(Xk)dXk. The latter is in the interval [0, 1] and equal to unity

only if the two pdfs are identical. Hence, BD
(1,2)
k ≥ 0.

When g(t) = − 1
1−α ln(t) , the Rényi divergence of order α [39] can be obtained

and corresponds to the Chernoff divergence up to a multiplicative factor equal

to 1
1−α :

RD
(1,2)
k (α) = − 1

1− α ln

∫
Xk

pα1 (Xk) p1−α
2 (Xk) dXk =

1

1− αCD
(1,2)
k (α) (26)

By using L’Hôspital rule, the Rényi divergence is shown to tend to the KL

divergence when α tends to 1. Rényi divergence for several univariate and

multivariate distributions can be found in the paper written by Gil et al. [14].

In addition, the equalities in (26) can be rewritten this way:

Cα
(
p1(Xk), p2(Xk)

)
= exp

(
− CD(1,2)

k (α)
)

= exp
(
(α− 1)RD

(1,2)
k (α)

)
(27)
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The α-divergence, denoted in this paper as A
(1,2)
k (α), can be also considered

and derived from the Chernoff coefficient. Different definitions exist [1]:

A
(1,2)
k (α) = − 1

α(1− α)

∫
Xk

pα1 (Xk) p1−α
2 (Xk)− αp1 (Xk) + (α− 1)p2 (Xk) dXk (28)

As the integrals of the pdfs are equal to 1, the above expression can be simplified

as follows:

A
(1,2)
k (α) = − 1

α(1− α)

(∫
Xk

pα1 (Xk) p1−α
2 (Xk) dXk − 1

)
(29)

= − 1

α(1− α)

(
Cα
(
p1(Xk), p2(Xk)

)
− 1
)

This means that g(t) = − 1
α(1−α) (t−1) is used to retrieve the α-divergence from

the Chernoff coefficient. Note that by combining (27) and (29), this leads to:

A
(1,2)
k (α) = − 1

α(1− α)

(
exp

(
− CD(1,2)

k (α)
)
− 1
)

(30)

= − 1

α(1− α)

(
exp

(
(α− 1)RD

(1,2)
k (α)

)
− 1
)

Some other comments can be made at this stage:

1. The α-divergence is also self-dual because A
(1,2)
k (α) = A

(2,1)
k (1− α).

2. One can use the Amari notation, i.e. instead of defining the α-divergence

from the variate α = (1−αa)
2 , αa is used. When α takes values between 0

and 1, the value taken by αa varies from −1 to 1. In addition, using the

Amari notation, A
(1,2)
k (αa) = A

(2,1)
k (−αa).

3. Using the L’Hôspital rule on (28), it can be shown that the α divergence

tends to the KL between p1 and p2 when α tends to 1 and to the KL

between p2 and p1 when α tends to 0.

4. One can retrieve three other divergences, namely the Pearson divergence

P
(1,2)
k , the Neyman divergence N

(1,2)
k and the squared Hellinger distance

SH
(1,2)
k by setting α to −1, 2 and 1

2 respectively:

P
(1,2)
k = 2A

(1,2)
k (−1) =

∫
Xk

(p2 (Xk)− p1 (Xk))2

p1 (Xk)
dXk (31)

=

∫
Xk

p2
2 (Xk) p−1

1 (Xk) dXk − 1

14



N
(1,2)
k = 2A

(1,2)
k (2) = P

(2,1)
k (32)

SH
(1,2)
k =

1

4
A

(1,2)
k (

1

2
) =

1

2

∫
Xk

(√
(p1 (Xk)−

√
p2 (Xk)

)2

dXk (33)

= 1−
∫
Xk

√
p1 (Xk) p2 (Xk)dXk = SH

(2,1)
k

= 1− exp
(
−BD(1,2)

k

)
Note that the squared Hellinger distance SH

(1,2)
k also depends on the

fidelity. It is symmetric and in the range [0, 1]. Sometimes, the normal-

ization factor 1
2 is omitted.

5. The Tsallis divergence T
(1,2)
k (α), the reversed Tsallis divergence rT

(1,2)
k (α)

and the Cressie-Read divergence CR
(1,2)
k (α) are closely related to the

above family. Indeed given (29), one has:

T
(1,2)
k (α) = − 1

(1− α)

(
Cα
(
p1(Xk), p2(Xk)

)
− 1
)

= αA
(1,2)
k (α) (34)

= − 1

(1− α)

(
exp

(
(α− 1)RD

(1,2)
k (α)

)
− 1
)

rT
(1,2)
k (α) = − 1

(1− α)

(
Cα
(
p2(Xk), p1(Xk)

)
− 1
)

(35)

= − 1

(1− α)

(
C1−α

(
p1(Xk), p2(Xk)

)
− 1
)

= αA
(1,2)
k (1− α)

CR
(1,2)
k (α) =

1

α(α+ 1)

(∫
Xk

p1+α
1 (Xk) p−α2 (Xk) dXk − 1

)
(36)

= A
(1,2)
k (α+ 1) =

T
(1,2)
k (α+ 1)

α+ 1

Remark. The Pearson divergence, the Neyman divergence, the squared Hellinger

distance, the reversed Tsallis divergence and the Cressie-Read divergence are

special cases of Csiszar divergence also known as Csiszar-Morimoto or Ali-Silvey

divergence. Indeed, it is defined by:

Df

(
p1(Xk), p2(Xk)

)
=

∫
Xk

p1(Xk)f
(p2(Xk)

p1(Xk)

)
dXk (37)
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where the function f(t) is convex and f(1) = 0. One can retrieve the expressions

of the divergence by respectively choosing the convex function f equal to (t−1)2,

t( 1
t − 1)2, 1−

√
t, t1−α−1

α−1 and t−α−1
α(α+1) . Moreover, the Chernoff coefficient can be

expressed as Df

(
p1(Xk), p2(Xk)

)
+ 1, where f(t) = t1−α − 1.

Finally, the SM divergence of parameters β and α between p1 and p2 is given

by:

SM
(1,2)
k (β, α) =

1

β − 1

(
C

1−β
1−α
α (p1(Xk), p2(Xk))− 1

)
(38)

When β = α, the SM divergence coincides with the Tsallis divergence:

SM
(1,2)
k (α, α) =

1

α− 1

(
Cα(p1(Xk), p2(Xk))− 1

)
=

1

α
A

(1,2)
k (α) = T

(1,2)
k (α) (39)

In addition, using (27) and (38), one can see that:

SM
(1,2)
k (β, α) =

1

β − 1

(
exp

[
(β − 1)RD

(1,2)
k (α)

]
− 1
)

(40)

The SM divergence encompasses various divergences. When β tends to 1,

SM
(1,2)
k (β, α) tends to RD

(1,2)
k (α). So, when β tends to 1 and α tends to 1,

SM
(1,2)
k (β, α) tends to the KL divergence.

One can easily define symmetric versions of these divergences by taking the

minimum value, the sum or the mean of the divergence computed between p1

and p2 and the one between p2 and p1. This is for instance the case when

dealing with the Jeffreys divergence [21] which is the symmetric version of the

KL divergence. An alternative is to sum the divergence between the first pdf

and the pdf mean and the divergence between the second pdf and the pdf mean.

Thus, the Jensen–Shannon divergence (JSD) is the illustration of this alternative

to get a symmetric version of the KL divergence [26].
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Two other families of divergence can be considered. One the one hand, the

β-divergence denoted as BeD
(1,2)
k (β) can be expressed as follows:

BeD
(1,2)
k (β) =

∫
Xk

p1(Xk)
pβ−1

1 (Xk)− pβ−1
2 (Xk)

β − 1
− pβ1 (Xk)− pβ2 (Xk)

β
dXk

(41)

=
1

β(β − 1)

∫
Xk

pβ1 (Xk)dXk +
1

β

∫
Xk

pβ2 (Xk)dXk

− 1

β − 1

∫
Xk

p1(Xk)pβ−1
2 (Xk)dXk

By introducing the function7 lnβ(t) = t1−β−1
1−β , the above expression (41) can be

rewritten as follows:

BeD
(1,2)
k (β) = − 1

β

∫
Xk

(
pβ1 (Xk) ln 1

β

pβ2 (Xk)

pβ1 (Xk)

)
+ pβ1 (Xk)− pβ2 (Xk)dXk (42)

If I2(p1, β) =
∫
Xk

pβ1 (Xk)dXk and I1(p1, p2, 1, β) =
∫
Xk

p1(Xk)pβ2 (Xk)dXk are con-

sidered, (41) becomes:

BeD
(1,2)
k (β) =

1

β(β − 1)
I2(p1, β) +

1

β
I2(p2, β)− 1

β − 1
I1(p1, p2, 1, β − 1) (43)

Remark. It should be noted the β-divergence is a special case of the Bregman

divergence, as shown on Figure 1.

Among the particular cases, one can notice that when β tends to 0, the

β-divergence reduces to the Itakura-Saito divergence. Indeed, given (41) and

applying the L’Hôspital rule to the second term, one obtains:

lim
β→0

BeD
(1,2)
k (β) =

∫
Xk

(
ln
(p2(Xk)

p1(Xk)

)
+
p1(Xk)

p2(Xk)
− 1
)
dXk = IS

(1,2)
k (44)

If β tends to 1, and considering (42), one gets:

lim
β→1

BeD
(1,2)
k (β) = −

∫
Xk

p1(Xk) ln
p2(Xk)

p1(Xk)
+ p1(Xk)− p2(Xk)dXk (45)

=

∫
Xk

p1(Xk) ln
p1(Xk)

p2(Xk)
dXk

7when β tends 1, lnβ(t) tends to ln(t)

17



One hence retrieves the KL divergence.

If β = 2, (41) becomes:

BeD
(1,2)
k (2) =

1

2

∫
Xk

(
p1(Xk)− p2(Xk)

)2

dXk = BeD
(2,1)
k (2) (46)

which can be seen as the 2-norm of the pdf difference up to a multiplicative

factor equal to 1
2 . Note that it is symmetric.

Finally, let us introduce the γ-divergence [11] denoted as G
(1,2)
k (γ) defined as :

G
(1,2)
k (γ) =

1

γ(γ − 1)
ln


(∫

Xk
pγ1(Xk)dXk

)(∫
Xk

pγ2(Xk)dXk

)γ−1

(∫
Xk

p1(Xk)pγ−1
2 (Xk)dXk

)γ
 (47)

=
1

γ(γ − 1)
ln

(
I2(p1, γ)Iγ−1

2 (p2, γ)

Iγ1 (p1, p2, 1, γ − 1)

)

and the αγ-divergence denoted as AG
(1,2)
k (γ) which is deduced from the defini-

tion (28) of the α divergence by considering the variable γ instead of α and the

mapping α
∫
Xk

pβ1 (Xk)pγ1(Xk)dXk → α ln
(∫

Xk
pβ1 (Xk)pγ1(Xk)dXk

)
:

AG
(1,2)
k (γ) =

1

γ(γ − 1)
ln

 ∫
Xk

pγ1(Xk)p1−γ
2 (Xk)dXk(∫

Xk
p1(Xk)dXk

)γ (∫
Xk

p2(Xk)dXk

)1−γ

 (48)

=
1

γ(γ − 1)
ln

(∫
Xk

pγ1(Xk)p1−γ
2 (Xk)dXk

)
=

1

γ
RD

(1,2)
k (γ)

since p1 and p2 are pdfs whose integrals are equal to 1. It is hence proportional

to the Rényi divergence of order α by choosing α = γ. Therefore, when γ tends

to 1, the αγ-divergence tends to the KL divergence.

Given the definitions of these various divergences, let us now look at their ex-

pressions when dealing with the Gaussian case.

3.2. Expressions of the divergences in the Gaussian case

Let us introduce the pdfs related to two real Gaussian random vectors defined

from k consecutive samples, i.e. Xk,i = [xt,i xt−1,i · · · xt−k+1,i]
T for i = 1, 2:

pi(Xk,i) =
1

(
√

2π)k|Qk,i|1/2
exp

(
− 1

2
[Xk,i − µk,i]TQ−1

k,i [Xk,i − µk,i]
)

(49)
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with µk,i = E[Xk,i] the mean, |Qk,i| the determinant of the covariance matrix

Qk,i = E[(Xk,i − µk,i)(Xk,i − µk,i)T ] and E[·] the expectation. Given8

Qk,wei(1− α, α) = (1− α)Qk,1 + αQk,2 (50)

and

∆µk = µk,2 − µk,1 (51)

we can show, by substituting the pdfs by their expressions in the definition (24)

and after some mathematical developments (See Appendix A.2 and equation

(A.20) for proof), that the Chernoff coefficient is given by:

Cα
(
p1(Xk), p2(Xk)

)
=
|Qk,1|

1−α
2 |Qk,2|

α
2

|Qk,wei(1− α, α)| 12
(52)

× exp

(
−α(1− α)

2
∆µTkQ

−1
k,wei(1− α, α)∆µk

)
This result can be obtained differently by using the approach proposed by

Nielsen in [31] and recalled in Appendix B. It should be noted that

Qk,wei(1 − α, α) must be definite positive. Therefore, this result is only valid9

when α ∈]0, 1[. Consequently the Chernoff divergence is the following:

CD
(1,2)
k (α) =

1

2
ln
( |Qk,wei(1− α, α)|
|Qk,1|1−α|Qk,2|α

)
+
α(1− α)

2
Tr(Q−1

k,wei(1− α, α)∆µk∆µTk )

(53)

The Bhattacharyya distance can be deduced as follows:

BD
(1,2)
k = CD

(1,2)
k (

1

2
) =

1

2
ln
( |Qk,wei( 1

2
, 1

2
)|

|Qk,1|
1
2 |Qk,2|

1
2

)
+

1

8
Tr(Q−1

k,wei(
1

2
,

1

2
)∆µk∆µTk ) (54)

Concerning the expression of the Rényi divergence, given (26) which gives the

link with Chernoff divergence and provided that α is in the interval ]0, 1[ to

8The definition of Qk,wei(1 − α, α) amounts to saying that a third process is introduced

and corresponds to a linear combination of the two processes to be compared.
9For information, the KL divergence satisfies in the Gaussian case [14]:

KL
(1,2)
k =

1

2

[
Tr(Q−1

k,2Qk,1)− k − ln
|Qk,1|
|Qk,2|

+ Tr(Q−1
2,k∆µk∆µTk )

]
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ensure that Qk,wei(1− α, α) is not definite non-negative, this leads to:

RD
(1,2)
k (α) =

1

2(1− α)
ln
( |Qk,wei(1− α, α)|
|Qk,1|1−α|Qk,2|α

)
+
α

2
Tr(Q−1

k,wei(1− α, α)∆µk∆µTk )

(55)

There are two consequences. On the one hand, the expression of the

αγ-divergence can be deduced using (48). Provided that γ is in the interval

]0, 1[ to ensure that Qk,wei(1− γ, γ) is not definite non-negative, this leads to:

AG
(1,2)
k (γ) =

1

2(1− γ)γ
ln
( |Qk,wei(1− γ, γ)|
|Qk,1|1−γ |Qk,2|γ

)
+

1

2
Tr(Q−1

k,wei(1− γ, γ)∆µk∆µTk )

(56)

On the other hand, combining (29) and (52), the expression of the α-divergence

in the Gaussian case is:

A
(1,2)
k (α) (57)

=
1

α(1− α)

(
1− |Qk,1|

1−α
2 |Qk,2|

α
2

|Qk,wei(1− α, α)| 12
exp

[α(α− 1)

2
∆µTkQ

−1
k,wei(1− α, α)∆µk

])
Therefore, using (33), (34) and (35), one can deduce the expression of the

squared Hellinger distance, the Tsallis and reversed Tsallis divergences, but

we cannot obtain the Pearson and Neyman divergences and the Cressie-Read

from the expression above since the values of α are not in the interval ]0, 1[:

SH
(1,2)
k = 1− |Qk,1|

1
4 |Qk,2|

1
4

|Qk,wei( 1
2 ,

1
2 )| 12

exp
[
− 1

8
∆µTkQ

−1
k,wei(

1

2
,

1

2
)∆µk

)]
(58)

T
(1,2)
k (α) (59)

=
1

1− α

(
1− |Qk,1|

1−α
2 |Qk,2|

α
2

|Qk,wei(1− α, α)| 12
exp

[α(α− 1)

2
∆µTkQ

−1
k,wei(1− α, α)∆µk

])

rT
(1,2)
k (α) (60)

=
1

1− α

(
1− |Qk,1|

α
2 |Qk,2|

1−α
2

|Qk,wei(α, 1− α)| 12
exp

[α(α− 1)

2
∆µTkQ

−1
k,wei(α, 1− α)∆µk

])
Given (40), the SM divergence becomes:

SM
(1,2)
k (β, α) (61)

=
1

β − 1

( |Qk,wei(1− α, α)|
β−1

2(1−α)

|Qk,1|
β−1
2 |Qk,2|

α(β−1)
2(1−α)

exp
[α(β − 1)

2
∆µTkQ

−1
k,wei(1− α, α)∆µk

]
− 1
)
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For the β and γ-divergences, we first propose to use two results we have detailed

in Appendix A and that deal with the analytical expressions of

I2(p1, β) =
∫
Xk

pβ1 (Xk)dXk and I1(p1, p2, 1, β) =
∫
Xk

p1(Xk)pβ2 (Xk)dXk in the

Gaussian case. Thus, given (41), (A.2) and (A.19) one has:

BeD
(1,2)
k (β) =

1

β
k
2

+1(2π)
k(β−1)

2

(
1

(β − 1)|Qk,1|
(β−1)

2

+
1

|Qk,2|
(β−1)

2

)
(62)

− 1

β − 1

1

(2π)
k(β−1)

2 |Qk,wei(β − 1, 1)| 12 |Qk,2|
β−2
2

exp

(
− (β − 1)

2
∆µTkQ

−1
k,wei(β − 1, 1)∆µk

)
where Qk,wei(β − 1, 1) = (β − 1)Qk,1 +Qk,2 (See Appendix A.2).

In the following, only values of β larger than 1 will be considered so that

Qk,wei(β − 1, 1) can be definite positive without any doubt. Thus, when β = 2,

one gets:

BeD
(1,2)
k (2) =

1

(2π)
k
2

[( |Qk,1| 12 + |Qk,2|
1
2

2
k
2

+1|Qk,1|
1
2 |Qk,2|

1
2

)
(63)

− 1

|Qk,wei(1, 1)| 12
exp

(
−1

2
∆µTkQ

−1
k,wei(1, 1)∆µk

)]
In addition, starting from (47) and using (A.2) and (A.19), one gets:

G
(1,2)
k (γ) = ln

(
|Qk,wei(γ − 1, 1)|

1
2(γ−1)

|Qk,1|
1
2γ |Qk,2|

1
2γ(γ−1)

)
− k ln γ

2(γ − 1)
(64)

+
1

2
Tr
(
Q−1
k,wei(γ − 1, 1)∆µk∆µTk

)
where Qk,wei(γ − 1, 1) = (γ − 1)Qk,1 +Qk,2 (See Appendix A.2).

In the following, let us analyze how the divergences evolve when k increases

when dealing with two NSCE processes.

4. Analysis of the increments of the divergences

4.1. Expression of the increments

Taking into account (53), (54) and (55), let us first express the increments

∆CD
(1,2)
k (α) = CD

(1,2)
k+1 (α)−CD(1,2)

k (α), ∆BD
(1,2)
k and ∆RD

(1,2)
k (α) which are sim-

ilarly defined. Given (53), one has:

∆CD
(1,2)
k (α) =

1

2
ln
( |Qk,2|α
|Qk+1,2|α

|Qk+1,wei(1− α, α)|
|Qk,wei(1− α, α)|

|Qk,1|1−α

|Qk+1,1|1−α
)

(65)

+
α(1− α)

2

(
Tr(Q−1

k+1,wei(1− α, α)∆µk+1∆µTk+1)− Tr(Q−1
k,wei(1− α, α)∆µk∆µTk )

)
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∆BD
(1,2)
k =

1

2
ln
( |Qk,2| 12
|Qk+1,2|

1
2

|Qk+1,wei(
1
2
, 1

2
)|

|Qk,wei( 1
2
, 1

2
)|
|Qk,1|

1
2

|Qk+1,1|
1
2

)
(66)

+
1

8

(
Tr(Q−1

k+1,wei(
1

2
,

1

2
)∆µk+1∆µTk+1)− Tr(Q−1

k,wei(
1

2
,

1

2
)∆µk∆µTk )

)
= ∆CD

(1,2)
k (

1

2
)

∆RD
(1,2)
k (α) = − 1

2(α− 1)
ln
( |Qk,2|α
|Qk+1,2|α

|Qk+1,wei(1− α, α)|
|Qk,wei(1− α, α)|

|Qk,1|1−α

|Qk+1,1|1−α
)

(67)

+
α

2

(
Tr
(
Q−1
k+1,wei(1− α, α)∆µk+1∆µTk+1

)
− Tr

(
Q−1
k,wei(1− α, α)∆µk∆µTk

))
In addition, given the link between the Rényi divergence and the αγ-divergence,

one gets with γ in the interval ]0, 1[:

∆AG
(1,2)
k (γ) = − 1

2(γ − 1)γ
ln
( |Qk,2|γ
|Qk+1,2|γ

|Qk+1,wei(1− γ, γ)|
|Qk,wei(1− γ, γ)|

|Qk,1|1−γ

|Qk+1,1|1−γ
)

(68)

+
1

2

(
Tr
(
Q−1
k+1,wei(1− γ, γ)∆µk+1∆µTk+1

)
− Tr

(
Q−1
k,wei(1− γ, γ)∆µk∆µTk

))
=

∆RD
(1,2)
k (γ)

γ

Note that one has necessarily:

∆CD
(1,2)
k (α) = (1− α)∆RD

(1,2)
k (α) = α(1− α)∆AG

(1,2)
k (α) (69)

and

∆BD
(1,2)
k = ∆CD

(1,2)
k (

1

2
) =

1

2
∆RD

(1,2)
k (

1

2
) =

1

4
∆AG

(1,2)
k (

1

2
) (70)

Consequently, comparing two Gaussian processes using ∆CD
(1,2)
k (α), RD

(1,2)
k (α)

or ∆AG
(1,2)
k (α) is equivalent. Moreover, based on (64), one obtains for the

γ-divergence the following increment provided γ > 1:

∆G
(1,2)
k (γ) =

1

2γ(γ − 1)
ln

(
|Qk,2||Qk+1,wei(γ − 1, 1)|γ |Qk,1|γ−1

|Qk+1,2||Qk,wei(γ − 1, 1)|γ |Qk+1,1|γ−1

)
(71)

+
1

2

(
Tr(Q−1

k+1,wei(γ − 1, 1)∆µk+1∆µTk+1)− Tr(Q−1
k,wei(γ − 1, 1)∆µk∆µTk )

)
− ln γ

2(γ − 1)

When looking at this increment, we can see that a general expression can en-

compass all these results. If ∆D
(1,2)
k (a, b) denotes the divergence rate, where a
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and b are chosen so that Qk,wei(b, a) and Qk+1,wei(b, a) are definite non negative,

one has:

∆D
(1,2)
k (a, b) ∝ 1

2ab(a+ b)
ln

(
|Qk,2|a|Qk+1,wei(b, a)|a+b|Qk,1|b

|Qk+1,2|a|Qk,wei(b, a)|a+b|Qk+1,1|b

)
(72)

+
1

2

(
Tr(Q−1

k+1,wei(b, a)∆µk+1∆µTk+1)− Tr(Q−1
k,wei(b, a)∆µk∆µTk )

)
− ln(a+ b)

2ab

Thus, one has 10:

∆AG
(1,2)
k (γ) = ∆D

(1,2)
k (1− γ, γ) with γ ∈]0, 1[

∆RD
(1,2)
k (α) ∝ ∆D

(1,2)
k (1− α, α) with α ∈]0, 1[

∆CD
(1,2)
k (α) ∝ ∆D

(1,2)
k (1− α, α) with α ∈]0, 1[

∆BD
(1,2)
k ∝ ∆D

(1,2)
k ( 1

2 ,
1
2 )

∆G
(1,2)
k (γ) = ∆D

(1,2)
k (1, γ − 1) with γ > 1

(73)

4.2. Behavior of the other divergences as functions of k

4.2.1. β-divergence

Concerning the analytical expression of the β-divergence increment, we propose

to write it this way:

∆BeD
(1,2)
k (β) = ∆BeD

(1,2)
k,1 (β) + ∆BeD

(1,2)
k,2 (β) + ∆BeD

(1,2)
k,3 (β) (74)

with:

∆BeD
(1,2)
k,1 (β) =

1

(β − 1)β
k
2

+1(2π)
k(β−1)

2 |Qk,1|
(β−1)

2

(
1

β
1
2 (2π)

(β−1)
2

|Qk,1|
(β−1)

2

|Qk+1,1|
(β−1)

2

− 1

)
(75)

∆BeD
(1,2)
k,2 (β) =

1

β
k
2

+1(2π)
k(β−1)

2 |Qk,2|
(β−1)

2

(
1

β
1
2

+1(2π)
(β−1)

2

|Qk,2|
(β−1)

2

|Qk+1,2|
(β−1)

2

− 1

)
(76)

10For information, the increment of the KL divergence satisfies:

∆KL
(1,2)
k =

1

2

[
Tr(Q−1

k+1,2(Qk+1,1 + ∆µk+1∆µTk+1)− Tr(Q−1
k,2(Qk,1 + ∆µk∆µTk ))

−1− ln
|Qk+1,1||Qk,2|
|Qk,1||Qk+1,2|

]
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∆BeD
(1,2)
k,3 (β) = − 1

β − 1

1

(2π)
k(β−1)

2 |Qk,wei(β − 1, 1)| 12 |Qk,2|
β−2
2

× (77)

exp

(
− (β − 1)

2
∆µTkQ

−1
k,wei(β − 1, 1)∆µk

)[ |Qk,wei(β − 1, 1)|
1
2 |Qk,2|

β−2
2

(2π)
(β−1)

2 |Qk+1,wei(β − 1, 1)| 12 |Qk+1,2|
β−2
2

exp
(
− (β − 1)

2
(∆µTk+1Q

−1
k+1,wei(β − 1, 1)∆µk+1 −∆µTkQ

−1
k,wei(β − 1, 1)∆µk)

)
− 1
]

It should be noted that when the processes are both zero-mean or when the

difference mean is null, the above expression reduces to:

∆BeD
(1,2)
k,3 (β) = − 1

β − 1

1

(2π)
k(β−1)

2 |Qk,wei(β − 1, 1)| 12 |Qk,2|
β−2
2

(78)

×

(
|Qk,wei(β − 1, 1)|

1
2 |Qk,2|

β−2
2

(2π)
(β−1)

2 |Qk+1,wei(β − 1, 1)| 12 |Qk+1,2|
β−2
2

− 1

)

4.2.2. Other cases

Due to the definition of some divergences like the α-divergence, the Tsallis

divergence, the reversed Tsallis divergence, the squared Hellinger distance and

the SM divergence, studying the increment when k increases is not necessarily

useful as these divergences as functions of k cannot tend to an asymptote. For

this reason, let us focus our attention on the normalized increment11.

Let us start by the normalized increment of the α-divergence by expressing

∆A
(1,2)
k (α) = A

(1,2)
k+1 (α)−A(1,2)

k (α). Using (30) and after simplifications, one has:

∆A
(1,2)
k (α) = −

exp
[
(α− 1)RD

(1,2)
k (α)

]
α(1− α)

(
exp

[
(α− 1)∆RD

(1,2)
k (α)

]
− 1
)

(79)

Therefore, the normalized increment of this divergence is equal to:

∆A
(1,2)
k (α)

A
(1,2)
k (α)

=
exp

[
(α− 1)∆RD

(1,2)
k (α)

]
− 1

1− exp
[
− (α− 1)RD

(1,2)
k (α)

] (80)

11The normalized increment is not useful for the divergences studied in the previous section.

Indeed, one has lim
k→+∞

RD
(1,2)
k = +∞. As studied in a recent paper, ∆RD

(1,2)
k is finite in

most of the cases. Therefore, lim
k→+∞

∆RD
(1,2)
k

RD
(1,2)
k

= 0. Similar comments can be done for the

Chernoff divergence, the Bhattacharyya distance, the γ-divergence and the αγ-divergence and

the KL divergence.
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Concerning the normalized increment of the squared Hellinger distance, the

Tsallis and the reversed Tsallis divergence, one obtains:

∆SH
(1,2)
k

SH
(1,2)
k

=
∆A

(1,2)
k ( 1

2
)

A
(1,2)
k ( 1

2
)

=
exp

[
1
2
(∆RD

(1,2)
k ( 1

2
)
]
− 1

1− exp
[

1
2
RD

(1,2)
k ( 1

2
)
] (81)

∆T
(1,2)
k (α)

T
(1,2)
k (α)

=
∆A

(1,2)
k (α)

A
(1,2)
k (α)

(82)

∆rT
(1,2)
k (α)

rT
(1,2)
k (α)

=
∆A

(1,2)
k (1− α)

A
(1,2)
k (1− α)

(83)

One can see that analyzing the normalized increment of the Tsallis divergence

and the α-divergence leads to the same result. Concerning the reversed Tsallis

divergence of order α, this amounts to looking at the behaviour of the normalized

increment of the α-divergence of order 1−α. When α = 1
2 , all these normalized

increments are equal and correspond to the normalized increment of the squared

Hellinger distance.

Finally, let us define the normalized increment of the SM divergence that is

equal to:

∆SM
(1,2)
k (α, β)

SM
(1,2)
k (α, β)

=
exp

[
(β − 1)∆RD

(1,2)
k (α)

]
− 1

1− exp
[
− (β − 1)RD

(1,2)
k (α)

] (84)

Given the above expressions, one can provide the following general expression

that encompass the expression of the normalized increment:

exp
(
c∆D

(1,2)
k (a, b)

)
− 1

1− exp
(
− cD(1,2)

k (a, b)
) (85)

Let us address in the next subsection the limit when k tends to infinity.

4.3. Asymptotic behaviour when dealing with NSCE processes

4.3.1. Divergence rate

Let us first look at the divergence rate of the Chernoff, Battacharrya and

Rényi divergence. As the processes are zero-mean, ∆µk and ∆µk+1 are null

vectors. In addition, using (19), one gets:

∆CD
(1,2)
k (α) =

1

2
ln
( (1− α)σ2

1 + ασ2
2

σ
2(1−α)
1 σ2α

2

)
=

1

2
ln
( (1− α) + α

σ2
2

σ2
1(

σ2
2

σ2
1

)α )
(86)
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and

∆BD
(1,2)
k =

1

2
ln
(σ2

1 + σ2
2

2σ1σ2

)
=

1

2
ln
(1

2

1 +
σ2
2

σ2
1(

σ2
2

σ2
1

) 1
2

)
= ∆CD

(1,2)
k (

1

2
) (87)

and

∆RD
(1,2)
k (α) = − 1

2(α− 1)
ln
( (1− α)σ2

1 + ασ2
2

σ
2(1−α)
1 σ2α

2

)
(88)

= − 1

2(α− 1)
ln
( (1− α) + α

σ2
2

σ2
1(

σ2
2

σ2
1

)α )

Moreover, one has for γ in the interval ]0, 1[:

∆AG
(1,2)
k (γ) = − 1

2(γ − 1)γ
ln
( (1− γ)σ2

1 + γσ2
2

σ
2(1−γ)
1 σ2γ

2

)
(89)

= − 1

2(γ − 1)γ
ln
( (1− γ) + γ

σ2
2

σ2
1(

σ2
2

σ2
1

)γ )
The divergence rate does not depend on the normalized angular frequencies.

Moreover, based on (64), one obtains for the γ-divergence the following incre-

ment for γ > 1:

∆G
(1,2)
k (γ) =

1

2γ(γ − 1)
ln
( ((γ − 1)σ2

1 + σ2
2)γ

σ
2(γ−1)
1 σ2

2

)
− ln γ

2(γ − 1)
(90)

=
1

2γ(γ − 1)
ln
( (γ − 1 +

σ2
2

σ2
1
)γ

σ2
2

σ2
1

)
− ln γ

2(γ − 1)

It should be noted that if the inverse of γ was α, one would get:

∆G
(1,2)
k (

1

α
) =

1

2( 1
α − 1)

ln
( ( 1

α − 1 +
σ2
2

σ2
1
)

(
σ2
2

σ2
1
)α

)
−

ln 1
α

2( 1
α − 1)

(91)

=
α

2(1− α)
ln
( (1− α) + α

σ2
2

σ2
1

(
σ2
2

σ2
1
)α

)
=

α

1− α
∆CD

(1,2)
k (α)

Depending on the values of γ and α, the divergence rates of the Chernoff diver-

gence and of the γ-divergence can be related to each other.
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∆CD
(1,2)
k (α), RD

(1,2)
k (α), ∆AG

(1,2)
k (α) or ∆G

(1,2)
k (γ) only depend on the ratio

of the additive-noise variances. Comparing two NSCE using these asymptotic

increments is hence not necessarily well-suited as it does not take into account

the normalized angular frequency. In a previous paper [18], we suggested using

the Jeffreys divergence, the symmetric version of the KL divergence defined as

JD
(1,2)
k = 1

2

(
KL

(1,2)
k +KL

(2,1)
k

)
. We obtained12:

∆JD(1,2) =
1

2

(
−1 +

1

2

[
∆T (2,1) + ∆T (1,2)

])
(92)

with:

∆T (i,i′) =

Mi∑
m=1

γm,i

σ′i
2 (1−

Mi′∑
n=1

δθm,i,θn,i′ ) +
σi

2

σ′i
2 (93)

where δθm,i,θn,i′ denotes the Kronecker delta. It is equal to 1 if θm,i = θn,i′

and to 0 otherwise. In Appendix C, we have derived the expression of the KL

divergence rate when dealing with two NSCE processes. One obtains:

∆KL(1,2) =
1

2

[ M1∑
m=1

γm,1
σ2

2

(1−
M2∑
n=1

δθm,1,θn,2) +
σ2

1

σ2
2

− 1− ln
σ2

1

σ2
2

]
(94)

Remark. At first sight, we could wonder why the KL divergence rate depends

on the normalized angular frequency unlike the other divergences. To retrieve

this result, starting from the expression of the increment ∆RD
(1,2)
k (α), one can-

not directly compute the limit of ∆RD
(1,2)
k (α) when α tends to 1 because the

logarithm tends to 0 as well as the denominator −2(α − 1) of the expression.

Once again, L’Hôspital rule must be used. This means that one has to analyze

the limit of the ratio of the derivates of both the logarithm and the denominator

−2(α− 1) when α tends to 1. The details of the mathematical development are

given in Appendix C.2.

12Note the expression that was published had some error and is now corrected in the paper.

We apologize for the inconvenience.
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4.3.2. Asymptotic behaviour of the β-divergence increment

Given (74) one gets:

∆BeD(1,2)(β) = ∆BeD
(1,2)
1 (β) + ∆BeD

(1,2)
2 (β) + ∆BeD

(1,2)
3 (β) (95)

where:

1. The first term is given by:

∆BeD
(1,2)
1 (β) =

1

β(β − 1)

(
1

β
1
2 (2π)

(β−1)
2 σβ−1

1

− 1

)
(96)

× lim
k→+∞

1

β
k
2 (2π)

k(β−1)
2 |Qk,1|

(β−1)
2

As |Qk,1| > σ2k
1 , 1

|Qk,1|
(β−1)

2

< 1

σ
k(β−1)
1

. So, we propose to analyze the

following upper bound:

∆BeD
(1,2)
1 (β) <

1

β(β − 1)

(
1

β
1
2 (2π)

(β−1)
2 σβ−1

1

− 1

)
(97)

× lim
k→+∞

1

β
k
2 (2π)

k(β−1)
2 σ

k(β−1)
1

Then the purpose is to analyze the value that β(2π)β−1σ
2(β−1)
1 takes with

respect to σ1 and β > 1. If β(2π)β−1σ
2(β−1)
1 > 1 i.e. σ2

1 > 1

2πβ
1

β−1
,

the limit ∆BeD
(1,2)
1 (β) is null. When β = 2, this amounts to saying

that ∆BeD
(1,2)
1 (2) is null when σ2

1 > 1
4π . As the analysis is made on

the upper bound, this leads to a more restrictive condition that guaran-

tees that ∆BeD
(1,2)
1 (β) = 0. In other words, there may be values of σ2

1

smaller than 1
4π that could lead to the same result but we did not find

any proof for the moment. An alternative would be to express properly

the determinant of Qk,1. When k tends to infinity, we can show that

Qk,1 admits M1 predominant eigenvalues equal to {γm,1k + σ2
1}m=1,...,M1

and k −M1 eigenvalues equal to σ2
1 . Therefore, when k tends to infinity,

|Qk,1| = σ
2(k−M1)
1

∏M1

m=1 γm,1k + σ2
1 . Therefore (96) becomes:

∆BeD
(1,2)
1 (β) =

σ2M1
1

β(β − 1)

(
1

β
1
2 (2π)

(β−1)
2 σβ−1

1

− 1

)
(98)

× lim
k→+∞

1

β
k
2 (2π)

k(β−1)
2 σ

k(β−1)
1 (

∏M1

m=1 γm,1k + σ2
1)

(β−1)
2
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In this case, let us search for an upper bound of the denominator. One

has:

(

M1∏
m=1

γm,1k + σ2
1)(β−1) = exp

(
(β − 1)

M1∑
m=1

ln(γm,1k + σ2
1)
)

(99)

< exp
(

(β − 1)

M1∑
m=1

(γm,1k + σ2
1)
)

<
(

exp
(
β − 1)

M1∑
m=1

γm,1
))k

exp
(
(β − 1)M1σ

2
1

)
One can deduce that:

lim
k→+∞

1

β
k
2 (2π)

k(β−1)
2 σ

k(β−1)
1 (

∏M1
m=1 γm,1k + σ2

1)
(β−1)

2

(100)

=
1

exp
( (β−1)

2
M1σ2

1

) lim
k→+∞

1

β
k
2 (2π)

k(β−1)
2 σ

k(β−1)
1

(
exp

(
(β − 1)

∑M1
m=1 γm,1

)) k2
The purpose is then to look at the value taken by β

(
(2π)σ2

1 exp
(∑M1

m=1 γm,1
))(β−1)

and see when it is larger than 1. In this case, the limit tends to 0. This

constraint takes into account all the parameters of the first process.

2. The second term satisfies:

∆BeD
(1,2)
k,2 (β) =

1

β

(
1

β
1
2

+1(2π)
(β−1)

2 σ
(β−1)
2

− 1

)
× (101)

lim
k→+∞

1

β
k
2 (2π)

(β−1)
2 |Qk,2|

(β−1)
2

Following a similar reasoning than above, if β(2π)β−1σ
2(β−1)
2 > 1 i.e. σ2

2 >

1

2πβ
1

β−1
, a limit equal to 0 for ∆BeD

(1,2)
2 (β) is guaranteed. Therefore,

∆BeD
(1,2)
2 (2) is equal to 0 when σ2

2 >
1

4π .

3. The last term is given by:

∆BeD
(1,2)
k,3 (β) = − 1

β − 1

(
1

(2π)
(β−1)

2 ((β − 1)σ2
1 + σ2

2)
1
2 σβ−2

2

− 1

)
(102)

× lim
k→+∞

1

(2π)
k(β−1)

2 |Qk,wei(β − 1, 1)| 12 |Qk,2|
β−2
2

When (2π)(β−1)
(
(β−1)σ2

1+σ2
2

)
σ

2(β−2)
2 > 1, we are sure that ∆BeD

(1,2)
3 (β) =

0. For instance when β = 2, When σ2
1 + σ2

2 >
1

2π , ∆BeD
(1,2)
3 (2) = 0.
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Consequently, the normalized increment ∆BeD(1,2)(β) tends to 0 depending

on the values of the variances of the additive noises. Indeed, if both variances

satisfy σ2
i >

1

2πβ
1

β−1
for i = 1, 2, then the last condition (2π)(β−1)

(
(β − 1)σ2

1 +

σ2
2

)
σ

2(β−2)
2 > 1 also holds and ∆BeD(1,2)(β) is guaranteed to tend to 0. This

means that the convergence tends to a limit. The latter is equal to 0.

As a conclusion of this theoretical sub-section, the KL divergence rate and

the Jeffreys divergence rate depend on all the parameters characterizing the

NSCE processes. The others either depend on the variances of the additive

noises only -like the Chernoff divergence- or tend to 0 in some circumstances

like the β-divergence. This confirms the relevance of the KL and the Jeffreys

divergence for comparing the NSCE processes. Analyzing the results of different

divergences could be also relevant. In the next subsection, let us look at the

asymptotic normalized increment of some divergences for which the asymptotic

increment tends to infinity.

Divergences Divergence rates

Chernoff ∆CD
(1,2)
k (α) = 1

2 ln
( (1−α)+α

σ22
σ21(

σ22
σ21

)α )

Battacharyya ∆BD
(1,2)
k = 1

2 ln
(

1
2

1+
σ22
σ21(

σ22
σ21

) 1
2

)

Rényi ∆RD
(1,2)
k (α) = − 1

2(α−1) ln
( (1−α)+α

σ22
σ21(

σ22
σ21

)α )

αγ-divergence ∆AG
(1,2)
k (γ) = − 1

2(γ−1)γ ln
( (1−γ)+γ

σ22
σ21(

σ22
σ21

)γ )

γ-divergence ∆G
(1,2)
k (γ) = 1

2γ(γ−1) ln
( (γ−1+

σ22
σ21

)γ

σ22
σ21

)
− ln γ

2(γ−1)

Kullback-Leibler ∆KL(1,2) = 1
2

[ M1∑
m=1

γm,1
σ2
2

(1−
M2∑
n=1

δθm,1,θn,2) +
σ2
1

σ2
2
− 1− ln

σ2
1

σ2
2

]
Jeffreys ∆JD(1,2) = 1

2

(
−1 + 1

2

[
∆T (2,1) + ∆T (1,2)

])
with: ∆T (i,i′) =

Mi∑
m=1

γm,i
σ′i

2 (1−
Mi′∑
n=1

δθm,i,θn,i′ ) + σi
2

σ′i
2

Table 1: Divergences and corresponding divergence rates
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4.3.3. Asymptotic normalized increment

Concerning the asymptotic increment of the α-divergence, as the Rényi di-

vergence tends to infinity when the processes are dissimilar and k tends to

infinity, the α-divergence tends to 1
α(1−α) due to (30). Therefore, the asymp-

totic increment ∆A(1,2) tends to 0. Similarly, the squared Hellinger distance

tends to 1 when k increases due to (33). Therefore its asymptotic increment

tends to 0. Moreover, the Tsallis and reversed Tsallis divergences tend to 1
1−α

when k increases due to (30) and (34). Therefore, the asymptotic increments

∆T (1,2) and ∆rT (1,2) also tend to 0.

∆A(1,2)(α) = 0 and lim
k→+∞

∆A
(1,2)
k (α)

A
(1,2)
k (α)

= 0 for α ∈]0, 1[

∆SH(1,2) = 0 and lim
k→+∞

∆SH
(1,2)
k

SH
(1,2)
k

= 0

∆T (1,2)(α) = 0 and lim
k→+∞

∆T
(1,2)
k (α)

T
(1,2)
k (α)

= 0 for α ∈]0, 1[

∆rT (1,2)(α) = 0 and lim
k→+∞

∆rT
(1,2)
k (α)

rT
(1,2)
k (α)

= 0 for α ∈]0, 1[

(103)

As a consequence, whatever the processes to be compared, these four asymptotic

increments and consequently the asymptotic normalized increments always pro-

vide the same values that are all null. Therefore, using these features to compare

NSCE processes does not bring in much.

As mentioned in section 3.1, lim
β→1

∆SM
(1,2)
k = ∆RD

(1,2)
k and lim

β→1

∆SM
(1,2)
k

SM
(1,2)
k

=
∆RD

(1,2)
k

RN
(1,2)
k

.

In addition, one has:

lim
k→+∞

∆SM
(1,2)
k

SM
(1,2)
k

=
exp

[
(β − 1)∆RD(1,2)

]
− 1

1− lim
k→+∞

exp
[
− (β − 1)RD

(1,2)
k

] (104)

As RD(1,2)
k ≥ 0 necessarily increases when k increases, lim

k→+∞
exp

[
(1− β)RD

(1,2)
k

]
depends on the values of β. This leads to three cases:

lim
k→+∞

∆SM
(1,2)
k

SM
(1,2)
k

= 0 if 0 < β < 1

lim
k→+∞

∆SM
(1,2)
k

SM
(1,2)
k

= lim
k→+∞

∆RD
(1,2)
k

RD
(1,2)
k

= 0 when β tends to 1

lim
k→+∞

∆SM
(1,2)
k

SM
(1,2)
k

= exp
[
(β − 1)∆RD(1,2)

]
− 1 if β > 1

(105)

Selecting β in the interval ]0, 1[ does not help the practitioner to compare the

NSCE processes if he/she uses the asymptotic normalized increment because it
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is always equal to 0. Therefore, β must be chosen larger than 1. In this case

and for a given value of α, as exp
[
(β− 1)∆RD(1,2)

]
is an increasing function of β

when β > 1, lim
k→+∞

∆SM
(1,2)
k

SM
(1,2)
k

is also an increasing function of β . However, when

the ratio of the additive-noise variances is equal to 1, the divergence rate of the

Rényi divergence is equal to 0. Consequently, exp
[
(β − 1)∆RD(1,2)

]
= 1 and

lim
k→+∞

∆SM
(1,2)
k

SM
(1,2)
k

= 0.

5. Illustrations

In this section and given the length of the paper, we present the way the

divergences evolve for a single example. The reader can easily refer to the

expressions of the increments given in the previous section and simulate different

cases.

The two processes are characterized by the following parameters: the first NSCE

process is a sum of three complex exponentials whose normalized angular fre-

quencies are equal to θ1,1 = 2π
5 , θ2,1 = π

2 and θ3,1 = π
3 . The variances of the

magnitudes are respectively equal to γ1,1 = 5, γ2,1 = 10 and γ3,1 = 15. The

variance of the additive noise is equal to σ2
1 = 2. The second NSCE process is

a sum of two complex exponentials whose first normalized angular frequency is

equal to θ1,2 = π
2 . Regarding θ2,2, it is first set at π

15 . Then, we will analyze the

case where θ2,2 is modified and becomes equal to π
10 and π

5 . The variances of the

magnitudes are respectively equal to 30 and 20. The variance of the additive

noise is equal to σ2
2 = 1. Concerning the divergences, α is set at 0.7. β is equal

to 3. γ is set at 2.

If the divergence rate is not null, this means that, when k increases and tends to

infinity, the divergence can be approximated by an affine function whose slope

is the divergence rate. Depending on the value of the slope, the shape of the

divergence as a function k may be different. Thus, when looking at Figure 2,

the increment Kullback-Leibler divergence converges to the KL divergence rate

when k increases. The variations around the divergence rate becomes smaller

and smaller when k increases, but the order of magnitude is always the same.
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In the illustration, the increment is rapidly close to the divergence rate, giving

the feeling to the practitioner the KL divergence -as a function of k- can be

approximated by an affine function even when k takes small values. Moreover,

when θ2,2 is modified, this has an impact on the variations of the increment

around the divergence rate and the speed of convergence toward the divergence

rate. However, as the orders of magnitudes of the increments for the different

values of θ2,2 are more or less the same, the values of the divergence are quite

similar.

Figure 2: Kullback-Leibler divergence evolution and increment evolution for the given exam-

ple. Blue curve for θ2,2 = π
15

, red curve for θ2,2 = π
10

and green curve for θ2,2 = π
5

.

Figure 3: Chernoff divergence evolution and increment evolution for the given example. Blue

curve for θ2,2 = π
15

, red curve for θ2,2 = π
10

and green curve for θ2,2 = π
5

.

When the divergence rate is small and close to zero, the increment of the diver-
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gence rate which was not necessarily small when k was small, is close to zero

when k becomes larger. The value of the increment varies much. Given the nu-

merical example we chose, this explains the shapes of the Chernoff divergence in

Figure 3 where the maximal value of the increment is almost 0.4 but the rate is

equal to 0.0272 (i.e. 15 times less). Therefore, the Chernoff divergence, which

can be approximated as an affine function whose slope is 0.0272 when k tends

to infinity, slowly increases and is not bounded.

Figure 4: α-divergence evolution and increment evolution for the given example. Blue curve

for θ2,2 = π
15

, red curve for θ2,2 = π
10

and green curve for θ2,2 = π
5

.

Regarding the α-divergence in Figure 4, it is confirmed that the α-divergence

tends to 1
α(1−α) ≈ 4.76 while the asymptotic increment ∆A(1,2) tends to 0.

Figure 5: γ-divergence evolution and increment evolution for the given example. Blue curve

for θ2,2 = π
15

, red curve for θ2,2 = π
10

and green curve for θ2,2 = π
5

.
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In Figure 5, the γ-divergence slowly increases since its divergence rate is equal

to 0.0294. It is not bounded.

Let us now look at the αγ-divergence presented in Figure 6 below. Since

∆AG
(1,2)
k (γ) =

∆CD
(1,2)
k (γ)

γ(1−γ) , it is no coincidence that the curves in Figure 6

look like those in Figure 3, except for a multiplicative factor.

Figure 6: αγ-divergence evolution and increment evolution for the given example. Blue curve

for θ2,2 = π
15

, red curve for θ2,2 = π
10

and green curve for θ2,2 = π
5

.

In Figures 7 and 8, as expected, the Tsallis and reversed Tsallis divergences

tend to 1
1−α ≈ 3.33 when k increases. Therefore, the asymptotic increments

∆T (1,2) and ∆rT (1,2) tend to 0.

Figure 7: Tsallis divergence evolution and increment evolution for the given example. Blue

curve for θ2,2 = π
15

, red curve for θ2,2 = π
10

and green curve for θ2,2 = π
5

.
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Figure 8: Reversed Tsallis divergence evolution and increment evolution for the given example.

Blue curve for θ2,2 = π
15

, red curve for θ2,2 = π
10

and green curve for θ2,2 = π
5

.

In Figure 9, one can see that the squared Hellinger distance tends to 1 when

k increases, as mentioned in the theoretical part. Therefore its asymptotic

increment tends to 0, as expected.

Figure 9: Squared Hellinger distance evolution and increment evolution for the given example.

Blue curve for θ2,2 = π
15

, red curve for θ2,2 = π
10

and green curve for θ2,2 = π
5

.

Let us end up this section with the β-divergence in Figure 10. Its shape is

different from what we observed with the other divergences. The increment is

negative and the divergence tends to decrease.

Regarding the Sharma-Mittal divergence given in Figure 11, the normalized in-

crement converges to the asymptotic normalized increment equal to 0.1989.

This value coincides to the theoretical result we obtained when β > 1 in
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Figure 10: β-divergence evolution and increment evolution for the given example. Blue curve

for θ2,2 = π
15

, red curve for θ2,2 = π
10

and green curve for θ2,2 = π
5

.

(105). Indeed as ∆CD(1,2) = 0.0272, ∆RD(1,2) = − 1
α−1∆CD(1,2) = 0.0907

and lim
k→+∞

∆SM
(1,2)
k

SM
(1,2)
k

= exp[(β − 1)∆RD(1,2)]− 1 = 0.1989.

Figure 11: Sharma-Mittal divergence evolution and normalized increment evolution for the

given example. Blue curve for θ2,2 = π
15

, red curve for θ2,2 = π
10

and green curve for θ2,2 = π
5

.
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6. Conclusions and perspectives

In this paper, we have deduced expressions of various divergences between

Gaussian processes modeled by sums of complex exponentials disturbed by addi-

tive noises. Among all the divergences that have been studied, it appears the KL

and Jeffreys divergence rate have the advantage of depending on the model pa-

rameters. Many others only depend on the ratio of the additive-noise variances.

Sharma-Mittal divergence can be also of interest, but the asymptotic normal-

ized increment must be considered in this case except when the variances of the

additive noises are the same. The illustrations confirm the theoretical analysis.

As a short-term perspective, we plan to analyze other divergences and other

types of random processes.

Appendix A. Derivation of quantities useful to get the analytical ex-

pression of the β-divergence and the γ-divergence in

the Gaussian case

Appendix A.1. Expression of
∫
Xk

pβ1 (Xk)dXk

Given (49), one has:

I2(p1, β) =

∫
Xk

pβ1 (Xk)dXk (A.1)

=

∫
Xk

1

(2π)
kβ
2 |Qk,1|

β
2

exp
(
− β

2
[Xk − µk,1]TQ−1

k,1[Xk − µk,1]
)
dXk

=
1

(2π)
k(β−1)

2 |Qk,1|
(β−1)

2

×

∫
Xk

1

(2π)
k
2 |Qk,1|

1
2

exp
(
− 1

2
[Xk − µk,1]T

(
1

β
Qk,1

)−1

[Xk − µk,1]
)
dXk

As the determinant of 1
βQk,1 is equal to 1

βk
|Qk,1|, the above equality can be

rewritten this way:

I2(p1, β) =
1

β
k
2 (2π)

k(β−1)
2 |Qk,1|

(β−1)
2

× (A.2)

∫
Xk

β
k
2

(2π)
k
2 |Qk,1|

1
2

exp
(
− 1

2
[Xk − µk,1]T

(
1

β
Qk,1

)−1

[Xk − µk,1]
)
dXk

=
1

β
k
2 (2π)

k(β−1)
2 |Qk,1|

(β−1)
2
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Appendix A.2. Expression of
∫
Xk

pa1(Xk)pb2(Xk)dXk

Let us now address the expression of the second integral defined by:

I1(p1, p2, a, b) =

∫
1

(
√

2π)k(a+b)|Qk,1|
a
2 |Qk,2|

b
2

exp
(
− 1

2
A) (A.3)

where a > 0 and b > 0. We will see why this assumption is required in the rest

of the mathematical development. In addition, A can be expressed after some

mathematical developments as follows:

A = a[Xk − µk,1]TQ−1
k,1[Xk − µk,1] + b[Xk − µk,2]TQ−1

k,2[Xk − µk,2] (A.4)

= XT
k

(
aQ−1

k,1 + bQ−1
k,2

)
Xk − 2XT

k (aQ−1
k,1µk,1 + bQ−1

k,2µk,2)

+ aµTk,1Q
−1
k,1µk,1 + bµTk,2Q

−1
k,2µk,2

At this stage, let us introduce the following two quantities:

Q−1
k,a,b = aQ−1

k,1 + bQ−1
k,2 (A.5)

It should be noted that a and b are necessarily positive to guarantee that Qk,a,b

is definite non negative and exploit this property in the remainder of the math-

ematical development. In addition, one has:

Q−1
k,a,bµk,a,b = aQ−1

k,1µk,1 + bQ−1
k,2µk,2 (A.6)

Given (A.5) and (A.6), (A.4) can be rewritten this way:

A = (Xk − µk,a,b)TQ−1
k,a,b(Xk − µk,a,b) (A.7)

− µTk,a,bQ−1
k,a,bµk,a,b + aµTk,1Q

−1
k,1µk,1 + bµTk,2Q

−1
k,2µk,2

Using (A.7), the next step is to rewrite I1(p1, p2, a, b) by taking into account the

fact that
∫

1
(
√

2π)k|Qk,a,b|1/2
exp

(
− 1

2 (Xk − µk,a,b)TQ−1
k,a,b(Xk − µk,a,b)

)
dXk = 1.

This simplification implicitly implies that Qk,a,b is invertible and has the prop-

erty of a covariance matrix of a Gaussian process. It is hence assumed to be

Hermitian and definite positive. Its inverse Q−1
k,a,b has therefore the same prop-

erties. When a and b are strictly positive and referring to (A.5), this assumption

holds. Indeed, as xHQ−1
k,1x > 0 and xHQ−1

k,2x > 0 for all non zero column vector

x of appropriate size, xHQ−1
k,a,bx = axHQ−1

k,1x + bxHQ−1
k,2x > 0. In this paper,
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this constraint on a and b will be enough for the mathematical development we

are doing. One obtains:

I1(p1, p2, a, b) =
|Qk,a,b|1/2

(
√

2π)k(a+b−1)|Qk,1|
a
2 |Qk,2|

b
2

× (A.8)

exp
(
− 1

2
(aµTk,1Q

−1
k,1µk,1 + bµTk,2Q

−1
k,2µk,2 − µ

T
k,a,bQ

−1
k,a,bµk,a,b)

)
Then, our purpose is to simplify the argument of the complex exponential in

(A.8). To this end, let us introduce a new matrix denoted as Qk,wei(b, a) and

defined by:

Qk,wei(b, a) = bQk,1 + aQk,2 = QTk,wei(b, a) (A.9)

Then, one has:

Q−1
k,a,b =

(A.5)
aQ−1

k,1 + bQ−1
k,2 = Q−1

k,1

(
aIk + bQk,1Q

−1
k,2

)
(A.10)

= Q−1
k,1(aQk,2 + bQk,1)Q−1

k,2 =
(A.9)

Q−1
k,1Qk,wei(b, a)Q−1

k,2

Note that:

Q−1
k,a,b = (Q−1

k,a,b)
T and Qk,wei(b, a) = Qk,1Q

−1
k,a,bQk,2 = Qk,2Q

−1
k,a,bQk,1 (A.11)

Their determinants hence satisfy:

|Qk,a,b| =
|Qk,1||Qk,2|
|Qk,wei(b, a)| (A.12)

In addition, let us differently express the argument of the complex exponential

in (A.8), i.e.:

B = −1

2

(
aµTk,1Q

−1
k,1µk,1 + bµTk,2Q

−1
k,2µk,2 − µ

T
k,a,bQ

−1
k,a,bµk,a,b)

)
(A.13)

by using (A.6) and by taking into account the fact that Q−1
k,a,b is symmetric.

This leads to:

µTk,a,bQ
−1
k,a,bµk,a,b = µTk,a,bQ

−1
k,a,bQk,a,bQ

−1
k,a,bµk,a,b (A.14)

=
(A.6)

(
aµTk,1Q

−1
k,1 + bµTk,2Q

−1
k,2

)
Qk,a,b

(
aQ−1

k,1µk,1 + bQ−1
k,2µk,2

)
= a2µTk,1Q

−1
k,1Qk,a,bQ

−1
k,1µk,1 + b2µTk,2Q

−1
k,2Qk,a,bQ

−1
k,2µk,2 + 2abµTk,1Q

−1
k,1Qk,a,bQ

−1
k,2µk,2

Therefore, one has:

B = −1

2

(
aµTk,1Q

−1
k,1µk,1 − a

2µTk,1Q
−1
k,1Qk,a,bQ

−1
k,1µk,1 (A.15)

+ bµTk,2Q
−1
k,2µk,2 − b

2µTk,2Q
−1
k,2Qk,a,bQ

−1
k,2µk,2 − 2abµTk,1Q

−1
k,1Qk,a,bQ

−1
k,2µk,2

)
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However, given (A.5), Q−1
k,wei(b, a) can be expressed using the matrix inversion

lemma13 provided the matrix is invertible. Two expressions can be deduced,

depending on the use of the lemma. On the one hand:

bQ−1
k,wei(b, a) = Q−1

k,1 − aQ
−1
k,1Qk,a,bQ

−1
k,1 (A.16)

On the other hand:

aQ−1
k,wei(b, a) = Q−1

k,2 − bQ
−1
k,2Qk,a,bQ

−1
k,2 (A.17)

By combining (A.11), (A.15), (A.16) and (A.17), one obtains:

B = −ab
2

(
µTk,1Q

−1
k,wei(b, a)µk,1 + µTk,2Q

−1
k,wei(b, a)µk,2

)
+ abµTk,1Q

−1
k,1Qk,a,bQ

−1
k,2µk,2

(A.18)

= −ab
2

(µk,1 − µk,2)TQ−1
k,wei(b, a)(µk,1 − µk,2)

Finally, by introducing ∆µk = µk,1 − µk,2 and combining (A.8), (A.12) and

(A.18), one gets:

I1(p1, p2, a, b) =
|Qk,1|

1−a
2 |Qk,2|

1−b
2

(2π)
k(a+b−1)

2 |Qk,wei(b, a)| 12
exp

(
−ab

2
∆µTkQ

−1
k,wei(b, a)∆µk

)
(A.19)

Therefore, when a = α > 0 and b = 1− α > 0, meaning 0 < α < 1, one has:

I1(p1, p2, α, 1− α) =
|Qk,1|

1−α
2 |Qk,2|

α
2

|Qk,wei(1− α, α)| 12
exp

(
−α(1− α)

2
∆µTkQ

−1
k,wei(1− α, α)∆µk

)
(A.20)

When a = 1 and b = β − 1 > 0, meaning β > 1, this leads to:

I1(p1, p2, 1, β − 1) =
1

(2π)
k(β−1)

2 |Qk,wei(β − 1, 1)| 12 |Qk,2|
β−2
2

(A.21)

× exp

(
− (β − 1)

2
∆µTkQ

−1
k,wei(β − 1, 1)∆µk

)

Appendix B. Another way to derive the results in the Gaussian case

Let us rewrite (49) differently:

p1(Xk) = exp

(
−k

2
ln(2)− k

2
ln(π)− 1

2
ln(|Qk,1|)−

1

2
[Xk − µk,1]TQ−1

k,1[Xk − µk,1]

)
(B.1)

13In the current case, it is given by (U + V )−1 = U−1 − U−1(V −1 + U−1)−1U−1.
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This leads to:

p1(Xk) = exp
(
− k

2
ln(π)− k

2
ln(2)− 1

2
ln(|Qk,1|)−

1

2
µTk,1Q

−1
k,1µk,1 (B.2)

+ µTk,1Q
−1
k,1Xk −

1

2
XT
k Q
−1
k,1Xk

)
or equivalently:

p1(Xk) = exp
(
− k

2
ln(π)− 1

2
ln(2k|Qk,1|)−

1

2
Tr(Q−1

k,1µk,1µ
T
k,1) (B.3)

+ (Q−1
k,1µk,1)TXk − Tr((2Qk,1)−1XkX

T
k )
)

or

p1(Xk) = exp
(
− k

2
ln(π) +

1

2
ln(|1

2
Q−1
k,1|)−

1

2
Tr(Q−1

k,1Qk,1Q
−1
k,1µk,1µ

T
k,1) (B.4)

+ (Q−1
k,1µk,1)TXk − Tr((2Qk,1)−1XkX

T
k )
)

The above expression can be rewritten as:

p1(Xk) = exp
(
− k

2
ln(π) +

1

2
ln(|1

2
Q−1
k,1|)−

1

4
Tr(2Qk,1Q

−1
k,1µk,1(Q−1

k,1µk,1)T ) (B.5)

+ (Q−1
k,1µk,1)TXk − Tr((2Qk,1)−1XkX

T
k )
)

By introducing the scalar product between two symmetric positive definite ma-

trices X and Y as the trace of the product XY i.e. < X,Y >= Tr(XY ),

the so-called sufficient statistics t(Xk) =
(
Xk,−XkX

T
k

)
and what is called the

natural parameters stored in Θ which is the set (θ = Q−1
k,1µk,1, φ = (2Qk,1)−1),

we can conclude that (Q−1
k,1µk,1)TXk − Tr((2Qk,1)−1XkX

T
k ) can be seen as the

scalar product between the sufficient statistics and the natural parameter Θ,

i.e. < t(Xk),Θ >. In addition, what is known as the log normalizer can be

expressed as:

F (Θ) =
1

4
Tr(φ−1θθT )− 1

2
ln(|φ|) +

k

2
ln(π) (B.6)

Finally by setting the so-called carrier measure k(Xk) = 0, one has:

p1(Xk,Θ) = exp(< t(Xk),Θ > −F (Θ) + k(Xk)) (B.7)

In [31] when dealing with pdfs belonging to the exponential family, respec-

tively characterized by the set of natural parameters Θ1 = (θ = Q−1
k,1µk,1, φ =

(2Qk,1)−1) and Θ2 = (θ = Q−1
k,2µk,2, φ = (2Qk,2)−1), Nielsen provided a closed
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form expression of the following integral when a+ b = 1:

I1(p1, p2, a, b) =

∫
Xk

pa1(Xk)pb2(Xk)dXk (B.8)

= exp (F (aθ1 + bθ2)− aF (θ1)− bF (θ2))

Therefore, the Chernoff coefficient can be deduced as follows:

Cα(p1 (Xk) , p2 (Xk)) =

∫
Xk

pα1 (Xk) p1−α
2 (Xk) dXk (B.9)

= I1(p1, p2, α, 1− α) = exp (F (αΘ1 + (1− α)Θ2)− αF (Θ1)− (1− α)F (Θ2))

In this case, the following quantities must be taken into account to calculate

F (αΘ1 + (1− α)Θ2):
θequ(α, 1− α) = αQ−1

k,1µk,1 + (1− α)Q−1
k,2µk,2

φequ(α, 1− α) = 1
2

(
αQ−1

k,1 + (1− α)Q−1
k,2

)
= 1

2
Q−1
k,1 (αQk,2 + (1− α)Qk,1)Q−1

k,2

= 1
2
Q−1
k,1Qk,wei(1− α, α)Q−1

k,2

(B.10)

It should be noted that the inverse of φequ(α, 1−α) = 1
2

(
αQ−1

k,1 + (1− α)Q−1
k,2

)
can be expressed in three different ways. Among them, the inversion matrix

lemma can be considered twice. This leads to:

φ−1
equ(α, 1− α) = 2Qk,2Q

−1
k,wei(1− α, α)Qk,1 (B.11)

=
2

α

(
Qk,1 − (1− α)Qk,1Q

−1
k,wei(1− α, α)Qk,1

)
=

2

1− α
(
Qk,2 − αQk,2Q−1

k,wei(1− α, α)Qk,2
)

Therefore, given (B.6), the log normalizer F (αΘ1 + (1− α)Θ2) is equal to:

F (αΘ1 + (1− α)Θ2) =
1

2
ln(2k

|Qk,1||Qk,2|
|Qk,wei(1− α, α)| ) +

k

2
ln(π) (B.12)

+
1

4

((
αQ−1

k,1µk,1 + (1− α)Q−1
k,2µk,2

)T
φ−1
equ

(
αQ−1

k,1µk,1 + (1− α)Q−1
k,2µk,2

))
=

1

2
ln(

|Qk,1||Qk,2|
|Qk,wei(1− α, α)| +

k

2
ln(2) +

k

2
ln(π)

+
1

4

(
2α(1− α)µTk,2Q

−1
k,2φ

−1
equQ

−1
k,1µk,1 + α2µTk,1Q

−1
k,1φ

−1
equQ

−1
k,1µk,1

+ (1− α)2µTk,2Q
−1
k,2φ

−1
equQ

−1
k,2µk,2

)
At this stage, substituting φ−1

equ by successively using its three different expres-
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sions (B.11), one gets:

F (αΘ1 + (1− α)Θ2) =
1

2
ln(

|Qk,1||Qk,2|
|Qk,wei(1− α, α)| ) +

k

2
ln(2π) (B.13)

− 1

2
α(1− α)∆µkQ

−1
k,wei(1− α, α)∆µk +

α

2
µTk,1Qk,1µk,i +

(1− α)

2
µTk,2Qk,1µk,2

In addition, for i = 1, 2, one has:

F (Θi) =
1

2
µTk,iQk,iµk,i +

1

2
ln(|Qk,i|) +

k

2
ln(2π) (B.14)

Therefore, exp(F (αΘ1 + (1− α)Θ2)− αF (Θ1)− (1− α)F (Θ2)) is equal to:

Cα(p1 (Xk) , p2 (Xk)) =

∫
Xk

pα1 (Xk) p1−α
2 (Xk) dXk (B.15)

=
|Qk,1|

1−α
2 |Qk,2|

α
2

|Qk,wei(1− α, α)| 12
exp

(
−α(1− α)

2
∆µkQ

−1
k,wei(1− α, α)∆µk

)
One hence retrieves the result given in (A.20).

Appendix C. Derivation of the KL divergence for NSCE processes.

Proof of the link with the Rényi divergence

Appendix C.1. Derivation of the KL divergence rate

Given the expression of the KL mentioned in the footnote 9 of the paper,

the increment of the divergence satisfies:

∆KL
(1,2)
k =

1

2

[
Tr(Q−1

k+1,2Qk+1,1)− Tr(Q−1
k,2Qk,1)− 1− ln

|Qk+1,1||Qk,2|
|Qk,1||Qk+1,2|

(C.1)

+ Tr(Q−1
2,k+1∆µk+1∆µTk+1)− Tr(Q−1

2,k∆µk∆µTk )
]

As the processes under study are zero-mean, the above expression reduces to:

∆KL
(1,2)
k =

1

2

[
Tr(Q−1

k+1,2Qk+1,1)− Tr(Q−1
k,2Qk,1)− 1− ln

|Qk+1,1||Qk,2|
|Qk,1||Qk+1,2|

]
(C.2)

However, the limit of the logarithm of the determinant ratio has been addressed

in (19). Thus, one has:

lim
k→+∞

ln
|Qk+1,1||Qk,2|
|Qk,1||Qk+1,2|

= ln
σ2

1

σ2
2

(C.3)

Moreover, the limit of the trace difference was already addressed in one of our

previous papers [19]. This led to:

lim
k→+∞

Tr(Q−1
k+1,2Qk+1,1) = ∆T (2,1) (C.4)

44



where:

∆T (i,i′) =

Mi∑
m=1

γm,i
σ′2i

(1−
Mi′∑
n=1

δθm,i,θn,i′ ) +
σ2
i

σ′2i
(C.5)

with δθm,i,θn,i′ the Kronecker delta. It is equal to 1 if θm,i = θn,i′ and to 0

otherwise. Note that we take advantage of this paper to fix a typo mistake that

appeared in [19]. Therefore, the divergence rate of the KL divergence when

dealing with NSCE processes is equal to:

∆KL(1,2) =
1

2

[ M1∑
m=1

γm,1
σ2

2

(1−
M2∑
n=1

δθm,1,θn,2) +
σ2

1

σ2
2

− 1− ln
σ2

1

σ2
2

]
(C.6)

Appendix C.2. Link with the Rényi divergence rate

Let us recall the expression of the increment of the Rényi divergence we

obtained in (67):

∆RD
(1,2)
k (α) = − 1

2(α− 1)
ln
( |Qk,2|α
|Qk+1,2|α

|Qk+1,wei(1− α, α)|
|Qk,wei(1− α, α)|

|Qk,1|1−α

|Qk+1,1|1−α
)

+
α

2

(
Tr
(
Q−1
k+1,wei(1− α, α)∆µk+1∆µTk+1

)
− Tr

(
Q−1
k,wei(1− α, α)∆µk∆µTk

))
=
E(α)

D(α)

where:

Ek(α) = ln
( |Qk,2|α
|Qk+1,2|α

|Qk+1,wei(1− α, α)|
|Qk,wei(1− α, α)|

|Qk,1|1−α

|Qk+1,1|1−α
)

(C.7)

= ln
( |Qk+1,wei(1− α, α)|
|Qk,wei(1− α, α)|

)
+ α ln

( |Qk,2|
|Qk+1,2|

)
+ (1− α) ln

( |Qk,1|
|Qk+1,1|

)
and

D(α) = −2(α− 1) (C.8)

As Qk,wei(1−α, α) and Qk+1,wei(1−α, α) respectively tend to Qk,2 and Qk+1,2

when α tends to 1, E(α) tends to 0 when α tends to 1 while D(α) also tends

to 0. Therefore, one has to find another solution to deduce the limit of the first

part of the increment. The idea is to use L’Hôspital Rule, i.e. to study the limit

of the ratio of the derivates E′(α) and D′(α) when α tends to 1. Given (C.8),

D′(α) = −2. Let us now look at the derivate of Ek(α):

E′k(α) =
d

dα
(ln

(
|Qk+1,wei(1− α, α)|
|Qk,wei(1− α, α)|

)
)︸ ︷︷ ︸

E′
k,1

(α)

+ ln
( |Qk,2|
|Qk+1,2|

)
− ln

( |Qk,1|
|Qk+1,1|

)
︸ ︷︷ ︸

E′
k,2

(α)

(C.9)
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According to (19), E′k,2(α) does not depend on α. It satisfies:

lim
k→+∞

E′k,2(α) = lim
k→+∞

ln
( |Qk,2|
|Qk+1,2|

)
− ln

( |Qk,1|
|Qk+1,1|

)
= ln

σ2
1

σ2
2

(C.10)

Let us focus our attention on E′k,1(α) which can be rewritten according to (10)

and by adjusting the notations as follows:

E′k,1(α) =
d

dα

(
ln(r0,wei −RHk,weiQ−1

k,wei(1− α, α)Rk,wei)
)

(C.11)

with

r0,wei = (1− α)r0,1 + αr0,2

= (1− α)(Tr(φ1) + σ2
1) + α(Tr(φ2) + σ2

2)

Qk,wei(1− α, α) = (1− α)Qk,1 + αQk,2

= (1− α)(Sk,1Φ1S
H
k,1 + σ2

1Ik) + α(Sk,2Φ2S
H
k,2 + σ2

2Ik)

Rk,wei =

[
Ik 0k,1

]
Qk+1,wei(1− α, α)

0k,1

1


= (1− α)Sk,1Φ1

[
ejkθ1,1 . . . ejkθ1,M1

]H
+αSk,2Φ2

[
ejkθ2,1 . . . ejkθ2,M2

]H
= (1− α)Sk,1Φ1ΨH

k,1 + αSk,2Φ2ΨH
k,2

(C.12)

In the following, our purpose is to express E′k,1(α) and look at its limit when k

tends to infinity and α tends to 1. Therefore, one has:

E′k,1(α) =
1

r0,wei −RHk,weiQ
−1
k,wei(1− α, α)Rk,wei

× (C.13)(
−r0,1 + r0,2 −RHk,weiQ−1

k,wei(1− α, α)Q−1
k,wei(1− α, α)(−Qk,1 +Qk,2)Rk,wei

)
In (C.13), the limit of r0,wei − RHk,weiQ

−1
k,wei(1 − α, α)Rk,wei when k tends to

infinity is (1 − α)σ2
1 + ασ2

2 . Consequently, the limit when α tends to 1 is

σ2
2 . In addition, r0,2 − r0,1 does not depend on k and α and hence remains

unchanged when taking the limits. Therefore, one has to study the limit of

−RHk,weiQ
−1
k,wei(1− α, α)Q−1

k,wei(1− α, α)(−Qk,1 +Qk,2)Rk,wei when k increases

and tends to infinity and α tends to 1. To this end, let us consider (12) and

adjust its expression to the current case. Introducing σ2
wei = (1 − α)σ2

1 + ασ2
2 ,
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Terms to be studied lim
α→1

Li

L1 = lim
k→+∞

1
σ4
wei
RHk,weiQk,1Rk,wei lim

k→+∞
k2

σ4
2
Ψk,2Φ2Λ2,1Φ1ΛH2,1Φ2ΨH

k,2 +
σ2
1k

σ2
2

Ψk,2Φ2
2ΨH

k,2

L2 = lim
k→+∞

− 1
σ4
wei
RHk,weiQk,2Rk,wei − lim

k→+∞
k2

σ4
2
Ψk,2Φ3

2ΨH
k,2 + k

σ2
2
Ψk,2Φ2

2ΨH
k,2

L3 = − lim
k→+∞

1
kσ4
wei
RHk,weiSk,weiS

H
k,weiQk,1Rk,wei lim

k→+∞
− k2

σ4
2
Ψk,2Φ2Λ2,1Φ1ΛH2,1Φ2ΨH

k,2 −
σ2
1k

σ4
2

Ψk,2Φ2
2ΨH

k,2

= − lim
α→1

L1

L4 = lim
k→+∞

− 1
kσ4
wei
RHk,weiSk,weiS

H
k,weiQk,2Rk,wei lim

k→+∞
− k2

σ4
2
Ψk,2Φ3

2ΨH
k,2 − k

σ2
2
Ψk,2Φ2

2ΨH
k,2

= − lim
α→1

L2

L5 = lim
k→+∞

RHk,weiSk,weiΦ
−2
weiS

H
k,weiQk,1Rk,wei

k3

∑M1

m=1

∑M2

n=1 γm,1δθ1,m,θ2,n

L6 = lim
k→+∞

RHk,weiSk,weiΦ
−2
weiS

H
k,weiQk,2Rk,wei

k3 lim
k→+∞

Ψk,2Φ2ΨH
k,2 + σ2

2 = Tr(Φ2) = r0,2 − σ2
2

Table C.2: Terms to be studied and their equivalent expressions when α tends to 1 using the

asymptotic properties

one has:

lim
k→+∞

Q−1
k,wei(1− α, α) (C.14)

= lim
k→+∞

(
1

σ2
wei

Ik −
1

kσ2
wei

Sk,weiS
H
k,wei +

1

k2
Sk,wei(Φwei −

σ2
wei

k
)−1SHk,wei

)
Therefore taking advantage of the asymptotic properties of Sk,wei similar to

those of Sk,i for i = 1, 2, one has after development and simplification:

lim
k→+∞

Q−1
k,wei(1− α, α)Q−1

k,wei(1− α, α) (C.15)

= lim
k→+∞

(
1

σ4
wei

Ik −
1

kσ4
wei

Sk,weiS
H
k,wei +

1

k3
Sk,weiΦ

−2
weiS

H
k,wei

)
The next step is to pre-multiply the above expression by −RHk,wei and post-

multiply it by (Qk,2 − Qk,1)Rk,wei. By introducing Λ2,1 = lim
k→+∞

1
kS

H
k,2Sk,1

which is a matrix of dimension M2 ×M1 whose elements are equal to δθi,m,θi′,n

which denotes the Kronecker delta.14, this amounts to looking at six limits. Af-

ter mathematical development and simplification one gets the following results

summarized in the table C.1.

Using the result given in table C.1, the limit of E′k,1(α) when α tends to 1

14In other words, this means that it is equal to 1 when when the normalized angular fre-

quency of nth component of Sk,2 is equal to the mth component of Sk,1 and zero otherwise
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verifies:

lim
α→1

E′k,1(α) =
1

σ2
2

(
−r0,1 + r0,2 +

M1∑
m=1

M2∑
n=1

γm,1δθ1,m,θ2,n − r0,2 + σ2
2

)
(C.16)

= − 1

σ2
2

(
M1∑
m=1

γm,1 + σ2
1 −

M1∑
m=1

M2∑
n=1

γm,1δθ1,m,θ2,n

)
+ 1

= 1− 1

σ2
2

M1∑
m=1

γm,1

(
1−

M2∑
n=1

δθ1,m,θ2,n

)
− σ2

1

σ2
2

Consequently, the limit of E′k(α) is equal to:

lim
α→1

E′k(α) = 1− 1

σ2
2

M1∑
m=1

γm,1

(
1−

M2∑
n=1

δθ1,m,θ2,n

)
− σ2

1

σ2
2

+ ln
σ2

1

σ2
2

(C.17)

Finally, one obtains:

lim
α→1

E′k(α)

D′(α)
= −1

2
+

1

2σ2
2

M1∑
m=1

γm,1

(
1−

M2∑
n=1

δθ1,m,θ2,n

)
+

σ2
1

2σ2
2

− 1

2
ln
σ2

1

σ2
2

(C.18)

The divergence rate of the KL divergence is hence retrieved for NSCE processes.

Appendix C.3. Link between the beta-divergence and the KL divergence in the

Gaussian case

Let us recall the expression of the β-divergence given in (62) and rewrite it

a bit differently:

BeD
(1,2)
k (β) =

1

β
k
2

+1(2π)
k(β−1)

2

(
1

(β − 1)|Qk,1|
(β−1)

2

+
1

|Qk,2|
(β−1)

2

)
(C.19)

− 1

β − 1

1

(2π)
k(β−1)

2 |Qk,wei(β − 1, 1)| 12 |Qk,2|
β−2
2

exp

(
− (β − 1)

2
∆µTkQ

−1
k,wei(β − 1, 1)∆µk

)
or equivalently:

BeD
(1,2)
k (β) =

1

β
k
2

+1(2π)
k(β−1)

2

(
− 1

|Qk,1|
(β−1)

2

(C.20)

+
1

|Qk,2|
(β−1)

2

)
+

1

(β − 1)(2π)
k(β−1)

2

1

β
k
2

+1|Qk,1|
(β−1)

2

− 1

β − 1

1

(2π)
k(β−1)

2 |Qk,wei(β − 1, 1)| 12 |Qk,2|
β−2
2

exp

(
− (β − 1)

2
∆µTkQ

−1
k,wei(β − 1, 1)∆µk

)
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In the above expression, the first term tends to 0 when β tends to 1. Let us

now look at the sum of the last two terms:

Fk(β) =
1

(β − 1)(2π)
k(β−1)

2

×
( 1

β
k
2 |Qk,1|

(β−1)
2

(C.21)

− 1

|Qk,wei(β − 1, 1)| 12 |Qk,2|
β−2
2

exp

(
− (β − 1)

2
∆µTkQ

−1
k,wei(β − 1, 1)∆µk

))
=

1

Jk(β)
×Hk(β)

where:

lim
β→1

Jk(β) = lim
β→1

(β − 1)(2π)
k(β−1)

2 = 0 (C.22)

and

lim
β→1

Hk(β) = lim
β→1

( 1

β
k
2 |Qk,1|

(β−1)
2

(C.23)

− 1

|Qk,wei(β − 1, 1)| 12 |Qk,2|
β−2
2

exp

(
− (β − 1)

2
∆µTkQ

−1
k,wei(β − 1, 1)∆µk

))
= 0

Therefore, we suggest using L’Hôspital rule once again. One has after expressing

(2π)
k(β−1)

2 as exp
(
k(β−1)

2 ln(2π)
)

:

lim
β→1

J ′k(β) = lim
β→1

(2π)
k(β−1)

2 + (β − 1)
k

2
(2π)

k(β−1)
2 = 1 (C.24)

Let us now look at lim
β→1

H ′k(β). To this end, one must express the derivate of

h1(β) = 1

β
k
2 |Qk,1|

(β−1)
2

and then the derivate of the following quantity:

h2(β) = − 1

|Qk,wei(β−1,1)|
1
2 |Qk,2|

β−2
2

exp
(
− (β−1)

2 ∆µTkQ
−1
k,wei(β − 1, 1)∆µk

)
:

lim
β→1

h′1(β) = lim
β→1

d
(
β−

k
2 |Qk,1|

(1−β)
2

)
dβ

(C.25)

= lim
β→1
−k

2
β−

k
2
−1|Qk,1|

(1−β)
2 + β−

k
2 |Qk,1|

(1−β)
2 ×

(
−1

2
ln |Qk,1|

)
= −k

2
− 1

2
ln |Qk,1|

Let us now decompose h2(β) as a product of three terms all depending on β.

The first one h21(β) is given by:

h21(β) = −|Qk,wei(β − 1, 1)|−
1
2 = −|(β − 1)Qk,1 +Qk,2|−

1
2 (C.26)

= −|(β − 1)Q−1
k,2Qk,1 + Ik|−

1
2 |Qk,2|−

1
2
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with:

lim
β→1

h21(β) = −|Qk,2|−
1
2 (C.27)

Then, Q−1
k,2Qk,1 can be expressed from the eigenvalue decomposition with the

eigenvalues {λi}i=1,...,k. Consequently, (C.26) can be rewritten this way:

h21(β) = −

(
k∏
i=1

((β − 1)λi + 1)

)− 1
2

|Qk,2|−
1
2 (C.28)

Therefore, the limit of the derivate h′21(β) when β tends to 1 is equal to:

lim
β→1

h′21(β) = −|Qk,2|−
1
2 lim
β→1

(
k∏
i=1

((β − 1)λi + 1)

)− 1
2

×

(
−1

2

k∑
i=1

λi
1 + (β − 1)λi

)
(C.29)

=
|Qk,2|−

1
2

2

k∑
i=1

λi =
|Qk,2|−

1
2

2
Tr(Q−1

k,2Qk,1)

Let us now look at the second term h22(β) = |Qk,2|
2−β
2 and the limit of its

derivate when β tends to 1. One can first notice:

lim
β→1

h22(β) = |Qk,2|
1
2 (C.30)

In addition, its derivate satisfies:

lim
β→1

h′22(β) = lim
β→1
|Qk,2|

2−β
2 × 1

2
ln |Qk,2| =

|Qk,2|
1
2

2
ln |Qk,2| (C.31)

Let us finally look at the third term defined as follows:

h23(β) = exp

(
− (β − 1)

2
∆µTkQ

−1
k,wei(β − 1, 1)∆µk

)
(C.32)

with:

lim
β→1

h23(β) = 1 (C.33)

Its derivate satisfies:

lim
β→1

h′23(β) = lim
β→1

exp

(
− (β − 1)

2
∆µTkQ

−1
k,wei(β − 1, 1)∆µk

)
(C.34)

×

(
−1

2
∆µTkQ

−1
k,wei(β − 1, 1)∆µk −

(β − 1)

2
∆µTk

dQ−1
k,wei

dβ
(β − 1, 1)∆µk

)

= −1

2
∆µTkQ

−1
k,wei(β − 1, 1)∆µk = −1

2
Tr
(
Q−1
k,2∆µk∆µTk

)
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To end up the reasoning, one just has to express lim
β→1

h′2(β) = lim
β→1

h′21h22h23 +

h21h
′
22h23 + h21h22h

′
23. One obtains:

lim
β→1

h′2(β) =
|Qk,2|−

1
2

2
Tr(Q−1

k,2Qk,1)|Qk,2|
1
2 (C.35)

− |Qk,2|−
1
2
|Qk,2|

1
2

2
ln |Qk,2|+ |Qk,2|−

1
2 |Qk,2|

1
2

1

2
Tr
(
Q−1
k,2∆µk∆µTk

)
=

1

2
Tr(Q−1

k,2Qk,1) +
1

2
ln |Qk,2|+

1

2
Tr
(
Q−1
k,2∆µk∆µTk

)
Finally, as lim

β→1
H ′k(β) = lim

β→1
h′1(β) + h′2(β), one can deduce that:

lim
β→1

H ′k(β) =
1

2

(
−k + Tr(Q−1

k,2Qk,1)− ln
|Qk,1|
|Qk,2|

+ Tr
(
Q−1
k,2∆µk∆µTk

))
(C.36)

and finally:

lim
β→1

H ′k(β)

J ′k(β)
=

1

2

(
−k + Tr(Q−1

k,2Qk,1)− ln
|Qk,1|
|Qk,2|

+ Tr
(
Q−1
k,2∆µk∆µTk

))
(C.37)

= ∆KL(1,2)
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used univariate continuous distributions. Information Sciences, 249:124–

131, 2013.

52



[15] V. Girardin and P. Lhote, L. Regnault. Different closed-form expressions for

generalized entropy rates of markov chains. Methodology and Computing

in Applied Probability, 21:1431–1452, 2019.

[16] J. Gomez-Garde and V. Latora. Entropy rate of diffusion processes on

complex networks. Physical Review E, 78:065102, 2009.

[17] E. Grivel, R. Diversi, and F. Merchan. Kullback-Leibler and Rényi diver-
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