Vaporization at high reduced pressure induced by very rapid power input

Dispersed two phase flow

Jean Muller, Pierre Ruyer, Romuald Rullière, Marc Clausse

12 Octobre 2021
Context

- High pressure transient (2MPa)
- Massive creation of vapour

Atmospheric pressure and temperature

Main question

How the test conditions influence the thermal shock consequences?

1. EDITE
 - Test section
 - Acquisition
 - Tests performed
EDITE (Etude d’un Dépôt Intense et Transitoire d’Énergie)

Discharge 9 condensers
Discharge: 1 kJ within 5 ms

Fluid: CO_2
\[
P \in [2.5 ; 6.2] \text{ MPa} \\
T \in [-15 ; 24] \text{ °C}
\]

Jean Muller

Dispersed two phase flows
EDITE (Etude d’un Dépôt Intense et Transitoire d’Energie)

Temperature and static pressure
1 Hz

Dynamic pressure (P_1, P_2, P_3) – Voltage and Current
500 kHz

$$(U, I) \rightarrow R_W(T) \rightarrow T_W$$

Dispersed two phase flows
Tests performed

200 tests

\[P \in [25 \text{ bar} ; 62 \text{ bar}] \]
\[T \in [-15 ^\circ C ; 24 ^\circ C] \]
\[E \in [75 J ; 340 J] \]
Ensemble des essais

200 tests

\[P \in [25 \text{ bar} ; 62 \text{ bar}] \]
\[T \in [-15 ^\circ \text{C} ; 24 ^\circ \text{C}] \]
\[E \in [75 J ; 340 J] \]

Test chosen

\[\begin{cases} P = 25.6 \text{ bar} \\ T = -12 ^\circ \text{C} \\ E = 240 J \end{cases} \]
Test chosen

Dispersed two phase flows

Jean Muller
I. EDITE
 • Test section
 • Acquisition
 • Tests performed

II. Pressure peak
 • Phenomena
 • Influence of the test conditions
Phenomena

Electric power

\[P \text{(W)} \]

\[0 \times 10^4 \]

\[10 \times 10^4 \]

\[2 \times 10^4 \]

\[4 \times 10^4 \]

\[0 \]

\[2 \times 10^5 \]

\[4 \times 10^5 \]

\[0 \times 10^5 \]

\[2 \times 10^5 \]

\[4 \times 10^5 \]

\[0 \]

\[2 \]

\[4 \]

\[0 \times 10^3 \]

\[1 \times 10^3 \]

\[2 \times 10^3 \]

\[3 \times 10^3 \]

\[4 \times 10^3 \]

\[5 \times 10^3 \]

\[6 \times 10^3 \]

\[0 \]

\[1 \]

\[2 \]

\[3 \]

\[4 \]

\[5 \]

\[6 \]

\[\text{Temps (s)} \]

\[\times 10^{-3} \]

\[\times 10^5 \]

\[\times 10^4 \]

\[\times 10^3 \]

Dispersed two phase flows
Phénomena

Pressure increase \(p_{[Zhao \text{ et al.}]} \)
\[
\frac{d^2 V_{v}}{dt^2} > 0
\]

Pressure decrease \(P \)
\[
\frac{d^2 V_{v}}{dt^2} < 0
\]
+ acoustic rebounds

Jean Muller Dispersed two phase flows
Influence of test conditions on the thermal shock

- Reduced pressure
 $$P_r = \frac{P_i}{P_c}$$

- Theta
 $$\Theta = \frac{E}{\Delta H_{i\to v}} \frac{1}{m_f}$$

- Jakob
 $$Ja = \frac{\rho_l}{\rho_v} \frac{c_{p,l}(T-T_{sat(P)})}{L(P)}$$
\[P_r = \frac{P}{P_c} \]

\[\Theta = \frac{E}{\Delta H_{i-v} m_f} \]

Decrease of \(P_m \) for an increasing \(P_r \)

Increase of \(P_m \) with \(\Theta \) for low \(P_r \)

Saturation of \(P_m \) with \(\Theta \) for high \(P_r \)

Iincertitudes en annexe

Jean Muller

Dispersed two phase flows
I. EDITE
 • Test section
 • Acquisition
 • Tests performed

II. Pressure peak
 • Phenomena
 • Influence of the test conditions

III. Vapour created
 • Compression of the buffer layer
 • Influence of the test conditions
Buffer layer compression

The fluid is considered incompressible

1. V_0
2. $V_0 - V(t)$
3. CO$_2$ liquide

$V_\gamma(t)$
Buffer layer compression

The fluid is considered incompressible

Assumption:
Isentropic compression of the buffer layer composed of a non ideal gas
Buffer layer compression

Storage of thermal energy in the tungsten

Slower kinetic for $V_v(\text{real})$

Assumption: Isentropic compression of the buffer layer composed of a real gas
Test conditions influence on the volume created

Recondensation of the vapour with an increasing Jakob

V_v decreases with an increasing Ja

Incertitudes en annexe
Test conditions influence on the volume created

Recondensation of the vapour with an increasing Jakob

V_v decreases with an increasing Ja

Incertitudes en annexe

Jean Muller

Dispersed two phase flows
Conclusion

- Experimental study of the consequences of a thermal shock
- Influence of the test conditions on the phenomena
- Theoretical study of the transient phase change

Perspectives

- Improvement of the thermal analysis
- Use of the theoretical model for all the tests