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Tidal stripping of dark matter subhalos by baryons from analytical perspectives: disk
shocking and encounters with stars
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The cold dark matter (CDM) scenario predicts that galactic halos should host a huge amount
of subhalos possibly as light as or lighter than planets, depending on the nature of dark matter.
Predicting their abundance and distribution on such small scales has important implications for
dark matter searches and searches for subhalos themselves, which could provide a decisive test of
the CDM paradigm. A major difficulty in subhalo population model building is to account for the
gravitational stripping induced by baryons, which strongly impact on the overall dynamics within
the scale radii of galaxies. In this paper, we focus on these “baryonic” tides from analytical perspec-
tives, summarizing previous work on galactic disk shocking, and thoroughly revisiting the impact of
individual encounters with stars. For the latter, we go beyond the reference calculation of Gerhard
and Fall (1983) to deal with penetrative encounters, and provide new analytical results. Based upon
a full statistical analysis of subhalo energy change during multiple stellar encounters possibly occur-
ring during disk crossing, we show how subhalos lighter than ∼ 1 M� are very efficiently pruned by
stellar encounters, and how that modifies their mass function in a stellar environment. If reasonably
resilient, surviving subhalos have lost all their mass but the inner cusp, with a tidal mass function
strongly departing from the cosmological one; otherwise, their number density can drop by an order
of magnitude at the solar position in the Milky Way with respect to disk-shocking effects only. For
illustration, we integrate these results into our analytical subhalo population model. They can easily
be incorporated to any other analytical or numerical approach. This study complements those using
cosmological simulations, which cannot resolve dark matter subhalos on such small scales.

PACS numbers: 12.60.-i,95.35.+d,98.35.Gi

I. INTRODUCTION

The cold dark matter (CDM) scenario is tied to hi-
erarchical structure formation [1–6], in which small-scale
halos much smaller than typical galaxies collapse first in a
denser universe and then larger and larger halos assem-
ble through mergers and accretion. Consequently, the
distribution of dark matter (DM) in galactic halos such
as that of the Milky Way (MW) is expected to exhibit
inhomogeneities in the form of smaller structures span-
ning a wide range of masses. Although subject to tidal
stripping, a significant fraction of these subhalos are to
survive and populate their host galaxies in number, as ex-
plicitly verified in cosmological simulations down to their
numerical resolution limits [7–10].

Paradoxically enough, the structuring of CDM on
small scales may also lead to a mismatch between theo-
retical predictions and observations, all this being termed
as the “CDM small-scale crisis” (see e.g. Ref. [11] and ref-
erences therein). If the related core-cusp [12] and diver-
sity [13] problems are certainly serious issues, especially
when contrasted with the impressive regularity observed
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in some scaling relations with baryons [14], other aspects
related to subhalos (counting, etc.) may, as for them,
find reasonable explanations as being related to bary-
onic effects or feedback [15]. It is obviously necessary
to inspect DM-only solutions to these potential problems
(see e.g. Ref. [16] or [17]), but it is not less important
to improve our understanding and description of CDM
physics itself on small scales to prepare for additional
tests. In this respect, having reliable predictions of the
properties of subhalo populations in galaxies, especially
of those subhalos light enough not to host baryons, is of
particular interest. Indeed, subhalos can imprint gravi-
tational signatures [18, 19], or boost potential DM anni-
hilation signals [20–35], turn into intermittent local DM
winds [36, 37], hence providing additional ways to test
the CDM scenario.

High-resolution cosmological simulations provide very
important clues to understand the formation and evo-
lution of subhalos, but are limited by two aspects: (i)
finite spatial or mass resolution, and (ii) the fact they
can hardly be matched to specific real galaxies with
constrained kinematic properties and specific histories.
The former aspect may have strong impact on the way
subhalo properties are inferred from simulations (see
e.g. Refs. [38–40]), while the latter makes it potentially
dangerous to blindly extrapolate simulations’ results (for
instance subhalo spatial distributions, mass functions,
etc.) to specific objects like the MW [30]. Even with im-
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proved resolution and empirical implementation of bary-
onic physics, cosmological simulations will hardly be able
to probe most of the substructure mass, which could the-
oretically reside in subhalos with virial masses as light as
∼ 10−12 M� [41–44].

Deepening our physical understanding of the outcomes
of simulations is therefore desirable to consistently inter-
polate their properties down to smaller scales or onto
real objects. In the meantime, it is important to develop
alternative though complementary analytical or semi-
analytical approaches, since these can deal with scales
unresolved by simulations, and are also well suited to
study other effects like changes in cosmological param-
eters, in the primordial power spectrum, etc. These al-
ternative approaches are particularly interesting to in-
vestigate the effects of subhalos in DM searches and
to conceive related tests of the CDM scenario itself
[18, 19, 29, 30, 45–52].

In this paper, we will resort to analytical methods to
study those gravitational tides experienced by subhalos
and generated by the baryonic components of galaxies,
which are expected to strongly affect the subhalo proper-
ties within the scale radii of galaxies. This notably con-
cerns regions where DM and/or subhalo searches are cur-
rently conducted. We will address two different physical
phenomena with two different timescales. First, we will
briefly review the pruning of subhalos induced by tidal
shocks triggered by crossings of galactic disks in spiral
galaxies, called disk-shocking effects. During such cross-
ings, which may last for rather long times with respect to
the deep inner orbital timescale in subhalos, the stars and
gas confined into disks act collectively as a smooth grav-
itational field. The analytical procedure that we present
to account for disk shocking was actually developed in a
previous work [30], which we slightly refine here. The sec-
ond phenomenon is technically more involved, and con-
cerns the tidal stripping induced by individual encounters
of subhalos with stars as they pass by each other. The
effects of such encounters on subhalos, which occur on
much shorter timescales, have already been considered
in both analytical [51, 53, 54] and numerical studies [55–
58], in which they were shown to be significant. Here,
we aim at revisiting this physical problem, notably by
improving over an earlier reference calculation meant to
describe a singular encounter and presented in Ref. [59]
(GF83 henceforth), and widely used in subsequent liter-
ature. We further aim at gauging the impact of these
baryonic tidal effects on the whole subhalo population of
a template galactic host. To do so, we will integrate these
new results in the analytical subhalo population model
that we designed in a previous work [30] (SL17 hereafter),
tuned to describe the subhalo population of the MW con-
sistently with kinematically constrained Galactic mass
models comprising both DM and baryons [60].

The paper is organized as follows. In Sect. II we shortly
introduce the very bases of the SL17 model, which are
more detailed in App. A, and describe the way disk-
shocking effects can be analytically described and ac-
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FIG. 1. Number density of subhalo with respect to the posi-
tion from the GC for a minimal subhalo cosmological mass of
mmin=

200 10−10 M� and a mass index α = 1.9. The effect of the
disk are switched on in the case (sm. + disk) and switched
off in the (sm. only) configuration. In comparison is shown
the cosmological distribution) in green (superposed to the red
dash-dotted curve).

counted for in subhalo models. In Sect. III, we turn to
individual stellar encounters, and present the computa-
tion of the total energy kick felt by test particles bound to
a subhalo that passes by a single star. Then, in Sect. IV,
we address the computation of the impact parameter dis-
tribution and the probability of encounter before evalu-
ating the total energy kick induced by one crossing of the
stellar disk. The consequences in terms of the SL17 pop-
ulation model are discussed and illustrated in Sect. V,
before concluding in Sect. VI. Further technical details
are given in the appendix sections.

II. DISK-SHOCKING EFFECTS ON A
SUBHALO POPULATION

In this section, we shortly review the effect of disk
shocking in the SL17 model. We first summarize the
SL17 subhalo population model (more details can be
found in App. A), and briefly discuss the gravitational
tides generated by the global gravitational potential of
the host galaxy (here the MW) before addressing disk
shocking. We then propose an easy way to quickly im-
plement these effects, induced by smooth gravitational
potentials, into subhalo population models. We illustrate
our results with the SL17 model.

The semi-analytical SL17 model [30] (see also Refs. [33,
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35, 61]) was designed to consistently incorporate a
smooth DM halo, baryonic components (disk/s, bulge/s),
together with a subhalo population covering the entire
mass range allowed by particle DM models, into a global
galactic mass model for a target galaxy. It was cali-
brated for the MW from the mass model constrained on
kinematic data by McMillan in Ref. [60]. The model
assumptions are as follows: (i) subhalos are building
blocks of galactic halos; (ii) if they were hard spheres,
they would simply spatially track the overall DM density
profile, and retain their initial properties (cosmological
mass function, concentration distribution, inner density
profiles, etc. — which can be estimated by investigat-
ing the properties of field subhalos); (iii) tidal stripping
and mergers are responsible for altering and depleting
them. The SL17 model therefore consists in evolving a
subhalo population following an overall spherically sym-
metric DM density profile, starting from initial cosmo-
logical properties (virial masses m = m200, concentra-
tion c = c200, position R), and then plug in tidal effects
to redistribute the DM stripped away from subhalos to
the smooth DM component. The model is statistical in
essence, because subhalos are described by probability
density functions (PDFs) for their position R, mass m,
and concentration c. Tidal stripping is then responsible
for spatially-dependent mass losses, which make subhalos
with initially the same virial mass m end with different
tidal (hence physical) masses mt(m, c,R) further depend-
ing on both position and concentration. This procedure
makes the overall parametric PDF fully intricate, as tidal
masses exhibit strong dependencies on the other param-
eters. Although the SL17 model can be derived for any
assumption as for the inner density profiles of subhalos,
we will assume Navarro-Frenk-White (NFW) [62] inner
profiles in this paper.

Additionally, the SL17 model allows for tidal disrup-
tion of subhalos based on a rather simple criterion in-
spired from numerical studies [63], in which it was shown
that subhalos tidally pruned down to within their scale
radii, rs, would actually be destroyed. By defining xt as
the ratio of the subhalo tidal radius rt(m, c,R) to the
scale radius rs, then it is possible to fix a threshold εt
below which a subhalo is destroyed (i.e. if xt < εt). Al-
though early dedicated studies seemed to indicate εt ∼ 1
[63], this result has been strongly questioned in more re-
cent studies [38–40, 64, 65], where it was shown that esti-
mates of the tidal disruption efficiency could be biased by
numerical effects, which means that εt could very likely
take much smaller values. For the sake of completeness,
we adopt two reference choices in this paper:

{
εt = 1 (for fragile subhalos)

εt = 0.01 (for resilient subhalos)
. (1)

As a result of tidal stripping and disruption, the most
concentrated subhalos are found to be the most resis-
tant, as expected. Thus, based on tidal stripping effects,
the SL17 model is able to quite naturally explain the
flattening of the subhalo number density and its further

depletion as one gets closer and closer to the galactic
centers, which is observed in cosmological simulations
[9, 66, 67], as well as the spatial dependence of the mass-
concentration relation [26, 67, 68]. All the SL17 model
concentrates in providing the differential number density
of subhalos nsub, which can be expressed either in terms
of virial mass m, or in terms of tidal mass mt, such that

d2nsub(m, c,R)

dcdmt
=

∫
dm

d2nsub(R, c,m)

dcdm
δ (m−mt(m, c,R)) ,(2)

where all relevant parameters appear explicitly.
Two distinct tidal effects are accounted for in the orig-

inal SL17 model. The first and simplest effect is the
tidal stripping of subhalos by the smooth gravitational
potential of the whole Galaxy. This can be modeled by
assigning to each subhalo a tidal radius solution to the
following equation

rt, sm = R

(
m(rt)

3M(R) (1− 1
3

d lnM
d lnR )

)1/3

(3)

where M(R) is the total mass of the Galaxy within ra-
dius R (including both the DM and baryons) [69]. This
relation, based on the extrapolation of the Roche crite-
rion to diffuse objects, has been shown to nicely correlate
with simulation results [9, 70].

The second effect, due to baryons this time, and that
we want to review here, is the gravitational shock in-
duced at each crossing of the disk, called disk shocking.
This gravitational shocking is generated by the smooth
potential of the Galactic disk, inside which gas and stars
act collectively. Indeed, test-mass particles (e.g. DM
particles) bound inside a subhalo that crosses the disk
experience a velocity kick due to the “rapidly” changing
gravitational potential. In order to evaluate this kick, we
use the impulsive approximation: the crossing is consid-
ered fast enough so that particles are frozen in the frame
of the subhalo. When averaged over a radial shell in the
subhalo, it is given by [71]

∆vd =
2 gd√
3 vz

r êz . (4)

This expression depends on êz, the unit vector normal
to the galactic plane, vz the associated subhalo velocity
component, and gd the gravitational acceleration due to
the potential of the disk. This velocity kick can be trans-
lated into a kick in kinetic energy per unit of particle
mass as

∆Ed =
1

2

[
(v + ∆vd)

2 − v2
]

=
1

2
|∆vd|2 + v.∆vd .(5)

with v the initial velocity in the frame of the subhalo.
Averaging over an initial velocity distribution, the sec-
ond term vanishes so that one considers only ∆Ed ∼
(∆vd)2/2. However, the impulse approximation often
breaks down in the case of disk shocking, and adiabatic
invariance has to be accounted for — if the inner orbital
period is short enough with respect to crossing time, then
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particles are further protected against stripping by virtue
of angular momentum conservation. In the end, accord-
ing to Ref. [72], the energy gain is

∆Ed =
1

2
(∆vd)2A1(ηd) =

4 g2
d

3 v2
z

r2A1(ηd) , (6)

where A1(η) = (1 + η2)−3/2 6 1 is a corrective factor.
The adiabatic parameter for disk shocking is given
by ηd = td ω > 0 where td = Hd/vz is the crossing
time with Hd = 0.9 kpc the thickness of the disk. The
orbital frequency of DM particles ω is approximated
by ω = σsub/r, with σsub the velocity dispersion in the
subhalo evaluated using Jeans’ equation1 [73]. Whenever
ηd � 1 i.e. adiabatic shielding is efficient, the energy
kick is suppressed by the corrective factor A1.

The tidal radius is then evaluated recursively. The
number of disk crossings Ncross is computed with the as-
sumption that subhalo orbits are circular. The algorithm
starts with rt,0 = rt, sm given by Eq. (3), and for every
crossing it evaluates a new value of rt by the require-
ment that if the energy kick in a shell is greater than
the gravitational potential of the structure at that posi-
tion, then the entire shell is removed. More precisely, we
make explicit the dependencies on the radius and on the
tidal extension rt of the energy gain function by writing
∆Ed = ∆Ed(r, rt). We denote by Φ(r, rt) the gravita-
tional potential

Φ(r, rt) = −
∫ rt

r

dr′
Gm(r′)
r′2

(7)

and the successive tidal radii are evaluated by solving for
rt,i+1 in the equation

∆Ed (rt,i+1, rt,i) = |Φ (rt,i+1, rt,i)| (8)

for all i ∈ [1, Ncross]. The tidal radius today is defined by
rt ≡ rt,Ncross

. From Eq. (A5) we plotted, in Fig. 1, the
resulting subhalo number density (integrated over con-
centration)

nsub(R) =

∫
dmt

dnsub

dmt
, (9)

with the distance R to the GC. Two configurations are
considered, whether disk shocking effects are switched

1While this expression was used in SL17, vz and ω are com-
puted slightly differently in this new analysis. Indeed vz was eval-
uated according to the circular velocity of the subhalo assuming an
isothermal profile for the Galactic DM distribution. Here, in order
to be consistent with the rest of the study, we approximate this
quantity as the average of a Maxwell-Boltzmann, isotropic, distri-
bution with an NFW profile for the total Galactic density. This
yields vz ∼

√
2/πσc(R), where σc(R) is the velocity dispersion

computed from Jeans’ equation. Moreover, ω was evaluated for
an isothermal sphere, while here the true profile of the subhalos is
used.
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FIG. 2. Geometry of the problem. The clump in represented
as a sphere with center C and radius rt.

on or not. For comparison, the cosmological/unevolved
distribution is also represented. When subhalos are frag-
ile (disruption parameter εt = 1), we find a strong sup-
pression due to disk shocking toward the center of the
Galaxy compared with the cosmological distribution and
with smooth stripping induced by the overall halo only.
The impact is less important with smaller and smaller
values of εt.

The next sections are dedicated to evaluate the ef-
fects of stellar encounters on the tidal radius and subse-
quently on the subhalo population. The relative impact
of disk shocking and stellar encounters will be compared
in Sec. V.

III. SINGLE STAR ENCOUNTER

We focus on the case of an encounter between one sub-
halo and a single star. The main objective is to compute
the total energy received by every particle in the sub-
halo during the crossing. We first describe a complete
parameterization of the problem before moving on, in a
second part, to the computation and end up with our
results and see how they compare to previous results of
the literature.

Our calculation starts by closely following the original
work by Spitzer [74] and its extension by Gerhard and
Fall [59] (hereafter GF83), but then it extends it even
further to penetrative encounters. The geometry of the
encounter between the subhalo and the star is summa-
rized in Fig. 2. The star S is a point-like object with
mass m? while the subhalo has a radial extension (tidal
radius) rt, a mass mt ≡ m(rt) and his center of mass is
called C. We assume the DM is spherically distributed
around C and this spherical symmetry is maintained for
the duration of the encounter. The center of mass of the
entire system defines an inertial frame and we introduce
a fixed point O in that frame. By Newton’s second law,
we have for a DM particle Mi

d2

dt2
OMi = −Gm?

SM3
i

SMi +
∑

j 6=i

Gmp

MiM3
j

MiMj , (10)

where mp is the mass of a DM particle. The second term
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on the right-hand side of this equation accounts for the
self-gravity of the subhalo. In the following, we are go-
ing to assume that the typical period of DM particles
inside the clump is much larger than the duration of the
encounter so the internal dynamics of the subhalo is effec-
tively frozen and the self-gravity can be neglected. This is
called the impulse approximation [74] and we discuss its
validity further in Sec. IV C. The dynamics of the clump
is governed by

d2

dt2
OC =

mp

mt

{
−
∑

i

Gm?

SM3
i

SMi

}
. (11)

We introduce the positions with respect to the center of
the clump r ≡ CM and r? ≡ CS, and the velocity of a
DM particle with respect to C

vi ≡
d

dt
ri , (12)

which obeys

dvi

dt
= − Gm?

|ri − r?|3
(ri − r?) +

M?

mt

∑

j

Gmp

|rj − r?|3
(rj − r?) .(13)

Taking the continuous limit, this becomes

dv

dt
= − Gm?

|r− r?|3
(r− r?)

+
M?

mt

∫
ρ(r′)
|r′ − r?|3

(r′ − r?) d3r′ .
(14)

The second term on the right-hand side can be further
simplified by using the spherical symmetry to get

dv

dt
= − Gm?

|r− r?|3
(r− r?)−

GM?m(r?)

mt

r?
r3
?

, (15)

where m(r?) is the subhalo mass within r?. We are in-
terested in the net change in velocity

δv =

∫ +∞

−∞

dv

dt
dt . (16)

To go further, we assume the encounter happens at high
enough speed so the trajectory of the subhalo can be
approximated by a straight line. In that case, we have
r?(t) = −b − vr t where b is the impact vector directed
from S to C at the time of closest approach and vr is the
constant relative velocity. Integration over time leads to

δv = −GM?

vr

r + b− êv(r.êv)

r2 − (r.êv)2 + b2 + 2 r.b

+
2GM?

vr b2
I(b, rt)b .

(17)

In this expression, we have introduced a unitary vector
êv ≡ vr/vr and the following integral

I(b, rt) ≡
∫ ∞

0

(
1 + x2

)−3/2 m
(
b
√

1 + x2
)

m(rt)
dx . (18)

This integral verifies 0 6 I(b, rt) 6 1 and is equal to 1
when b > rt. Our result in Eq. (17) can be compared to
the work of GF83. In their study, the authors of GF83
are considering a galaxy perturbed by another galaxy,
both objects having an extended Plummer density pro-
file [75], and they derive an expression in two limiting
cases: b� rt and b� rt where rt is the extension of the
subject galaxy. They propose an interpolation between
these two asymptotic cases to get an expression for any
r. Taking the point-like limit for the perturbing galaxy,
their expression becomes identical to ours for both b� r
and b � rt. However our expression in Eq. (17) is valid
for any values of b, r and rt hence no interpolation is
required. Having computed the velocity gain, we can
translate it into an energy gain per unit mass

δE =
1

2

[
(v + δv)

2 − v2
]

=
1

2
(δv)2 + v.δv (19)

Let us discuss the first term on the right-hand side of
Eq. (19). We have

(δv)2 =

(
2Gm?

vr b

)2 [
I2 +

b2(1− 2I)− 2I r.b

(r + b)2 − (r.êv)2

]
(20)

This shows that the energy gain is not spherically dis-
tributed around the center of the clump. In the relative
velocity direction, (δv)2 does not depend on radius and
is proportional to (I − 1)2. In every other direction, we
have (δv)2 ∝ (I − 1)2 where r � b and (δv)2 ∝ I2 where
r � b. This is illustrated in Fig. 3 where we show (δv)2

along several directions in a case where b � rt for a
subhalo with an NFW profile.The direction-dependence
of (δv)2 means the subhalo loses its spherical symmetry
after encountering the star. Instead of describing this
deformation, we derive a spherically-symmetric approxi-
mation for (δv)2. The DM particles that encounter the
star during at some point in time gain an infinite amount
of energy as seen in the direction opposite to b (dotted-
dashed red line in Fig. 3). To regularize this divergence,
we replace all cosines by their average on the sphere i.e.
r.b ' 0 and (r.êv)

2 ' r2/3. The same simplification is
performed by GF83in their calculation. This leads to

(δv)2 '
(

2Gm?

vr b

)2 [
I2 +

3 (1− 2I)

3 + 2 (r/b)2

]
. (21)

Under this approximation, (δv)2 is always finite and only
depends on r. This solution is shown as the black curve
in Fig. 3 along with the GF83 solution in magenta. We
see that our solution reproduces the asymptotic behav-
ior at both large and small radii in all directions (at the
exception of the large radii behavior along the vr direc-
tion). On the other hand, the GF83 solution fails at
reproducing the correct asymptotic limits in this case.
In the opposite case where b � rt, our solution agrees
with GF83.

It is common practice in the literature to work with
the ratio of the total integrated kinetic energy kick of
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the subhalo over its binding energy. For comparison we
therefore introduce

δEint = 2π

∫ rt

0

drr2 ρ(r)(δv)2 (22)

and the binding energy

U = 4πGN

∫ rt

0

m(r)ρ(r)rdr . (23)

The ratio of these two quantities is represented in Fig. 4
with respect to the impact parameter. It scales as b−4

when b� rs and as a constant (up to a small logarithmic
correction) when b � rs Therefore one recovers the be-
havior introduced in [76] and used in the context of dark
matter subhalos in Refs. [54, 58] (as well as in Ref. [55]
in the large b limit):

δEint

U
∼ GNm

2
?

v2
r ρs(µb+ rs)4

(24)

with µ a parameter. Albeit Ref. [54] provides an esti-
mate for µ it is ill-defined for a NFW profile. Here we
find µ = 213 for rt/rs = 10−2, µ = 3.57 for rt/rs = 1 and
µ = 0.228 for rt/rs = 102. The dash-dotted curve corre-
sponds to the characteristic binding energy introduced in
Ref. [58] (referred to as D19) where the author assumes a
slightly different shape δEint ∝ 1/(b4 + rs

4). If the tidal
radius is not smaller than the scale radius our solution
provides better agreement with Eq. (24) than the GF83
solution.

Let us now discuss the second term on the right-hand
side of Eq. (19). Since δv is independent of v, this term
averages to zero over the velocity distribution of DM par-
ticles inside the subhalo, however it does contribute to a
scatter around 〈δE〉. If the velocity distribution at any
point in the subhalo follows an isotropic distribution with
variance

〈
v2
〉

= 3σ2
sub then we have

〈
δE2

〉
− 〈δE〉2 = σ2

sub |δv|2 . (25)

The velocity dispersion σsub can be computed by solving
the Jeans equation, see App. B. Eq. (25) shows that the
scatter is important compared to the average when σsub

is large compared to |δv|. The energy gain is compared
to the potential energy in Fig. 5 for a subhalo with pa-
rameters ρs = 5.8 × 108 M�/kpc3, rs = 3.5 × 10−3 pc,
rt = 10 rs encountering a star of mass M? = 1 M� with
an impact parameter b = 2× 10−2 pc and relative veloc-
ity vr = 200 km/s. This figure shows that the scatter is
important at intermediate radii in the clump, while it is
small in the central regions and near the edge where the
velocity dispersion is small.

IV. EFFECT OF THE STELLAR POPULATION
ON A SINGLE SUBHALO

This section is devoted to the description of the cu-
mulative effect of multiple stellar encounters as a DM
subhalo crosses the Galactic disk.
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r = x ê⊥
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FIG. 3. (δv)2 along b (solid red), in the direction opposite to
b (dotted-dashed red), along vr (green) and along ê⊥ (blue),
compared to the prediction by Ref. [59] (magenta) and to the
approximation in Eq. (21) (black). The tidal radius of the
subhalo is set to rt = 100× b. Gaetan: change M? for m? in
the y-axis label

A. The stellar population

Given a subhalo crossing the stellar disk, we want to
know what is the distribution of impact parameters for
stellar encounters. Assuming the disk is an infinite, ho-
mogeneous slab with surface density Σ?, and the subhalo
moves along a straight line which makes an angle θ with
respect to the perpendicular to the disk, then the number
of encounters with parameters between b and b+ db is

dN =
Σ?
m?

2πbdb

cos(θ)
(26)

where m? is the average mass of a disk star. This distri-
bution evidently diverges for cos(θ) = 0 i.e. orbits within
the disk. The infinite and homogeneous assumptions can
be dropped to get a finite distribution everywhere how-
ever the final expression is not analytical and the com-
putation is much more involved, as shown in App. D.
Comparisons shows that Eq. (26) is a good approxima-
tion as long as cos(θ)� b/Rd where Rd is the disk scale
radius. This condition is satisfied for the vast majority of
subhalos so Eq. (26) is used in the following. Our calcula-
tion of the energy gain in Sec. III is not valid for arbitrary
impact parameters. It is assumed that the encounter is
isolated so the impact parameter must be smaller than
the typical distance between stars. To compute this dis-
tance, we need a model for the Galactic disk. We use the
Milky-Way mass model established by McMillan [60]. In
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FIG. 4. Ratio of the total kinetic energy integrated on the
entire profile over the binding energy for various values of the
tidal radius. The solid curves are obtain with our ansatz of
Eq. (21), dashed curve are obtained using GF83 result and
the dotted lines correspond to a comparison with the usually
adopted shape ∝ (µb + rs)

−4. Comparison is made with the
characteristic binding energy introduced in [58] (here denoted
D19).

this model, two exponential stellar disks (thick and thin)
are fitted against a number of observational constraints,
along with a DM halo, a stellar bulge and two gaseous
disks. The best-fit parameters for the stellar disks are
given in Tab. I. Given the axisymmetric mass density of
stars ρ?(R, z), we define the maximal impact parameter

bmax(R) ≡
∫ +∞
−∞ ρ?

1
2

(
ρ?
m?

)−1/3

dz
∫ +∞
−∞ ρ? dz

=
m?

1/3

Σ?(R)

∫ +∞

0

ρ
2/3
? (R, z) dz .

(27)

Using an average mass m? ' 0.17 M� [77], we find
bmax(8 kpc) ' 1.1 pc. We also make a straight-line-
trajectory assumption when computing δE. This is rea-
sonable only if the kinetic energy in the center-of-mass
frame is much larger than the potential energy T � |W |,
with

T =
1

2

m?mt

m? +mt
v2

r (28)

and

W = −Gm?

[
m(r?)

r?
+ Θ(rt − r?)

∫ rt

r?

ρ(r)

r
d3r

]
(29)
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FIG. 5. Energy gain (red curve) for a subhalo with parame-
ters ρs = 5.8 × 108 M�/kpc3, rs = 3.5 × 10−3 pc, rt = 10 rs

encountering a star of mass M? = 1 M� with an impact pa-
rameter b = 2× 10−2 pc and relative velocity vr = 200 km/s.
The red-shaded area shows the 1σ scatter around δE/m due
to the inner velocity dispersion. The blue curve shows the
gravitational potential defined in Eq. (B1).

W is minimal when r? = b thus the condition T � |W |
defines a minimal impact parameter bmin. This param-
eters is shown for several subhalo masses in Fig. 6. We
see that bmin is much smaller than bmax unless the rela-
tive velocity is smaller than 0.1 km/s. Since the typical
velocity of subhalos in the Galaxy is of order 100 km/s,
we have bmin = 0 is most cases and the assumption of
straight-line trajectory is verified. The total number of
encounter is

N =
Σ?
m?

π

cos(θ)

(
b2max − b2min

)
. (30)

At 8 kpc, we find N ' 2346× (0.5/ cos(θ)).
Also needed is the relative velocity between stars and

subhalos. The velocity of subhalos is assumed to follow
an isotropic Maxwell Boltzmann distribution with dis-
persion σ(R) that can be computed using Jean’s equa-
tion – where the baryonic contribution to the potential
has been added according to App. B. Moreover, assum-
ing that stars follows circular trajectories at a velocity
v?(R), we get the relative speed distribution

f(vr) =

√
2

π

vr

σ v?
sinh

(vr v?
σ2

)
e−(v2

?+v2
r )/(2σ2) (31)

and the mean relative speed

vr = σ

√
2

π

{
e−X

2

+

√
π

2
(1 + 2X2)

erf(X)

X

}
(32)
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FIG. 6. Minimal impact parameter to avoid capture by the
star.

where X = v?/(
√

2σ). At 8 kpc, the relative speed is
vr ' 334 km/s. The last ingredient is the probability
distribution of stellar mass pm? used to compute m? and
taken from Ref. [78]. We are now equipped to define the
total energy kick received by a subhalo when it crosses
the entire stellar disk.

B. Total energy kick and scatter

When crossing the stellar disk a subhalo encounters N
stars, each with a different impact parameter. A parti-
cle inside the subhalo receives a series of velocity kicks
{δvi}1≤i≤N . We assume that the subhalo does not have
time to relax between encounters, hence the total velocity
kick is given as the sum

∆v =

N∑

i=1

δvi . (33)

Similarly to Eq. (19), the associated total energy kick per
units of mass is given by

∆E =
1

2
|∆v|2 + v.∆v . (34)

Because encounters are characterized by the statistical
distribution of impact parameters and stellar masses, all
vectors δvi and ∆v are random variables. In the follow-
ing, we first show how it is possible to evaluate a PDF for
∆v. The sequence {δvi}1≤i≤N behaves as a random walk
in ”velocity space”. From Eq. (17) every δvi is confined

in the same plane, perpendicular to the relative veloc-
ity vector. The random walk is thus two-dimensional2.
When N is large enough it can be described as a Brown-
ian motion through the Central Limit (CL) theorem. As
the random walk is isotropic, the PDF for ∆v is

p∆v(∆v) ' 1

πN δv2
e
− |∆v|2

Nδv2 (35)

and only depends on the second moment of δv,

δv2 =

∫
dm? pm?(m?)

∫ bmax

bmin

db pb(b)(δv)2 . (36)

with (δv)2 given in Eq. (21), pb(b) = (dN/db)/N
and pm?(m?) taken from Ref. [77]. Note that to gain
time in the numerical evaluation we often approximate
pm?(m?) ∼ δD(m?−m?). A straightforward first evalua-
tion for ∆E is obtained by considering the average value
of ∆v. It yields

∆E ∼ 1

2
|∆v|2 =

1

2
N δv2 . (37)

However, one may wonder about the impact of the sec-
ond term in Eq. (34). In order to properly take it into
account the solution is to derive the full PDF for ∆E.
The initial velocity distribution being approximated as a
Maxwell-Boltzmann with velocity dispersion σsub – c.f.
App. E 3,

p∆E (∆E) =
exp

(
∆E

2σ2
sub
− |∆E|

2σ2
sub

√
1+s2

s

)

4σ2
subs
√

1 + s2
(38)

where s2 ≡ N δv2/(8σ2
sub) = ∆E/(4σ2

sub) is a normalised
ratio of the variance of |∆v|2 (or also the average in that
case) and the variance of the initial velocity |v|. The
associated scatter is

σ∆E = ∆E

√
1 +

1

2 s2
. (39)

This distribution is plotted in the left panel of Fig. 7 in
terms of the associated centred reduced variable. When
σsub is large, s is small and the distribution is symmet-
ric with respect to the average. It shifts toward lower
values for small σsub. In order to properly take into ac-
count the dispersion in energy kick and the shift in the
distribution, one should evaluate a new density profile
for the subhalo by properly removing the particle with
a final kinetic energy (resp. final velocity) greater than
the gravitational potential (resp. escape velocity) – this

2As the stars have their own velocity, the relative velocity vector
may vary from one encounter to another if the velocity of the sub-
halo is not high enough. Therefore the perpendicular plane is not
fixed and the random walk is not strictly two-dimensional. However
for simplicity and because it should not impact the results by or-
der of magnitudes as seen in Fig. 7 we stick to the two-dimensional
hypothesis for the results shown in the main text.
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FIG. 7. In both panels the solid curves are obtained by assuming ∆v constructed out of a 2D isotropic random walk in velocity
space and dashed curve are for a 3D isotropic random walk. Left panel: Probability density function of the centred reduced
total energy kick for different values of the parameter s. We denoted by σ∆E the standard deviation of ∆E. At small values of
s the PDF is symmetric around the average. This can be understood as the dominant dispersion comes from the uncertainty
on the initial velocity that, because of the Maxwell-Boltzmann distribution, is symmetric. When s grows however, the PDF
is peaked on negative values, so that energies lower than the average are more probable. Right panel: The maximal energy
that at least a fraction q of the particles gain over the average energy kick with respect to q for different value of s. The inset
is a zoom on the region 0.2 < q < 0.8 for s > 0.5. The fact that at large values of s the PDF of the right panel is no longer
symmetric with respect to the average is the reason why Med(∆E) < ∆E in all configurations.
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dotted) for bmin ∼ 0. In red are similar curve imposing a lower cut-off on the distribution of impact parameters bmin → b0(Q =
0.2). The vertical green dashed line is the value of the gravitational potential ψ. Left panel: In the inner part of the subhalo
r/rs = 0.01 Right panel: In the outskirts of the subhalo r/rs = 2.34.

possibility is discussed in App. E 4. However this proce- dure requires extensive numerical resources to evaluate



10

10−16

10−14

10−12

10−10

10−8

10−6

10−4

M
ed

(∆
E

)
=

∆
E

(q
=

0.
5)

[k
m

2
s−

2
]

Monte-Carlo

Central-Limit

bmin = 0

bmin = b0(0.2)

|Φ|

10−2 10−1 100

r/rs

10−3

10−1

101

s

10−16

10−14

10−12

10−10

10−8

10−6

10−4

σ
∆
E

[k
m

2
s−

2
]

Monte-Carlo

Central-Limit

bmin = 0

bmin = b0(0.2)

|Φ|

10−2 10−1 100

r/rs

10−3

10−1

101

s

FIG. 9. Left panel. Median energy kick received by at least half of the particles in terms of the radius. Upper panel: In
blue is shown the true value (solid) and the approximation using the CL theorem (long-sort dashed) for bmin ∼ 0. In red are
similar curve imposing a lower cut-off on the distribution of impact parameters bmin → b0(Q = 0.2). The green dashed curve is
the value of the gravitational potential of the subhalo. Lower panel: Value of the parameter s in the two configuration with
(blue) and without (red) the cut-off on the impact parameters. The magenta dotted curve is the limit s = 0.5. In addition
as the energy kick becomes sizeable when it is of the same order than the gravitational potential it is indeed when s & 1 that
the effect of stars become important. This can be understand easily as the inequality σ < ψ obtained from the expression of
σsub given by Jean’s equation implies directly ∆E ∼ |Φ| ⇒ s > 0.5. Right panel. Same figure for the energy kick standard
deviation. Note that the dash-dotted and solid red curve are not distinguishable (one has good convergence of the CL theorem
when the impact parameter range is truncated for the dispersion).

the impact of one disk crossing on a single subhalo and
cannot be applicable in the framework of SL17. In the
following we focus on defining one energy kick value as
an estimate of the energy kick felt by all particles in each
shell.

Let us introduce ∆E(q) the maximal total energy kick
that is received by at least a fraction q of the particles,
in a given shell – the full expression is given in App. E 3
for a Maxwellian distribution of initial particles velocity.
In particular, the median energy gain is Med(∆E) ≡
∆E(q = 0.5). One can show that for any value of s,

1

2
<

Med(∆E)

∆E
< ln(2) ' 0.69 , (40)

so mean and median are always close. The ratio
∆E(q)/∆E is plotted in the right panel of Fig. 7 for
different values of s. If s is large enough (s & 0.5),
i.e. if the effect of the encounters is relevant, then
∆E(0.25 < q < 0.75) and ∆E are always close to each
other ∆E(q)/∆E ∈ [0.1, 2]. Hence, it is both physically
meaningful and convenient to define the energy kick
for all particles at a given distance from the center
of the subhalo as being Med(∆E) and it can be well-
approximated as ∆E ∼ κ∆E with the coefficient κ ∼ 0.7.

So far, all the results are built on the fact that the num-
ber of encountered stars per crossingN is large enough to
apply the CL theorem as if it were infinite. As a matter
of fact, according to the position inside the subhalo, this
is not necessarily the case. Indeed, when bmin is close to
0, as the velocity kick satisfies (δv)2 ∝ 1/b4 for the in-
nermost particles, it gets tremendously large. However,
because pb(b) ∝ b, in the majority of the disk crossings,
on a total of N ∼ 102−105 encounters, none of them has
an impact parameter b � bmax. Therefore when taken
blindly the CL theorem overestimates the energy kick felt
by the particles in the innermost part of the subhalo. In
order to illustrate and quantify this effect, let us look at
a striking example and therefore focus on a small sub-
halo. More precisely consider a typical subhalo before
its first crossing of the stellar disk, with a typical mass
mt = 1.6×10−9 M�, scale radius rs = 7.1×10−7 kpc and
tidal radius rt = 2.34192 × rs at a distance R = 8 kpc
from the center of the MW. All these values are consistent
with a subhalo that has only been smoothly stripped by
the potential of the Galaxy. Its relative velocity with the
stars is given by the average value vr(R = 8 kpc) = 334
km.s−1 and its inclination is given by cos θ = 0.5 so that
it encounters N ∼ 2346 stars. The goal here is to deter-
mine the true PDF for ∆E and compare it to Eq. (38).
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However, even though the number of encounters is not
high enough to have proper convergence to the CL dis-
tribution, it is still too high to allow a fully analytical
computation. Indeed, that would require to evaluate N
convolutions of the PDF of δv that are not even possible
numerically even with the use of Fourier transforms. A
Monte-Carlo (MC) algorithm is better suited for the task
and with a total of 5×105 draws we achieve convergence
to the true PDF of ∆E. In Fig. 8 we represent the com-
plementary cumulative distribution function (CCDF) of
∆E (as it is more convenient to display than the PDF
and contains the same information)

F (> ∆E) ≡
∫ +∞

∆E

p∆E(∆E′) d(∆E′) , (41)

for two radii, one in the inner part of the subhalo
r = 10−2× rs and one in the outskirts r = 2.34× rs. The
solid curves show the MC results while the dashed-dotted
lines are the CL theorem expectations. As predicted
the discrepancy is less pronounced in the outskirts
of the subhalo and the approximated distribution is
shifted toward much higher values of ∆E than the true
distribution for the innermost particles. In Fig. 9 we
show the evolution of the median energy kick and its
dispersion in terms of the radius inside the substructure.
For the same subhalo, the left panel clearly shows that
the expectation of the CL theorem for Med(∆E), in
dash blue, overshoots the gravitational potential on the
entire range of radii, while the true value, in solid blue,
only crosses it on the outskirts, making the CL result
unusable.

Unfortunately, even though a MC algorithm is con-
venient to treat the aforementioned example, it is too
greedy in terms of computation time to be used for the
study of a full subhalo population. Because only encoun-
ters with small impact parameters are responsible for the
convergence issue while they have very small chances to
occur, a solution consists in truncating the impact pa-
rameter range from below. We detail the method in the
following. For one crossing of the disk we denote by b0
the minimal impact parameter. From the PDF of impact
parameter, the PDF of b0 is given by

pb0(b0) =
2N

(1− β2)N
b0
b2max

[
1−

(
b0
bmax

)2
]N−1

(42)

with β ≡ bmin/bmax � 1. We introduce b0(Q) defined so
that only a fraction Q of the disk crossings has an impact
parameter lower than b0(Q). It is given by

b0(Q) = bmax

[
1− (1− β2)(1−Q)

1
N

] 1
2

. (43)

Therefore, the best way to recover a pseudo-convergence
to the CL distribution without losing too much in-
formation on the real distribution is to enforce that
the minimal impact parameter is no longer bmin but
b0(Q ∼ 0.2). The value of Q = 0.2 is tuned by hand
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FIG. 10. Evolution with time of the mass fraction (blue) and
tidal radius (red) of a subhalo of initial virial mass 8 × 10−6

M�. This mass correspond to the the rescaled virial mass
today studied in AZ07 (Ref. [56]) assuming fixed scale density
and scale radius. The initial radius of the structure is fixed to
r200 and the energy kick induced by star encounters at each
crossing is fixed by ∆E = κN δv2/2 with κ ∼ 0.7 and δv2

given by the integral in Eq. (36). The concentration c200 =
84.7 correspond to that of AZ07 rescaled to today assuming
fixed scale radius and scale density. The concentration c200 =
56.8 is the median concentration from [79].

in order to find a correct agreement between the CL
and the MC results. When bmin = 0 one can show that
b0(Q) ∼ 1.6 × bmax/N and scales as the inverse of the
number of encountered stars. The outcome of these
procedure are shown by the red curves in Fig. 8. Con-
vergence is not exact but the new CL result is now much
closer to the true CCDF in solid blue. In the left panel
of Fig. 9, the CL result upgraded with the truncation
of impact parameter at b0(0.2) (in dashed red) provides
a good estimation of the true median (in solid blue).
Nonetheless, the dispersion is not well recovered in the
right panel: the true energy kick has a much higher
dispersion. This was expected as the non-convergence
of the CL comes from the large discrepancy between
the median and the average which follows from a large
dispersion. Therefore, one should keep in mind that,
defining a precise energy kick for the entire population
of particle in one shell of a subhalo, is not trivial and
the chosen definition could severely impact the results.
Hereafter we stick to the definition using the median
as it is a well physically grounded prescription. Now,
before moving on to results, let us discuss the validity of
the impulse approximation.



12

10−7 10−6 10−5 10−4 10−3 10−2

m200 [M�]

0.0

0.5

1.0

1.5

2.0

2.5

t d
is

[G
y
r]

(GG07)

bs ∝ m0.33

bs ∝ m0.2

(This work)

stars only Plummer

stars + sm. Plummer

stars only NFW

stars + sm. NFW

vr = (270± 3× 25) km.s−1

0

1

2

3

4

10
−

5
×
N

d
is

FIG. 11. Evolution with mass of the disruption time for a
subhalo trapped at 8 kpc of the GC in the stellar disk. Two
cases are considered: stars only where the initial radius is the
virial radius today (blue) and stars+smouth were the initial
radius is the Jacobi radius. Comparison is made with GG07
(Ref. [54]) in green. They work with the fraction of total
energy kick over the binding energy showed in Eq. (24) and
consider an approximate expression made of two asymptotic
behaviours according to b with a transition at b = bs. In or-
der to parameterize some levels of uncertainties they consider
two mass behaviour for this parameter, which are represented
here.

C. Validity of the impulse approximation

So far, our calculations have rested on the impulse ap-
proximation which states that the motion of the DM par-
ticles within the subhalo can be neglected for the dura-
tion of the encounter with a star. The validity of this
assumption can be checked by comparing the typical or-
bital timescale of DM particles to the duration of the
encounter tcol ∼ b/vr. At a given position r within the
clump, the orbital frequency is given by ω(r) = σsub(r)/r
thus the encounter is impulsive if tcol ω(r) � 1 every-
where in the subhalo. For a cuspy halo profile like NFW,
the orbital frequency diverges at r = 0 so the impulse ap-
proximation necessarily breaks down at some r > 0 but
this radius might be very small compared to the scale
radius rs of the structure. Indeed, using the maximal
impact parameter defined in Eq. (27) and the mean rel-
ative speed in Eq. (32), we find that tcol ω(10−3 rs) < 1
regardless of the mass of the subhalo (we fix the con-
centration using the mass-concentration relation in [79]).
At 8 kpc, for a subhalo with infall mass 10−10 M�, we
find that tcol ω(10−3 rs) ' 1 for vr ' 20 km/s. For a
single encounter, using the distribution in Eq. (31), we
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FIG. 12. Ratio of the physical mass mt over the cosmological
virial mass m200 with respect to m200 for several configura-
tions of tidal effects and three different concentrations. Are
considered a scenario when only smooth stripping is included,
with no effects from baryons (dotted), a scenario where only
the star encounters (resp. disk shocking) are taken into ac-
count on top of the smooth stripping (dashed, resp. solid)
and a scenario where all effects are included (dash-dotted).

find that the probability for the relative speed to be less
than 20 km/s is 0.02%. We conclude that the impulse
approximation is valid for the overwhelming majority of
encounters down to radii as small as 10−3 rs.

The situation is quite different when considering the
complimentary effect of disk shocking i.e. the gravita-
tional shocking induced by the smooth potential of the
disk rather than each individual star. In that latter case,
the duration of the encounter is the disk-crossing time
tcross ∼ zd/vz where zd is the typical scale-height of the
disk and vz the subhalo crossing speed along the per-
pendicular direction. Because zd � bmax, the impulse
approximation breaks down more often in this case and
adiabatic invariance must be accounted for to get accu-
rate results [80, 81].

D. Results and comparisons with previous work

In conclusion, the energy kick induced by stars en-
counter on a total disk crossing is defined as ∆E ∼
Med(∆E) = κN δv2/2 with κ ∼ 0.7 and δv2 given by
the integral in Eq. (36) truncated from below by impos-
ing the cut-off bmin → b0(Q = 0.2). The total impact
of star encounters during several disk crossings on one
subhalo can be evaluated by replacing the value of ∆E
in Eq. (8) by the value of the median discussed above.
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Using this procedure we compared, in Fig. 10, the evo-
lution, with time, of the bound mass fraction of a subhalo
with initial radius given by the virial radius of the simula-
tion results in Ref. [56] (hereafter AZ07). As they consid-
ered a subhalo at z ∼ 26 with concentration (cvir = 2))
and virial mass mvir = 10−6 M�, to use our formalism we
roughly rescaled its size to z ∼ 0 by assuming that the
scale radius and scale density remain constants (which
should hold approximately [82]). We found a concentra-
tion c200 = 84.7, a mass m200 = 8×10−6 M� and a tidal
radius r200 = 0.42 pc. In the same figure we also show
the evolution of the bound mass fraction for a subhalo
of same virial mass but median concentration picked in
[79]. We consider that the subhalo enters the galactic
disk with an inclination cos θ = 0.5 and has a relative
velocity with the stars vr(8 kpc) = 334 km.s−1. Even if
stripping becomes less and less efficient with time in our
work, all three results are still in good agreement. More-
over, while we have derived an analytical estimate for the
number of star encounters per crossing and for the num-
ber of crossings, the authors of AZ07 used a refined model
of the Galaxy to evaluate these two quantities with better
precision. In addition, the discrepancies can be further
understood as we assume a sharp and fixed truncation
in radius (parameterized by rt) without change of the
density profile at every crossings such as it realistically
should be [55, 58].

In Fig. 11 we show the time necessary to completely
destroy a subhalo with a mass m200 (and median concen-
tration) trapped and immobile in the Galactic disk at 8
kpc of the GC. For comparison with Ref. [54] (hereafter
GG07) we also considered both NFW and Plummer den-
sity profiles for the subhalo and we assumed stars with a
relative velocity in the range vr ∼ (270± 3× 25) km.s−1.
We focus on two cases, one where the initial radius of
the subhalo is given by its virial radius at z ∼ 0 and one
where the initial radius is set from the smooth stripping.
Comparing the first scenario to GG07 we observe that
the orders of magnitudes and the general behavior of tdis

with the mass are similar. Even if it does not impact the
conclusion, let us point out, nevertheless, that the com-
parison is somewhat biased as they considered subhalos
at z ∼ 26 similarly to AZ07 and therefore there can be
a mismatch between the definition of mass and virial ra-
dius for the same substructures. Another caveat is that,
here, we make the crude approximation that the gravi-
tational potential of the subhalo does not change during
the entire time it stays within the disk, which may arti-
ficially lower the value of tdis. Eventually, we note here
that it is quicker to destroy subhalos with a NFW profile
and a virial mass m . 10−4 M� than it is for a Plummer
profile of the same mass.

In the above analysis, we considered resilient subhalos
by choosing εt = 10−2 as disruption parameter. How-
ever this choice appears not to have a strong impact
as when the number of encountered stars becomes large
(N > 104) there is a sudden transition between two dis-
tinct behaviors of the energy kick with the radius owing

to the dependence of bmin in N : from ∆E ∝ (r/rs)
2, as

plotted in Fig. 9, to ∆E ∝ cst. larger than the gravita-
tional potential. Therefore subhalos experience a rapid
transition with N between having a new tidal radius rt

close to the initial boundaries and a complete dispersal
of all their particles (even in the inner shells).

V. IMPACT OF STARS ON THE SUBHALO
POPULATION

In this section, we incorporate the effect of stars into
the SL17 model in addition to smooth stripping and disk
shocking. In a first step we describe how we compute the
combined effect of individual encounters and disk shock-
ing. Then, in a second step, we show our results for the
impact on the subhalo mass function and the total num-
ber density.

A. Combination of the different stripping effects

Let us now discuss the inclusion of the gravitational
shocking by individual stars into that framework. In the
impulsive approximation limit, the total energy kick is
the combination ∆v + ∆vd for which a PDF could be
formally derived. Because of adiabatic corrections in disk
shocking, however, this is not possible. Nevertheless one
can always write the total energy gain as

∆Etot =
1

2
(∆v + ∆vd)2 + v.(∆v + ∆vd)

= ∆E + ∆Ed + ∆v.∆vd .
(44)

In order to circumvent our ignorance of the true distri-
bution for ∆vd with adiabatic corrections we make the
assumption that ∆v.∆vd ∼ 0. This approximation is
well-justified in the case of a subhalos having a normal
incidence with respect to the disk. Indeed, in the 2D ran-
dom walk scenario, ∆v is then parallel to the disk and
∆vd is perpendicular to it. Therefore one approximates
the total energy kick as

∆Etot '
1

2

[
0.7N δv2 + |∆vd|2A1(ηd)

]
(45)

More details on the total distribution of ∆Etot are given
in App. F and support this definition. Moreover, for
efficiency, (δv)2 is evaluated assuming a typical subhalo
entering the galactic disk with an average inclination
cos θ = 1/2 and an average relative velocity with the
stars vr(R) given in Eq. (32). In the following, we
recompute the tidal radius of subhalos by replacing
the value of the kinetic energy kick in Eq. (8), that
only takes into account the smooth and disk shocking
effect, by the above definition. We then show how tidal
stripping is impacted by the single encounters with stars.
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FIG. 13. Mass functions taking into account four different stripping configurations, at different distances from the GC, R= 1,
8, 15 kpc and for two different values of the mass index α = 2.0 on the left and α = 1.9 on the right. The minimal cosmological
mass is set to mmin

200 = 10−10 M�. The red (resp. blue) curves corresponds to the resilient (resp. fragile) subhalos configuration.
The green curve is the unevolved mass function where rt = r200. Notice that at R = 1 kpc there are no solid and dashed blue
curves as disk shocking effects destroy all the population of subhalos if they are fragile.

B. Results

We consider four different configurations for the eval-
uation of the tidal effects. (i) smooth only: the tidal
radius is entirely defined by Eq. (3). (ii) smooth+stars:
on top of the smooth effect only the individual encoun-
ters with stars is included. (iii) smooth+disk: on top
of the smooth effect only the disk shocking effect is in-
cluded. (iv) smooth+stars+disk: all effects are taken into

account. In Fig. 12 we show the evolution of the final
tidal mass in terms of the original cosmological mass for
the different stripping configurations and for three con-
centrations at a distance R = 8 kpc from the GC. The
dominant effect of baryons on small subhalos with initial
mass m200 . 1 M� are the individual encounters. On the
contrary, for larger subhalos baryonic stripping is mostly
due to the disk shocking.

The total mass function for the different stripping cases
and for different input parameters of the subhalo model
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minimal cosmological mass is set to mmin

200 = 10−10 M�. The red (resp. blue) corresponds to the resilient (resp. fragile) subhalos
configuration. The green curve is the cosmological number density without tidal effects. Notice that at R = 1 kpc there is no
blue circle marker as disk shocking effect destroy all the population of subhalo if they are fragile.

are plotted in Fig. 13 for a minimal cosmological mass
mmin

200 = 10−10 M�. While baryonic effects are mild and
even negligible in the outer region of the disk, e.g. at
a distance R = 15 kpc, they have more and more im-
pact toward the GC. At R = 1 kpc the mass functions
are strongly suppressed and offset toward small masses,
especially because of stellar encounters. Indeed, in the
resilient subhalo scenario (with a disruption parameter
εr = 10−2), they reduce by 6 order or magnitude the mass
function for 10−10 < mt . 10−6 M� (in comparison to
the smooth only case) and populate the mass range much
below the minimal cosmological mass. The disk shocking
effects only produce an equivalent reduction of 4 orders
of magnitude. In the fragile case (εr = 1), disk shocking
effects disrupt all subhalos and so do stellar encounters
at low masses. At R = 8 kpc one notices a similar effect
with an almost 2 (resp. 4) order magnitude suppression
due to stellar encounters and a 1 (resp. 2) order of mag-
nitude suppression due to disk shocking at low masses
for resilient subhalos (resp. fragile). The causes for the
strength of stellar encounters in the center are two-fold:
close to the GC subhalos cross the disk more often and
the stellar density is higher, reducing the interstellar dis-
tances and the impact parameters, therefore enhancing
the kinetic energy kicks.

In Fig. 14 we show the number density of subhalo at
every position from the GC. As seen above, stellar en-
counters strongly impact the low mass range that is also

the most populated. Consequently, the effects can be im-
portant. We recover the conclusions that further than 12
kpc from the GC the baryonic effects are negligible. At 8
kpc effects are already sizeable. Although the number of
subhalos in a resilient population is not impacted, fragile
subhalos have a number density reduced by one order of
magnitude in comparison to the scenario with disk shock-
ing and smooth stripping only (as seen with the dashed
and solid curves). The difference grows toward the GC
and at R = 1 kpc fragile subhalos are all destroyed and
resilient subhalos have a population divided by 100 be-
cause of star encounters.

VI. DISCUSSION AND CONCLUSION

In this work we have refined the theoretical analysis of
dynamical effects induced on DM particles inside a sub-
halo during its encounter with a star. In particular we
have derived a new solution for the estimated velocity
kick received by particles in every radial shell of the sub-
halo. We have then studied the impact of successive stel-
lar encounters for a subhalo crossing the stellar disk. We
have given a specific attention to the cumulative energy
kick received by particles in every shells of the subhalo,
and we have performed Monte-Carlo simulations that we
have compared to our analytical estimates. Simulations
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show that a careful treatment of the impact parameter
distribution is necessary in order not to overestimate the
kinetic energy, as very close but very unlikely encounters
tend to dominate average quantities. They also evidence
that the energy kick distribution is broad. This means
to the median energy kick might not be a very reliable
estimate of the energy received by a single subhalo, how-
ever it can still be used to gauge the effect on the overall
MW subhalo population. We have computed the MW
subhalo mass function using the SL17 analytical subhalo
model and showed that stellar encounters have a sizeable
effect in the inner 10 kpc on subhalos with mass . 1 M�.
This mass selection differs from other tidal interactions
(smooth tides and disk shocking) which strip subhalos
based on their concentration. We have accounted for
theoretical uncertainties in the tidal disruption of sub-
halos. If subhalos are fragile, as found in cosmological
simulations, their number density is strongly depleted by
stars. On the other hand, if subhalos are resilient, as sug-
gested by theoretical arguments and dedicated numerical
studies [40, 64, 65], the mass function is shifted to lower
masses.

A caveat of our calculation is the assumption that the
shape of the subhalo density profile is preserved and stars
simply induce a sharp truncation at the tidal radius. In
fact we expect relaxation to modify the internal structure
after each encounter [58, 63, 83]. Nevertheless qualitative
comparisons with previous numerical studies on stellar
encounters seem to be in agreement.

We also describe stellar encounters and disk shocking
as if they were independent effects while in fact they are
two sides of the same coin. Disk shocking accounts for
the average disk potential while star shocking accounts
for the disk granularity. A more detailed picture can
be achieved through the stochastic formalism [84–88].

However, these approaches are more involved and less
straightforward to incorporate in our semi-analytical sub-
halo population model.

The effect of stars can have a substantial impact on
the prospects for (local) DM searches. For instance, the
probability that a subhalo passes through the Earth and
enhances the local density by a non-negligible amount
changes, which may be important for DM direct detec-
tion experiments [37] or even play a role for a possible
detection of the smallest remnants with space-based laser
interferometers [89]. Assuming that DM self-annihilates,
the presence of the subhalos boosts the local annihila-
tion rate [21, 26, 27, 29, 32]. Their intense stripping due
to stars should also modify the amplitude of this boost.
In addition, the stripped DM should form dark streams
[57]. A back of the envelope computation shows that,
for mmin = 10−10 M�, 103 to 105 subhalos have crossed
the Solar System and may have formed streams in the
last 10 Gyr. It is therefore highly likely that the solar
system be surrounded by a large amount of them. If de-
tectable, they would give an interesting probe of the DM
fine-grained structuring. Eventually, one could also con-
sider the heating of stars as a potential signature of the
presence of subhalos [90–92].
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[102] A. V. Macciò, A. A. Dutton, and F. C. van den Bosch,
MNRAS 391, 1940 (2008), arXiv:0805.1926.

[103] Y. P. Jing, Astrophys. J. 535, 30 (2000), astro-
ph/9901340.

[104] J. S. Bullock, A. Dekel, T. S. Kolatt, A. V. Kravtsov,
A. A. Klypin, C. Porciani, and J. R. Primack, Astro-
phys. J. 555, 240 (2001), astro-ph/0011001.

[105] T. Lacroix, M. Stref, and J. Lavalle, J. Cosmology As-
tropart. Phys. 9, 040 (2018), arXiv:1805.02403 [astro-

ph.GA].

https://doi.org/10.1098/rsta.1902.0012
https://doi.org/10.1086/146435
https://doi.org/10.1093/mnras/71.5.460
https://doi.org/10.1086/186967
https://arxiv.org/abs/astro-ph/9306004
https://doi.org/10.1086/374879
https://arxiv.org/abs/astro-ph/0302511
https://arxiv.org/abs/astro-ph/0302511
https://doi.org/10.1086/376392
https://arxiv.org/abs/astro-ph/0304382
https://arxiv.org/abs/astro-ph/0304382
https://doi.org/10.1093/mnras/stu1014
https://doi.org/10.1093/mnras/stu1014
https://arxiv.org/abs/1312.1729
https://doi.org/10.1086/117161
https://arxiv.org/abs/astro-ph/9404015
https://arxiv.org/abs/astro-ph/9404015
https://doi.org/10.1086/117162
https://arxiv.org/abs/astro-ph/9404016
https://arxiv.org/abs/astro-ph/9404016
https://doi.org/10.3847/1538-4357/aafad6
https://arxiv.org/abs/1809.07326
https://doi.org/10.1086/523686
https://arxiv.org/abs/0708.3087
https://doi.org/10.1086/144357
https://ui.adsabs.harvard.edu/abs/1942psd..book.....C
https://doi.org/10.1016/0370-1573(80)90015-0
https://doi.org/10.1093/mnras/stx2773
https://arxiv.org/abs/1710.06443
https://doi.org/10.1093/mnras/stz338
https://arxiv.org/abs/1901.11536
https://ui.adsabs.harvard.edu/abs/2004astro.ph..5266A
https://ui.adsabs.harvard.edu/abs/2004astro.ph..5266A
https://arxiv.org/abs/astro-ph/0405266
https://doi.org/10.1088/0004-637X/748/1/20
https://arxiv.org/abs/1109.6022
https://doi.org/10.1093/mnras/stu2147
https://arxiv.org/abs/1310.2243
https://ui.adsabs.harvard.edu/abs/2019arXiv191002492P
https://arxiv.org/abs/1910.02492
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://doi.org/10.1086/305262
https://doi.org/10.1086/305262
https://arxiv.org/abs/astro-ph/9710107
https://doi.org/10.1093/mnras/stw3387
https://arxiv.org/abs/1701.05933
https://doi.org/10.1086/506377
https://doi.org/10.1086/506377
https://arxiv.org/abs/astro-ph/0603250
https://doi.org/10.1093/mnras/271.3.676
https://arxiv.org/abs/astro-ph/9402069
https://doi.org/10.1046/j.1365-8711.2001.04006.x
https://doi.org/10.1046/j.1365-8711.2001.04006.x
https://arxiv.org/abs/astro-ph/9907024
https://doi.org/10.1103/PhysRevD.74.063509
https://arxiv.org/abs/astro-ph/0607319
https://arxiv.org/abs/astro-ph/0607319
https://doi.org/10.1086/338765
https://arxiv.org/abs/astro-ph/0108151
https://doi.org/10.1111/j.1365-2966.2007.11720.x
https://doi.org/10.1111/j.1365-2966.2007.11720.x
https://arxiv.org/abs/astro-ph/0608157
https://doi.org/10.1111/j.1365-2966.2008.14029.x
https://arxiv.org/abs/0805.1926
https://doi.org/10.1086/308809
https://arxiv.org/abs/astro-ph/9901340
https://arxiv.org/abs/astro-ph/9901340
https://doi.org/10.1086/321477
https://doi.org/10.1086/321477
https://arxiv.org/abs/astro-ph/0011001
https://doi.org/10.1088/1475-7516/2018/09/040
https://doi.org/10.1088/1475-7516/2018/09/040
https://arxiv.org/abs/1805.02403
https://arxiv.org/abs/1805.02403


19

Appendix A: The SL17 subhalo population model: a statistical semi-analytical model

The SL17 model [30] was motivated by the need to build a global galactic mass model including both a smooth
DM component and a subhalo population aside from baryonic components, easy to make consistent with potential
observational constraints, and in which tidal effects would be calculated from the very components of the model itself.
The main constraint that was imposed from the beginning was that the sum of the smooth DM density profile and
of the smoothed overall density profile of the subhalo component should give the global DM halo profile, i.e. the one
that can be constrained from observational data (see e.g. Ref. [60]).

In the SL17 model the mass density of each subhalo is described by its inner profile. In this study we use a standard
NFW profile if not said otherwise. We also consider a Plummer [75] profile for some applications. The mass density
at a distance r from the center of the subhalo can be parameterized, in both cases, under the form

ρ (x ≡ r/rs) = ρs x
−γρ [1 + xαρ ]

γρ−βρ
αρ , (A1)

with rs and ρs the scale radius and the scale density respectively, and x the dimensionless radius. In the NFW case,
(αρ, βρ, γρ) = (1, 3, 1) while in the Plummer case (αρ, βρ, γρ) = (2, 5, 0). Henceforth, a subhalo is characterised by
three quantities, rs, ρs as well as its distance R from the Galaxy Center (GC) – circular orbits are assumed. Con-
veniently, it is also possible to describe the profile from cosmological parameters: the virial mass and concentration.
The virial mass, denoted m∆, corresponds to the mass contained inside a radius r∆ over which the subhalo has an
average density equal to ∆ times the critical density ρcrit = 3H2

0/(8πG), with H0 = 67.4 km/s/Mpc, the Hubble
parameter [93]. This yields m∆ = (4/3)πr2

∆∆ρcrit. The concentration is defined by c∆ = r∆/rs, and there is a
one to one relationship between the couples (m∆, c∆) and (ρs, rs). In practice the value ∆ = 200 is used [94] as it
is a good approximation for the critical over-density of subhalos when they virialize, in the matter-dominated Universe.

Owing to several dynamical effects, subhalos are tidally pruned. Their physical tidal extension is not defined by
the cosmological size r200 they would have in a flat background, but by their tidal radius rt. According to results
of cosmological simulations [9, 38, 63, 66, 67, 70] we expect subhalos that are stripped too much (i.e. that have too
small a tidal radius) to be destroyed. In the model, this is implemented by the criterion

{
xt = rt/rs ≥ εt ⇒ the subhalo survives

xt = rt/rs < εt ⇒ the subhalo is disrupted
(A2)

that relies on the value of εt, treated as a fixed constant input. The lower this coefficient is, the more resilient
subhalos are to tidal stripping. Two values are considered in the following: εt = 1 in agreement with cosmological
simulation where subhalos are rather fragile, and εt = 10−2 following the semi-analytical studies of [39, 40, 64, 65]
where cuspy subhalos are shown to be instead very resilient to tides.

The SL17 model does not only describe individual sub-halos but their entire population using a joint probability
distribution function (PDF) on the virial mass, concentration and position of all subhalos. Assuming that all clumps
are independent from each other this global PDF can be factorized into Ntot one-point PDFs, with Ntot being the total
number of surviving subhalos. The value of Ntot is normalised consistently against DM only, numerical simulations
(more precisely the Via Lactea DM only results [67]). The one point PDF is given as

pt(m200, c200, R) ≡ 1

Kt
pR(R) pm(m200)

× pc(c200|m200)Θ

[
rt

rs
(m200, c200, R)− εt

] (A3)

where Kt is a normalisation parameter to have a probability of one if integrated on the entire parameter space. The
PDF for the position pR is obtained considering that the subhalo spatial distribution follows the global profile of
the total DM halo. The PDF for the mass is obtained trough cosmological mass function. Cosmological simulation
exhibit power-law mass functions ∝ m−α with a mass index α . 2 [8, 9, 67, 95, 96]. This is theoretically backed-up by
the Press-Schechter formalism and its extension [3–5, 97, 98], even if the small mass range is still weakly constrained
today. Therefore we set pm(m200) ∝ m−α200 with α ∈ [1.9, 2.0]. Besides, the virial mass must be bounded from below
by mmin

200 , here set as a free parameter of the model. Within a thermal DM particle model the minimal mass is fixed
by kinetic decoupling in the Early Universe [41–44, 99] and can go down to 10−12 M�. Eventually, the PDF for the
concentration is a log-normal [100–104], whose median, given in Ref. [79], is fitted against numerical simulations.
The Heaviside function Θ, which encodes the subhalo disruption, leads to the entanglement of the latter three PDFs
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through the dependency of rt on m200, c200 and R. The full PDF pt is therefore a complicated, non-separable function.

With this formalism it is possible to describe more precisely the decomposition of the density of the total DM halo
ρtot, as the sum

ρtot(R) = ρsm(R) +

∫
dmtmt

dnsub

dmt
(R) (A4)

where ρsm the density of DM in the smooth component of the halo and the integral corresponds to the contribution
of subhalos. The function dnsub/dmt is the local evolved (i.e. after stripping) subhalo mass function. It is related to
the subhalo PDF through

dnsub

dmt
(R) =Ntot

∫
dc200 dm200 pt(m200, c200, R)

× δD [mt −m [rt(m200, c200, R)]] ,

(A5)

where m(rt) is the mass of the subhalo within the tidal radius rt. Note that mt is the tidal mass of the subhalo i.e. its
physical mass as opposed to its cosmological virial mass m200. Tidal effects come into play through pt (which encodes
whether subhalos are destroyed or not) and directly through the tidal radius rt. The next section is dedicated to
describe the evaluation of rt at different radii, masses and concentrations as implemented in SL17.

Appendix B: Velocity dispersion

To compute the velocity dispersion σ, we start from the Jeans equation for a spherical system

1

ρ

∂(ρ
〈
v2
r

〉
)

∂r
+ 2

β

r

〈
v2
r

〉
= −dΦ

dr
, where Φ(r) ≡ −

∫ rt

r

Gm(r′)
r′2

dr′ (B1)

is the gravitational potential with rt the tidal radius of the subhalo, and

β(r) ≡ 1−
〈
v2
θ

〉
+
〈
v2
φ

〉

2 〈v2
r〉

(B2)

is the anisotropy parameter. Here isotropy is assumed, therefore we have β = 0 and σ2
sub =

〈
v2
r

〉
thus

σ2
sub(r) =

G

ρ

∫ rt

r

ρ(r′)m(r′)
r′2

dr′ . (B3)

The same approach is used to compute the velocity distribution of subhalos in the dark halo of the Galaxy. One
major difference is that baryons now contribute to the potential Φ and the mass of the system is

mtot(R) = mDM(R) +

∫

|r′|<R
ρb(r

′) d3r′ . (B4)

where ρb is the baryonic mass density, which is axisymmetric rather than spherical. The DM velocity variance is then

σ2(R) =
G

ρ

∫ Rmax

R

ρ(R′)mtot(R
′)

R′2
dR′ , (B5)

where the radial extension of the dark halo is fixed to Rmax = 500 kpc.

Appendix C: The stellar disks

We use the mass model of McMillan [60]where two stellar disks with density

ρd(R, z) =
Σ0

2 zd
exp

(
− R

Rd
− |z|
zd

)
(C1)

are fitted against a number of observational constraints. The best-fit parameters are shown in Tab. I
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Σ0 Rd zd

[108 M�/kpc2] [kpc] [kpc]
thin 8.96 2.5 0.3
thick 1.83 3.02 0.9

TABLE I. Stellar disk parameters.
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]
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b = 10−4 pc

b = 10−2 pc

b = 100 pc

R = 8 kpc

cθ = b/Rd

FIG. 15. Number density of stars encountered with an impact parameter b divided by b (to ease the comparison between the
approximation and the full expression) vs the cosine of the angle between the subhalo trajectory and the normal to the galactic
plane θ. The lowest cos θ is the closer the subhalo passes to the stellar disk. The approximate computation is given by the
black solid line and is independent of b while the full expression gives the colored solid lined for different values of b. There is
a change in behaviour around cos θ ∼ b/Rd where Rd ∼ 3 kpc is the approximate typical length scale of the stellar disk.

Appendix D: Distribution of impact parameters

Let us define the galactic frame with origin the center of the galaxy (G, êx, êy, êz) where the z-axis is perpendicular
to the galactic plane (in the following, the galactic plane refers the middle of the stellar disk) and êx and êy are
arbitrary orthonormal vectors. We assume that during the crossing the subhalo keeps a rectilinear trajectory with a
velocity vc that intercepts the galactic plane at one point, at position R at time t = 0 in the galactic frame. Consider
now a star tagged by the letter i that has a position Ri at t = 0 in the same frame. We assume that on the interval
of time the subhalo crosses the disk, this star keeps a linear trajectory with a velocity vi such that vi.Ri ∼ 0. For
simplicity we also introduce Si = Ri−R. Then, at an arbitrary time t the distance between the star and the subhalo
is given by

di(t) = |Si − vr,it| (D1)

where we introduce the relative velocity between the star and the subhalo vr,i = vc − vi. The impact parameter for
this specific star is defined as bi ≡ min{di(t)}, it yields

bi =
|Si × vr,i|
|vr,i|

. (D2)

Now we want to know what is the probability for this star to be at position Ri and have a mass mi. We call the
associated probability distribution quantity p(m?,R?)(mi,Ri) = pm?(mi |Ri)pR?

(Ri). In our model we make the usual
approximation that pm?(mi |Ri) = pm?(mi) so that it does not depend on the position. Moreover the probability
distribution of positions is given by the mass density as

pRi(Ri) = ρ?(Ri)

[∫
d3R ρ?(R)

]−1

=
ρ?(Ri)

mtot
?

(D3)
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where mtot
? is the total mass of stars and ρ?(Ri) their mass density at position Ri. All stars being independent the

joint PDF for their mass and position is

p(m?,R?) ({mi}i, {Ri}i) =

N?∏

i=1

[
pm?(mi)pR?

(Ri)

]
(D4)

with N? = mtot
? /m? the total number of stars. With all these ingredients it is possible to evaluate the number density

of stars that are encountered with impact parameter b and mass M?, knowing the trajectory of the subhalo. It is

d2N
dbdm?

=

∫ N?∏

i=1

dmid
3Ri pm?(mi)pR?(Ri)

[
N?∑

i=1

δD(bi − b)δD(mi −m?)

]
. (D5)

Massaging this expression, it is straightforward to prove that the mass probability distribution can be factored out.
This leaves us with the number of density of stars with a given impact parameter that can be written under the
compact form

dN
db

=
1

m?

∫
d3R? ρ?(R?)δD(b? − b) . (D6)

Form the expression of the impact parameter it is convenient to make the change of variables in this integral R? →
S? = R? −R and define the Dirac distribution on the squared value of the impact parameter. Eventually, in order
to simplify the computation we will assume that all stars lay within an infinitely thin axi-symmetric disk of surface
density Σ? and the integration over the entire 3D space reduces to the integration on the Galactic plane. We therefore
write

dN
db

=
2b

m?

∫
d2S? Σ? [R?(S?)] δD(b2? − b2) . (D7)

Now in order to continue the computation we can parameterize the problem, without loss of generality, by choosing
the convenient orientation of the basis (êx, êy) such that R = (R, 0, 0). Moreover we define the relative velocity

direction as vr,i/|vr,i| = (sin θ cosϕ, sin θ sinϕ, cos θ) and S? = (S cosφ, S sinφ, 0) such that d2S? = sdsdφ. Then, the
expression of the impact parameter becomes

b2? = s2
[
1− sin2 θ cos2(φ− ϕ)

]
. (D8)

The integration over the Dirac delta distribution in Eq. (D6) after the change of variable can then be done analytically
by solving the delta for the angle φ. It gives four distinct solutions in [ϕ−π, ϕ+π] when Scθ < b < S. These solutions
can be written under the form

φj = ϕ+ ηj arccos

[
χj

sin θ

√
1− b2

s2

]
, (D9)

where we have introduced χj = (+1,+1,−1,−1) and ηj = (+1,−1,+1,−1). The arccos function image being in
the range [0, π] only, the χj factor parameterizes the two solutions in the interval [ϕ,ϕ + π] while the ηj gives the
two symmetric solutions in the interval [ϕ − π, ϕ]. Henceforth, in order to perform the integration over the Dirac
distribution it is also necessary to provide the absolute value for the derivative of b2? with the variable φ evaluated in
the four solution points. Using the properties of these solutions, this takes a simple form

∣∣∣∣
db2?
dφ

∣∣∣∣
φ=φj

= 2s2 sin2 θ| cos(φj − ϕ)|| sin(φj − ϕ)| = 2
√
s2 − b2

√
b2 − s2 cos2 θ . (D10)

Then, we need to relate the value of R? to s in the four solution points. We denote Rj these four quantities and
introduce a new variable y = s2/b2. Using the simple relation R? = S? + R – that is the definition of S? – it is
straightforward to show that R2

j = R2 + b2y + 2hj(y, cθ, ϕ) with the shorter notation cθ = cos θ and the functions hj
being

hj(y, cθ, ϕ) ≡ χjRb√
1− c2θ

[
cosϕ

√
y − 1− ηj

χj
sinϕ

√
1− yc2θ

]
(D11)

In the end, the number density of stars with impact parameter b can be written

dN
db

=
b

2

∫ 1

c2
θ

1

dy√
1− yc2θ

√
y − 1

4∑

j=1

Σ?(Rj)

m?
(D12)
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and the computation is complete. Eventually we also need relate the angles ϕ and θ to physical quantities (i.e. the
angle marking the direction of the stars and the subhalo). In practice this is difficult in a general case. We therefore
consider that stars are motionless during all subhalo crossing so that vr,i = vc.

Formally the functions hj can be rewritten in a more convenient way as

hj = χjRb
√
y cos


ϕ+

ηj
χj

arctan



√

1− yc2θ
y − 1




 (D13)

Under this form it becomes easier to see that the functions hj and the associated radii Rj are bounded

|hj | ≤ Rb
√
y and |R− b√y| < Rj < R+ b

√
y . (D14)

In particular, since y < 1/c2θ, this previous inequality implies that |Rj −R| < b/cθ. If we consider that the variations
of Σ? on R are of typical length Rd it yields that Σ?(Rj) = Σ?(R) as long as cθ � b/Rd. Therefore we can simply
rewrite the density of encountered stars as

dN
db

= 2b
Σ?(R)

m?

∫ 1

c2
θ

1

dy√
1− yc2θ

√
y − 1

=
Σ?(R)

m?

2πbdb

cθ
. (D15)

Appendix E: Energy and velocity distributions in stellar encounters

In this appendix we detail the PDF of several functions of interest and we prove several properties claimed in the
main text. We start by introducing the PDF of final velocity in a given shell and give an analytical derivation. With
the results we prove the relation between the median and the average kinetic energy kick of Eq. (40) on general
grounds. In a third part, we illustrate this formal derivation with the example of the initial velocity following a
Maxwell-Boltzmann distribution. Eventually we conclude by studying the impact of stellar encounters on the density
profile using a simple criterion in order to justify the use of the median as the typical kinetic energy kick felts by all
particles in a given shell during one crossing of the disk.

1. Probability distribution for the final velocity

We suppose that we know the PDF, pv(v | r) ,for the initial velocity v of particles at position r in a subhalo and the
probability for particles in that shell to receive a velocity kick ∆v then the probability distribution of final velocity
vf at position r can be written under the form

pvf (vf | r) =

∫
d3v pv(v | r)

∫
dd∆v p∆v(∆v | r)δD [vf − |v + ∆v|] . (E1)

We leave room here for the possibility of ∆v being a 3D or 2D random vector with the dimension parameter d. Let
us assume an isotropic initial velocity distribution so that pv(v | r) = pv(v | r) with v = |v|. Then, it is possible to
integrate first on the angular distribution of v in order to remove unnecessary degrees of freedom and get rid of the
Dirac delta term. It yields

pvf (vf | r) =

∫
d3v pv(v | r)pvf (vf | v, r) (E2)

with the definition of the PDF of vf knowing v and r being

pvf (vf | v, r) =
vf
v

∫
dd∆v

p∆v(∆v | r)
∆v

Θ [∆v − |v + vf |] Θ [(v + vf )−∆v] (E3)

and where we introduced the velocity kick norm ∆v ≡ |∆v|. For an isotropic distribution of ∆v such that
p∆v(∆v | r) = p∆v(∆v | r) it further simplifies to

pvf (vf | v, r) =
vf
v

πd/2

Γ(d/2)

∫ |v+vf |

|v−vf |
d∆v (∆v)d−2p∆v(∆v | r) . (E4)
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FIG. 16. The inverse CCDF of kinetic energy knowing the velocity at three values q = 0.25, q = 0.5 and q = 0.75 with respect
to the initial velocity v

Let us now assume that ∆v follows a Gaussian distribution according to the result of the central limit theorem. Then
the distribution on ∆v takes a simple form

p∆v(∆v | r) =
π−d/2

ud
e−

(∆v)2

u2 with u = u(r) =

√
2N (δv)2

d
(E5)

which yields, with the change of variable ∆v → u
√
t in the second line, and the introduction of the incomplete Gamma

function in the third line,

pvf (vf | v, r) =
vf
v

1

Γ(d/2)

∫ |v+vf |

|v−vf |
d∆v

(∆v)d−2

ud
e−

(∆v)2

u2 (E6)

=
vf
uv

1

2Γ(d/2)

∫ (
v+vf
u

)2

(
v−vf
u

)2
dt t

d−3
2 e−t (E7)

=
vf
uv

1

2Γ(d/2)

[
Γ

(
d− 1

2
,

(
v − vf
u

)2
)
− Γ

(
d− 1

2
,

(
v + vf
u

)2
)]

. (E8)

In the end, here we have found a generic expression for the PDF of vf for any initial velocity distribution. Another
interesting quantity is the associated CDF of vf that is defined as

Fvf (< vf | r) ≡
∫ vf

0

pvf (v′f | r) dv′f =

∫
d3v pv(v | r)

{
Fvf (< vf | v, r) ≡

∫ vf

0

pvf (v′f | v, r)dv′f
}
. (E9)

The CDF knowing v and r can therefore be computed with the expression of the PDF derived above. We will see the
utility of this expression in the following paragraphs and especially when discussing the density profile modifications
due to the encounter. However let us first inspect the properties of the median energy kick in light of this derivation.

2. Properties of the median energy kick

In the main text we have introduced the median value of the energy kick received by particles in a subhalo during
the encounter with stars when it crosses the stellar disk. Moreover we have based our computation of the tidal radius
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on the fact that the typical energy received in a shell is defined as the median value that can be approximated by the
average value modulated by a coefficient between 0.5 and 0.7 (in the case of a 2D random walk in the velocity space).
We prove this property here and show that it is independent of the initial velocity distribution. Similarly to the CDF
for vf it is possible to introduce a related CDF for the kinetic energy kick ∆E as follows

F∆E(< ∆E | r) =

∫
d3v pv(v | r)Fvf (<

√
v2 + 2∆E | v, r) . (E10)

Henceforth we can define a median value for ∆E knowing v and r as Med(∆E | v, r). In Fig. 16 we show that value

of ∆̂E(q, v) that is given by the implicit equation

Fvf

(
<

√
v2 + 2∆̂E(q, v) | v, r

)
= 1− q, (E11)

for three different values of q. In particular, the median Med(∆E | v, r) = ∆̂E(0.5, v) is bounded by the asymptotes
in v = 0 and v →∞. Series expansions in these two regime then show that the value of the boundaries are such that

d− 1

d
<

Med(∆E | v, r)
∆E

< x with x solution of
Γ(d/2, xd/2)

Γ(d/2)
=

1

2
. (E12)

In practice for d = 2, it yields x = ln(2) and for d = 3 it yields x = 0.789. Eventually, even though the total
median value Med(∆E) cannot be easily computed from Med(∆E | v, r), the properties of the boundaries have to
be conserved. Therefore we have shown that whatever the initial velocity distribution of velocity the median kinetic
energy kick is always equivalent to the average up to an O(1) pre-factor.

3. The example of a Maxwellian initial velocity

In order to illustrate the theoretical development above and to connect with the main text we consider now that
the PDF of the initial velocity is a Maxwell-Boltzmann distribution such that

pv(v | r) =
1

(2πσ2
sub(r))3/2

e
− v2

2σ2
sub

(r) . (E13)

In order to compute the median of ∆E we can now compute the exact PDF and CDF. More precisely, similarly than
for the final velocity in Eq. (E8), the PDF for ∆E is given by

p∆E(∆E | r) =

∫
d3v pv(v | r)

∫
dd∆v p∆v(∆v | r)δD

[
∆E − (∆v)2

2
+ v.∆v

]
(E14)

=

∫
dd∆v p∆v(∆v | r)

2π

∆v

∫
|2∆E−(∆v)2|

2∆v

dv pv(v | r) (E15)

=

∫
dd∆v p∆v(∆v | r)

1√
2πσ2

sub(∆v)2
exp




(
∆E − (∆v)2

2

)2

2σ2
sub|∆v|2


 (E16)

Note that here we integrate over v before integrating over ∆v for simplicity. According to the dimensionality of the
random walk it yields

p∆E (∆E | r) =





exp

(
∆E

2σ2
sub

− |∆E|
2σ2

sub

√
1+s2

s

)
4σ2

subs
√

1+s2
if d = 2

|∆E|e
∆E

2σ2
sub

4πσ4
subs

2
√

1+s2
K1

[
|∆E|
2σ2

sub

√
1+s2

s

]
if d = 3

(E17)

where s2 ≡ u2/(8σ2
sub) = N δv2/(4dσ2

sub) = ∆E/(2dσ2
sub) and K1 is the modified Bessel function of the second kind

of order 1. Now we focus on the d = 2 case and write down the CDF as

F (< ∆E | r) =





1− 1 + ξ

2ξ
e−

∆E
2σ2 (ξ−1) if ∆E ≥ 0

ξ − 1

2ξ
e

∆E
2σ2 (1+ξ) else.

(E18)



26

with ξ =
√

1 + s2/s. The complementary CDF, i.e. CCDF, introduced in the main text is denoted F (> ∆E) ≡ 1−F (<
∆E). Eventually the energy ∆E(q) is defined implicitly through the CCDF as the solution of F (> ∆E(q)) = q.
Therefore according to the value of q the energy ∆E(q) can be written

∆E(q)

2σ2
=





1

1− ξ ln

(
2qξ

1 + ξ

)
if q < 1+ξ

2ξ

1

1 + ξ
ln

(
2(1− q)ξ
ξ − 1

)
else .

(E19)

As the average kinetic energy kick is such that ∆E/(2σ2
sub) = 2s2 = 2(ξ2 − 1), when q ≤ 0.5, it yields

Med(∆E)

∆E
=
ξ + 1

2
ln

(
1 + ξ

2qξ

)
≥ ξ(1− 2q) + 1

2
≥ 1

2
(E20)

with Med(∆E) = ∆E(0.5) and where we used the inequality ln(1/x) ≥ 1 − x. Eventually, when q 6= 0.5 the ratio
diverges as ξ →∞ (corresponding to s→ 0). When q = 0.5 the ratio is a decreasing function of ξ and

Med(∆E)

∆E
≤ lim
ξ→1

Med(∆E)

∆E
= ln(2) . (E21)

which proves the result of Eq. (E12).

4. Impact of stellar encounters on the phase space distribution function and on the density profile

In this last part we develop a method to evaluate the new phase space distribution function (PSDF) after one
crossing of the disk assuming that the system is initially isotropic and that isotropy is conserved. If we know the
initial PSDF f(v, r), then trading pv(v | r) for f in Eq. (E2) allows to define

f̃(vf , r) =
1

4πv2
f

∫
d3v f(v, r)pvf (vf | v, r) . (E22)

We can determine a new profile right after the disk crossing (before any relaxation effect that can drastically change
the profile afterward) from the initial one by removing all particles with a final velocity higher than the escape velocity.

This amounts to integrate f̃ on vf between 0 and the escape velocity

ves(r) =
√

2|Φ(r)| (E23)

where Φ(r) is calculated with the initial profile before any possible reorganisation/relaxation3:

ρ̃(r) =

∫

vf<ves(r)

d3vf f̃(vf , r) =

∫
d3v f(v, r)Fvf (ves(r) | v, r) . (E25)

The next step is to evaluate the initial PSDF f . The common method when isotropy of the system is assumed is to
use the Eddington formalism. However, this formalism shows some issues when the initial density profile is truncated
at a finite radius. Finding a fully consistent PDF for a NFW profile with a sharp truncation is non trivial [105]. In
practice one introduces the inverse gravitational potential Ψ = |Φ| and the inverse energy E = Ψ − v2/2. For an
isotropic system the PSDF is only dependent on E and the Eddington formalism provides

f(E) =
1√
8π2

{
1√
E

dρ

dΨ

∣∣∣∣
Ψ=0

+

∫ E

0

dΨ√
E −Ψ

d2ρ

dΨ2

}
(E26)

with the relation between Ψ and ρ given by Poisson’s equation: ∆Ψ = −4πGρ. When Ψ = 0 at finite radius the
derivative of ρ with respect to Ψ does not vanish and the first term ∝ 1/

√
E is divergent and non physical. In order

to keep things simple in the following we naively remove this term and compute the associated profile as

ρ(r) = 4π
√

2

∫ Ψ(r)

0

{
F (E) ≡

∫ E

0

dΨ′√
E −Ψ′

d2ρ

dΨ′2

}
√

Ψ(r)− EdE . (E27)

3Note that this approach encompasses a similar method introduced in Ref. [51] and in which case it is possible to properly define a
given velocity kick δv and vf = v + δv. One then recover the same expression by setting

Fvf (ves(r) | v, r) = Θ [ves(r)− (v + δv)] (E24)
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Two major caveats can be pointed out here. First the reconstructed density is defined up to a constant that we
consider to be 0 here. Moreover when modifying the PSDF it modifies the profile and one should also solve for a new
gravitational potential in Poisson’s equation. Therefore the initial potential is no longer an NFW profile but goes to 0
at the truncation radius while the impact of stars is evaluated with an exact NFW. Nevertheless, the PSDF in terms
of velocity can be evaluated as

f(v, r) = F

(
E =

{
Ψ− v2

2

})
. (E28)

In the following, in order to parameterize our uncertainty due to the previously mentioned caveats, we introduce two
other simple PSDF. First we consider the Maxwell-Boltzmann distribution Eq. (E13) used in the main text and we
simply set

f(v, r) =
ρ(r)

(2πσ2
sub(r))3/2

e
− v2

2σ2
sub

(r) . (E29)

This distribution is realistic but its main downside is that the velocity of particles can be higher than the escape
velocity especially in the outskirts of the structure where the velocity dispersion given by the Jean’s equation tends
to the gravitational potential. Consequently, close to the truncation radius, the PSDF is not correctly normalised and
under-evaluate the density. The second option we investigate is to set a cut-off in the velocity-space and renormalize

f(v, r) =
ρ(r)

K(r)

[
e
− v2

2σ2
sub

(r) − e−
v2
es(r)

2σ2
sub

(r)

]
(E30)

where we set the normalisation factor K(r) such that
∫

d3vf(v, r) = ρ(r) (E31)

is ensured. Nevertheless, the main issue of this distribution is that the velocity dispersion is no longer σsub (the real
velocity dispersion being lower). Unfortunately trading σsub → σ 6= σsub and trying to recover the correct velocity
dispersion does not work either in the outskirts of the halo: no good values of σ can be found. Nonetheless, let us
point out that the latter two configuration give a theoretical uncertainty in the outskirts.

In the left panel of Fig. 17 we represent the evolution of the PSDF with respect to the velocity at a fixed position
in a typical subhalo after one disk crossing. We observe, as expected, that the stellar encounters naturally shift the
distributions to higher values of velocity. In the right panel we show the corresponding new profile density in the
top part and the comparison to the initial profile at the bottom for the different initial PSDF introduced above.
We plotted the result for a subhalo crossing the disk at three different distances from the GC. We can remark that
even in the most conservative case of the initial truncated Maxwell Boltzmann distribution of Eq. (E31) the density
decreases toward the outskirts. At R =8 kpc and R =4.5 kpc the vertical dash-dotted lines represent the tidal radius
obtains from the SL17 recipe using a typical kinetic energy kick equal to the median. In both cases they correspond to
positions where the new densities are already below 50% of the initial one. At R =1 kpc the tidal radius is evaluated
to be 0 as a sizeable part of the central particles are ejected (the blue curves being below the 50% threshold in the
bottom panel). In order to determine the true final profile one also should integrate the effect of relaxation after the
shock. Nevertheless, this simple analysis is enough to justify the SL17 recipe and the use of the median as a typical
energy kick and to compare it to more realistic effects on the density profile.

Appendix F: Probability distributions of the total energy kick (stars + disk shocking)

As mentioned in the main text we define a total energy kick as ∆Etot = ∆E + ∆Ed where ∆Ed is the energy kick
due to the disk shocking and ∆E is the energy kick due to the encounters with stars. In the following we assume that
∆E is distributed along as in Eq. (E17) in the d = 2 case and ∆Ed is distributed along a Gaussian according to

p∆Ed
(∆Ed) =

1√
2πσ2

sub(∆vd)2A2(η)
e
−

(
∆Ed−A1(η)

(∆vd)2

2

)2

2σ2
sub

(∆vd)2A2(η) (F1)

where ∆vd is given in Eq. (4) and the adiabatic correction A1 is introduced in Eq. (6). We also introduced a new
adiabatic corrective factor: A2(η) for the dispersion (according to [72]). In the following we also use the parameter
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FIG. 17. Left panel. Final PSDF (in red) in terms of the velocity at a given radius r inside a subhalo of mass m200 = 8×10−6

M� with median concentration that crosses the disk at 8 kpc from the GC for three different initial PSDF (in blue). The value
of r is chosen as 75% of the tidal radius fixed by the virial radius r200 here. Eddington is given by Eq. (E28), MB by Eq. (E29)
and MB truncated by Eq. (E31). The normalisation was chosen such that the integral between v = 0 and v = ves of these
curve should be 1 to recover the correct value of the density profile at position r. The only correctly normalised distribution
is MB truncated. The MB simple PSDF is normalised on the range v ∈ [0,∞[ and the Eddington PSDF is not normalised at
all. The later two therefore under-predict the value of the density. Right top panel. The initial profile in cyan and the new
profiles computed with the different initial PSDF for a NFW subhalo crossing the disk at three distances from the GC. Right
bottom panel. Ratio of the new profile over the initial profile. The dash-dotted lines correspond to the tidal radius evaluated
in the SL17 recipe by when choosing a typical kinetic energy kick of every shell at the median value.

sd ≡ (∆vd)2/(4σ2
sub), similarly to s = ∆E/(2dσ2

sub) introduced above. Then, it is possible to give a PDF for ∆Etot.
In order to do so we further introduce two variables

ν± ≡
1

2

(√
1 + s2

s
± 1

)√
2A2s2

d (F2)

and we define a pseudo centred reduced variable corresponding to ∆Etot of the form

ε ≡ 1√
2A2s2

d

(
∆Etot

2σ2
sub

− s2
dA1

)
(F3)

in order to simplify the expressions. The main goal of this analysis is to quantify the asymmetry of the PDF around
the average value in order to evaluate whether considering an average value for ε is relevant and if not what should
be the better choice. Therefore using an affine shift to define this new variable we do not lose in generality in that
sense. With these two definitions we can evaluate a PDF for ε under the form

pε(ε | ν−, ν+) =
ν+ν−
ν+ + ν−

e−2εν−+ν2
−erfc(ν− − ε) +

ν+ν−
ν+ + ν−

e2εν++ν2
+erfc(ν+ + ε) . (F4)

The average value of ε can be rewritten ε = (ν+− ν−)/(2ν+ν−). Moreover from this PDF we can also derive a CCDF
for ε. It yields the following expression

F ε(ε | ν−, ν+) = − ν+ν−
ν+ + ν−

e2εν++ν2
+

2ν+
erfc(ν+ + ε) +

ν+ν−
ν+ + ν−

e−2εν−+ν2
−

2ν−
erfc(ν− − ε) +

1

2
erfc(ε) . (F5)

The main advantage of this parameterization is to be only depends on two parameters ν+ and ν− and therefore to be
easy to compute numerically. Moreover it can be used to show that the CCDF evaluated at ε = ε satisfies

1

e
∼ 0.368 < F ε(ε | ν+, ν−) <

1

2
. (F6)
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FIG. 18. ∆Etot(q = 0.5)/∆Etot vs the parameters s and sd under the assumption that A2 = A2 for simplicity. The black
curves represent contours of constant ∆Etot: ∆Etot = 0.2σ2 (dash-dotted), ∆Etot = 2σ2 (solid), ∆Etot = 20σ2 (dashed).

Considering the average value is a good way to evaluate that the maximal energy gain for a fraction of at least 37% of
the particle. This is understandable as we had, Med(∆Etot) ≤ ∆E in the case without disk shocking and because the
addition of ∆Ed, which has a symmetric distribution, do not further un-symmetrise the PDF for ∆Etot. Therefore
this justify entirely that we can evaluate the total energy as roughly being the sum of the averages. In Fig. 18
we represent Med(∆E)/∆Etot vs s and sd under the assumption A1(η) = A2(η) for simplicity. When sd � s the
distribution is symmetrised again with respect to the average and the ratio is close to 1. When s� sd the symmetry
is maximally broken and that yields a ratio of ∼ 0.7 as discussed in the scenario where only stellar encounters impact
on the subhalos.
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