
HAL Id: hal-03539628
https://hal.science/hal-03539628

Submitted on 21 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Mean field analysis of an incentive algorithm for a closed
stochastic network

Bianca Marin Moreno, Christine Fricker, Hanene Mohamed, Amaury
Philippe, Martin Trepanier

To cite this version:
Bianca Marin Moreno, Christine Fricker, Hanene Mohamed, Amaury Philippe, Martin Trepanier.
Mean field analysis of an incentive algorithm for a closed stochastic network. AofA 2022 - 33rd
International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis
of Algorithms, Jun 2022, Philadelphia, PA, United States. pp.13:1–13:17. �hal-03539628�

https://hal.science/hal-03539628
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


MEAN FIELD ANALYSIS OF AN INCENTIVE ALGORITHM FOR A

CLOSED STOCHASTIC NETWORK

BIANCA MARIN MORENO, CHRISTINE FRICKER, HANENE MOHAMED, AMAURY PHILIPPE,

AND MARTIN TREPANIER

Abstract. The paper deals with a load-balancing algorithm for a closed stochastic network

with two zones with different demands. The algorithm is motivated by an incentive algorithm

for redistribution of cars in a large-scale car-sharing system. The service area is divided into
two zones. When cars stay too much long in the low-demand zone, users are encouraged to

pick up them and return them in the high-demand zone. The zones are divided in cells called

stations. The cars are the network customers. The mean-field limit solution of an ODE gives
the large scale distribution of the station state in both clusters for this incentive policy in

a discrete Markovian framework. An equilibrium point of this ODE is characterized via the

invariant measure of a random walk in the quarter-plane. The proportion of empty and
saturated stations measures how the system is balanced. Numerical experiments illustrate

the impact of the incentive policy. Our study shows that the incentive policy helps when

the high-demand zone observes a lack of cars but a saturation must be prevented especially
when the high-demand zone is small.

Keywords. Large scale analysis, mean-field, car-sharing, incentive algorithm, stochastic

network, cluster, load balancing.

Motivation. Car-sharing, a practice that is gaining ground in urban areas, comes to meet
ecological, economic and practical imperatives. For a decade it has been becoming an alternative
mode of transportation. The principle is that a given number of vehicles made available to users
at stations or in public space in a given geographical area to make trips. The user picks up a
vehicle if available, makes his trip and then drops it off at his destination.

For the operator, managing such systems is far from simple. The randomness due to the
user arrivals as well as to the trips generates an imbalance in the system: Some areas are
more or less served by vehicles throughout the day, depending on whether they are residential
areas, on hill or in the city center for example. Thus, the users may find themselves without
an available vehicle, which alters the efficiency of the system. Rebalancing the network by
better distributing the vehicles, in other words, bringing them back where it is needed, is a
major issue for operators. The usual techniques are either active, such as using trucks to move
bikes or drivers for cars, or passive, such as incitative policies that encourage users to move
vehicles themselves on their trips. We can cite the example of Velib+ which offered extra
time for returning bikes in uphill stations of the Parisian bike-sharing system or the bikes
Angel’s Rewards program developed in NYC allowing to earn free day passes and membership
extensions.

Gift incentive policy. This paper deals with an incentive policy implemented by Communauto
on its free floating car-sharing system in Montreal. In the geographical area, a small zone is
identified as a high-demand zone by the operator. Moreover, some cars remain stationary for
too long in the rest of the service area with low-demand called normal zone while users cannot
find available cars in the high-demand zone. In order to bring back these stagnant cars from the
normal zone to the high-demand zone, Communauto designates them as gifts on its application
and offers 30 free minutes on the trip if the user returns the gift to the high-demand zone. This
policy is called here gift policy.
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Aim of the paper. The aim is to study the impact of the incentive policy implementing a trip
discount to move some cars to a high-demand area. For that, a probabilistic model is proposed
for such a system as a large closed stochastic network of interacting particles which are cars
and gifts. The service area is divided into cells, called here stations, which are nodes of the
network, plus extra-nodes containing moving cars and gifts.

Results. We investigate in a Markovian framework the steady state of these stations. Al-
though it exists an invariant measure for this irreducible Markov process on a finite state space
for a fixed number of stations, it remains untractable. The idea is to deal with the approxi-
mation as the number of stations and cars get large together, called mean-field limit. Indeed,
the states of the stations are asymptotically independent and their common distribution is
given as a solution of an ODE. See Proposition 2.1. The equilibrium point of the ODE gives
the long-time limit. The special case of a model without incentive policy corresponds to the
two-cluster model studied in [?] where the equilibrium point is unique and well determined.
Here is a practical application of this framework. For the gift policy, Proposition 2.2 gives a
characterization of the equilibrium point as a function of the invariant measure of a random
walk in the quarter-plane. It is a first step to address the problem of existence and uniqueness
of the equilibrium point.

Performance. Our performance criterion is to minimize the proportion of empty or saturated
stations, called for short problematic, in order to maximize the efficiency of the system. Since
no closed-form solution for the previous invariant measure is derived, we perform a numerical
solution of a multidimensional equation for the system with incentive policy. We compare it
with the analytical solution of the model without incentives. We study the impact of the policy
in the case where everyone follows incentives. This impact is significant when the high-demand
zone lacks cars. The risk is to overload it, especially if it is small.

1. The model

1.1. Model description. In this following description and in the whole paper, a car is always a
normal car and not a gift. We propose a simplified stochastic two-cluster model for car-sharing
when including the gift policy. The principle of the model is the following.

• A user arrives in a station of cluster i with rate λi, where i ∈ {1, 2}. As the rate of
user arrivals is larger in cluster 1 than cluster 2, λ1 > λ2.

• If the user arrives at a station in cluster 1 where there is an available car, the user picks
it up to a trip. Otherwise he/she leaves the system.

• Every car parked in cluster 2 becomes a gift after a random time with mean 1/δ.
• When a user arrives in a station of cluster 2, if there is an available gift and an available

car in this station, he/she picks up a gift with probability p, and a car with probability
1− p. If there is just one of the resources (gift or car), the user picks it up. Otherwise
he/she leaves the system.

• When a car trip ends (at rate µ), the user chooses cluster i with probability ci, then
he/she chooses a station at random in this cluster to park the car.

• When a gift trip ends (at rate µc), the user returns the gift car to any station in cluster
i with probability qi. The gift parked appears then as a car on the app.

• A station in cluster i has capacity Ki. If the station chosen is full, the user makes
another trip until finding a station with an available parking space.

In our model, the inter-arrival times of users, trip times and times to become a gift are all
independent with exponential distribution. See Figure 1 for an illustration of the model.

1.2. Notations. Let us summarize the notations. For all the following, i ∈ {1, 2} is the cluster
type.
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Figure 1. Illustration of the model with gifts.

• Ni is the number of stations in cluster i.
• N =

∑
iNi is the total number of stations.

• αi = limN→+∞Ni/N is the limiting proportion of stations in cluster i.
• Ki is the capacity of a station in cluster i.
• M is the total number of cars.
• s = limN→+∞M/N is the limiting mean number of cars per station, called fleet size

parameter.
• λi is the rate of user arrivals at a station in cluster i.
• 1/µ is the mean trip time for a normal car.
• 1/µc is the mean trip time for a gift.
• δ is the rate at which a car in a station of cluster 2 becomes a gift.
• p is the probability that a user takes a gift when cars and gifts are both available.
• qi is the probability that a user returns the gift in cluster i.
• ci is the probability that a user returns his normal car in cluster i.

1.3. Queueing formulation. The system can be described as a closed stochastic network.
The nodes of the network are a set of N = N1 + N2 one-server queues of finite capacity (the
stations), divided in two clusters, cluster 1 (zone with high demand) with N1 stations of capacity
K1, cluster 2 (normal zone) with N2 stations of capacity K2, plus two infinite-server queues,
i.e. the two nodes containing respectively cars and gifts making a trip. The service times at the
queues have exponential distribution with parameters respectively λ1, λ1, µ and µc. According
to the queueing vocabulary, there are M customers of two classes: cars and gifts, and a routing
matrix given by the previous description.
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However, this is not a Jackson network because there are additional transitions since a car in
a station of cluster 2 becomes a gift at rate δ and a gift arriving at a station from the infinite-
server node becomes a car. It does not fit in this classical framework because of these changes
of customers classes. Note that in the case without incentive policy (δ → 0), the model is a
Jackson network since there are no gifts. Such a model is known as a two-cluster bike-sharing
system studied in [?] and [?]. Section 2.1.1 is devoted to this case called model without gifts.

1.4. The Markov process. The state process is(
X1,n(t), X2,m(t), Cm(t), ZN (t), 1 ≤ n ≤ N1 and 1 ≤ m ≤ N2

)
where

• X1,n(t) is the number of cars at a station n in cluster 1 at time t,
• X2,m(t) is the number of cars at a station m in cluster 2 at time t,
• Cm(t) is the number of gifts at a station m (necessarily in cluster 2) at time t and
• ZN (t) is the number of gifts making a trip at time t.

Note that the number of cars making a trip at time t is equal to

M −
N1∑
n=1

X1,n(t)−
N2∑
m=1

X2,m(t)− ZN (t).

As we deal with a two-cluster model, it is sufficient to study the behavior of one station in each
cluster. It amounts dealing with the empirical measure process

(Y N (t)) =
(
Y N1

1,j (t), Y N2

2,k,l(t),
ZN (t)

N
, j ∈ χ1, (k, l) ∈ χ2

)
where Y N1

1,j (t) is the proportion of stations with j cars in cluster 1 and Y N2

2,k,l(t) is the proportion
of stations with k cars and l gifts in cluster 2, defined by

Y N1
1,j (t) =

1

N1

N1∑
n=1

1{
X1,n(t)

)
=j
} and Y N2

2,k,l(t) =
1

N2

N2∑
m=1

1{(
X2,m(t),Cm(t)

)
=(k,l)

}
where χ1 = {j ∈ N, j ≤ K1} and χ2 = {(k, l) ∈ N2, k + l ≤ K2}. Because the inter-arrival
times, trip times and times to become a gift have exponential distribution, (Y N (t)) is a Markov
process, with finite state space

SN =

{
y = (y1,j , y2,k,l, z){j∈χ1,(k,l)∈χ2}, y1,j ∈

N
N1

, y2,k,l ∈
N
N2

, z ∈ N
N
,
∑
j∈χ1

y1,j = 1,

∑
(k,l)∈χ2

y2,k,l = 1,
∑
j∈χ1

j y1,j +
∑

(k,l)∈χ2

(k + l) y2,k,l + z ≤M
}
.

The inequality in the previous definition of the state space SN is due to the fact that the
number of cars driving has be to added to the left-hand side of the inequality to obtain the
total number M of cars in the system. Let us write its transitions from state y ∈ SN . To
simplify the notations, let us denote by

E1 =
∑
j∈χ1

j y1,j and E2 =
∑

(k,l)∈χ2

(k + l) y2,k,l(1)

respectively the mean number of cars parked in cluster 1 and the mean number of cars plus
gifts parked in cluster 2. Also, let us denote by (e1,j , e2,k,l, e0, j ∈ χ1, (k, l) ∈ χ2) the canonical

basis of R|χ1|+|χ2|+1, where the cardinal of set A is denoted by |A|. The transitions, from state
y = (y1,j , y2,k,l, z) ∈ SN , are due to three events: a user arrival, a gift appearance or a car



MEAN FIELD ANALYSIS OF AN INCENTIVE ALGORITHM FOR A CLOSED STOCHASTIC NETWORK 5

return. For example, when a user arrives at a station of cluster 2 with k cars and l gifts (for
short of type (2, k, l)) to take a gift (l > 0), the number of gifts decreases by 1. Since there are
y2,k,lN2 possible stations, this happens at rate λ2y2,k,lN21{l>0}

(
p+ (1−p)1{k=0}

)
. Recall that

p is the probability for a user arriving to a station in cluster 2 to choose a gift when cars and
gifts are available. Thus the corresponding transition is the following.

y −→ y +
1

N2
(e2,k,l−1 − e2,k,l) +

e0

N
at rate λ2y2,k,lN21{l>0}

(
p+ (1− p)1{k=0}

)
.

The other transitions are presented in the appendix. These transitions allow us to write the
drift of process (Y N (t))t which will be useful to the mean-field convergence (Proposition 2.1).

2. Mean-field limit

Our aim is to investigate the system when M , N1 and N2 get large at the same rate, for
short, when N gets large. When N tends to +∞, the process (Y N (t)) given by the previous
transitions converges in distribution to a deterministic function which is the unique solution of
a given ODE. This result is given by the following proposition.

Proposition 2.1 (Mean-field convergence). For T > 0, (Y N (t))t∈[0,T ] converges in distribution
to (y(t))t∈[0,T ] unique solution with y(0) fixed of the following ODE

dy1,j

dt
(t) = y1,j+1(t)λ11{j<K1} + y1,j−1(t)

(
c1
α1
µ(s− α1E1(t)− α2E2(t)− z(t)) +

q1µc
α1

z(t)

)
1{j>0}

− y1,j(t)

(
λ11{j>0} +

c1
α1
µ(s− α1E1(t)− α2E2(t)− z(t))1{j<K1} +

q1µc
α1

z(t)1{j<K1}

)
dy2,k,l

dt
(t) = y2,k,l+1(t)λ21{k+l<K2}

(
p+ (1− p)1{k=0}

)
+ y2,k+1,l(t)λ21{k+l<K2}

(
1− p+ p1{l=0}

)
+ y2,k+1,l−1(t) δ (k + 1) 1{k<K2} + y2,k−1,l(t)

(
c2
α2

µ (s− α1E1(t)− α2E2(t)− z(t))

+
q2µc
α2

z(t)

)
1{k>0} − y2,k,l(t)

(
λ2(1− 1{k=0,l=0}) + δk +

c2
α2
µ(s− α1E1(t)− α2E2(t)

− z(t))1{k+l<K2} +
(1− q)µc

α2
z(t)1{k+l<K2}

)
dz

dt
(t) = −q1 µcz(t)

∑
j∈χ1

y1,j(t) 1{j<K1} + α2 λ2

∑
(k,l)∈χ2

y2,k,l(t) 1{l>0}
(
p+ (1− p)1k=0

)

− q2µcz(t)
∑

(k,l)∈χ2

y2,k,l(t)1{k+l<K2}.

(2)

Recall that, in these equations, s is the limiting number of cars per station and αi the limiting
proportion of stations in cluster i, i ∈ {1, 2}.

The proof is standard (see [?]). The idea of the proof is that a Markov process can be written
as the sum of a martingale term and a drift term in form of an integral on time. When N is
large, one can prove that the process is tight. Moreover, the martingale term converges to 0.
Then any limiting value satisfies an ODE. The uniqueness of the solution of the ODE gives the
convergence of the process.
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2.1. The equilibrium point. To investigate the steady-state behavior of the model, we study
the equilibrium point ȳ of the mean-field ODE written as follows

dy

dt
(t) = F (y(t))

where F comes from Proposition 2.1. It amounts to finding ȳ such that

F (ȳ) = 0.(3)

Note that the vector ȳ is of dimension 1 + |χ1| + |χ2| = 1 + K1 + K2(1 + K2)/2. Finding a
closed-form expression of the equilibrium point ȳ is out of reach. Let us present two points
of view: the first one is based on a nice queueing interpretation which holds for the no-gift
case. The second is an analytic approach which should be relevant for the case with gifts but
is beyond this work.

2.1.1. The queueing interpretation for the no-gift case. In this case, the existence and unicity
of the equilibrium point ȳ is proved. See [?] for details. In addition, ȳ is given by a simple
queueing interpretation of the mean-field limit. It gives that the limiting stationary number of
cars at a station of cluster i, considered as a M/M/1/Ki queue, has a geometric distribution
νρri,Ki on {0, . . . ,Ki} with parameter ρri where for i = 1, 2, ri = Λµβi/λi with βi = qi/αi,
Λ = 1/maxi(µβi/λi) and ρ is the unique solution of the fixed point equation

s = ρΛ +

2∑
i=1

αim(νρri,Ki).(4)

In the previous equation, we denote by m(νρ,K) the mean of the geometric distribution νρ,K
on {0, . . . ,K} with parameter ρ, given by

m(νρ,K) =

{
K
2 if ρ = 1
ρ

1−ρ −
(K+1)ρK+1

1−ρK+1 otherwise
(5)

because, for ρ = 1, νρ,K is the uniform distribution on {0, . . . ,K}. It shows that the multidi-
mensional equilibrium point equation (3) amounts to fixed point equation (4) on R+. This is
the purpose of [?, Theorem 1] for the cluster case detailed in [?, Section 2.3].

2.1.2. Analytical method for the model with gifts. Taking into account the gift policy induces
a change of classes between normal cars and gifts. This complicates considerably the search
for an equilibrium point and changes the nature of the limiting objects involved. The question
of existence and uniqueness of a solution of the equilibrium point equation (3) remains open.
For simplicity, let us take the case p = q1 = 1 in order to highlight the main difficulties of this
problem. Remembering that p = 1 means that, when available, a gift is always chosen over a
car in a station of normal zone, and q1 = 1 means that all gifts are returned at a station of
cluster 1. Heuristically, looking for an equilibrium point ȳ means that the right-hand term in
the mean-field ODE (2) is null. But since with obvious notations ȳ = (ȳ1, ȳ2, z̄), note first that
the set of z(t) moving gifts is considered as a M/M/∞ queue whose fluid limit is

z̄ =
α2λ2

µc

1− ȳ2,.,0

1− ȳ1,S
(6)

where ȳ1,S is the probability that a station in cluster 1 is saturated and ȳ2,.,0 the probability
that a station in cluster 2 has no gift, i.e. 1 − ȳ1,S =

∑
j∈χ1

ȳ1,j1{j<K1} and 1 − ȳ2,.,0 =∑
(k,l)∈χ2

ȳ2,k,l1{l>0}. Then a queuing interpretation similar to that for the no-gift case holds.
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Indeed, at equilibrium, a station of cluster 1 can be considered as a M/M/1/K1 queue, with
arrival rate

γ̄1 =
1

α1

(
c1µ(s− α1Ē1 − α2Ē2 − z̄) + q1µcz̄

)
(7)

where Ēi are defined by (1) and service rate λ1. It is well known that its invariant measure is

a geometric distribution on {0, . . . ,K1} with parameter ρ̄1 = γ̄1/λ1, i.e. ȳ1,j = ρj1(1− ρ1)/(1−
ρK+1

1 ) for 0 ≤ j ≤ K1. Note that, plugging equation (6) into (7), ρ̄1 depends on ȳ, only by ȳ1

and ȳ2. Moreover ȳ2 = πρ̄2,K2
where

ρ̄2 =
1

λ2α2

(
c2µ(s− α1Ē1 − α2Ē2 − z̄) + q2µcz̄

)
and, for fixed ρ, πρ,K2 is the invariant measure of the Markov process on χ2 with matrix jump
Qρ,K given by its non-null non-diagonal terms

Qρ,K(n, n− e1) = λ21{n1>0}

Qρ,K(n, n+ e2) = λ2ρ1{n2<K2}

Qρ,K(n, n+ e1 − e2) = δ1{n2>0}.

(8)

In conclusion the equilibrium point ȳ, solution of a multidimensional fixed point equation,
can be expressed as a function of (ρ̄1, ρ̄2) solution of a fixed point equation. It is summarized
by the following result.

Proposition 2.2 (Equilibrium point). An equilibrium point of the ODE is given as

ȳ =

(
νρ̄1,K1 , πρ̄2,K2 ,

α2λ2

µc

1−
∑K2

k=0 πρ̄2,K2
(k, 0)∑K1−1

k=0 νρ̄1,K1
(k)

)
where νρ̄1,K1

is the geometric distribution on {0, . . . ,K1} with parameter ρ̄1, πρ̄2,K2
the invariant

measure associated to Qρ̄2,K2
given by (8) and (ρ̄1, ρ̄2) is solution of the fixed point equation

ρi =
1

λiαi

(
ciµ(s− E) + (qiµc − ciµ)

α2λ2

µc

1−
∑K2

k=0 πρ2,K2
(k, 0)∑K1−1

k=0 νρ1,K1
(k)

)
, i ∈ {1, 2}(9)

with E = α1E1 + α2E2, E1 and E2 being the means associated to νρ1,K1
and πρ2,K2

.

Proposition 2.2 gives that the problem of existence and uniqueness of the equilibrium point
ȳ amounts to that of (ρ̄1, ρ̄2) i.e. of the solution of fixed point equation (9). It is beyond the
scope of this study. Nevertheless, in this direction, one can wonder if a closed-form expression
can be found for π = πρ,K . Let γ2 = λ2ρ. The global balance equation associated to π is

(10) πk,l(γ2 + λ2(1− 1{k=l=0}) + δk)

= 1{k+l<K2}(πk,l+1λ2 + πk+1,lλ21{l=0}) + πk+1,l−1δ(k + 1)1{l>0} + πk−1,lγ21{k>0}.

An analytical approach could be based (see [?] for details) on generating function

F (x, y) =
∑

(k,l)∈χ2

π(k,l)x
kyl.

The global balance equation (10) yields to a functional equation. Although the capacity K2 is
assumed to be finite throughout the hole paper, we present here this function equation for the
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case K2 = +∞ by sake of simplicity

F (x, y)

(
γ2(1− x) + λ2

(
1− 1

y

))
= F ′x(x, y)δ(y − x) + π0,0λ2

(
1− 1

x

)
+ f(x)λ2

(
1

x
− 1

y

)
where f(x) =

∑K1

k=0 πk,0x
k.

3. Performance

In order to evaluate the impact of the incitative algorithm on the system behavior, a usual
performance metric is used, i.e. the proportion of stations with no vehicle (car or gift) or no
parking space available, called problematic stations. It gives how far the system is unbalanced.

Definition 3.1 (Performance Metric). Let ȳ be the equilibrium point of the mean-field ODE
obtained by Proposition 2.1. The performance metric is the limiting stationary proportion Pb
of problematic stations given by

Pb = α1(ȳ1,0 + ȳ1,K1
) + α2

(
ȳ2,0,0 +

K2∑
k=0

ȳ2,k,K2−k

)
where Ki is the station capacity and αi the limiting proportion of stations for cluster i, i ∈
{1, 2}.

The first sum into brackets is the proportion of empty and saturated stations in clusters
1, the first term ȳ1,0 of stations with no car, the second term ȳ1,K1

of saturated stations in
high-demand zone. The second sum into brackets is the proportion of empty and saturated

stations in cluster 2, ȳ2,0,0 of stations with neither cars nor gifts and
∑K2

k=0 ȳ2,k,K2−k of saturated
stations in normal zone.

Optimizing the proportion of problematic stations means maximizing the number of trans-
actions and the number of satisfied users. Our aim is to compare the performance with gifts
and without gifts. The idea is to vary the fleet size parameter s, which is the limiting ratio
of the total number of cars M by the total number of stations N , in order to analyze how
much flexibility the gift policy gives to an operator who wants to increase the fleet size without
harming the system.

3.1. Analysis of the model without gifts. From Section 2.1.1, the proportion of problematic
stations Pb in this case is given by

Pb =

2∑
i=1

αi
1− ρri

1− (ρri)Ki+1
(1 + (ρri)

Ki+1)

where αi = limN Ni/N . For i = 1, 2, the proportion of problematic stations in cluster i as a
function of s is given by the parametric curve

ρ 7→

(
ρΛ +

2∑
i=1

αim(νρri,Ki
),

1− ρri
1− (ρri)Ki+1

(1 + (ρri)
Ki+1)

)
where the first term (1 − ρri)/(1 − (ρri)

Ki+1) is the proportion of empty stations in cluster i
and the second term (ρri)

Ki+1(1− ρri)/(1− (ρri)
Ki+1) is the proportion of saturated stations

in cluster i. As explained in Section 5.2 of [?], the proportion of problematic stations in cluster
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i has a minimum 2/(Ki+ 1) for ρri equal to 1 i.e. for ρ = 1/ri. Thus, plugging in equation (4),
this minimum corresponds to

s∗i =
Λ

ri
+

2∑
i′=1

αi′m(νri′/ri,Ki′
).

where m(νρ,K) is defined by equation (5). With the notations of the paper, it gives the following
result.

Proposition 3.1 (Optimal performance per cluster without gift policy). For the model without
gifts, the limiting stationary proportion of problematic stations in cluster i ∈ {1, 2} is minimal
and equal to 2/(Ki + 1) when

s = s∗i = αi

(
Ki

2
+

λi
µqi

)
+ α3−i

(
γ3−i

1− γ3−i
−

(K3−i + 1)γ
K3−i+1
3−i

1− γK3−i+1
3−i

)

where γ3−i = (qiλiαi)/(q3−iλ3−iα3−i). The last term in brackets must be replaced by K3−i/2
for γ3−i = 1.

Note that, for s = s∗i which minimizes the proportion of problematic stations in cluster i, the
proportion of problematic stations in cluster i′ 6= i is not optimal and is exactly νri′/ri,Ki′

(0) +
νri′/ri,Ki′

(Ki′). Thus minimizing the problematic stations in both clusters simultaneously is
not possible.

For values of Figure 2b and α1 = α2 = 0.5, Proposition 3.1 gives s∗1 = 29.9 and s∗2 = 13.1,
and for α1 = 0.28 and α2 = 0.72, s∗1 = 21.9 and s∗2 = 20.4, which can be checked in Figure 2.

Note the U-shape of the curves plotted in Figure 2b. This shape is typical of these perfor-
mance curves (cf [?]). Indeed, for small values of the mean number of cars per pseudo-station,
the proportion of empty stations is large and close to 1. Similarly, if the mean number of cars
per station is large, the proportion of saturated stations is large and close to 1. Since the
performance criterion includes both cases, the U-shape is observed. The contribution of empty
and saturated stations to the proportion of problematic stations is illustrated by [?, Figure 2]
where the proportions of empty, saturated and problematic stations are plotted.

3.2. Numerical solution. First of all, we obtain numerically the equilibrium point ȳ of the
mean-field ODE established in Proposition 2.1, solution of the fixed point equation (3), as a
function of the fleet size parameter s. There are many tools to solve such equation. We use the
Anderson method implemented in Scipy, a Python library.

Figure 2a plots the performance Pb numerically obtained as a function of the fleet size
parameter s, for the two-cluster model with and without gifts for a naive case: both clusters
have the same number of stations, so that the ratios α1 = α2 = 0.5, and everyone follows the
gift policy. That means the probability p that a user picks up a gift if gifts and cars are available
and the probability q1 a gift is returned to cluster 1 are equal to 1. All other parameters are
given in Figure 2. Figure 2a shows that, for cluster 2, the cases with and without gifts are
similar. But, for cluster 1, for this set of parameter values, it seems that an efficient gift policy
(p = q1 = 1) would allow an operator to increase the fleet size without harming the system
performance and even with improving it. Indeed, for a whole range of values of the fleet size
parameter s, typically s ≤ 20, the high demand zone suffers from a lack of available cars. About
60% of the stations in the high demand zone are empty for a fleet size parameter s between
10 and 20. The effect of the incentive policy is significant in this case, since the proportion of
empty stations in cluster 1 falls under 40% and even reaches 20% for s = 20.
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Note that the crosses are simulations of the system with N1 = 50 and N2 = 50, the other
parameters are given in Figure 2. Compared to the performance curves obtained numerically, it
validates that the mean-field limit provides a good approximation for N1 and N2 large enough.

Figure 2b plots the performance numerically obtained for the two-cluster model with and
without gifts for a more realistic case. The number of stations in the high demand zone is
significantly smaller than in the normal one, the ratios are respectively α1 = 0.28 and α2 = 0.72.
Figure 2b shows that the performance curves fit for small and large parameter fleet size s for
both cases, with and without gifts. In between, there is a plateau where the proportion of
problematic stations is close to its minimum. This implies that varying fleet size parameter
s around its optimum does not degrade too much the performance which remains close to its
optimum. This stability is important for the operator. The minimum proportion of problematic
stations should depend on capacities K1 and K2, user arrival and trip rates. It is remarkable
that the two plateaux correspond to the same values of s. Thus, the stations in cluster 1 do
not saturate for s smaller than 30. Despite their small capacity, the high demand in cluster 1
limits the saturation.

In addition, Figure 2b shows that, for a small s, the gift policy slightly improves the perfor-
mance. It is true until the two curves intersect at s ' 12. Above this value, on the plateau of
cluster 1, the performance is slightly worse with the gift policy. Indeed, gifts seem to saturate
cluster 1 and this slightly decrease the system performance. The mean-field approximation is
again validated by simulation. See the crosses curve.
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(a) N1 = N2 = 50
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(b) N1 = 28, N2 = 72

Figure 2. Performance for both clusters (1 for the high-demand zone, and 2
for the normal zone) is numerically computed from equilibrium point equation
as a function of the fleet size per station in a system with and without gifts,
compared with the simulation curve in crosses. K1 = 15, K2 = 45, λ1 = 2.6,
λ2 = 1, µ = µc = 0.65, δ = 1/14, c1 = 0.5 and p = q1 = 1.

4. Discussion

4.1. Discussion of the model. Discrete Markovian framework. The exponential distributions
are assumed to obtain a Markov discrete state process, i.e. the number of gifts and cars in the
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different stations. It is not true in real systems. It seems true for inter-arrival times of users
at a station, but not trip times which seems heavy-tailed due to some very long trips. The
behavior of the system can be affected by a log-normal trip time distribution compared to
an exponential one. The threshold is deterministic. Intuitively, we assume that exponential
distribution with the same mean for the threshold does not change the behavior of the network.
Large stochastic networks with general service time distributions are still largely unexplored.
We stay in a convenient framework.

Space-homogeneity. In order to simplify the presentation, we assume that parameters do not
depend on the stations. This mean-field approach can be extended to a completely heteroge-
neous model. It is out of the scope of the paper.

Time-homogeneity. In real systems, some parameters, like the arrival rate of users, depend
on time. The mathematical model does not take this into account.

Reservation. In real car-sharing systems, cars can be booked. It seems that such a study
can still be conducted.

4.2. Future work. The analysis highlights an interesting random walk in the quarter-plane.
Its study seems necessary to obtain further analytical results. Another model seems also nec-
essary to obtain analytically the proportion of gifts in the system, to see the price to pay by
the operator to implement such a policy.

The authors would like to thank Communauto for funding and allowing to do this study.
They also thank the Natural Science and Engineering Research Council of Canada (NSERC)
for funding.

Appendix A. Transitions of the empirical measure process

In this section, we present the detailed transitions of the empirical measure process (Y N (t))
introduced in Section 1.4. The transitions, from state y = (y1,j , y2,k,l, z) ∈ SN , are given by

• User arrival.
– A user arrival at a station in cluster 2 with k cars and l gifts (for short of type

(2, k, l)) taking a gift.

y −→ y +
1

N2
(e2,k,l−1 − e2,k,l) +

e0

N
at rate λ2y2,k,lN21{l>0}

(
p+ (1− p)1{k=0}

)
.

– A user arrival at a station of type (2, k, l) taking a normal car.

y −→ y +
1

N2
(e2,k−1,l − e2,k,l) at rate λ2y2,k,lN21{k>0}

(
1− p+ p1{l=0}

)
.

– A user arrival at a station of type (1, j).

y −→ y +
1

N1
(e1,j−1 − e1,j) at rate λ1y1,jN11{j>0}.

• Gift appearance.
– A car becoming a gift at a station of type (2, k, l).

y −→ y +
1

N2
(e2,k−1,l+1 − e2,k,l) at rate δkN2y2,k,l.

• Car return.
– A normal car returned at a station of type (1, j).

y −→ y +
1

N1
(e1,j+1 − e1,j) at rate c1y1,jµ

(
M − (E1N1 + E2N2 + zN)

)
1{j<K1}.
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– A normal car returned at a station of type (2, k, l).

y −→ y +
1

N2
(e2,k+1,l − e2,k,l) at rate c2y2,k,lµ

(
M − (E1N1 + E2N2 + zN)

)
1{k+l<K2}.

– A gift returned at a station of type (1, j).

y −→ y +
1

N1
(e1,j+1 − e1,j)−

e0

N
at rate q1y1,jµczN1{j<K1}.

– A gift returned at a station of type (2, k, l).

y −→ y +
1

N2
(e2,k+1,l − e2,k,l)−

e0

N
at rate q2y2,k,lµczN1{k+l<K2}.
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