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ABSTRACT 

This work is a contribution in the field of Operational Modal 

Analysis to identify the modal parameters of mechanical 

structures using only measured responses. The study deals with 

structural responses coupled with harmonic components 

amplitude and frequency modulated in a short range, a common 

combination for mechanical systems with engines and other 

rotating machines in operation. These harmonic components 

generate misleading data interpreted erroneously by the 

classical methods used in OMA. The present work attempts to 

differentiate maxima in spectra stemming from harmonic 

components and structural modes. The detection method 

proposed is based on the so-called Optimized Spectral Kurtosis 

and compared with others definitions of Spectral Kurtosis 

described in the literature. After a parametric optimization of 

the method, a critical study is performed on numerical 

simulations and then on an experimental structure in operation 

in order to assess the method’s performance. 
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1. Introduction

Structural dynamics are used to determine the stability, safety 

and lifetime of mechanisms under normal operational 

conditions and to a great extent rely on modal analysis. 

Traditional modal analysis is a very well known tool used for 

identifying modal parameters of the structure (resonance 

frequencies, damping ratio and mode shapes) that consists in 

measuring the input and response signals, Ewins [1], Maia [2].  

However, in certain cases, it is not possible to measure the 

excitation force, for example, during flight tests of aircraft and 

helicopters, and vibrations of buildings, bridges and offshore 

platforms.For these reasons, Operational Modal Analysis 

(OMA) has been developed under the following assumption: 

only structural responses are known, whereas excitation forces 

are unknown. 

Hermans [3] and Pintelon [4], assume that excitations are 

random. This assumption allows to build an ideal DSP for the 

excitation in order to use classical modal analysis tools. 

Another method, usually performed to solve industrial 

problems, identifies peak Power Spectral Densities (PSD) and 

Cross-Spectrums (CS) under operating conditions [5]. These 

peaks are then used to estimate natural frequencies and normal 

modes. However this technique does not allow identifying 

damping with good accuracy. The "Natural excitation" 

technique (NEXT) [6] considers the excitation force as a 

stationary white noise. Under this assumption, the Spectra and 

Cross Spectrum correspond to an impulse response. Modal 

parameters are determined from temporal responses with a 

complex exponential function [7], or from the Ibrahim method 

(ITD) [8] or from the Auto Regressive – Moving Average 

Method (ARMAX) [9]. 

Several methods are proposed for separating periodic 

components from structural Natural modes, Mohanty [10]. 

Filtering technics are often used in addition to these methods 

[11]. Jacobsen [12] defines an indicator using the spectral 

description of the signal. A linear interpolation is performed on 

spectral responses in order to eliminate the periodic components 

identified. Nonetheless, this method is not suitable when the 

harmonic component is close to a low-damped Natural mode. 

When Transmissibility is used in OMA, FRF must be known at 

several points and excitation force levels determined [13], [14]. 

One of the major difficulties in OMA is the coexistence in one 

signal of structural modal responses with periodic excitations 

due to the operation of machines fixed on the structure. This 

situation is often observed in transport technologies and large 

industrial structures.  

Antoni et al. [15] propose two methods for harmonic detection. 

The first one is based on envelope statistics and is especially 

applied on pure tone components. The second one is based on 

correlation in conjunction with an indicator built with a tuned 

time delay (correlation time indicator). This method is justified 

by the properties of the correlation (and the PSD) of random 

noise and periodic signals. This second method is especially 

suitable for non frequency modulated harmonic components. 

Antoni [16], [17] and Vrabie [18], have defined and studied 

properties of Spectral Kurtosis respectively for non stationary 

signals and stationary signals. Both methods are based on the 

properties of Welch’s method and compute the Spectral 

Kurtosis in the frequency domain. Another definition of the 

spectral Kurtosis, defined by Brincker [19] and Jacobsen [12], 

[20], [21] is based on the classical approach of the Kurtosis in a 

specific bandwidth. 

The present work describes a method developed in order to 

separate structural modal responses from periodic excitation 

due to rotor dynamics without assumptions regarding periodic 

excitation In the continuity of previous cited works, the 

objective of this paper is to study and define the necessary 

conditions of robust method for detection with Spectral 

Kurtosis. This method is applied to harmonic components 

detection, especially for frequency and amplitude modulated 

components produced by rotor dynamics. Theoretical 

definitions of the SK used in cited references are presented in 

section 2. Section 3 presents the proposed method so called 

OSK. The several SK definitions and methods are discussed 

and compared with the proposed Optimized Spectral Kurtosis 

method (OSK) in section 4. The proposed OSK and the 

different definitions of SK are computed from experimental 

results and presented in section 5. 

The proposed method is different from the methods used in 

references [16]-[18] because of the definition of the Spectral 

Kurtosis. In these references, the Kurtosis is computed from 

spectral data: the temporal data are first computed with the 

FFT, and secondly the Kurtosis is computed from the DFT 

results. In the proposed method, the temporal signal is first 

filtered in the time domain with a series of sharp Pass Band 

Filters and secondly the Kurtosis is computed from the filtered 

temporal signals for each central frequency of PBF. In order to 

differentiate the two methods, we have called this new method 

the “Optimized Spectral Kurtosis” because in this new method 

the spectral resolution step of the FFT process is dissociated 

from the equivalent bandwidth used to compute the Kurtosis. 

This difference allows a better efficiency in the detection 

process. However, the efficiency of this new method depends 

on several parameters as the number of samples or the filtering 

technique. These parameters are discussed and optimized. This 

is the second main interest of this paper.  
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2. Statistical tools and Spectral
Kurtosis

The properties of the probability density (PD) of a discrete 

signal make it possible to assume the nature of the initial 

temporal signal. 

However the same probability density could be produced by an 

infinite number of signals. Certain deterministic signals, such as 

sinusoidal ones, produce singular probability densities.  

The first step of the method is based on the differences 

observed on the PD between (Gaussian) random signals and 

sinusoidal signals. 

In order to highlight these differences, two descriptors were 

selected: Peak Factor (PF) (Eq.1) and Kurtosis. 
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With:  u[n]: the temporal sequence of the discrete signal 

URMS: the Root Mean Square level of the discrete 

signal 

N: number of points of the temporal sequence 

The first four statistical moments allow defining the mean µ 

(expectation), variance (or σ standard deviation), Skewness and 

Kurtosis. These descriptors about its mean and central moments 

are reduced: central standardized moments are divided by the 

standard deviation (for orders greater than 2). 
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With: µ1=µ: the mean 

σ: the standard deviation: σ2
=µ2 

Kurtosis is defined by K=µ4 and excess Kurtosis is defined by: 

NK = K - 3 .

In the three signals studied, the expected values for these 

descriptors are presented in table 1 

E{Estimator}\
Signals 

Uniform 
Random 
[-0,5 0,5] 

Normal 
Random 
�(0,1) 

Sinusoidal 
[-0,5 0,5] 

Mean: µ1 0 0 0 

Peak Factor: 
PF ( )1 2 12

- 2
Variance: σ² 

= µ2 1/12 1 1/8 

Kurtosis: K 9/5 3 3/2 

TABLE 1: EXPECTED VALUES OF STATISTICAL DESCRIPTORS FOR 

THE THREE CLASSICAL SIGNALS 

Brincker [19] and Jacobsen [20], [21] define the Spectral 

Kurtosis with the same definition used previously for the 

Kurtosis based on the forth statistical moment (Eq.2d) applied 

in a spectral bandwidth. 

For signal s, the Spectral Kurtosis of the frequency f has been 

previously defined and used by Antoni [17] and Vrabie [18] in 

a similar way with spectral cumulants (C) and moments (S) of a 

signal divided into M unoverlapped blocks: 
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Vrabie [18] defines the unbiased estimation of the Spectral 

Kurtosis: 
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This estimation allows defining the efficiency of detection for a 

signal composed of a random process and a harmonic 

component. 

3. Description of the method
The main idea is based on a spectral observation of statistical 

descriptors. Previous works [16]-[21], have been performed in 

defining and using the Spectral Kurtosis. Detections are defined 

from numerical differences of statistical descriptors between 

random signals and sinusoidal signals. Also, although detections 

are not certain they are very likely.  

3.1. Main assumptions 
The excitations highlighting normal vibration modes are 

assumed to be mesokurtic or leptokurtik (positive or null excess 

Kurtosis). 

In numerical applications, the method is still pertinent provided 

that excess Kurtosis does not exceed -1. 

3.2.  Global description of the 
method 

If the signal is composed of a sinus and a random part, Kurtosis 

is assumed to be between 1.5 (sinus) and 3 (Normal Random). 

Under the same assumptions, the PF moves within a wider 

range (between 2  to 5 or more). 

A numerical study of sensitivity of these descriptors highlights 

better detection with Kurtosis than with PF. Despite a narrower 

range of evolution, Kurtosis proves to be more robust and 

reliable which is why this study was performed with Kurtosis. 

The method is composed of two main steps: firstly, the 

harmonic components have to be detected (Section 4) and, 

secondly, they have to be eliminated. 
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The detection of harmonic components is based on combining 

two kinds of information: statistical and spectral. The OSK 

consists in establishing a spectral description of Kurtosis. First, 

the signal is filtered with a narrow Pass Band Filter (PBF) 

centered on the frequency studied. Secondly, the Kurtosis of the 

filtered signal is computed and the numerical result defines the 

assumed nature of the signal (included in the spectral 

bandwidth). The complete spectral description of Kurtosis is 

obtained by a series of PBF along the entire frequency 

bandwidth studied. The optimization of the harmonic 

component detection with OSK had to satisfy several questions 

given in section 4: 

1 – What is the optimal number of samples? 

2 – What kind of filter should be chosen? 

3 – How can the PBF be translated along the entire bandwidth? 

4 - What bandwidth is best? 

5 – What are the limits of the method? 

4. Detailed description and critical
analysis of the OSK

First, the OSK was performed with a synthetic random signal 

added with a sinusoid. The random signal is a stationary 

Gaussian random white noise with mean µ=0. The main 

objective of this initial approach is to highlight the efficiency 

and limits of application of the method in terms of optimum 

filter bandwidth and Signal to Noise Ratio (SNR). Secondly, the 

OSK was performed with a synthetic random signal r(t) used as 

an excitation source applied on a system h(t) composed of two 

Natural modes in the frequency bandwidth studied. This system 

is considered as equivalent to a mechanical structure. The 

output signal s(t) is disturbed by a periodic signal composed of 

3 harmonics. This disturbing periodic signal is considered 

equivalent to a rotating machine in operation and fixed on the 

structure (figure 1).  

FIGURE 1: BLOCK DIAGRAM OF A TRANSFER FUNCTION WITH A 

POLLUTED OUTPUT 

ps [ n ] s[ n ] p[ n ] r [ n ] * h[ n ] p[ n ]= + = +     (5) 

With: r[n]: Input Signal  

h[n]: Impulse Response of the system 

s[n]: Unpolluted Output Signal  

p[n]: Disturbing Signal 

pollution (periodic or pseudo-periodic) 

sp[n]: Polluted Output Signal  

4.1. Field of the numerical study 
The OSK was applied to a signal with a number of samples 

between 2
14 

(16 284 samples) and 2
22

 (4 194 304 samples). 

An important interest of the present work consists in 

distinguishing the frequency resolution of the DFT process and 

the frequency bandwidth in which the OSK is applied. The 

relation between this two frequency bandwidths is studied and 

optimized in order to accurate the detection process. In previous 

studies [17], [18] the Welch’s method is used for spectral 

computations. In Welch’s method, the two kinds of bandwidth 

(spectral resolution and filter bandwidth) are coupled (and 

equal). In that case, the Welch’s Method allows a rapid 

computation with the FFT. In the present study signal had to be 

filtered in the time domain with an ARMA sequence before the 

Kurtosis computation. The Cauer Filter [11] (used for the 

ARMA filter synthesis) has been chosen in order to keep a 

sharp bandwidth during the optimization process of the method. 

The sixth order results from a compromise between numerical 

costs and the efficiency of the filter. However if the PSD and 

the OSK have the same spectral resolution (equivalent 

bandwidth) and when the optimal filter is chosen the Welch’s 

Method could be performed and thus allows an important 

reduction of the time computation. The PBF was applied with a 

constant frequency bandwidth. The OSK had already been 

performed with nth
 octave analysis (with frequency translation 

and down sampling) but, the detection obtained was less 

effective than with a constant spectral bandwidth. In order to 

reduce time computation the series of filters (with fixed 

bandwidth) are computed before the computation of the OSK. 

The study was performed with a frequency bandwidth between 

∆f and 50∆f (with ∆f being the spectral resolution of the Fast 

Fourier Transform (FFT) defined by ∆f=1/τ and τ the duration 

of the signal sampled) The signals were studied with an SNR 

η between 1 and 50. The SNR is defined only for the frequency 

bandwidth containing the sinusoidal component. (For other 

spectral bandwidth, the SNR tends towards 0). 

( )
0 0

2

,
2 2

∆ ∆ − +  

=
k f k f

f f

A
SNR

PSD r
(6) 

With sinusoidal amplitude A. The Power Spectral Density of the 

random signal r is defined for the k∆f Bandwidth.The Transfer 

Function used in the numerical study is shown in figure 2. 

FIGURE 2: TEST SPECTRAL FUNCTION: A 2 DOF SYSTEM EXCITED 

WITH A RANDOM NOISE AND A PERIODIC SIGNAL COMPOSED WITH 3 

FREQUENCIES REPRESENTED BY THE 3 ARROWS 

r[n] 
h[n] 

sp[n] s[n] 

p[n] 
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The harmonic components of the signal are 123Hz, 246 Hz and 

492 Hz. 

The Sampling Frequency was 1600 Hz and the spectral 

resolution 6.1mHz with a signal composed of 2
18

 samples (262 

144 samples).  

4.2. OSK in operation 
Figure 3 represents the evolution of Kurtosis along the spectral 

domain studied. The frequency bandwidth of the filter is set at 

16∆f which is less than 0.1Hz. 
In this case, the detection of the three harmonic components is 

clearly highlighted. 

FIGURE 3: OSK FOR SEVERAL NUMBERS OF SAMPLES 
The method was applied to a signal described with 2

18
 samples 

for several values of SNR and several spectral bandwidths of 

the PBF (figure 3). Detection with OSK is represented on the 

map in figure 4. The efficiency qualification is based on the 

difference (in terms of standard deviation σSK) between the 

mean of the OSK µSK and the measured OSK:  

“Perfect” is defined for OSK< µSK -5 σSK, 

“Very good”, for  µSK -3 σSK >OSK> µSK -5 σSK, 

“Good” for µSK -2 σSK >OSK> µSK -3 σSK, 

“Intermediate” for µSK - σSK >OSK> µSK -2 σSK, 

“Bad” for µSK- σSK/2>OSK<>µSK -σSK,  

“Very bad” for µSK - σSK/4 >OSK> µSK- σSK/2 

“Null” for OSK in the neighborhood of the mean or greater. 

0

2

4

6

8

10

12

0 20 40 60

S
N

R

Filter Frequency Bandwidth (x∆∆∆∆f)

Perfect

Very Good

Good

Intermediate
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FIGURE 4: EFFICIENCY OF HARMONIC COMPONENT DETECTION 

FOR 218 SAMPLES AGAINST FILTER FREQUENCY BANDWIDTH AND 

SNR. THE BEST OSK IS OBTAINED FOR 20�F BANDWIDTH (AND 

SNR GREATER THAN 3) 

On figure 4, larger and darker the circle, better the expected 

detection. Figure 4 is built with a synthetic random signal added 

to a sinus and highlights: 

A field in which detection is impossible for a filter bandwidth 

lower than or equal to 4∆f, 
the best detection is obtained with a filter bandwidth close to 

20 ∆f, 
certain detection of SNR greater than 3 and with a filter 

bandwidth equal to 20∆f. 
Figure 5 shows the same kind of chart as figure 4. The limit of 

detection with OSK is shown for several numbers of samples.  

The larger the number of samples, the better the detection. 

However, accurate detection could only be obtained with a 

large number of samples. 

A reasonable compromise was found based on several 

numerical studies: the number of samples had to be chosen 

between 2
16 

and 2
20

. 
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FIGURE 5: CHART OF THE DETECTION LIMITS 
FOR SEVERAL NUMBERS OF SAMPLES 

WHITE ZONES SHOW VERY GOOD DETECTIONS 
DARK ZONES SHOW POOR DETECTION 

This chart has not been completely computed. Only few points 

with different number of samples have been computed in 

addition of figure 5. “Perfect”, “Very good” and “Good” 

detections are considered with the same color in this chart. The 

more the number of samples increased, the better the detection 

performed. 

The optimal bandwidth of the filter is close to 20∆f and do not 

depends on the number of samples. 

The detection could not be obtained for Bandwidth smaller than 

4∆f. This dark zone does not depend on the number of samples. 

Over 20∆f, the larger the bandwidth, the worse the detection. 

5. Experimental test bench

5.1. Description of the 
experiment 

In order to improve the OSK in a real experiment, a test bench 

was set up. The experiment is composed of two floors insulated 

with flexible blades (Figure 6). The mechanical system could be 

described as a two DOF system in the bandwidth 0-100 Hz. The 

natural frequencies of the system are 9.7 Hz and 36.7 Hz. 

The structure is first excited with an electro-dynamic shaker and 

a random noise, then with an unbalanced electric engine 

rotating at fb=22Hz amplitude and frequency modulated in a 

short range. The both excitations are realized in the same time. 

The aim of this experimental study is to test the efficiency of the 

OSK. The expected results consists in detecting the harmonic 

component around fb=22Hz and in not detecting them at 9.7Hz 

and 36.7Hz. These two components had to be identified as 

natural frequencies and not as periodic excitations. 

FIGURE 6.1: PHOTOGRAPH OF THE EXPERIMENTS 

 
 

FIGURE 6.2: SCHEMA OF THE EXPERIMENTS 
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5.2. Experimental results 
In agreement with previous numerical studies, the method is 

performed with 2
18

 samples and Cauer filters with a bandwidth 

of 20∆f. For a sampling frequency of 2000 Hz, the filter 

bandwidth is around 0.15 Hz. Detection is defined for an OSK 

lower than 2. 

FIGURE 7: DETECTION OF HARMONIC COMPONENTS USING OSK  
 1 FREQUENCY EXPECTED BUT 4 FREQUENCIES DETECTED 

The results shown in figure 7 highlight the following expected 

observations: 

Frequency fb=22 Hz is well detected as a harmonic component 

and not as a structural response. 

The 2 structural Eigen modes (9.7 Hz and 36.7 Hz) are not 

identified as harmonic components. 

Nevertheless, other components, not initially foreseen, are 

identified as harmonic components: 

Electric network frequency fr=50 Hz, 

Two frequencies: fr-fb=28 Hz and fr+fb=72Hz. 

These components are very small but effectively included in the 

signal. The first is due to the electric power frequency used for 

the electric engine. The two others are due to magnitude 

modulation between the rotation frequency of the engine and its 

electric power frequency. These components are 100 to 100000 

times smaller than the main excitation at fb=22 Hz. 

The unbiased Spectral Kurtosis SK* in figure 8 and the OSK 

figure 7 have been computed with the same record. SK* in 

figure 8 has been computed with 8, 32 and 128 unoverlapped 

blocs and with corresponding Hanning windows (respectively 

32768, 8192 and 2048 samples). The choice of a large number 

of unoverlapped blocs lead, on the one hand, to an accurate 

detection but, on the other hand, to a worse spectral resolution 

for the DSP and the SK*. Due to little modulations of harmonic 

components the 2 main frequencies (22Hz and 50 Hz) are 

hardly detected and the two others (28 Hz and 72 Hz) are not 

detected : 2 minima are detected with the SK* in figure 8 and 4 

minima are detected with OSK in figure 7. 

FIGURE 8: DETECTION OF HARMONIC COMPONENTS WITH 

UNBIASED SPECTRAL KURTOSIS SK* USED BY VRABIE [18] AND 

ANTONI [17] FOR N SEVERAL NUMBERS OF UNOVERLAPPED BLOCS. 

In this experimental study, the lack of efficiency for the SK* is 

due to the use of the same bandwidth between the DFT (and 

PSD) and the SK. Separating the two kind of bandwidth needs 

to compute the SK in the time domain as it is proposed in the 

present paper for the OSK. The detection capability is more 

accurate with the OSK figure 7 than with the SK* in figure 8. 

This is the main interest of the proposed method. 

Antoni et al.[15] propose two others detection methods for 

harmonic detection. The first one is based on envelope statistics 

and is especially applied on pure tone components. However 

this method could not be applied for amplitude modulated 

components. The second one is based on correlation in 

conjunction with an indicator built with a tuned time delay 

(correlation time indicator). This method is justified by the 

properties of the correlation (and the PSD) of random noise and 

periodic signals. However, this method is not appropriated in 

the case of frequency modulated signals (even with small 

variations of the instantaneous frequency). Due to small 

modulations of the 2 harmonic components (22Hz and 50Hz) 

this 2 previous methods are inappropriate for the experimental 

record presented in section 5. 

The OSK shows that it is capable of performing beyond the 

initial detection target defined in this study and proves to be 

very efficient for harmonic component detection. 
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6. Conclusion

Harmonic components play a role in the dynamical response of 

many rotating mechanical systems. However certain OMA 

techniques are unable to detect these kinds of signal. 

The optimized OSK proposed here could detect harmonic 

components even when the latter were 1000 times smaller than 

the magnitudes observed around natural frequencies. 

The OSK does not require initial knowledge of excitation 

forces. What is more, the natural vibration mode parameters 

could be obtained from only one measurement (one location) of 

the dynamical response. 

The results of the experimental tests and comparisons with 

other techniques confirm the method's efficiency and the 

pertinence of the choice of optimum parameters in the detection 

process. However, as all cited methods, the OSK requires a 

large number of samples in order to perform the detection and 

its numerical computation is still costly. 
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