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Differentiation between Aspergillus flavus and
Aspergillus parasiticus from Pure Culture and
Aflatoxin-Contaminated Grapes Using PCR-RFLP
Analysis of aflR-aflJ Intergenic Spacer
André El Khoury, Ali Atoui, Toufic Rizk, Roger Lteif, Mireille Kallassy, and Ahmed Lebrihi

Abstract: Aflatoxins (AFs) represent the most important single mycotoxin-related food safety problem in developed and

developing countries as they have adverse effects on human and animal health. They are produced mainly by Aspergillus

flavus and A. parasiticus. Both species have different aflatoxinogenic profile. In order to distinguish between A. flavus and

A. parasiticus, gene-specific primers were designed to target the intergenic spacer (IGS) for the AF biosynthesis genes,

aflJ and aflR. Polymerase chain reaction (PCR) products were subjected to restriction endonuclease analysis using BglII

to look for restriction fragment length polymorphisms (RFLPs). Our result showed that both species displayed different

PCR-based RFLP (PCR-RFLP) profile. PCR products from A. flavus cleaved into 3 fragments of 362, 210, and 102

bp. However, there is only one restriction site for this enzyme in the sequence of A. parasiticus that produced only 2

fragments of 363 and 311 bp. The method was successfully applied to contaminated grapes samples. This approach of

differentiating these 2 species would be simpler, less costly, and quicker than conventional sequencing of PCR products

and/or morphological identification.
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Introduction
Aflatoxins (AFs) are derived secondary metabolites of a polyke-

tide family produced by several species of the Aspergillus spp. They

are considered as potent hepatotoxins and carcinogens causing

mortality and/or reducing the productivity of farm animals. Con-

taminated foodstuffs by these mycotoxins have also been associated

with a high incidence of liver cancer in human (Stark 1980; Berry

1988; Ventura and others 2004; Magan and Olsen 2004; European

Commission 2006; Giorni and others 2007).

The major AFs of concern are designated as B1, B2, G1, and

G2 (Ventura and others 2004; Barros and others 2006). How-

ever, AFB1 is usually the most predominant and the most toxic

metabolite within this family. AFB1 is also known as being one

of the most potent genotoxic agent and hepatocarcinogen identi-

fied (Busby and Wogan 1984; Sharma and Salunkhe 1991; Miller

and Trenholm 1994; Wang and others 1998). In fact, the Interna-

tional Agency for Research on Cancer (IARC) classified AFB1 as

a human carcinogen (group 2A) (IARC, 1993).

The worldwide occurrence of AFs contamination of food and

feed has been well documented. The most pronounced contam-
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ination has been encountered in corn, peanuts, cottonseed, and

other grain crops being most frequently contaminated (Jelinek

and others 1989; Gourama and Bullerman 1995; Chen and others

2002; Somashekar and others 2004; Ventura and others 2004).

Recently the occurrence of AFB1 in wine grapes and musts has

been reported (El Khoury and others 2006; 2008).

The principal filamentous fungi involved in the AF production

are A. flavus and A. parasiticus (Deiner and others 1987; Giorni

and others 2007). Taxonomically, these 2 species belong to the

section flavi of the Aspergillus genus (Gams and others 1985) that

are phylogenetically related (Kutrzman and others 1987; Egel and

others 1994). Thus, morphologically differentiation between these

species is very difficult and microscopic identification requires ex-

perts in filamentous fungi taxonomy. However, other species be-

longing to the section flavi have also been reported as AF producers

namely A. nominus (Kutrzman and others 1987; Cotty and others

1994; Scholl and Groopman, 1995), A. tamarii (Goto and others

1997), and A. pseudotamarii (Ito and others 2001).

The identification of fungal species by conventional methods of

standard taxonomic systems is based mainly on the use of mor-

phological markers such as the shape of conidiophores and conidia

dimension of each species.

Rodrigues and others (2007) reported that contemporary di-

agnosis of A. flavus and A. parasiticus species is based on the de-

scriptions and keys of Raper and Fennell (1965). The primary

separation being the presence of metulae and phialides (biseriate

conidial head) for A. flavus and phialides only (uniseriate coni-

dial head) for A. parasiticus. Herein lies the problem. In the key

for A. parasiticus, the words “strictly uniseriate” replace the for-

mer terms of “usually” or “mostly uniseriate” as used in previous



keys (Thom and Church 1926). Examination of a large number

of A. parasiticus isolates (Kozakiewicz 1995) has shown that up to

10% of conidial heads in an A. parasiticus colony can have metu-

lae and phialides (biseriate). Furthermore, not all A. flavus isolates

consistently produce metulae (Klich and Pitt 1988; Kozakiewicz

1995). Consequently, the number of these available markers is

generally low, which makes difficult the classification and/or the

identification of related species beside that these methods are time

consuming and require very expert taxonomists.

The development of molecular biology techniques for the ge-

netic differentiation of species has resulted in substantial advances

in taxonomy due to their sensitivity and specificity. The ampli-

fication of internal transcribed spacer (ITS) of ribosomal DNA

(rDNA) by the Polymerase chain reaction (PCR) (Criseo and

others 2001; Chen and others 2002), combined with sequencing

of the amplicons and analysis of similarity between the sequences

obtained and those deposited in the Gene bank, has been fre-

quently employed for identification of fungal species (Chen and

others 2002).

The variation in DNA sequence can be detected by restriction

fragment length polymorphism (RFLP) analysis, which can detect

minor nucleotide variations that may not be expressed at protein

level and can detect changes in noncoding regions of DNA (Fein-

berg and Vogelstein 1984). RFLP can be used as fingerprints to

distinguish between closely related organisms and to infer phylo-

genetic relationships.

In recent years, PCR-based RFLP (PCR-RFLP) has been

widely used in the detection and differentiation between my-

cotoxigenic species. Somashekar and others (2004) were able to

differentiate A. parasiticus from A. flavus based on the RFLP re-

sulting from digesting an aflR gene fragment with the restriction

enzyme PvuII. Martinez-Culebras and Ramon (2007) developed a

method to identify black Aspergillus isolates responsible for ochra-

toxin A contamination in grapes and wine using an ITS-RFLP.

Recently, an RFLP analysis of the 5.8S-ITS genes was performed

by using a TaqI restriction enzyme in order to characterize the

toxigenic molds of paprika of the different genera and species of

Fusarium, Aspergillus, Penicillium, Cladosporium, Mucor, and Phlebia
(Ruiz-Moyano and others 2009).

The aim of this study was to determine the existence of geno-

typic differences between A. flavus and A. parasiticus, the most

predominant aflatoxigenic species of the section flavi contaminat-

ing foodstuffs. This differentiation was accomplished by PCR-

RFLP targeting the aflR-aflJ intergenic spacer (IGS) of the AF

biosynthetic cluster.

Materials and Methods

Fungal isolates
Aflatoxigenic and nonaflatoxigenic fungal strains used in this

study are described in Table 1. Strains were stored as spore sus-

pensions in 20% glycerol at –20 ◦C.

Culture medium
The culture medium used in this study was Czapek yeast extract

agar (CYA), which contained per liter of distilled water: 30 g

sucrose (Fisher Labosi, Elancourt cedex, France); 1 mL trace metal

(Cu + Zn) solution (Fisher Labosi); 1 g K2HPO4 (Acros, Geel,

Belgium); 10 mL Czapek concentrate; 5 g yeast extract (Difco,

Fisher Labosi); and 15 g agar (Difco, Fisher Labosi) (Pitt and

Hocking 1997).

In order to obtain a young mycelium for DNA extraction, all

fungal isolates were grown in petri dishes containing CYA medium

for 2 d at 25 ◦C.

Table 1–Fungal cultures used for PCR-RFLP of aflR-aflJ intergenic spacer fragment.

Name Produced mycotoxin Source

A. flavus NRRL 35691 Aflatoxins B1, B2 Atoui and others 2007
A. parasiticus CBS 100926 Aflatoxins B1, B2, G1, G2 Prof. J.C. Frisvad
A. flavus I5 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus I21 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus F17 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus F54 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus F66 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus F87 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus F89 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus M8 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus M14 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus M18 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus M21 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus M30 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus M34 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus S5 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus S7 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus S8 Aflatoxins B1, B2 EL Khoury and others 2008
A. flavus S10 Aflatoxins B1, B2 EL Khoury and others 2008
A. parasiticus WT12 Aflatoxins B1, B2, G1, G2 Olivier Puel
A. parasiticus WT25 Aflatoxins B1, B2, G1, G2 Olivier Puel
A. westerdijkiae NRRL 3174 Ochratoxin A Olivier Puel
A. fumigatus NRRL 35693 Gliotoxin, fumagillin Atoui and others 2007
A. niger CBS 120166 Ochratoxin A Atoui and others 2007
A. carbonarius CBS 120168 Ochratoxin A Atoui and others 2007
A. sulfureus NRRL 4077 Ochratoxin A Atoui and others 2007
Penicillium nordicum Ochratoxin A Olivier Puel
P. expansum NRRL 35694 Patulin Olivier Puel
P. citrinum NRRL 1843 Citrinin Atoui and others 2007
P. verrucosum NRRL 3711 Ochratoxin A Atoui and others 2007
Fusarium graminareum NRRL 5883 Zearalenone, Deoxinivalenol Olivier Puel



DNA extraction from pure fungal cultures
A rapid DNA extraction from fungal strains was performed ac-

cording to Lui and others (2000). To a 1.5-mL Eppendorf tube

containing 500 mL of lysis buffer (400 mM Tris-HCl [pH 8.0],

60 mM ethylene diaminetetra acetic acid [EDTA] [pH 8.0], 150

mM NaCl, 1% sodium dodecyl sulfate), a small lump of mycelia

from young culture is added by using a sterile toothpick, with

which the lump of mycelia is disrupted. The tube is then left at

room temperature for 10 min. After adding 150 mL of potas-

sium acetate (pH 4.8; which is made of 60 mL of 5 M potassium

acetate, 11.5 mL of glacial acetic acid, and 28.5 mL of distilled

water), the tube is vortexed briefly and spun at 10000 × g for

1 min. The supernatant is transferred to another 1.5-mL Eppen-

dorf tube and centrifuged again as described above. After transfer-

ring the supernatant to a new 1.5-mL Eppendorf tube, an equal

volume of isopropyl alcohol is added. The tube is mixed by in-

version briefly. The tube is spun at 10000 × g for 2 min, and

the supernatant is discarded. The resultant DNA pellet is washed

in 300 mL of 70% ethanol. After the pellet is spun at 10000

rpm for 1 min, the supernatant is discarded. The DNA pel-

let is air dried and dissolved in 50 mL of deionized H2O, and

1 mL of the purified DNA is used in 25 to 50 mL of PCR

mixture. The extractions were done in duplicate assays for each

sample.

Fungal DNA extraction from grape samples
In this study, 5 AF-contaminated grape samples were collected

from the Lebanese vineyard during the study of El Khoury and

others (2008). DNA extractions were performed in duplicate ac-

cording to the method described by Atoui and others (2007). In

this method, a portion of fresh and frozen grape berries (300 mg)

was weighed and incubated with 1.5-mL extraction buffer (1 M

Tris-HCl [pH 8], 1.4 M NaCl, 20 mM EDTA, 3% cetyttrimethyl

ammonium bromide [CTAB]) and 15 µL β-mercaptoethanol for

90 min at 65 ◦C under constant shaking on a orbital shaker. After

incubation, samples were centrifuged at 6500 rpm for 5 min at

4 ◦C and the supernatant was collected in a 2-mL Eppendorf tube.

One volume of chloroform/isoamyl alcohol (24:1) was added and

samples were mixed and centrifuged at 6500 rpm for 20 min at

4 ◦C. The upper aqueous phase was transferred into another tube,

adding 0.1 volume of 10% CTAB. Again, one volume of chloro-

form/isoamyl alcohol (24:1) was added and samples were mixed

and centrifuged at 6500 rpm for 20 min at 4 ◦C. The upper aque-

ous phase was transferred into another tube, adding 0.1 volume

of cold 2-propanol. Samples were then incubated for 60 min at

−80 ◦C and centrifuged for 20 min at 13000 rpm. The pellet was

dissolved in 300 µL of sterile H2O and processed according to the

EZNA Fungal DNA Miniprep Kit protocol, starting from step

8 of protocol B that implies DNA cleanup through Hi-bond
R©

(Biofidal, Vaulx en Velin, France) spin column. In the final step,

DNA was eluted in 100 µL of deionized H2O.

Polymerase chain reaction
The PCR was performed, in duplicate, with the Taq recom-

binant polymerase (Invitrogen, Cergy Pontoise, France). Ampli-

fication was carried out in 50 µL reaction mixture containing:

5 µ of Taq polymerase buffer 10 ×, 1.5 µL of 50 mM MgCl2,

1 µL of dNTP 10 mM of each (Promega, Charbonniéres, France),

1 µM of each primer, 1.5 units of Taq, about 50 ng of genomic

DNA, H2O up to 50 µL. Reaction conditions were: 94 ◦C for 4

min, (94 ◦C for 40 s, 58 ◦C for 40 s, and 72 ◦C for 1 min) × 35

cycles followed by an incubation at 72 ◦C for 10 min. The ampli-

fied products were examined by 0.8% w/v agarose (Promega) gel

electrophoresis.

Primer design
The IGS for the AF biosynthesis genes aflJ and aflR was

used as a target in order to discriminate A. flavus and A.
parasiticus. Sequences from several isolates were obtained from

Gene bank and then aligned using Clustal X package version

1.83 (Figure 1). A primer pair IGS-F/IGS-R was designed

to amplify the available published regions from those isolates

(Ehrlich and others 2003, 2007) that correspond to a PCR

product of 674 bp. The sequences of the primers used are

as follows: IGS-F, 5′-AAGGAATTCAGGAATTCTCAATTG-3′;

IGS-R, 5′-GTCCACCGGCAAATCGCCGTGCG-3′. The β-

tubulin gene was used as positive control and primer sequences

were: TubF: CTCGAGCGTATGAACGTCTAC; TubR: AAAC-

CCTGGAGGCAGTCGC, which amplified a 340 bp fragment

on genomic DNA. Primer synthesis was performed in Distribio,

France.

Restriction site analysis of PCR products
The PCR products were subjected to endonuclease restric-

tion enzyme digestion using BglII (FERMENTAS GMBH, Opel-

strasse, Germany). The reactions were performed in a total volume

of 40 µL containing 15 units of enzyme, 4 µL of buffer, 15 µL

of PCR product, and Ultrapure water up to 40 µL. The reac-

tion mixture was incubated at 37 ◦C for 3 h. Then the resulting

fragments were separated by electrophoresis on a 2% w/v agarose

(Promega) gel for 1 h 45 min at 100 V.

Results and Discussion
Available sequences of aflR-aflJ intergenic region of A. flavus

and A. parasiticus isolates were obtained from GenBank database

and then aligned using Clustal X. Figure 1 showed the result of

alignment as well as the location of the primer pair IGS-F/IGS-R

selected on the basis of sequence alignment to amplify the whole

aligned fragment of 674 bp.

In order to check the PCR’s specificity, all fungal strains listed

in Table 1 were amplified using the primer pair IGS-F/IGS-R.

As shown in Figure 2A, these primers were highly specific for

aflR-aflJ IGS fragment. Only A. flavus and A. parasiticus DNA was

amplified yielding amplicons of the expected size of 674 bp and no

additional or nonspecific bands were observed. In addition, none

of the other species gave a positive result with this PCR primer

set used (Figure 2A, Lane 21 to Lane 30). The β-tubulin gene

was used as a positive control with a fragment of 340 bp obtained

in the same PCR conditions for all fungal DNA (Figure 2B for

nonaflatoxigenic species).

Variation in DNA sequence can be detected by PCR-RFLP,

which can detect minor nucleotide variations (Feinberg and Vo-

gelstein 1984). A detailed comparison of the restriction maps of the

PCR product of aflR-aflJ intergenic region fragment allowed the

identification of a restriction endonuclease, BglII , which could be

used to differentiate A. flavus and A. parasiticus (Figure 1). Accord-

ing to the sequence analysis, there are 2 restriction sites for BglII in

the sequence of A. flavus that should cleave the PCR products into

3 fragments of 362, 210, and 102 bp. However, there is only one

restriction site for this enzyme in the sequence of A. parasiticus that

should produce 2 fragments of 363 and 311 bp. Therefore in order

to verify the above restriction sequences analysis, PCR-RFLP was

carried out. As expected, PCR-RFLP patterns of aflatoxigenic



Figure 1–Alignment of aflR-aflJ intergenic spacer region sequences in 10 strains of A. flavus isolates (SK30, GenBank accession number: DQ467939.1;
UR24, GenBank accession number: DQ467936.1; AF13, GenBank accession number: DQ467938.1; PT18, GenBank accession number: DQ467941.1;
AF70, GenBank accession number: DQ467940.1; SK20, GenBank accession number: DQ467948.1) and A. parasiticus isolates (2999, GenBank accession
number: DQ467949; 2043, GenBank accession number: AF441438.1; BN009-E, GenBank accession number: AF441436.1; 56775, GenBank accession
number: AF452809.1). The location of primers IGS-F/IGS-R is represented by bold arrows. The regions shadowed in pale gray represent the restriction
site for BglII endonuclease enzyme.



isolates (Table 1), obtained with BglII , showed enough differences

to distinguish A. flavus and A. parasiticus (Figure 3).

Molecular methods have been widely applied in the identifica-

tion of a large number of Aspergillus species. Several approaches

have been developed for fungal systematic studies, including ran-

dom amplified polymorphic DNA (RAPD) analysis, specific di-

agnostic PCR primers (Nicholson and others 1998), and DNA

sequencing (O’Donnell and others 1998; Paterson 2006). How-

ever, the methods more currently used are often based on the

analysis of rRNA gene (or rDNA) sequences that are universal

and contain both conserved and variable regions, allowing dis-

crimination at different taxonomic levels (Ferrer and others 2001;

Paterson 2006). Restriction analysis of PCR-amplified rDNA

sequences has been shown to be a suitable method for taxo-

nomic studies in many Fusarium and Aspergillus species (Mirete

and others 2003; Gonzalez-Salgado and others 2005; Paterson

2006; Martinez-Culebras and Ramon 2007).

Genes involved in mycotoxin biosynthesis are considered to be

more variable within closely related species (Geiser and others

2000). Genes involved in AF biosynthesis have been identified,

cloned, and studied. They include regulatory genes aflJ , aflR, and

several structural genes (Chang and others 1993; Payne and others

1993; Bennett and others 1994; Yu and others 2004; Paterson

2006). However, A. flavus group species are difficult to differentiate

even genetically. Aspergillus flavus, A. parasiticus, have shown to

possess high degrees of DNA relatedness and similar genome size.

Chang and others (1995) found the aflR gene to be virtually

identical in A. flavus and A. parasiticus, but Somashekar and others

(2004), using a limited number of strains, were able to differentiate

A. parasiticus from A. flavus based on the RFLP resulting from

digesting an aflR gene fragment with the restriction enzyme PvuII.

When dealing with both food safety and plant pathology, correct

as well as fast identification of the fungal species are essential. In

food industry, it is important to know if toxigenic fungi are present

Figure 2–(A) A total of 0.8% of agarose gel
electrophoresis of PCR products with IGSF/IGSR
primers. Lane 1— A. flavus I5; Lane 2— A. flavus
I21; Lane 3— A. flavus F17; Lane 4— A. flavus F54;
Lane M1—1 kb DNA marker (Promega); Lane 5— A.
flavus F66; Lane 6— A. flavus F87; Lane 7— A.
flavus F89; Lane 8—A. flavus NRRL 35691; Lane 9—
A. parasiticus CBS100926; Lane M2—100 bp DNA
marker (GeneRuler, Fermentas); Lane 10— A. flavus
M8; Lane 11— A. flavus M14; Lane 12— A. flavus
M18; Lane 13— A. flavus M21; Lane 14— A. flavus
M30; Lane 15— A. flavus M34; Lane 16— A. flavus
S5; Lane 17— A. flavus S7; Lane 17— A. flavus S8;
Lane 18— A. flavus S10; Lane 19— A. parasiticus S7;
Lane 20— A. parasiticus S45; Lane 21— A.
westerdijkiae NRRL 3174; Lane 22— A. fumigatus
NRRL 35693; Lane 23— A. niger CBS 120166; Lane
24— A. carbonarius CBS 120168; Lane M1—1kp
DNA marker (Promega); Lane 25— A. sulfureus NRRL
4077; Lane 26— Penicillium nordicum; Lane 27— P.
expansum NRRL 35694; Lane 28— P. citrinum NRRL
1843; Lane 29— P. verrucosum NRRL 3711; Lane
30— F. graminareum NRRL5883. (B) 0.8% of
agarose gel electrophoresis of PCR products of DNA
from nonaflatoxigenic species with β-tubulin primer
pair (TubF/TubR). Lane M—100 bp DNA marker
(GeneRuler, Fermentas); Lane 21— A. westerdijkiae
NRRL 3174; Lane 22— A. fumigatus NRRL 35693;
Lane 23— A. niger CBS 120166; Lane 24— A.
carbonarius CBS 120168; Lane 25— A. sulfureus
NRRL 4077; Lane 26— Penicillium nordicum; Lane
27— P. expansum NRRL 35694; Lane 28— P.
citrinum NRRL 1843; Lane 29— P. verrucosum NRRL
3711; Lane 30— F. graminareum NRRL5883.



in the raw material prior to production, and in agriculture it is

equally important to know if plant pathogenic fungi are present in

order to rapidly employ the correct spraying regime (Andersen and

others 2006). In the case of Aspergillus section, Flavi differentiation

of A. flavus from A. parasiticus is important because of the difference

in their metabolite production. Aspergillus parasiticus produces both

“B” and “G” type toxins, whereas A. flavus produces only “B”

type toxins. Taxonomically, A. flavus has finely roughened conidia

mostly produced from heads bearing both metulae and phialides,

while conidia of A. parasiticus are usually conspicuously roughened

and most heads bear phialides alone (Pitt and Hocking 1985).

The aflR-aflJ IGS-RFLP assay, developed in this study, is pro-

posed as a rapid and easy method to differentiate between A.
flavus and A. parasiticus species isolated from foodstuffs. Thus, this

method will help us to understand the epidemiology and distribu-

tion of A. flavus and A. parasiticus in foodstuff, where vast numbers

of isolates have to be screened in a short time. Accurate identi-

fication of the both species in the section Flavi is also of great

importance in determining toxicological risks because the toxic

profile of each species could be different.

The applicability of the developed PCR assay in grapes was also

analyzed using naturally contaminated samples. To accomplish this,

fungal DNA extraction from grapes samples was performed fol-

lowed by amplification using IGS-F/IGS-R. As shown in Figure 4,

the PCR-RFLP patterns, obtained with BglII , successfully allowed

the detection and identification of A. flavus contaminating these

samples. Since we could not get A. parasiticus strains from grapes

samples screened for aflatoxigenic fungi (El Khoury and others

2008), the study was restricted to the comparison of a single ref-

erence strain of A. parasiticus with several A. flavus strains.

In conclusion, the method described in this study represents

a much quicker and more reliable detection and differentiation

between A. flavus and A. parasiticus from pure culture as well as

in AF-contaminated grape samples. It rendered results in less than

24 h, saving reasonable time and effort in comparison to conven-

tional methods that required fungal isolation from contaminated

Figure 4–(A) PCR-based detection of A. flavus in 5 grapes samples ampli-
fied with IGSF/IGSR primers. Lane M—1 kb DNA marker (Promega); Lane
GS1—Grape sample 1; Lane GS2— Grape sample 2; Lane GS3—Grape sam-
ple 3; Lane GS4—Grape sample 4; Lane GS5—Grape sample 5. (B) Elec-
trophoretic analysis showing the restriction profiles of the aflR-aflJ inter-
genic spacer PCR product from 5 grape samples after digestion with BglII.
Lane GS1—Grape sample 1; Lane GS2—Grape sample 2; Lane GS3—Grape
sample 3; Lane GS4—Grape sample 4; Lane GS5—Grape sample 5, Lane
M—100 bp DNA marker (GeneRuler, Fermentas).

Figure 3–Electrophoretic analysis showing the
restriction profiles of the aflR-aflJ intergenic
spacer PCR product digested with BglII. Lane 1—
A. flavus I5; Lane 2— A. flavus I21; Lane 3— A.
flavus F17; Lane 4— A. flavus F54; Lane M—100
bp DNA marker (GeneRuler, Fermentas); Lane 5—
A. flavus F66; Lane 6— A. flavus F87; Lane 7— A.
flavus F89; Lane 8—A. flavus NRRL 35691; Lane
9— A. parasiticus CBS100926; Lane M—100-bp
DNA marker (GeneRuler, Fermentas); Lane 10—
A. flavus M8; Lane 11— A. flavus M14; Lane 12—
A. flavus M18; Lane 13— A. flavus M21; Lane
14— A. flavus M30; Lane 15— A. flavus M34;
Lane 16— A. flavus S5; Lane 17— A. flavus S7;
Lane 17— A. flavus S8; Lane 18— A. flavus S10;
Lane 19— A. parasiticus S7; Lane 20— A.
parasiticus S45.



food samples and difficult taxonomical identification. In addition

to that the differentiation between A. flavus and A. parasiticus by

metabolite analysis requires many steps starting from culture and

mycotoxins production (10 d) followed by extraction and purifi-

cation of these molecules ending by chromatographical analysis.
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