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Mounted on a Robotic Arm
Daniel Alshamaa, Andrea Cherubini, Robin Passama, Simon Pla, Loı̈c Damm and Sofiane Ramdani

Abstract— Fixed Motion Capture systems (Mocap) are well-established
nowadays and are available in indoor and outdoor environments. Here,
we introduce RobCap, a Moving Motion Capture System designed
for acquiring accurate three-dimensional kinematics of human motion
with large displacements. RobCap consists of an optoelectronic Mocap
(Codamotion©) mounted on a robotic arm, to track the human motion in
the local moving frame. This paper presents this device and expresses
the local kinematics of the markers in a global coordinate system. We
have acquired a set of 560 measurements, by controlling the Robotic arm
to follow the subject’s movement and to track the markers attached to his
wrist. The performance of the RobCap is evaluated through comparison
with state-of-the-art technologies. The 3D error is found to be 9.7±4.1 mm
and 3.9 ± 0.8 mm, respectively without and with calibration. RobCap increases the nominal capture volume of the fixed
Mocap from 75 m3 to 523 m3 and the operational volume from 105 m3 to 1436 m3. Our findings show that the RobCap is
accurate and precise enough to be used as a mobile Mocap system for large displacements.

Index Terms— motion capture, robotic arm, error, rigid transformation, system calibration

I. INTRODUCTION

MOTION capture systems (Mocap) have received a huge
interest in recent years. A wide range of applications in

the robotics [1], health [2], [3] and sports [4]–[6] fields have
motivated researchers and engineers to develop systems which
accurately track human motion. Optoelectronic Mocap systems
such as Vicon©, OptiTrack©, Qualisys©, Codamotion©, among
others, are well-established nowadays and achieve millimetric
accuracy [7], [8]. These systems differ by the type of markers,
the number of cameras, the field of view and the reconstruction
algorithm. One common feature is that they are all fixed, a
characteristic which limits the work envelope to the field of
view of the Mocap system. This technology uses passive or
active markers. In the former case, it uses multiple fixed high
speed cameras around the measurement area to triangulate a
precise marker position. Infrared lighting allows the capture of
high contrast images of the reflective markers up to 2kHz. At
least two cameras at a time must capture a marker otherwise
there are occlusion errors. Post-processing is required to
differentiate the markers and restore the correct path [9]. In
the latter case, active optical markers act as a light source
instead of a reflector and are deployed as infrared emitting
diodes. Here, the measurement frequency is reduced but less
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post-processing is required since since individual diodes can
be identified.

A more flexible and less expensive solution is based on
computer vision using an RGB-D camera and deep learning
algorithms, e.g., OpenPose and DeepPose. As compared to
optical technology, this is a more challenging and severely
underconstrained problem. RGB-based pose estimation in 2D
has been widely researched, but estimates only the 2D pose
[10], [11]. Learning-based discriminative methods in general
and deep learning methods in particular, represent the current
state of the art in 2D pose estimation [12], [13]. Estimating the
3D pose using this technology is even a much harder challenge
tackled by relatively fewer methods [14]–[17]. While this
solution is promising and improves quickly with advancements
in deep learning architectures, computation capacities and
training databases, its current accuracy is still far behind that of
optoelectronic technology. The average errors of such systems
range from 5 to 15 centimeters, according to the complexity of
the application and to the position of the joint being tracked,
as compared to the millimetric accuracy of optoelectronic
solutions.

Kinect is a low-cost sensor developed by Microsoft and
uses an RGB camera and an infrared projector and sensor to
track human joints in the three dimensional space [18]–[20].
However, the skeleton data obtained from this system exhibit a
high level of jitter due to noise and estimation error. This jitter
worsens when there is occlusion or a subject moves slightly
out of the field of view of the sensor [21].

Other systems worth mentioning rely on inertial technology
[22], [23]. Such systems use a set of inertial measurement
units, containing a combination of gyroscopes, magnetometers



2 , VOL. XX, NO. XX, XXXX 2021

and accelerometers to reconstruct the motion of the subject
[24], [25]. For deducing joint kinematics, usually one sensor
is positioned on each body segment to be captured. A cal-
ibration procedure is typically performed in order to obtain
the relations between the IMUs and the segment coordinate
systems. As compared to the optical technology, the place-
ment procedure is less time-consuming and can possibly be
performed by a non-expert. However, a major limitation of
this technology is that positions are not measured directly.
Rather, the trajectory of a person is approximated through the
motion of a pre-defined biomechanical model that is driven by
the IMU measurements [26]. These latter are not accurate as
they suffer from noisiness and bias in the measured angular
velocities, accelerations, and magnetic fields. As a result,
although being a relatively cheaper technology, it is still far
from millimetric accuracy achieved by the optical technology
for instance.

Electromagnetic systems (EMSs) find the unknown posi-
tions of the measurement transponders by means of time-
of-flight of the electromagnetic waves–radio waves–travelling
from the transponder to the base stations. EMS provides large
capture volumes, but are less accurate than optical systems.
The advantage here is that such systems require to determine
the positions of the transponders; moreover the human body is
transparent for the field applied [27]. However, this technology
suffers from several issues. One of the drawbacks of the
system, at the level of the experimental setup, is the sensitivity
for ferromagnetic material in the environment, leading to a
decrease in the accuracy [28]. Moreover, such systems gener-
ally have low sampling frequencies, which are even lowered
more when using multiple markers. For all the aforementioned
reasons, we will focus in the rest of the paper on optoelectronic
Mocap, since our approach relies on this technology, to obtain
a high accuracy mobile motion capture system.

One major drawback of optoelectronic Mocap systems is
that they are based on fixed cameras. This limits their work
envelope to the sensor field of view. Yet, many applications
(e.g. tracking the movement of runners, footballers, ski racers,
among other sports, or monitoring patients in mobile environ-
ments) require a Mocap that can move with the subject to
be tracked [29], [30]. As a consequence, the human motion
can be studied only over a few number of cycles [31],
[32]. The range of available Mocap systems is currently a
couple of cubic meters. For instance, a simulation on the
Vicon visualization website [33] shows that 8 infrared cameras
achieve an excellent tracking quality only within 76% of a
5 × 5 × 3 m3 volume. A larger working envelope or capture
volume requires a higher number of cameras.

To solve the problem, the intuitive solution was to try to use
stationary equipment such as treadmills and ergometers [34],
[35]. In walking, for example, it is shown that treadmill and
overground movements are similar, but can present significant
differences in the extracted kinematic parameters, although
reports argue that the order of these differences is relatively
small [35]. Nonetheless, because of restrictions to the allowed
movement excursion, such tools only partially reproduce the
real motion and the treadmill walking and running mechanics
cannot be generalized to the overground condition [36]. An-

other solution to address the problem of wider capture volumes
has been proposed by Kanade et al. [37] who installed more
than 50 cameras on a dome to cover larger displacements.
In addition to the cost aspects, this solution introduces many
technical difficulties, e.g, in defining a common volume for
calibrating all cameras. Due to these limitations, participants
are asked to perform only partial movements, limited to the
capture volume of the Mocap system. This introduces a bias
when evaluating the motion-related parameters of participants
because the dynamics of partial and unconstrained movements
can differ, and affect the performances.

To overcome these limits, researchers have proposed moving
Mocap systems. These consist in fixing the cameras to a rigid
rolling framework [38] or to a boat [39]. The Mocap can
move according to the motion of the participant, to ensure
a larger working envelope. A challenge for these systems
is the error induced in the reconstructed 3D joint positions
as the Mocap moves. Along with the noise and vibrations
caused by the device carrying the Mocap, other issues (e.g.,
delays, variable angles of sight) can affect the reconstruction
algorithm. Nonetheless, the implementation of these systems
has shown encouraging results in [38] and [39]. Yet, their
application was restricted to 2D motion capture in TV sports
events and in the movie production industry and they were
not considered for accurate 3D kinematics acquisition. The
authors of [40] and [41] show that accurate 3D kinematic
acquisition with a moving Mocap is possible. To this end,
they install a set of Vicon cameras, capturing 3D motion, on
a rolling framework. Yet, their device is complex, since it
requires installing a heavy rolling framework in addition to
a large number of cameras all around the participant’s area to
ensure proper 3D motion capture.

In this paper, we present a new device, called RobCap,
featuring a compact optoelectronic Mocap system mounted
on a robotic arm. The objective is to develop a high accuracy
mobile Mocap for 3D kinematics acquisition in large areas.
We mount Codamotion©, a Mocap made up of a compact
bar with three 3 infrared cameras, on a robotic arm with
six degrees of freedom. By controlling the robot arm, we
can move the Mocap, so that it can follow the motion of
an individual, equipped with infrared markers. As the Mocap
moves, the participant’s kinematics are acquired in the local
frame of the cameras. Since the participant is moving with
respect to the Mocap, which is itself moving with respect to
the fixed global frame, it is not straightforward to estimate the
global 3D kinematics of the individual. Hence, it also becomes
very difficult to assess the RobCap estimation performance. To
overcome this issue, we design a coordinate frame of 3 infrared
markers rigidly attached to the mobile Mocap system, to form
a local frame. These markers, i.e. the local frame, is visible
in the global frame throughout the acquisition. This allows us
to represent the motion of the local frame in the global frame
and therefore transform the kinematics of the individual from
the local to the global frame.

The rest of the paper is organized as follows. Section
II describes the materials and methods used to develop the
proposed system. Sections III and IV present and discuss the
obtained results, respectively. Section V concludes the paper
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and lists some perspectives.

II. MATERIALS AND METHODS

In this section, we present the materials and methods
used to develop and evaluate RobCap. We first describe the
RobCap setup, and then the experimental protocol. Finally,
we detail the method used to acquire the global kinematics
from the local motion, to calibrate RobCap and to evaluate its
performance.

A. Experimental setup and protocol
The experimental setup is composed of 3 parts, shown in

Fig. 1. The first part is dedicated to the RobCap. The second
– for evaluating the RobCap performance – consists of a fixed
Mocap system, with the corresponding global frame. The last
part is the area where the participants’ motion takes place.

The RobCap itself is composed of 3 elements: a robotic
arm, a Codamotion Mocap system and a rigid structure. The
robot used in our work is KUKA KR500-3 available at the
EuroMov laboratory, Montpellier, France. It is a 6-axis robot
arm that offers a 500 kg payload, 2825 mm reach and a
repeatability of 0.08 mm. The role of the robotic arm is
to displace the Mocap system according to the motion of
the individual. The Codamotion is a classic Mocap device,
which relies on active infrared optoelectronic technology. It
is characterized by its compact size (a bar of 3 cameras
of dimensions 800 × 112 × 80 mm and 5 Kg weight). Its
resolution is 0.3 mm along the depth axis and 0.05 mm
along the two other axes, and it has a nominal capture volume
(where maximum accuracy is maintained) of 5×3×5 = 75m3

and an operational working volume of 105 m3. This Mocap
device is the main element of the setup, as it must reconstruct
the 3D trajectories of the markers being tracked. The third
element is a rigid metallic chassis. It is rigidly attached to the
Codamotion. The 2D dimensions of the plane of the chassis
are 200×100 mm. At the far end of this structure lies a plate
of dimensions 100 × 100 mm, where a set of three active
infrared markers, designated O, A, and B are placed, to form a
2D Cartesian coordinate system. The objective of this structure
will be made clear in the next paragraph.

To acquire the global kinematics of the individual and
evaluate the performance of the RobCap, a second Codamotion
CXS is fixed in the experimental area. The sampling frequency
of both Mocap systems is set to 100Hz. The two systems are
synchronized using a Sync cable. Data are sent to a hub then
saved on a PC for offline processing. Data are processed using
Matlab 2017 on an i7 Windows PC.

The movement of the participants must take place in the
area visible to both the RobCap and this fixed Mocap. Three
male participants (age = 30± 5 years, height = 1.80± 0.1 m,
weight = 80 ± 5 Kg) are equipped with a set of 4 markers
on their wrist. They are requested each at a time to move in
the motion area and move their hand at their convenience,
resulting in random patterns. We use a remote control, to
make the robot follow the participants’ motion. A total of
186 random movement patterns is acquired. These include
random movement of RobCap, of the participants and their

hands with the associated markers. During data acquisition,
all 7 markers (4 on the participant and 3 on RobCap) are
tracked by both Codamotion. Since processing markers gaps
is out of the scope of this paper, we only keep the acquisitions
where all the markers are detected for at least 95% of the total
number of frames. This leaves only a set of 140 of the 186
original signals. We obtain the samples missing in these 140
signals, by linear interpolation. A short video for the system
in action is attached to this paper as supplementary material.

B. Data processing

Suppose both the fixed and mobile Mocap are tracking a
marker in the motion area. The coordinates of this marker as
viewed by the RobCap, i.e. in the local frame, are denoted as

pM = [xM , yM , zM ]⊤.

The same marker has coordinates

pF = [xF , yF , zF ]
⊤

in the global fixed frame. We also suppose that an acquisition
j ∈ {1, . . . , Nt} (Nt being the total number of acquisitions)
is composed of Nj points. This means that the n marker’s
coordinates (n ∈ {1, . . . , Nj}) at acquisition j are

pM (n) = [xM (n), yM (n), zM (n)]⊤

and
pF (n) = [xF (n), yF (n), zF (n)]

⊤,

in the local and global frames respectively. In this work, a total
of Nt = 560 measurements is acquired, so j ∈ {1, . . . , 560}.

Since RobCap moves to follow the motion of the participant,
its local frame is not known anymore as it moves also with
it. This prevents us from determining the global kinematics to
interpret the human motion, and from evaluating the RobCap’s
performance in terms of 3D reconstruction accuracy. This is
why we attach the rigid structure with the three markers O,
A and B to RobCap. At initialization, we use these markers
to define both the local frame of the RobCap and the global
frame of the fixed Mocap. As the RobCap moves, these
markers, visible by the fixed Mocap, allow us to know the
exact position of the local frame in the global frame. The
coordinates of the markers in the global frame are denoted
as OF (n), AF (n) and BF (n), respectively. Throughout the
acquisition, the coordinates of these markers in the local frame
are constant and given by:

OM (n) = [0, 0, 0]⊤

AM (n) = [1, 0, 0]⊤

BM (n) = [0, 1, 0]⊤

∀n ∈ {1, . . . , Nj} .

We are interested in transforming the coordinates pM (n) of
the marker in the motion area from the local coordinate frame
to the global coordinate frame, so that they can be compared
with pF (n). Suppose the transformed coordinates of pM (n)
are denoted ptr(n) = [xtr(n), ytr(n), ztr(n)]

⊤. The relation
between ptr(n) and pM (n) is governed by the following
equation [42]:
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Fig. 1: An illustration of the experimental setup. RobCap is a mobile Mocap mounted on a robotic arm. Three markers are
attached to the structure of the RobCap to form a plane, rigidly linked to the Mocap. All markers are detected by RobCap

and by the fixed Mocap.

ptr(n) =
FTM (n) · pM (n), (1)

where FTM (n) is the transformation matrix between the local
mobile frame M and the global fixed frame F for each point
n ∈ {1, . . . , Nj} for any acquisition j ∈ {1, . . . , Nt}.

Suppose that the bases of frames M and F at any point n
are −→m(n) and

−→
f (n), respectively. The transformation matrix

FTM (n) is a change of basis from −→m(n) to
−→
f (n), as shown

in the following equation,
−→
f (n) = FTM (n) ·−→m(n), (2)

where the coordinates of
−→
f (n) are expressed in −→m(n). The

transformation matrix FTM (n) can be thus deduced,

FTM (n) =
−→
f (n) ·−→m−1

(n). (3)

To determine the components of the two bases −→m(n) and−→
f (n), we use the coordinates of the three markers O, A and
B in both bases at each point n. As we can notice from the
coordinates of these markers in the local frame M , the basis
−→m(n) is the identity matrix and hence

−→m−1
(n) = −→m(n) = I3 =

1 0 0

0 1 0

0 0 1

 . (4)

To determine the basis
−→
f (n), we have to express the coor-

dinates of the fixed frame in the mobile frame. At first, we

create a normalized vector V F (n) =
[

u(n)
|u(n)| ,

v(n)
|v(n)| ,

w(n)
|w(n)|

]T
,

such that u(n) =
−−−−→
OFAF (n),v(n) =

−−−−→
OFBF (n) and w(n) =

u(n) × v(n). As a reminder, the coordinates OF , AF and
BF of the three markers O, A and B respectively can be
easily acquired by the fixed Mocap. The vectors u(n) and
v(n) form the 2D basis of the coordinate system in the plane
of (AOB) and w(n) is the cross product of vectors u(n) and
v(n) forming the third axis of the coordinate system. Once
the vector V F (n) is defined, the basis

−→
f (n) can be easily

determined as follows,

−→
f (n) =

[
V T

F (n) OF (n)

0T 1

]
. (5)

Replacing (4) and (5) in (3) and then injecting the latter in
equation (1), allows us to transform the coordinates of any
marker in the motion area at any point of the acquisition from
the local frame to the global frame at any point PM ,

P tr(n) =

[
V T

F (n) OF (n)

0T 1

]
· PM (n). (6)

Algorithm 1 gives the pseudocode for transforming the 3D
motion acquired by the RobCap in its local frame, to the global
frame.

C. System calibration
In the previous paragraph, we have transformed the co-

ordinates of any marker in the motion area from the local
mobile frame of the RobCap to the global fixed frame to
obtain ptr(n), n ∈ {1, . . . , Nj}, j ∈ {1, . . . , Nt}. However,
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Fig. 2: A photo of the actual setup.

a source of error that has the potential to negatively affect the
expression of the 3D kinematics of the motion acquired by
the RobCap in the global frame is the initial definition of both
frames. When a set of markers is used to define the origin
and the 2D axes of motion, both Mocap systems compute
internal transformations so that the current coordinates of
these markers form a Cartesian coordinate system. In addition,
the error of the Mocap systems varies as a function of the
angle of view of the cameras with respect to the position
of the marker. Moreover, the number of cameras that detect
each marker affects the reconstruction accuracy. Begon and
Lacouture [43] have shown that changes in couples of cameras
to reconstruct the 3D marker positions causes systematic error
in position estimation. All these sources of error, although
in the order of millimeters each, add up and may yield a
relevant difference between the transformed coordinates and
those measured directly in the global frame. To account for
these errors, we propose to go through a calibration phase.
Before going into the details of the calibration, it is important
to note the following. At first, the objective of this phase is
to suppress the sources of errors indicated above. However, it
requires the presence of a fixed Mocap system as it will be
explained in the next paragraph. This means that the absence
of Mocap system other than the one used in RobCap hinders
the application of this phase. In all cases, this phase is not
mandatory for the functioning of the system.

We recall that pF (n) and ptr(n), n ∈ {1, . . . , Nj}, j ∈
{1, . . . , Nt} designate the coordinates of the marker as mea-
sured in the global fixed frame and those transformed from
the mobile local frame of the RobCap into the global frame
respectively. We suppose that all sources of error resulting in a
difference between these coordinates can be accounted through
a calibration matrix C, such that,

pF (·) = C · ptr(·), (7)

where the calibration matrix C is defined as,

Algorithm 1: Acquiring global 3D kinematics from
the local motion of the RobCap device.

Input : PM (n),OF (n),AF (n),BF (n)
Output: P Tr(n)

1 for j ∈ {1, . . . , Nt} do
2 for n ∈ {1, . . . , Nj} do
3 u(n) =

−−−−→
OFAF (n);

4 v(n) =
−−−−→
OFBF (n);

5 w(n) = u(n)× v(n);

6 V F (n) =
[

u(n)
|u(n)| ,

v(n)
|v(n)| ,

w(n)
|w(n)|

]T
;

7 P tr(n) =

[
V T

F (n) OF (n)

0T 1

]
· PM (n);

8 end
9 end

C =


c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

0 0 0 1

 . (8)

To calibrate our system, we need to determine the 12 unknown
elements of C. To this end, we do or use a single acquisition
of NC points. Since the calibration matrix has to be same for
all the points of the acquisition, (7) can be written:

xF (n)

yF (n)

zF (n)

1

 =


c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

0 0 0 1

 ·


xtr(n)

ytr(n)

ztr(n)

1

 , (9)

∀n ∈ {1, . . . , NC}. The elements of the calibration
matrix C are computed so as to minimize the mean
square error between the observed coordinates pF (n) =
[xF (n), yF (n), zF (n)]

⊤ and the transformed coordinates
ptr(n) = [xtr(n), ytr(n), ztr(n)]

⊤ over all the points of the
acquisition n ∈ {1, . . . , NC}. To determine these 12 unknown
elements cij , i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4}, we transform
equation (9) into another solvable form shown in equation
(11) using all Nc points. Let us denote K the (4NC × 16)
matrix, CR the newly formatted (16× 1)C matrix and L
the (4NC × 1) matrix in equation (11). As we can notice,
equation (11) is in the form of KCR = L. The least square

solution of this equation is ĈR =
(
KTK

)−1

KTL, which
allows to determine all the elements cij , i ∈ {1, 2, 3}, j ∈
{1, 2, 3, 4}. Having computed the calibration matrix C using
the NC points, we use it to determine the final transformed and
calibrated coordinates pC(n) = [xC , yC , zC ]

T of any marker
in the motion area from the local mobile frame of the RobCap
to the global frame,

pC(n) = C · ptr(n), (10)

n ∈ {1, . . . , Nj}, j ∈ {1, . . . , Nt}. Algorithm 2 describes the
pseudocode for calibrating the proposed system.
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

xtr(1) ytr(1) ztr(1) 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 xtr(1) ytr(1) ztr(1) 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 xtr(1) ytr(1) ztr(1) 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 xtr(1) ytr(1) ztr(1) 1

xtr(2) ytr(2) ztr(2) 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 xtr(2) ytr(2) ztr(2) 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 xtr(2) ytr(2) ztr(2) 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 xtr(2) ytr(2) ztr(2) 1
...

...

xtr(NC) ytr(NC) ztr(NC) 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 xtr(NC) ytr(NC) ztr(NC) 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 xtr(NC) ytr(NC) ztr(NC) 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 xtr(NC) ytr(NC) ztr(NC) 1


︸ ︷︷ ︸

(4NC×16)

·



c11

c12

c13

c14

c21

c22

c23

c24

c31

c32

c33

c34

0

0

0

1

︸︷︷︸
(16×1)

=



xF (1)

yF (1)

zF (1)

1

xF (2)

yF (2)

zF (2)

1
...

xF (NC)

yF (NC)

zF (NC)

1

︸ ︷︷ ︸
(4NC×1)

(11)

Algorithm 2: Calibration of the RobCap device.
Input : P tr(n), NC

Output: PC(n)
1 j = 3;
2 for n ∈ {1, . . . , NC} do
3 for i ∈ {0, . . . , 3} do

4 K [n+ i, :] =

0 . . . 0︸ ︷︷ ︸
4i times

P T
tr(n) 1 0 . . . 0︸ ︷︷ ︸

12−4i times

;

5 end
6 while j < 4NC do
7 L[:, n : n+ j] = [P F (n) 1]

T ;
8 j = j + 3;
9 end

10 end

11 ĈR =
(
KTK

)−1

KTL %deduce elements cij thus C;
12 for j ∈ {1, . . . , Nt} do
13 for n ∈ {1, . . . , Nj} do
14 PC(n) = C · P tr(n);
15 end
16 end

III. RESULTS

As explained in Section II, we evaluate the proposed system
by tracking 140 times the positions of 4 markers, attached
to the participants’ wrists, resulting in a total of Nt = 560
measurements. At first, we transform the coordinates of the
markers acquired by RobCap to the global frame, via Algo-
rithm 1. Then, the system is calibrated using one acquisition
of NC points following Algorithm 2.

To assess RobCap’s performance, we calculate its 3D error
as the Euclidean distance between the transformed coordinates
and the ones measured by the fixed Codamotion (ground truth).
Prior to calibration, we calculate this error at each point n as√

(xF (n)− xtr(n))
2 + (yF (n)− ytr(n))

2 + (zF (n)− ztr(n))
2.

After calibration, we calculate the error as√
(xF (n)− xC(n))2 + (yF (n)− yC(n))2 + (zF (n)− zC(n))2.

Figure 3 compares the trajectory of one of the markers attached
to the participant’s wrist acquired by the RobCap and transformed
into the global frame, to that measured by the fixed Codamotion.
Figures 3(a) and 3(c) show the x, y and z coordinates along with the
3D motion without system calibration, while Figures 3(b) and 3(d)
show the same coordinates and motion after system calibration. The
average, standard deviation and maximum error of x, y, z and the 3D
coordinates of the system with and without system calibration over
all points of all 560 acquisitions are shown in Table I.

Here, one single acquisition of NC = 100 points is considered
to calibrate the system. To study the influence of the length of
the calibration acquisition, we vary NC and evaluate the overall
performance of RobCap transformed into the global frame. Figure
4 plots the errorbar of the system upon varying NC from 0 to 250
with a step of 50. Finally, the proposed system is compared to state-
of-the-art technologies. Table II compares the different approaches
according to several criteria, such as accuracy, volume of capture,
complexity and cost.

IV. DISCUSSION

As Table I shows, the maximum error in reconstructing the
3D motion of RobCap transformed into the global frame without
calibration is 22.8mm with an average of 9.7mm over all 560
measurements. The maximum error of reconstructing motion in the
x- and y-directions does not exceed 10.8mm with an average not
exceeding 5.4mm but could reach 16.1mm with an average of
9.7mm in the z-direction. The higher error along z is probably due
to the fact that motion along this axis is computed when transforming
it into the global frame through the vectorial product and not directly
measured. Any errors in both x or y directions will add contribute to
the z-direction error. On the other hand, the relatively small variation
of error with a standard deviation of 4.1mm also shows that the
system is quite precise. These results show that the RobCap has a
high accuracy and precision in reconstructing the motion even in a
situation when the whole environment is mobile, where the RobCap,
the participant and the markers to be tracked are all moving.

System calibration using one acquisition of NC = 100 points
reduces the average 3D error to 3.9mm with a maximum of 7.2mm.
This number of points is determined by varying NC and noting the
error. Fig. 4 shows that the error of the system reaches its minimum
with NC = 100 points. Longer calibration acquisitions do not result
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(a) Coordinates x, y and z without system calibration (b) Coordinates x, y and z with system calibration

(c) 3D coordinates without system calibration (d) 3D coordinates with system calibration

Fig. 3: Comparison between 3D motion coordinates of one marker acquired directly by a fixed Mocap system (blue) and
those acquired by the RobCap and transformed to the global frame (red) without (left) and with (right) system calibration.

in better reconstruction accuracy. The achieved accuracy demonstrates
the efficiency of the proposed calibration technique and equally the
high accuracy of the RobCap after proper calibration. The calibration
also has a significant positive impact on the precision of the system,
enhancing the standard deviation of the error to around 0.8mm.
Nonetheless, one downside of the proposed calibration is the need for
a fixed Mocap system in the experimental area, which is not always
the case. Another downside is that the system has to be calibrated
at each new definition of the initial and global frames. This means
that each time new frames are defined, the previous calibration is
not valid anymore and a new acquisition has to be considered. It is
noteworthy recalling here that the calibration of the RobCap with
the global frame serves only to express the motion acquired by the
RobCap in the global frame. This might not be needed all the time,
especially when the relative motion is sufficient.

In Table II, we compare the proposed system to other existing tech-
nologies and approaches. The criteria chosen here in our comparison
are the error, the volume of capture, the complexity comprising the
number of cameras and the difficulty to mount the system and the
overall cost. Although other criteria could have also been chosen,
we suppose that these four are the most relevant to evaluate a
mobile Mocap system, especially that exact information regarding
other criteria might not be available for all systems. We compare
the proposed system RobCap to two fixed and three mobile Mocap
systems. The first fixed Mocap system is of the same type as the one

used to build our RobCap device, ‘Codamotion’. We use this system
as a reference to show the utility of making our proposed system
mobile. The second fixed Mocap system is proposed by Kanade
et al. [37]. Here, the authors build a system of 50 cameras on a
hemispherical dome of radius 5m to enlarge the capture volume. We
consider that the error of these fixed Mocap systems is equal to 0,
as they form the global coordinate system and thus the reference
that other systems compare with. The first mobile Mocap system
is an RGB Camera-based solution using deep learning models for
pose estimation [44]. Although this technology can be used for fixed
and mobile Mocap systems, we consider here the broader range of
applications for a fair comparison with our proposed system. The
second mobile Mocap system is proposed by Kersting et al. [39].
It is composed of three Basler cameras sampled at 30Hz mounted
on a large catamaran-type motor boat with cameras set at various
heights and the most distant cameras about 14m apart. The third
system is proposed by Begon et al. [40] where a rolling motion
analysis system is built using eight cameras of type ‘Vicon’ placed
at a 2.35m height and sampled at 100Hz. The system expresses the
local kinematics of the participant walking on a pathway in a global
system of coordinates. Table II provides approximate ranges of the
performance of the system with respect to the four chosen criteria.
This is because the performance of each system varies according
to the experimental conditions. We thus consider an average value
representing the performance of each system with respect to each
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TABLE I: The 3D reconstruction accuracy of the RobCap
after transformation to the global frame as compared to a
fixed Mocap system, with and without system calibration.

Error (mm) without calibration with calibration NC = 100

x y z 3D x y z 3D

mean 5.2 5.4 8.8 9.7 1.8 1.7 2.9 3.9

std 2.6 2.8 3.1 4.1 0.3 0.4 0.7 0.8

max 10.6 10.8 16.1 22.8 4.2 3.3 4.9 7.2

TABLE II: Comparison between the proposed system and
state-of-the-art technologies in terms of accuracy, volume of

capture, complexity and cost.

System

Criterion error (mm) volume (m3) complexity cost

Fixed Mocap [45] 0 ≈ 75 low average
Kanade et al. [37] 0 ≈ 60 high high
Pose estimation [44] 100− 150 > 500 low low
Kersting et al. [39] ≈ 30 ≈ 35 average low
Begon et al. [40] 20− 24 ≈ 90 average average
RobCap 4− 12 > 500 average high

criterion.
As the table shows, the proposed system outperforms the other

mobile Mocap systems in terms of the overall accuracy, as shown
by the lowest error. As mentioned earlier in this section, the fixed
Mocap systems are the reference that we compare the performance
of the mobile systems with and for that reason their error is said to
be 0. The advantage of the mobile Mocap systems lies in enlarging
the capture volume. As we can see, the proposed system along with
the pose estimation method achieve the largest capture volume. The
values shown here correspond to the nominal capture volume of all
systems. In practice, operational working volumes are much higher
than that. As compared to the fixed Mocap system of the same
type, the device increases the nominal capture volume from 75m3

to 523m3 and the operational volume from 105m3 to 1436m3. We
would argue that mounting the proposed system is relatively of low
complexity, especially that the Mocap system is compact and ready
to use and can be easily attached to a robotic arm. However, building
the whole system in order to acquire the global kinematics, adds a
non-negligible complexity. Another major challenge of such system
is occlusion. In order to obtain measurements with a high detection
(> 95% of the total frames), we had to realize the experiments in
a very controlled environment in a way that all markers stay visible
and detected by the Mocap systems. In practical environments, when
the whole body of the person is equipped with markers, it would be
difficult to guarantee such high visibility and detection rate. In such
cases, methods to deal with occlusion and thus missing data have
to be proposed. Another challenge that face the proposed system
is the automatic control of the robotic arm. Here, it was displaced
via a remote control, but a tracking system to follow the motion of
the person and control the robotic arm is highly recommended. This
might influence the quality of acquired signals and thus the high 2D
reconstruction accuracy. Moreover, the proposed system comes at a
relatively higher cost than the existing systems, with the cost of the
robotic arm, the Codamotion Mocap system and miscellaneous costs
of implementation. However, the major advantages of the proposed
system as compared to the cheaper and less complex ones, is that it
has at the same time a higher error and a larger capture volume, yet
at the expense of higher cost and complexity.

Fig. 4: Influence of the length of calibration acquisition NC

on the overall performance of the RobCap transformed into
the global frame.

V. CONCLUSION AND PERSPECTIVES

In this paper, we presented a new mobile Mocap system, called
RobCap. The device is composed of a robotic arm and a compact
Mocap system of type Codamotion. As compared to its fixed counter-
part, the device increases the nominal capture volume from 75m3 to
523m3 and the operational volume from 105m3 to 1436m3. At first,
the motion acquired by the RobCap was transformed to the global
frames. After that, a calibration approach was proposed to account for
the sources of error that affect the quality of the reconstruction when
defining the local and the global frame. The system was evaluated
on 560 measurements and the performance of the system was then
compared to a fixed Mocap system of the same type, Codamotion. We
noted an error of 9.7±4.1mm without calibration and 3.9±0.8mm
with calibration using a single acquisition. The influence of the length
of the calibration acquisition was studied and results showed that
best performance was recorded for 100 points. System calibration
using acquisitions beyond this number of points showed no additional
improvement in the overall performance. Although of relatively
higher cost and a bit more complex, the proposed system outperforms
existing technologies in terms of accuracy and volume of capture. As
a summary, the obtained results show that RobCap can act as a mobile
Mocap device for large displacements.

Future work will investigate the usage of the real time processing
function of the markers coordinates of Codamotion. This allows for
real time motion tracking of the participant and thus automating the
control of the robotic arm. Moreover, we aim to propose strategies
to handle occlusion. As opposed to other optoelectronic Mocap
systems where cameras generally surround the participant’s motion,
the compact Mocap system used here allows for only one side of
view of motion, which implies having more markers occluded. At
the experimental level, we aim to use and evaluate the proposed
system in real applications with complex activities and 3D full-body
reconstruction.
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APPENDIX

A video for the system in action is attached to the paper as
supplementary material.
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