
HAL Id: hal-03539307
https://hal.science/hal-03539307

Submitted on 24 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Nash equilibrium solutions in multi-agent project
scheduling with milestones

Přemysl Šůcha, Alessandro Agnetis, Marko Šidlovský, Cyril Briand

To cite this version:
Přemysl Šůcha, Alessandro Agnetis, Marko Šidlovský, Cyril Briand. Nash equilibrium solutions in
multi-agent project scheduling with milestones. European Journal of Operational Research, 2021, 294
(1), pp.29-41. �10.1016/j.ejor.2021.01.023�. �hal-03539307�

https://hal.science/hal-03539307
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Nash equilibrium solutions in multi-agent project scheduling with
milestones

Přemysl Š̊uchaa,c,∗, Alessandro Agnetisb, Marko Šidlovskýa, Cyril Briandc

a Czech Technical University in Prague
Czech Institute of Informatics, Robotics, and Cybernetics

Jugoslávských partyzán̊u 1580/3, 160 00, Prague, Czech Republic

b Università degli Studi di Siena
Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche

via Roma 56, 53100 Siena, Italy

c LAAS-CNRS, Université de Toulouse, CNRS, UPS
7 Avenue du Colonel Roche, 31400 Toulouse, France

Abstract

This paper addresses a project scheduling environment in which the activities are partitioned among a

set of agents. The project owner is interested in completing the project as soon as possible. Therefore,

she/he defines rewards and penalties to stimulate the agents to complete the project faster. The

project owner offers a per-day reward for early project completion and defines intermediate project

milestones to be met within specific due dates, with associated per-day penalties. Each agent can,

therefore, decide the duration of her/his activities, taking into account linear activity crashing costs,

the reward for early project completion, and the penalty arising from violating milestone due-dates.

We consider Nash equilibria, i.e., situations in which no agent has an interest in individually changing

the duration of any of her/his activities, and in particular, the problem of finding a minimum-

makespan equilibrium. This problem is known to be NP-hard, and in this paper, we (i) propose a

new and efficient exact algorithmic approach for finding the minimum-makespan equilibrium and (ii)

through an extensive computational campaign we evaluate the role played by milestones in driving

the project towards the owner’s goal.

Keywords: project scheduling, Nash equilibria, flow networks, milestones, lazy-constraint

generation.

∗Corresponding author
Email addresses: suchap@cvut.cz (Přemysl Š̊ucha), agnetis@diism.unisi.it (Alessandro Agnetis),

marko.sidlovsky@gmail.com (Marko Šidlovský), briand@laas.fr (Cyril Briand)

Preprint submitted to Elsevier January 8, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0377221721000400
Manuscript_87de7d383a2300d9f54b857c1a862165

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0377221721000400
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0377221721000400

1. Introduction

This paper addresses a multi-agent project scheduling problem having many stakeholders. The

stakeholders are the project owner (or contractor, investor) managing the project and several agents

(such as subcontractors, firms, organizations) that participate in carrying out a large number of

activities of a project. This situation is typical of large-size collaborative projects in civil engi-

neering, building industry, aeronautical or naval construction. In such project settings, key factors

to project success include synchronization among the various stakeholders, correct allocation of re-

sources and careful progress monitoring, which can be facilitated by appropriate milestone setting

(e.g. [Spalek 2005] includes project monitoring and resource planning among factors having large

impact on project success). This work explicitly acknowledges the presence of stakeholders, inter-

mediate project milestones, and the financial penalties each agent has to bear if some milestone is

reached late in the project.

The project consists of a set of activities, interconnected by precedence relations, designed to reach

a particular goal. The activities are carried out by the agents, each having exclusive control over a

subset of activities. The assignment of activities to agents is given, as it reflects the various agents’

skills and competencies. A normal duration is specified for each activity. Paying a certain per-day

crashing cost, the owner of the activity may decide to shorten it (possibly up to a minimum crash

duration). When all activities have normal duration, the project owner attains a certain normal

makespan. In this paper, we adopt the project owner’s point of view. The project owner is interested

in completing the project as soon as possible. Therefore he/she offers each agent a fixed reward

(in general different for individual agents) for each day of makespan decrease with respect to the

normal makespan. This paper introduces further leverage through which the project owner can

achieve control over project implementation. We consider that some nodes of the project network

are specified as milestones, and each of them has a specific due date. If a milestone is reached after

its due date, each agent pays a certain per-day penalty, while no penalty is incurred if the due date is

not violated. Hence, the total profit of an agent results from the balance between the reward attained

from early project completion, the payments related to activity crashing, and the penalties associated

with milestones’ due date violations.

We model a project scheduling problem related to a classical noncooperative game setting, in

which each agent’s strategy consists of deciding the duration of his/her activities. As in classical

noncooperative games, our analysis aims at finding Nash equilibria, i.e., situations in which no agent

has an interest in changing her/his activities’ durations if no other agent does so. To this aim, complete

knowledge of the game parameters is generally assumed. The primary motivation for this approach

is that, by computing a minimum-makespan Nash equilibrium, the project owner (who is interested

in complying with the milestones and minimizing project completion time) is able to prescribe (or

negotiate) stable activity durations. For the purpose of our analysis, it is worth mentioning that an

agent does not need to know the rewards or crashing costs of the other agents. Indeed, for an agent to

be able to elaborate the best response to the other agents’ strategies, he/she only needs to know the

2

duration of each activity chosen by the other agents and the topology of the whole project network.

Instead, in order to enforce a certain Nash equilibrium, the project owner needs to have complete

information on all the agents’ parameters. Hence, our model falls in the category of direct protocols

according to [Kress et al. 2018], where the agents publicly disclose their job durations.

The project scheduling problem presented in this paper is an extension of the classical

project time/cost trade-off problem [Phillips and Dessouky 1977]. With respect to the classifica-

tion of scheduling problems introduced in [Brucker et al 1999], our setting builds on a variant of

MPS|prec|Cmax problem where each activity duration can be viewed as a different mode to carry

out the activity, the capacity of resources is disregarded, and the reward is assumed as a non-renewable

resource (see Section 4 of [Brucker et al 1999]). The additional problem characteristics are the pres-

ence of agents and milestones.

This paper revisits the models presented in previous papers, in which milestones were not consid-

ered. In [Agnetis et al., 2015], it was shown that finding the minimum makespan Nash equilibrium

is in general NP-hard. A large ILP formulation was proposed in [Briand et al. 2017] to compute the

minimum-makespan Nash equilibrium. The contribution of this paper is twofold:

(i) On the methodological side, we propose a new algorithmic approach for finding the minimum-

makespan equilibrium, based on a compact master formulation and a lazy-constraint generation

technique. When no milestones are considered, we compare the efficiency of this algorithm with

the solution of the ILP formulation described in [Briand et al. 2017].

(ii) From a managerial viewpoint, we employ the model and algorithm presented in the paper to

investigate the role of milestones – and how they should be set up – to drive the project towards

the owner’s goal.

The remainder of the paper is structured as follows. In Section 2, we discuss existing literature

on multi-agent project scheduling problems. In Section 3, basic definitions are reviewed, and the

problem is formally stated. Complexity issues are discussed in Section 4. In Section 5, we define the

key concepts through which an agent can modify its profit in the face of a given strategy. In Section

6, an ILP formulation for the problem is introduced, and the lazy-constraint approach is illustrated

in detail. Section 7 illustrates the design of computational experiments, the results, and managerial

insights. Finally, in Section 8, our conclusions are drawn.

2. Related literature

Various models have been introduced to describe the problems arising when multiple agents in-

teract in the execution of a complex project. Some models explicitly consider how common limited

resources can be allocated to agents. In [Confessore et al. 2007], an auction-type mechanism is used

for coordinating resource allocation among agents, each owning a particular project. Specific alloca-

tion mechanisms and their theoretical properties are analyzed in [Varakantham and Fu 2017], while

3

in [Van Eynde 2017] a resource negotiation mechanism is presented inspired by the dynamics of board

games.

A few papers propose cooperative game-theoretic approaches to address various project manage-

ment issues. In the model analyzed in [Brânzei et al 2002], penalties are generated as some activities

are delayed. The authors analyze several rules for sharing penalties among the agents. This is also

the focus of [Estévez-Fernández 2012], in which general reward functions for project expediting are

considered. A cooperative game-theoretic approach is used in [Moradi et al. 2019] to assess the risks

related to agent coordination in a multi-agent project scheduling environment. In [Arık et al. 2019]

a scenario is studied in which agents may form coalitions to decrease their individual costs in the

face of project makespan reduction. They propose a mathematical program to find the best tradeoff

between the project owner’s and agents’ objectives of reducing project makespan and, respectively,

maximizing individual profit.

Non-cooperative models have also been proposed. A literature overview of game-theoretic per-

spectives on machine scheduling problems is provided in [Kress et al. 2018]. The authors concentrate

on problems where part of the machine scheduling problem’s relevant data is private information of

selfish agents. The paper provides a systematic classification scheme extending the α|β|γ notation.

In [Averbakh 2010], two agents perform the same activities of a project, and they get revenue for

each activity completed before the other agent. Their strategy consists of deciding the order in which

activities should be carried out, and a polynomial algorithm is given for computing Nash equilibria.

In the non-cooperative model proposed in [De Ita Luna et al. 2015], the agents’ strategies consist of

choosing the subset of activities to be performed and their sequence. The authors analyze the prob-

lem of finding the best Nash equilibrium and propose a greedy heuristic. A somewhat closer model to

ours has been studied in [Bergantiños and Lorenzo 2019]. In their model, the project owner penalizes

individual firms when there are delays. They compare the situation in which the penalty applies only

when the whole project is delayed and the situation in which individual agents are penalized upon

delaying their activities, even if the project is completed on time. While the application of the two

models results in different utility for the project owner and the agents, the authors find that project

delay is relatively insensitive to this issue.

In this paper, we extend the modeling approach in [Agnetis et al., 2015, Briand et al. 2017]. These

papers deal with finding minimum-makespan Nash equilibria in a situation in which agents are re-

warded for expediting project completion, but they bear costs to shorten their respective activities.

The problem is shown to be strongly NP-hard in [Agnetis et al., 2015], and a large ILP formulation is

proposed in [Briand et al. 2017] for its solution. In [Agnetis et al., 2019], an analysis of the makespan

values corresponding to Nash equilibria shows that the increase of makespan values related to Nash

equilibria with respect to a reference situation where stability is not required (price of stability) is

typically small. This observation advocates the effectiveness, for the project owner, of issuing binding

agreements based on the best (i.e., minimum-makespan) Nash equilibria.

4

3. Multi-agent project scheduling with milestones

In order to formally state the problem addressed in this paper, called Multi-Agent Project Schedul-

ing problem with Milestones (mapsm), we must introduce a number of definitions. We assume ba-

sic knowledge of the classical, single-agent project time/cost trade-off problem (see, for example,

[Phillips and Dessouky 1977]).

• Project network. G = (N,E) is an activity-on-arc network. N is the set of nodes (N =

{0, . . . , r}) and E is the set of arcs. Arcs correspond to project activities, nodes specify finish-

start precedence relations. Nodes 0 and r represent the project beginning and end, respectively.

In what follows, n denote the number of real (i.e., non-dummy) activities.

• Agents and strategies. The activities are partitioned among a agents, denoted as A1, . . . , Aa.

The set of activities belonging to agent Au is denoted by Eu. An agent has total control over

its activities only. The individual strategy of agent Au, denoted by Su, consists in deciding the

duration of each activity (i, j) ∈ Eu, denoted by pij and is assumed to be integer. A strategy S

is a collection of a individual strategies Su, one for each agent. Given a strategy S, the project

makespan D(S) is the length of the longest path from node 0 to node r. Given a strategy S,

we say that a node i ∈ N is reached at ti if all activities entering node i are completed at time

ti. Note that tr = D(S).

• Normal and crash durations. For any activity (i, j) ∈ E, it must hold p
ij
≤ pij ≤ pij . The

values p
ij

and pij are called crash and normal duration of (i, j) respectively. Symbols S and

S denote strategies in which all activities have crash and, respectively, normal duration, while

D and D indicate the corresponding makespan values. For each node i ∈ N , tmin
i and tmax

i

denote the times at which i is reached in S and S respectively.

• Crashing costs. For each activity (i, j), cij is its unit crashing cost. So, if the duration of

(i, j) is pij , the agent incurs the cost cij(pij − pij).

• Reward and sharing ratios. We denote by π > 0 the reward endowed by the project owner to

the agents for each day the project makespan is decreased with respect to the normal makespan.

So, the total reward distributed by the project owner for shortening the makespan from D to

D is π(D−D). Agent Au receives a given, fixed share wu of the total reward (wu ≥ 0, Au ∈ A

and
∑

Au∈A wu = 1). Therefore, for a given strategy S, agent Au receives wuπ(D −D(S)).

• Milestones and penalties. We let Nm ⊆ N denote the set of milestones. For each milestone

m ∈ Nm, a due date dm is specified. Given a certain strategy S, a milestone m is reached when

all activities corresponding to the arcs entering milestone m are completed. The time tm(S) (or

simply tm) at which the milestone m is reached is called the makespan of milestone m. Then,

Tm = max{0, tm− dm} is the tardiness of milestone m. If Tm > 0, we say that the milestone m

is tardy, while if tm − dm < 0 it is early. We also say that m is non-tardy if tm − dm ≤ 0 and it

5

is non-early if tm − dm ≥ 0. A per-day tardiness charge qmu is specified for each milestone m

and agent Au, hence the penalty paid by agent Au related to milestone m is qmuTm. Without

loss of generality, we assume that the project end is always a milestone, i.e., r ∈ Nm. Note

that, as long as the current makespan exceeds dr, for each day the project makespan is reduced

each agent Au receives qru in addition to wuπ. Of course, if the project owner does not wish to

enforce a specific due date for project completion, qru = 0 for all agents.

• Agent profit. Given a strategy S, the profit of agent Au, denoted by Zu(S), results from the

balance between rewards, costs and penalties. Profit Zu(S) is given by

Zu(S) = wuπ(D̄ −D(S))−
∑

(i,j)∈Eu

cij(pij − pij)−
∑
m∈M

qmuTm.

• Nash equilibria. A strategy S = {S1, . . . , Sa} is a Nash equilibrium if for all agents Au and

each strategy S′u 6= Su,

Zu(S−u, Su) ≥ Zu(S−u, S
′
u). (1)

where S−u denotes the individual strategies of all agents other than Au. If S is a Nash equilib-

rium, no agent Au has interest in changing its strategy from Su to S′u, as long as other agents

do not change theirs, and therefore a Nash equilibrium is a stable strategy.

We can now formulate the problem addressed in this paper as follows:

Multi-Agent Project Scheduling problem with Milestones (mapsm): Given a project network,

the set of agents, the set of milestones, cost and reward information for each agent, find, among Nash

equilibria, a strategy having the minimum project makespan.

0

1

2

Nm={2,3}

3

q2,u=40

q3,u=20
([6,7],70)

([5,9],30)

([1,3],20)

([7,8],20)

([4,6],50)

agent 1
agent 2

([pij,pij],cij)

d3=14

d3=8

Figure 1: An example of mapsm.

Example 1. Fig. 1 illustrates a small instance of mapsm with five activities

{(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)}, and two agents. Agent A1 owns activities (0, 2) and (1, 3),

agent A2 owns (0, 1), (1, 2) and (2, 3). Each activity is characterized by ([p
ij
, pij], cij). The per-day

reward from the project owner is π = 120, which is shared equally among the agents (wu = 0.5). The

project assumes two milestones Nm = {2, 3}. The due date of milestone 2 is 8, and its per time unit

penalty is 40 for each agent (q21 = q22 = 40), the due date of milestone 3 is 14, and its penalty is 20

for each agent (q31 = q32 = 20).

6

Under the normal strategy (i.e., S̄ = (7, 9, 3, 8, 6)), the project makespan is 16 and the profit of

the agents is negative (Z1 = Z2 = −120), since they are penalized for tardy milestones 2 and 3. An

example of a Nash equilibria is S′ = (7, 8, 1, 7, 6). In this case, the project makespan is 14, and the

profits of A1 and A2 are Z1 = 70 and Z2 = 80 respectively. No agent has an incentive to deviate

from S′. On the other hand, solution S′′ = (6, 8, 2, 7, 5), having makespan equal to 13 and profits

Z1 = 140, Z2 = 40 is not a Nash equilibria since agent 2 can increase the duration of (0, 1) and (2, 3)

and decrease the duration of (1, 2). This increases the makespan by 1 but it also increases the profit

of A2 by 40. Unfortunately, this will not please A1 whose profit will be reduced by πw1 = 60.

4. Problem complexity and the existence of a Nash equilibrium

mapsm is NP-hard in the strong sense, even when Nm = ∅ [Agnetis et al., 2015]. Note that if we

only aim at finding any strategy which is a Nash equilibrium the complexity is different.

Theorem 1. Given a project network, the set of agents, the set of milestones, cost, and reward

information for each agent, a Nash equilibrium can be found in polynomial time.

Proof. In order to find a Nash equilibrium, one can search for a strategy SL which is lexicographically

optimal for the various agents, i.e., given an agents’ numbering, a strategy that (i) maximizes the

profit for agent A1, (ii) among all strategies which are optimal for agent A1, maximizes the profit

of agent A2; (iii) among the strategies satisfying the two above conditions, maximizes the profit of

agent A3, and so on. Strategy SL is clearly a Nash equilibrium since a better strategy exists for, let

say, agent Ak only if at least another agent Ai with i < k gives up part of its profit with respect to

SL. Obviously, a different numbering of the agents may yield a different strategy, but still a Nash

equilibrium. Strategy SL can be found by solving a linear program, as reported in Appendix A.1. �

A consequence of Theorem 1 is the following corollary.

Corollary 1. Every instance of problem mapsm has at least one Nash equilibrium.

5. Decreasing and increasing cuts

This section elaborates on how an agent can improve its profit when a certain strategy S is given.

The following definitions are needed, which generalize definitions given in [Agnetis et al., 2015].

• Non-poor strategy. A strategy S is a non-poor strategy if no agent Au can increase its profit

by modifying the processing times of its activities without affecting the project makespan and

without increasing the tardiness of any milestone. Formally, S is non-poor if for no agent Au

an individual strategy S′u exists such that Zu(S) < Zu(S′u), D(S′) = D(S) and tm(S′) ≤ tm(S)

for all m ∈ Nm, with S′ = (S−u, S
′
u). A Nash equilibrium is always non-poor.

• Critical graph G(S). Given a strategy S, the longest paths from node 0 to each milestone m on

G are the critical paths. An activity is critical if it belongs to at least one critical path. We let

7

A(S) denote the set of all critical activities, and call critical graph the graph G(S) = (N,A(S))

consisting of all critical activities.

If S is non-poor, the only way for Au to increase its profit is to change the duration of activities in

Eu, modifying either the project makespan, or the tardiness of some milestone(s), or both. Sensible

modifications of Au to a strategy S can be characterized in terms of cuts in the critical graph G(S).

• Cut in G. Given a partition (X,N \X) of the set of nodes N such that 0 ∈ X and at least

one milestone m is such that m ∈ N \X, a cut ω(X) of G is the subset of arcs across X and

N \X. The arcs (i, j) ∈ ω(X) with i ∈ X and j ∈ N \X are called forward arcs, denoted by

ω+(X). The arcs (i, j) ∈ ω(X) with i ∈ N \X and j ∈ X are called backward arcs, denoted by

ω−(X), and ω(X) = ω+(X) ∪ ω−(X).

• Decreasing cut for agent Au. Given a strategy S and the corresponding critical graph G(S),

a decreasing cut for agent Au is a cut ω
(u)
dec on G(S) such that all forward arcs belong to Au and

the duration of each of them can be decreased by one unit. We denote forward and backward

arcs as ω
+(u)
dec and ω

−(u)
dec .

• Increasing cut for agent Au. Given a strategy S and the corresponding critical graph G(S),

an increasing cut for agent Au is a cut ω
(u)
inc on G(S) such that at least one forward activity

belongs to Au and its duration can be increased by one time unit, while all backward activities

belong to Au and the duration of each of them can be decreased by one unit. We denote forward

and backward arcs as ω
+(u)
inc and ω

−(u)
inc respectively.

We say that we apply a decreasing cut ω
(u)
dec(X) to mean that we decrease (by one time unit) the

duration of all activities in ω
+(u)
dec (X), and increase (by one time unit) the duration of all activities

in ω
−(u)
dec (X) which can be extended. Decreasing (by one time unit) the duration of all activities

in ω
+(u)
dec (X), we decrease by at least one time unit the makespan of all milestones which belong to

N \X. In particular, if all backward arcs can be increased by one time unit, then the makespans of

all milestones in N \ X are decreased by exactly one time unit. (Notice that if r ∈ X, the project

makespan is not affected by such operation.)

0 1

2 r

p0,1>p0,1

p2,r>p2,r

p1,2=p1,2
Nm={2,r}

ωdec(X)
(u)

Figure 2: Decreasing cut decreasing the makespan by 2.

However, suppose that all the paths leading to a certain milestone m in N \X have two (or more)

arcs in ω
+(u)
dec (X), and all such paths have at least one arc in ω

−(u)
dec (X) which cannot be increased

(either because such an arc has normal duration or because it does not belong to Au). An example

of such a scenario is illustrated in Fig. 2. In this case, tr is decreased by at least two time units, and

8

the backward arc becomes non-critical. Moreover, in this case certain arcs (i, j) ∈ ω+(u)
dec (X) are such

that no path fully contained in X exists from the initial node 0 to i. Let Ũ ⊆ X be the set of such

nodes i. If some i ∈ Ũ is a milestone, its makespan is also affected by the cut. In the example in

Fig. 2, t2 is affected by the application of the decreasing cut, even though 2 ∈ X.

When a decreasing cut ω
(u)
dec(X) is applied, the agent bears a crashing cost related to shortening

forward activities, but also savings due to (i) extending backward activities, (ii) possibly reducing

the tardiness of some milestone, and (iii) reducing the overall project makespan. Hence, we can

associate with a decreasing cut ω
(u)
dec(X) a unit cost W

(u)
dec (X) defined as:

W
(u)
dec (X) =

∑
(i,j)∈ω+(u)

dec (X)

cij −
∑

(i,j)∈ω−(u)
dec (X),pij<p̄ij

cij −
∑

m∈N\X,m is tardy

qm − πwu. (2)

In general, (2) overestimates the real cost, since, as we already observed, a unit decrease in the

activities of ω
+(u)
dec (X) may result in a multiple decrease of the makespan of some milestone(s) in

N \X, and possible milestones in X are not accounted for in (2). So, if we let W̃
(u)
dec (X) be the real

cost related to applying the cut ω(u)(X), it may happen that W̃
(u)
dec (X) < W

(u)
dec (X).

Nonetheless, the next theorem shows that decreasing cuts that overestimate the real cost can be

disregarded when searching for a decreasing cut that minimizes W
(u)
dec (X).

Theorem 2. If ω
(u)
dec(X

∗) minimizes W
(u)
dec (X), then W

(u)
dec (X∗) = W̃

(u)
dec (X∗).

Proof. See Appendix A.2. �

A symmetric discussion holds with respect to increasing cuts. We say that we apply an increasing

cut ω
(u)
inc(X) to mean that we increase (by one time unit) the duration of all forward activities belonging

to Au which are not at normal duration (by definition of increasing cut, there must be at least one such

activity) and decrease by one time unit all backward activities (they all belong to Au by definition).

By extending (by one time unit) all forward activities of ω
(u)
inc(X) that are not at normal duration,

Au gets a saving. However, to avoid multiple extensions of the makespans of the milestones in N \X,

all backward activities must be crashed. The benefit from activity extension is therefore balanced

by (i) the additional crashing cost of backward activities, (ii) the possibly increased tardiness of

milestones in N \ X, and (iii) the missed reward due to project makespan increase. So, one can

associate with an increasing cut ω
(u)
inc(X) the following unit saving W

(u)
inc (X):

W
(u)
inc (X) =

∑
(i,j)∈ω+(u)

inc (X)

cij −
∑

(i,j)∈ω−(u)
inc (X)

cij −
∑

m∈N\X,m is nonearly

qm − πwu. (3)

Symmetrically to Equation (2), it may happen that (3) underestimates the real saving. In fact,

the definition of increasing cut only requires that at least one forward activity (call it (i, j)) can be

increased. The set ω
+(u)
inc (X) may contain other activities, but these may be at normal duration or

belong to other agents, so they cannot be indeed increased. In conclusion, increasing the duration of

activity (i, j) may not affect the makespans of all milestones in N \ X. So, if we call W̃
(u)
inc (X) the

9

real saving achieved by Au extending the activities of ω
+(u)
inc (X) (and crashing by one time unit all

the activities of ω
−(u)
inc (X) which can be crashed), it may happen that W̃

(u)
inc (X) > W

(u)
inc (X).

Nonetheless, a symmetric result to Theorem 2 can be established.

Theorem 3. If ω
(u)
inc(X

∗) maximizes W
(u)
inc (X), then W

(u)
inc (X∗) = W̃

(u)
inc (X∗).

Proof. See Appendix A.3. �

Now, given a strategy S, for a decreasing cut ωdec(X) to be profitable to a certain agent,

one must have that Wdec(X) < 0 in (2), while symmetrically an increasing cut ωinc(X) is prof-

itable if Winc(X) > 0 in (3). This leads to the following characterization of Nash equilibria (see

[Agnetis et al., 2015] for formal details).

Theorem 4. Given a strategy S, S is a Nash equilibrium if an only if, for each agent Au ∈ A, for

all decreasing cuts ω
(u)
dec(X), W

(u)
dec (X) ≥ 0 and for all increasing cuts ω

(u)
inc(X), W

(u)
inc (X) ≤ 0.

The above characterization of Nash equilibrium is used in our algorithm described in the following

section.

6. ILP formulation with lazy constraints

An ILP formulation exploiting the duality between the minimum value of the flow and the

maximum cut capacity in a residual network was used to solve mapsm without milestones in

[Briand et al. 2017]. A disadvantage of this approach is that the ILP model size quickly grows

with the number of activities n and even more with the number of agents a. Since the problem

with milestones would require an even larger ILP formulation, we propose a different approach. We

define a relatively small master problem formulation in which constraints related to increasing and

decreasing cuts are progressively generated in a lazy-constraint fashion by solving an appropriate

subproblem. The main advantage is a lower memory requirement and a higher performance, as it is

shown by experiments in Section 7.

In this section, we first give a conceptual formulation of mapsm and then show how it can be

solved through a lazy-constraint generation approach (see [Dantzig et al. 1959]). In this formulation,

sij denotes the slack time of activity (i, j).

min

(
tr +

∑
∀(i,j)∈E cij(pij−pij)+

∑
∀m∈Nm

∑
∀u∈A qmuTm

1+
∑
∀(i,j)∈E cij

(
pij−pij

)
+
∑
∀m∈Nm

∑
∀u∈A qmu(tmax

m −dm)

)
(4)

s.t.

tj − ti − pij − sij = 0 ∀(i, j) ∈ E (5)

p
ij
≤ pij ≤ pij ∀(i, j) ∈ E (6)

t0 = 0 (7)

tm − dm ≤ Tm ∀m ∈ Nm (8)

W
(u)
dec (X) ≥ 0 ∀ω(u)

dec(X),∀Au ∈ A (9)

W
(u)
inc (X) ≤ 0 ∀ω(u)

inc(X),∀Au ∈ A (10)

10

ti, Tm, pij ∈ Z≥0, sij ∈ R≥0 (11)

The objective function (4) has two parts. The first one minimizes project makespan tr. The

second part ensures that the optimal solution is non-poor by minimizing the overall cost of all agents,

i.e., overall crashing cost and tardiness penalty. As tr is an integer value, and the second term is

always smaller than 1, the second term does not affect the project makespan. Constraints (5) and (6)

define precedence constraints and processing time ranges for each activity. The project starts at time

0 (constraint (7)). Constraints (8) define milestone tardiness Tm. Constraints (9) and (10) express

the fact that there must not be any profitable decreasing or increasing cut, and hence the strategy is

a Nash equilibrium.

Constraints (9) and (10) cannot be directly written in linear terms, as a cut is increasing or

decreasing (or none) depending on the strategy, and even for a given strategy, there are in general

exponentially many increasing or decreasing cuts. We solve this issue by defining the master problem,

described in the next subsection, that disregards constraints (9) and (10). These constraints are then

handled by a lazy-constraint generation scheme, explained later on in Subsection 6.2.

6.1. Master problem

The master problem formulation is obtained by retaining constraints (4)–(8) and adding a new set

of constraints. Such new constraints use a new set of variables carrying the relevant information with

respect to the existence of a profitable cut, i.e., (i) for each activity, whether the activity is critical,

and whether it has crash, normal or intermediate duration, and (ii) for each milestone, whether it is

early, non-early, tardy or non-tardy.

We introduce the new binary variables xij ,yij ,zij ,τm,τ ′m which all refer to a certain strategy

S = (S1, . . . , Sa):

xij = 1 if pij < p̄ij , i.e., if (i, j) ∈ A can be extended, and 0 otherwise;

yij = 1 if pij > p
ij

, i.e., if (i, j) ∈ A can be crashed, and 0 otherwise;

zij = 1 if (i, j) ∈ A is critical, and 0 otherwise;

τm = 1 if milestone m ∈ Nm is non-early and 0 otherwise;

τ ′m = 1 if milestone m ∈ Nm is tardy and 0 otherwise.

Hence, the following constraints are added to (4)–(8):

ε− zij ≤ sij ≤ sij (1− zij) ∀(i, j) ∈ E (12)

zij ≤
∑

∀(k,i)∈E

zki ∀(i, j) ∈ E : i > 1 (13)

zij ≤
∑

∀(j,l)∈E

zjl ∀(i, j) ∈ E : j < n, j /∈ Nm (14)∑
∀(i,m)∈E

zim ≥ 1 ∀m ∈ Nm (15)

1 ≤
∑

∀(1,i)∈E

z1i (16)

11

tm ≤ dm − 1 + (tmax
m − tmin

m + 1)τm ∀m ∈ Nm (17)

tm ≥ dm − (tmax
m − tmin

m)(1− τm) ∀m ∈ Nm (18)

tm ≤ dm + (tmax
m − tmin

m)τ ′m ∀m ∈ Nm (19)

tm ≥ dm + 1− (tmax
m − tmin

m + 1)(1− τ ′m) ∀m ∈ Nm (20)

xij ≤
(
pij − pij

)
≤
(
pij − pij

)
xij ∀(i, j) ∈ E (21)

yij ≤
(
pij − pij

)
≤
(
pij − pij

)
yij ∀(i, j) ∈ E (22)

zij ≥ xij ∀(i, j) ∈ E (23)

xij , yij , zij , τm, τ
′
m ∈ {0, 1}

Constraints (12) specify that if an activity (i, j) has a nonzero slack variable sij , then it cannot

be critical, and that if an activity (i, j) is critical, then sij = 0. Constraints (13) and (14) ensure

continuity of critical paths in the graph. Namely, if an activity (i, j) is critical, then (13) implies

that at least one activity entering node i is also critical. If activity (i, j) is critical and node j is

not a milestone, then at least one activity leaving node j is critical, due to (14). Constraints (15)

imply that at least one critical path exists from 0 to every milestone, while constraint (16) implies

that at least one critical path starts from node 0. The meaning of variables τm, τ
′
m is specified by

constraints (17) - (20), that of variables xij and yij by constraints (21) and (22) respectively. Finally,

we can assume that if an activity is not critical, it cannot be increased, since otherwise it would be

convenient for the agent to actually extend the activity, and the strategy would not be non-poor.

This is enforced by constraints (23).

The values of the variables xij , yij , zij characterize a cut on G(S) in terms of being increasing,

decreasing or none for a certain agent Au. In particular, given a strategy S, a cut ω(u)(X) is increasing

if, for all (i, j) ∈ ω+(u)(X) such that zij = 1, one has yij = 1, while a cut ω(u)(X) is decreasing if there

exists an arc (i, j) ∈ ω+(u)(X) such that zij = 1 and xij = 1, while yij = 1 for all (i, j) ∈ ω−(u)(X).

The profitability of a decresing/increasing cut also depends on the status of the various milestones,

which is specified by variables τm and τ ′m.

6.2. Lazy constraints generation scheme

Constraints (5)–(8) and (12)–(23) with the objective function (4) form the master problem. The

optimal solution of the master problem may not be a Nash equilibrium. Therefore, in order to

solve mapsm, we dynamically add new constraints to the master problem, using the lazy constraints

generation mechanism illustrated in Alg. 1. Whenever the ILP solver finds a new best integer solution

S of the master problem, we check for every agent whether there exist profitable decreasing or

increasing cuts. This check is done by solving the subproblem, as described later in Section 6.3.

The ILP solver automatically launches this mechanism as a user-defined call-back function. For each

agent, our algorithm checks if there is a profitable increasing or decreasing cut. If the subproblem

12

Algorithm 1: Procedure generating the lazy constraints.

Function IntegerSolutionFoundCallback(S)

foreach Au ∈ A do

foreach cutType ∈ {inc, dec} do

/* Search for a profitable cut X∗ (see sections 6.2 and 6.3). */

X∗ = Subproblem(cutType, u, S);

if X∗ is profitable for agent Au then

Use X∗ to add an new lazy constraint (LC) to the master model;

/* see Section 6.4 */

end

end

end

end

finds a profitable cut X∗, the cut is used to define a new lazy constraint (LC), which is subsequently

added to the master model. The new constraint makes solution S infeasible, and the ILP solver

searches for another solution of the master problem until the best solution S∗ is found. On the other

hand, if there are no profitable cuts, S is a new incumbent Nash equilibrium.

Preliminary experiments revealed that the most effective lazy constraints are obtained for rela-

tively small cuts, i.e., cuts having few (either forward or backward) arcs. This is because the lazy

constraint corresponding to a small cut can cut off many more non-Nash solutions. For this reason,

as explained in more detail in Section 6.3, for each agent we also seek for the profitable decreasing or

increasing cut with the minimum number of arcs, and add the corresponding lazy constraint to the

master problem.

Another experiment-based observation is related to the number of generated lazy constraints. In

the case of very large instances, the number of generated lazy constraints can be huge. This fact

enormously increases the size of the MILP model, which harms the overall algorithm performance, as

shown in Section 7.2. Therefore, it is better for large instances to generate only one lazy constraint

per solution that is not a Nash equilibrium. If there are many possible lazy constraints, we add the

one related to a cut with the minimum number of forward and backward arcs.

Hence, in order to implement the scheme in Alg.1, we must specify two key issues related to the

subproblem, namely: (i) how to find a profitable cut, and (ii) how to specify a lazy constraint to be

added to (5)–(23). These two aspects are detailed in the next subsections.

6.3. Computing profitable decreasing and increasing cuts - subproblems

In order to detect a profitable cut, it is convenient to introduce a residual network, and express

the search for a profitable cut in terms of finding a suitable cut on such a network. To this aim, given

a strategy S and an agent Au, we consider a network Nu(S) having the same arc and node sets of

13

G, but in which each arc (i, j) has associated lower and upper capacities `ij and uij respectively, as

specified in Table 1.

The table allows representing decreasing and increasing cuts for agent Au as cuts in a classical

network flow problem. Lower and upper capacities do not represent only the crashing cost of activities,

but also a possibility to increase or decrease their duration, and their impact on the makespan and

milestones. For example, the first row of Table 1 defines the situation when an activity is not critical.

In this case, it is not important whether its duration can be increased or decreased. This arc has no

impact on any milestone or project makespan. Therefore `ij = uij = 0. Similarly, if the activity is

critical and can be increased but not decreased (row 4) then it can be used as a forward arc in an

increasing cut or as a backward arc in a decreasing cut with cost lij = cij . However, in other cases

the entire cut is disregarded, letting uij = +∞. For more details about this transformation, please

see [Agnetis et al., 2019].

Recall (e.g. [Ahuja et al. 1993]) that, given a flow network in which the flow in each arc (i, j)

must belong to the interval [`ij , uij], the capacity of a cut ω(X) is defined as

k(ω(X)) =
∑

(i,j)∈ω+(X)

uij −
∑

(i,j)∈ω−(X)

`ij ,

while the floor as

φ(ω(X)) =
∑

(i,j)∈ω+(X)

`ij −
∑

(i,j)∈ω−(X)

uij .

Hence, recalling expressions (2) and (3), and in view of Table 1, given a decreasing cut ω
(u)
dec(X),

we can write its cost as

W
(u)
dec (X) = k(ω

(u)
dec(X))−

∑
m∈N\X,m tardy

qm − (1− γr)πwu, (24)

where we let γr = 1 if r ∈ X and γr = 0 if r ∈ N \X. In the latter case, the project makespan is

affected by the cut. Similarly, the saving of an increasing cut is:

W
(u)
inc (X) = φ(ω

(u)
inc(X))−

∑
m∈N\X,m nonearly

qm − (1− γr)πwu. (25)

Hence, the most profitable decreasing cut is the cut for which (24) is minimum, while the most

profitable increasing cut is the cut for which (25) is maximum.

We now explain in more detail how to compute the most profitable decreasing and increasing cuts.

6.3.1. Decreasing Cuts

Given a non-poor strategy S and an agent Au, and hence the values in Table 1, as well as the

variables τm and τ ′m, a profitable decreasing cut is such that W
(u)
dec (X) is negative. We next formulate

the subproblem of finding the decreasing cut minimizing (24), i.e., the most profitable decreasing cut

in the residual network Nu(S).

Let MD = {m ∈ Nm : τ ′m = 1} be the set of tardy milestones in S, which can therefore be affected

by a decreasing cut. We introduce the following variables. For each arc (i, j) ∈ A, αij = 1 if (i, j) is

14

(i, j) ∈ Au zij xij yij lij uij

True 0 0/1 0/1 0 0

True 1 1 1 cij cij

True 1 0 1 0 cij

True 1 1 0 cij +∞

True 1 0 0 0 +∞

False 0 0/1 0/1 0 0

False 1 0/1 0/1 0 +∞

Table 1: Lower and upper capacities lij , uij in Nu(S)

a forward arc of the cut, and βij = 1 if it is a backward arc. For each node i ∈ N , we let γi = 1 if

i ∈ X and γi = 0 if i ∈ N \X. Note in particular that γr = 0 denotes that the final node r belongs

to N \X, in which case the project makespan is affected by the cut. Hence, the problem of finding

the most profitable decreasing cut can be formulated as:

min
∑

(i,j)∈E

αijuij −
∑

(i,j)∈E

βij lij −
∑

m∈MD

qmu(1− γm)

−πwu(1− γr) (26)

s.t.

αij − βij = γi − γj ∀(i, j) ∈ E (27)

γ0 = 1 (28)∑
m∈Nm

γm ≤ |Nm| − 1 (29)

αij , βij , γi ∈ {0, 1}

Constraints (27) imply that if (i, j) ∈ ω+(u)
dec (X), then node i is on the left and j is on the right side

of the cut, and vice versa if (i, j) ∈ ω−(u)
dec (X). (Note that since uij ≥ `ij , with no loss of generality

we can assume that when i and j are on the same side of the cut, both αij and βij are zero.) Node 0

is always on the left side of the cut due to constraint (28). Constraint (29) specifies that there must

always be at least one milestone on the right side of the cut.

The problem (26)–(29) is formulated as an ILP. An alternative approach to solving (26)–(29) is

to solve |Nm| instances of a problem obtained from (26)–(29) by imposing, in turn, that a certain

milestone m must lie on the right hand side of the cut, i.e., replacing constraint (29) with the

constraint γm = 0:

min
∑

(i,j)∈E

αijuij −
∑

(i,j)∈E

βij lij −
∑

m∈MD

qmu(1− γm)− πwu(1− γp) (30)

s.t.

αij − βij = γi − γj ∀(i, j) ∈ E (31)

γ0 = 1 (32)

γm = 0 (33)

αij ≥ 0, βij ≥ 0, γi ≥ 0
15

Notice that as the coefficient matrix of problem (30)–(33) is the incidence matrix of the project

network, it is totally unimodular, and hence we could relax integrality constraints on the variables.

So a minimum cost decreasing cut can be found by solving |Nm| linear programs (showing therefore

that (26)–(29) is polynomially solvable.) However, in the solution procedure we directly solve the ILP

(26)–(29), as preliminary runs showed that this is more efficient than solving many LPs (30)–(33).

As it was mentioned in the previous section, preliminary experiments pointed out that the most

efficient constraints are typically related to cuts having a low number of arcs. The reason is that

a constraint covering fewer activities can cut off larger solution space. Based on this empirical

observation, we introduce the following ILP.

min
∑

(i,j)∈E

(αij + βij) (34)

s.t.

αij − βij = γi − γj ∀(i, j) ∈ E (35)∑
(i,j)∈E

αijuij −
∑

(i,j)∈E

βij lij −
∑

m∈MD

qmu(1− γm)

−πwu(1− γr) < 0 (36)

γ0 = 1 (37)∑
m∈Nm

γm ≤ |Nm| − 1 (38)

αij , βij , γi ∈ {0, 1}

Problem (34)–(38) has been obtained from (26)–(29) replacing the objective function (maximiza-

tion of the profit of a decreasing cut for agent Au) with the minimization of the total number of arcs

in the cut. Note that constraints (36) ensure that the cut is a profitable decreasing cut.

Problem (34)–(38) is used to generate profitable decreasing cuts as long as the application of

the found cut decreases the project makespan by one unit. When this condition is not satisfied, we

switch to finding the most profitable decreasing cut, i.e., we generate cuts by solving the formulation

(26)–(29).

Once a profitable decreasing cut is selected, we define the following sets, which are used in the

definition of new lazy constraint LCdec
k (see Section 6.4).

Fk = {(i, j) ∈ E : αij = 1 ∧ zi,j = 1} is the set of critical forward arcs,

Bk = {(i, j) ∈ E : βij = 1 ∧ zi,j = 1} is the set of critical backward arcs,

Ck = {(i, j) ∈ E : αij = 1 ∧ zi,j = 0} is the set of non-critical forward arcs,

Dk = {m ∈ Nm : γm = 0 ∧ τ ′m = 1} is the set of tardy milestones affected by the cut.

6.3.2. Increasing Cuts

The problem of finding profitable increasing cuts can be addressed through a very similar approach.

This time the objective is to find the increasing cut that maximizes the saving. Given the strategy

S, we define M I = {m ∈ Nm : τm = 1} to be the set of non-early milestones, which can therefore be

16

affected by the cut. Notice that if for a milestone m ∈ N \X one has tm = dm, the milestone becomes

tardy when the cut is applied. The meaning of variables αij , βij , γi as well as the constraints are

the same as for (26)–(29). This time, the cut maximizing the saving is profitable when the objective

function is positive.

max
∑

(i,j)∈E

αij lij −
∑

(i,j)∈E

βijuij −
∑

m∈MI

qmu(1− γm)− πwu(1− γr) (39)

s.t.

αij − βij = γi − γj ∀(i, j) ∈ E (40)

γ0 = 1 (41)∑
m∈Nm

γm ≤ |Nm| − 1 (42)

αij , βij , γi ∈ {0, 1}

As before, an alternative approach to solving (39)–(42) would be to solve |Nm| instances of the

LP similar to (30)–(33).

In the same way as for the decreasing cuts, the algorithm searches first for profitable cuts having

the minimum number of arcs, which can be found solving the problem:

min
∑

(i,j)∈E

(αij + βij) (43)

s.t.

αij − βij = γi − γj ∀(i, j) ∈ E (44)∑
(i,j)∈E

αij lij −
∑

(i,j)∈E

βijuij −
∑

m∈MI

qmu(1− γm)

−πwu(1− γr) > 0 (45)

γ0 = 1 (46)∑
m∈Nm

γm ≤ |Nm| − 1 (47)

αij , βij , γi ∈ {0, 1}

Once a profitable cut is found, we define the following sets which are used in the definition of new

lazy constraint LCdec
k (see Section 6.4):

Fk = {(i, j) ∈ E : αij = 1 ∧ zi,j = 1} is the set of critical forward arcs,

Bk = {(i, j) ∈ E : βij = 1 ∧ zi,j = 1} is the set of critical backward arcs,

Ck = {(i, j) ∈ E : βij = 1 ∧ zi,j = 0} is the set of non-critical backward arcs,

Dk = {m ∈ Nm : γm = 0 ∧ τm = 0} is the set of early milestones affected by the cut.

6.4. Lazy constraints

In this section, we specify the constraint to add to the master problem formulation (5)–(23), in

order to forbid solutions having a particular profitable cut found by the subproblem described in

17

the previous section. Our intention is to introduce constraints avoiding large coefficients (“big-M”),

which would weaken the linear relaxation of the master problem.

6.4.1. Constraints related to decreasing cuts

Given a profitable decreasing cut ωdec(X
∗) for an agent Au, and hence given the sets Fk, Bk, Ck

and Dk defined in Section 6.3.1, the corresponding lazy constraint is defined as follows:

∑
∀(i,j)∈Fk

yij +
∑

∀(i,j)∈Bk

xij ≤ |Fk ∪Bk| − 1 +
∑

∀(i,j)∈Ck

zij +
∑
∀m∈Dk

(1− τ ′m) (48)

Notice that, from the definition of the sets Fk, Bk, Ck and Dk, when we plug into (48) the current

optimal solution of the master problem, the left-hand-side equals |Fk ∪Bk|, while the right-hand-side

equals |Fk ∪ Bk| − 1, so the constraint is indeed violated by ωdec(X
∗). The reason for including

variables zij and τ ′m in the right-hand-side of (48) is the following. While in the current optimal

solution of the master problem a forward arc (i, j) ∈ Ck is non-critical, it might become critical

later on. If this occurs, the cost of forward arcs of ωdec(X
∗) becomes higher than in the current

situation, and as a result the cut ωdec(X
∗) might be no more profitable for Au. Hence, if (i, j) ∈ Ck

becomes critical (i.e., if zij turns to 1), we do not forbid cut ωdec(X
∗) anymore, and the constraint

(48) is turned off. Similarly, if a currently tardy milestone m is no more tardy at a later stage of the

algorithm, there is no saving connected with anticipating tm, and hence again, the constraint has to

be deactivated. This point is illustrated in the following example.

Example 2. Fig. 3 shows an example of a residual network. Suppose that in the optimal solution to

(26)–(29) one has α2,5 = α3,6 = α4,7 = 1 and β5,3 = 1, so that, letting ωdec(X
∗) denote the optimal

solution of (26)–(29), one has ω+
dec(X

∗) = {(2, 5), (3, 6), (4, 7)} and ω−dec(X
∗) = {(5, 3)}. Suppose that

arcs (2, 5) and (3, 6) are critical (z2,5 = z3,6 = 1), while (4, 7) and (5, 3) are not (z4,7 = z5,3 = 0).

Moreover, milestone 8 is tardy (τ ′8 = 1), while milestone 9 is early (τ9 = 0). As a consequence,

Fk = {(2, 5), (3, 6)}, Bk = ∅, Ck = {(4, 7)} and Dk = {8}. The cut ω+
dec(X

∗) is a profitable decreasing

cut, since the increased crashing costs of forward arcs (=40+50) are outbalanced by the saving on

reducing the tardiness of milestone 8 (=100). So, we generate the constraint

x2,5 + x3,6 ≤ 1 + z4,7 + (1− τ ′8).

If arc (4, 7) becomes critical later on, the constraint is turned off, because the cut would no longer

be profitable, as 40 + 20 + 50 − 100 = 10 > 0. Similarly, the constraint is turned off if milestone 8

becomes non-tardy, as the cost would become 40 + 50 > 0.

Notice that in specifying the constraints in this way, we are adopting a “conservative” approach.

If the crashing cost of activity (4, 7) were 5 instead of 20, the cut ω+
dec(X

∗) remains profitable even

if (4, 7) becomes critical, so it would be correct to continue forbidding it. On the contrary, using

constraints (48), it is possible that the same cut will be selected again (though this time Fk would

include also arc (4, 7)). This phenomenon could be avoided using a different expression of lazy

18

0

1

2

9

u0,1=40Nm={8,9}

ωdec(X)
(u)

3

4

5

6

7

8l5,3=20

u3,6=50

u4,7=20
q9,u=100

q8,u=100

Figure 3: Example of decreasing cut in the residual network of agent Au.

constraints, in which crashing costs are explicitly considered. However, since this did not often occur

in our experiments, we preferred to maintain the constraints (48), whose coefficients are all 0 and 1,

as this typically results in a tighter formulation.

6.4.2. Constraints related to increasing cuts

Similar considerations hold for a profitable increasing cut for an agent Au. Given the increasing

cut ωinc(X
∗) that solves (39)–(42) and the corresponding sets Fk, Bk, Ck and Dk, we add to the

master problem the following constraint:

∑
∀(i,j)∈Fk

xij +
∑

∀(i,j)∈Bk

yij ≤ |Fk ∪Bk| − 1 +
∑

∀(i,j)∈Ck

zij +
∑
∀m∈Dk

τm (49)

0

1

2

9

l0,1=60Nm={8,9}

ωinc(X)
(u)

3

4

5

6

7

8u5,3=20

l3,6=50

l4,7=20
q9,u=100

q8,u=100

Figure 4: Example of increasing cut in the residual network of agent Au.

The role of variables zij for (i, j) ∈ Ck and τm for m ∈ Dk is similar to that for decreasing cuts.

In particular, if a currently non-critical backward arc becomes critical, we turn off the constraint,

since the cut may become non profitable, and the same occurs if a currently early milestone becomes

non-early. As in the previous case, we illustrate this situation using an example.

Example 3. Let’s assume a residual network illustrated in Fig. 4. Suppose that in ωinc(X
∗) one has

α2,5 = α3,6 = α4,7 = 1 and β5,3 = 1. Arcs (2, 5) and (3, 6) are critical (z2,5 = z3,6 = 1), milestone 8 is

non-early (z8 = 1) and milestone 9 is early (z9 = 0), so Fk = {(2, 5), (3, 6)}, Bk = ∅, Ck = {(5, 3)} and

Dk = {9}. The cut ωinc(X
∗) is profitable, since the saving from extending (2, 5) and (3, 6) (=60+50)

outbalances the increased penalty related to milestone 8 (=100). So we generate the constraint

x2,5 + x3,6 ≤ 1 + z5,3 + z9.

19

If arc (5, 3) becomes critical (i.e., z5,3 turns to 1), we turn off the constraint, as the crashing cost

c53 = 20 is subtracted from the saving, making therefore the cut no more profitable (60+50−100−20 <

0). Similarly, if milestone 9 becomes non-early, we turn off the constraint since subtracting q9,u = 100

would make the cut no more profitable.

7. Computational experiments

In this section, we describe the computational experiments performed to test the proposed ap-

proach based on lazy constraint generation, from now on denoted as ILP-LC. In Section 7.1 the

experimental setup and settings are described, Section 7.2 discusses the algorithm performance and

Section 7.3 deals with further experiments, designed to gain managerial insights on how milestone-

related parameters may affect the project makespan.

7.1. Experimental settings and implementation details

A problem instance is primarily characterized by the number of activities n, the num-

ber of milestones |Nm| and the number of agents a. The project networks used in the ex-

periments were generated using RanGen1 [Demeulemeester et al. 2003] as activity-on-node net-

works, which were then converted to activity-on-arc networks using the algorithm described

in [Demeulemeester and Herroelen 2002]. The order strength (i.e., the ratio between the num-

ber of precedence relations in the transitive closure of the project network and the theoreti-

cal maximum number of precedence relations in the network) was fixed to 0.3 because, as ob-

served in [Kolisch et al. 1992], this is a typical value for realistic project networks. Such a

relatively small value makes these instances challenging from the computational viewpoint (see

[Herroelen and De Reyck 1999]). The activity durations generated by RanGen1 were used as crash

durations p
ij

. The normal duration pij of each activity (i, j) is obtained by adding to the crash

duration p
ij

a random number in [1,20]. Crashing costs are uniformly distributed in [10,200].

The reward sharing policy wu is fixed according to the so-called available-cost sharing rule (see

[Briand et al. 2017]), i.e.,

wu =

∑
(i,j)∈Eu

cij(p̄ij − pij)∑
(i,j)∈E cij(p̄ij − pij)

,

which tends to give higher incentive to agents having high cost investments. The tightness of the

milestones’ due dates dm is controlled by the parameter α ∈ [0, 1] such that:

dm = tmin
m + α(tmax

m − tmin
m).

A problem instance is also characterized by rewards/penalties parameters, which were set up as

follows:

• the incentive - attractiveness parameter δ is picked in the interval ∈ [0, 1], such that the daily

reward π = δWmax, where Wmax corresponds to the price of the most expensive cut in the

graph, i.e.:

Wmax = max
X⊆N

{
∑

(i,j)∈ω+(X)

cij −
∑

(i,j)∈ω−(X)

cij};

20

with minimum number of arcs optimal cuts only

n Tcpu Tcpu CB Call-back #LC #Call-back Tcpu Tcpu CB Call-back #LC #Call-back

[s] [s] [%] [−] [−] [s] [s] [%] [−] [−]

20 0.17 0.15 87.5 6.28 3.92 0.80 0.67 83.0 50.73 52.46

30 0.34 0.26 75.8 7.87 5.26 19.16 10.94 57.1 673.44 676.04

Table 2: The impact of profitable cut with the minimum number of arcs.

• penalties attached to milestones are controlled by parameter β ∈ [0, 1] such that the per-day

tardiness penalties qmu related to milestone m and agent u are identical and equal βπ, provided

that at least one activity belonging to agent u precedes milestone m (otherwise qmu is set to 0).

The ILP-LC approach has been implemented in C#, and runs on a personal computer with an

Intel Core i7 processor at 2.7 GHz with 8 GB of RAM. The underlying MILP model was solved with

Gurobi solver version 8.1.1.

Before we present individual experiments, let us discuss now how the ILP-LC solving approach

has been implemented. We conducted a set of preliminary experiments on instances with n = 20

and n = 30 to compare the performance of generating cuts with the smallest number of arcs vs.

generating the most profitable ones, as discussed in Section 6.2 (Problems (34)–(38) and (43)–(47)).

Table 2 compares the average CPU time of both strategies (column “Tcpu”), the average time spent

in the call-back function (column “Tcpu CB”), and the percentage of time spent in the call-back

function (column “Call-back”). In addition, the table presents the average number of generated

lazy constraints (column “#LC”) and the average number of raised call-backs per instance (column

“#Call-back”). Both data sets show that the strategy that uses optimal cuts generates many more

lazy constraints, which harms CPU time. Therefore, the algorithm evaluated below uses only the

strategy generating cuts with the smallest number of arcs.

7.2. Performance analysis

We first investigate the efficiency of our ILP-LC approach vs. the compact ILP proposed in

[Briand et al. 2017] (ILP-COMPACT) to solve problem instances without milestones (hence |Nm|, α

and β do not apply in this context). We consider the same benchmark as in [Briand et al. 2017] (avail-

able at https://github.com/CTU-IIG/MAPSP) with the following parameters: n ∈ {20, 40, 60, 80},

a = 5 and δ = π/Wmax = 0.4. The benchmark set has 100 instances for each value of n.

Table 3 reports on the size of each ILP formulation in terms of the number of variables (#var)

and constraints (#constr). The comparison shows that ILP-COMPACT uses more than 12 times

more variables and more than 4 times more constraints. So, ILP-LC has significantly lower memory

requirements than ILP-COMPACT. The table also illustrates the average number of generated lazy

constraints and the average percentage of the CPU time spent in the call-back function. Value #LC

shows that the average number of generated lazy constraints is pretty small. The same holds for the

average number of call-back executions denoted #Call-back. The percentage of time spent in the

call-back function (column “Call back”) is pretty large for small instances, but it sharply decreases

21

ILP-LC ILP-COMPACT

n #var #constr #LC #Call-back Tcpu Call-back #var #constr Tcpu

[-] [-] [-] [-] [s] [%] [-] [-] [s]

20 323.7 555.3 6.3 3.9 0.2 88 4134.1 2542.8 0.05

40 1021.6 1785.4 10.2 6.9 0.73 59 13018.6 7987.5 0.74

60 2040.9 3600.5 15.3 10.2 2.71 39 26064.6 15947.4 5.09

80 3336.3 5920.9 31.7 20.9 18.1 19 42696.2 26069.5 42.18

Table 3: Comparison between ILP-LC and ILP-COMPACT (different number of activities).

ILP-LC ILP-COMPACT

a #var #constr #LC #Call-back Tcpu Call-back #var #constr Tcpu

[-] [-] [-] [-] [s] [%] [-] [-] [s]

2 1021,6 1785,4 10.2 11.2 0.6 50 4420.4 7469.7 9.5

4 1021,6 1785.4 10.3 7.7 0.7 56 6794.4 11149.0 6.8

8 1021,6 1785,4 9.1 4.4 0.6 67 11542.6 18507.6 5.4

16 1021,6 1785,4 12.4 3.3 0.7 87 21038.9 33224.7 3.8

Table 4: Comparison between ILP-LC and ILP-COMPACT (different number of agents).

as n grows. A comparison of their CPU times is also provided in Table 3. On small-size instances

(20 activities), one can observe that ILP-LC is slower (see Tcpu), which is mainly due to the time

overhead associated with the call and execution of the call-back function. On larger instances, ILP-LC

is faster and on the largest instances it is more than twice faster than ILP-COMPACT.

The influence of the number of the agents is studied in Table 4 assuming instances with n = 40.

Columns #var and #constr show that the size of the ILP formulation is independent of the number

of agents in the case of ILP-LC while the size of ILP-COMPACT significantly grows with a. ILP-

LC is always less memory-demanding and faster than ILP-COMPACT. Note that the CPU time of

ILP-LC is practically constant while that of ILP-COMPACT decreases with a.

The above results suggest that, when milestones are considered, ILP-LC is a more suitable ap-

proach than ILP-COMPACT. Moreover, the formulation approach of ILP-COMPACT uses duality

relations (max-flow/min-cut and min-flow/max-cut), which may not be easily extended to the case

with milestones (see Section 6.3).

A second set of experiments has been made to assess the efficiency of ILP-LC on instances with

milestones. We chose a ∈ {3, 4, 5}, n ∈ {20, 40, 60}, δ = 0.2, |Nm| = 5, α = 0.5 and β = 0.04.

Parameters α, β, and δ are assumed fixed in this experimental set, as their impact is studied in the

next section.

Tables 5 and 6 analyze how the number of activities and agents respectively affect the algorithm

performance. Results in Table 5 assume a = 4 while in Table 6 we assume n = 40. We first ob-

serve that the algorithm is able to solve instances with 60 activities in a reasonable amount of time.

22

n Tcpu Tcpu CB Call-back #LC #Call-back

[−] [s] [s] [%] [−] [−]

20 0.7 0.6 89.7 39.8 19.0

40 15.0 10.0 66.5 505.2 181.3

60 12029.6 297.1 2.5 11091.8 3240.9

40∗ 19.4 15.9 82.1 319.7 322.9

60∗ 2611.6 377.8 14.5 4879.3 4885.6

Table 5: CPU performance for different problem sizes (number of activities).

a Tcpu Tcpu CB Call back #LC #Call-back

[−] [s] [s] [%] [−] [−]

3 27.0 15.4 57.1 915.2 374.9

4 15.0 10.0 66.5 505.2 181.3

5 10.4 7.6 72.9 344.9 108.9

Table 6: CPU performance for different problem sizes (number of agents).

Instances with fewer agents are generally computationally more demanding. The ILP-LC algorithm

generates more lazy constraints (column #LC) compared to the previous experiment without mile-

stones, however, for the largest instances (n = 60) the time spent in the call-back function (column

“Tcpu CB”) is only 2.5% of the overall CPU time (column “CPU time”). The higher frequency of

lazy constraints is caused by the penalization for tardy milestones that increases the chance that a

solution is not a Nash equilibrium. The rows in Tables 5 with “*” in the first column refer to the

strategy in which we generate only one lazy-constraint for every solution which in not Nash. When

n = 40, this strategy is definitely worse than adding all lazy-constraints (see Algorithm 1). On the

other hand, for n = 60, the situation is the opposite. In this case, the CPU time of the strategy

adding all lazy constraints is much worse. The algorithm adds 11091 lazy constraints on average,

which significantly degrades the performance of the algorithm.

Table 6 shows that the number of generated lazy constraints decreases as the number of agents

grows, and thus also the overall CPU time decreases. In fact, for a given n, there are typically more

profitable cuts to be considered in the lazy constraint generation mechanism in an instance with fewer

agents, although the difference is not very large. On the other hand, the percentage of CPU time

spent by the call-back function increases with increasing a, since the call-back finds more profitable

cuts, i.e., for each agent one increasing and one decreasing cut.

7.3. Impact of milestones

In this section we address another set of experiments aimed at highlighting how milestone-related

parameters affect the project makespan. Such parameters are (i) the tightness of milestone due dates

(expressed by parameter α), (ii) the number of milestones |Nm|, and (iii) the value of tardiness

23

penalties (expressed by parameter β). In this set of experiments, we fix n = 40 and a = 4, so

that the computational effort is not large (all the instances of this experiment were solved within

less than twelve seconds on average). Then, we consider the values δ ∈ {0.1, 0.2, 0.4}, and for

each δ the following combinations of parameters: α ∈ {0.25, 0.5, 0.75}, |Nm| ∈ {1, 3, 5} and β ∈

{0.008, 0.04, 0.072}. Underlined values are the nominal values, i.e., when analyzing the impact of one

parameter in {α, |Nm|, β, }, the other two are kept fixed to their nominal value. Note that |Nm| = 1

means that the only milestone is project completion (no intermediate milestones). For each scenario,

100 new instances were generated and solved.

Tables 7, 8, and 9 report on the influence of α, |Nm| and β, respectively, on the average makespan

D for three different values of daily reward δ. The makespan is expressed as a percentage of the size

of the interval [D,D], and it is denoted by Drel(S∗):

Drel(S∗) = 100 · D(S∗)−D
D −D

,

where S∗ is the optimal strategy for mapsm. We also report on total tardiness, denoted as T , and

penalty
∑

Au∈A
∑

m∈Nm
qmuTm.

All three tables show that the presence of milestones has a significant impact on the makespan

when the daily reward is low, i.e., δ = 0.1. In such a scenario, a significant reduction of the makespan

is attained when due dates are tighter (Drel(S∗) decreases by 18,6% when reducing α from 0.75 to

0.25), or when per-day tardiness penalty is higher (Drel(S∗) decreases by 12,6% when increasing β

from 0.008 to 0.072). Increasing the number of milestones from 1 to 5 only reduces Drel(S∗) by less

than 5%. So, setting tighter milestone due dates and higher tardiness penalties appear as sensible

strategies to achieve a lower makespan, rather than setting a large number of milestones. However,

the effectiveness of these strategies changes if the daily reward π grows. When δ = 0.2 (hence, twice

than in the previous scenario), tightening the due dates still results in a significant makespan decrease

(from 38.2% to 28.8%), while the value of tardiness penalties becomes less significant. Finally, when

δ = 0.4, the daily reward π appears large enough to make project makespan largely insensitive to the

other three parameters.

Total tardiness and penalty are indicators that need to be taken into account in the analysis of

the results. For instance, the scenario with α = 0.25 and δ = 0.1 in Table 7 indicates that tightening

the due dates significantly decreases the project makespan; however, it also leads to high penalties

that may not be acceptable for the agents. In comparison, α = 0.5 is a more realistic scenario, which

is only slightly worse in terms of project makespan. Another interesting case is β = 0.008 and δ = 0.1

in Table 9. Unlike the previous example, the penalty is not very high, and the scenario could be

acceptable for agents. Nevertheless, this case leads to very high total tardiness as agents have low

incentive to decrease the duration of their activities to satisfy milestones, which may induce many

conflicts between the project owner and the agents.

This experiment shows some interesting insights for the project manager. In order to expedite the

project, the project owner should mainly find the best combination of appropriate due date penalties

24

and daily rewards. Indeed, even if β is chosen as a relatively small fraction of the daily reward,

setting suitable milestones may significantly impact project makespan. On the other hand, milestone

parameters need to be appropriately set in order to achieve the goal of makespan reduction while

keeping tardiness penalties acceptable for the agents. In this respect, our model can be used as a

suitable tool to anticipate the effects that a particular milestone setting policy may have on the overall

project performance.

δ α Drel(S∗) T penalty CPU time #LC #Call-back

[−] [−] [%] [−] [−] [s] [−] [−]

0.25 11.9 1.04 132.8 7.3 266.1 109.2

0.4 0.5 13.3 0.38 38.1 6.6 223.1 94.8

0.75 13.8 0.12 9.6 6.2 198.2 85.3

0.25 28.8 2.80 424.8 11.0 618.7 218.9

0.2 0.5 36.0 1.17 150.1 9.0 505.2 181.3

0.75 38.2 0.45 51.5 7.5 421.2 152.8

0.25 43.5 5.80 961.2 11.7 660.2 219.7

0.1 0.5 50.8 1.94 286.2 8.8 540.4 176.6

0.75 62.1 0.79 106.5 6.9 424.4 139.2

Table 7: Results for different values of due date tightness (α).

δ |Nm| Drel(S∗) T penalty CPU time #LC #Call-back

[−] [−] [%] [−] [−] [s] [−] [−]

5 13.3 0.38 38.1 4.7 223.1 94.8

0.4 3 13.8 0.30 13.5 3.6 161.1 76.1

1 14.0 0.00 0.0 3.1 122.6 69.1

5 36.0 1.17 150.1 9.1 505.2 181.3

0.2 3 37.0 0.93 59.8 5.7 305.8 121.6

1 38.0 0.01 0.3 4.1 204.3 93.8

5 50.8 1.94 286.2 8.8 540.4 176.6

0.1 3 53.2 2.23 188.5 4.7 283.8 101.2

1 55.1 2.89 99.7 3.2 183.1 74.6

Table 8: Results for different numbers of milestones (|Nm|).

8. Conclusions

In this paper, we presented a model for finding equilibria in a project scheduling environment

in which activities belong to different agents. In order to expedite the process, the project owner

may set rewards for early project completion, as well as penalties if some intermediate milestones are

25

δ β Drel(S∗) T penalty CPU time #LC #Call-back

[−] [−] [%] [−] [−] [s] [−] [−]

0.008 13.8 0.60 13.2 4.9 223.7 100.3

0.4 0.04 13.3 0.38 38.1 4.6 223.1 94.8

0.072 12.7 0.24 43.6 4.0 198.1 82.9

0.008 38.0 1.94 51.6 9.0 501.6 183.6

0.2 0.04 36.0 1.17 150.1 9.1 505.2 181.3

0.072 35.0 0.67 147.7 8.4 482.8 168.8

0.008 61.0 5.45 167.5 8.5 523.5 173.6

0.1 0.04 50.8 1.94 286.2 8.8 540.4 176.6

0.072 48.4 0.88 217.2 7.9 487.4 157.0

Table 9: Results for different values of tardiness penalty charges (β).

not respected. The project owner wants to achieve a stable solution having the minimum makespan.

Here, stability refers to agents having no interest in changing the duration of their activities, and it is

captured by the concept of Nash equilibrium. We developed a lazy constraint-based solution scheme,

where the fact of whether or not a solution is a Nash equilibrium is checked in a call-back function

of an ILP solver. The power of the algorithm lies in the efficient generation of lazy constraints at

the run time of the algorithm. If a solution is not a Nash equilibrium, the algorithm rules out not

only the particular solution but also all solutions having a particular cut in the residual graph. Thus,

more solutions that are not Nash equilibria are cut off at once. We further improve the performance

of the algorithm by searching cuts with the minimum number of arcs and, in this way, prune the

solution space even more, as it is illustrated in the experimental results.

Using the algorithm, one can assess the effect of specific parameter configurations (incentives,

penalties, due date tightness) on makespan performance. Our experiments show that while per-

day rewards are the most effective lever for reducing project makespan, setting a small number of

intermediate milestones may be a partial substitute when the budget for rewards is low.

While we established some results for the computation of the minimum-makespan Nash equlib-

rium, the quality of such equilibrium with respect to possibly non-Nash solutions might be investi-

gated. This issue has been addressed in [Agnetis et al.2019] for the model without milestones. The

makespan values of the best and worst Nash equilibria were compared against the best makespan of

a base schedule, characterized by the only (weak) requirement that no agent has negative revenue.

It turned out that the price of anarchy (% increase of makespan in the worst equilibrium w.r.t. the

best makespan of a base schedule) does not significantly depend on the number of agents, while it is

significantly affected by the average range of activity durations (the price of anarchy grows linearly

with it). As the computation of the worst Nash equilibrium is also very complex, we think that

performing a similar analysis for the more general model considered here would be out of the scope

of the present paper.

26

Future research might also address other issues:

• Variable milestone setting. In this research, we assumed that milestones and their parameters

are given, being set up by the project owner. Using the proposed model, the project owner can

compute several scenarios for different milestone settings (as in the experiments in Section 7.3)

and, based on that, propose one selected scenario to the agents (sub-contractors). In fact, a

different approach could be to define milestones and milestone-related parameters as variables,

i.e., let the model place the milestones in the project network and set due dates and penalties

so that the project makespan is minimized while having a Nash equilibrium. However, such a

comprehensive model would require developing a different algorithmic approach and it might

turn out to be considerably more complex to solve.

• Cash flow modeling. In this paper, cash flows are supposed to take place simultaneously (e.g.,

at the end of the project), while net present value-related objectives might be pursued by both

the agents and the project owner.

• Heuristics. In view of the inherent complexity of the problem, one important venue for future

research is to devise algorithms to efficiently find good-quality Nash equilibria.

• Mechanism design issues. In this paper we have considered that agents choose their strategies

independently and simultaneously, as it is assumed in noncooperative games. If this is not

the case, and the agents sequentially declare their respective strategies, an agent’s benefit can

largely depend on the sequence chosen. This might in turn configure a cooperative sequencing

game, in which agents might trade their position in the sequence with utility transfers.

• Activity assignment. In this paper we addressed the situation in which the activities are preas-

signed to the agents, and each agent acts individually. A different situation is when the project

owner decides, up to a certain extent, how to assign activities to the agents, and some activ-

ity might even be jointly carried out by more than one agent. This would require developing

different models, possibly drawing from cooperative game theory.

9. Acknowledgements

This work was supported by the European Regional Development Fund under the project

AI&Reasoning (Reg. No. CZ.02.1.01/0.0/0.0/15 003/0000466).

References

[Agnetis et al., 2015] Agnetis, A., Briand, C., Billaut, J.-C., Š̊ucha, P., Nash equilibria for the multi-

agent project scheduling problem with controllable processing times, Journal of Scheduling, 18(1),

15–27, 2015.

27

[Agnetis et al., 2019] Agnetis, A., Briand, C., Ngueveu, S.U., Š̊ucha, P., Price of anarchy and price

of stability in multi-agent project scheduling, Annals of Operations Research, 285, 97—119, 2020.

[Ahuja et al. 1993] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows. Prentice-

Hall, Upper Saddle River, NJ, USA.

[Anshelevich et al. 2008] Anshelevich E., Dasgupta A., Kleinberg J., Tardos É., Wexler T., Rough-

garden T., The price of stability for network design with fair cost allocation, SIAM Journal on

Computing, 38(4), 1602—1623, 2008.

[Arık et al. 2019] Arık O.A., Kose, E., Forrest J.Y.-L., Project Staff Scheduling with Theory of Coali-

tion, Group Decision and Negotiation, 28, 827–847, 2019.

[Averbakh 2010] Averbakh, I., Nash equilibria in competitive project scheduling, European Journal

of Operational Research, 205(3), 552—556, 2010.

[Bergantiños and Lorenzo 2019] Bergantiños, G., Lorenzo, L., How to apply penalties to avoid delays

in projects, European Journal of Operational Research 275, 608–620, 2019.

[Brânzei et al 2002] Branzei, R., Ferrari, G., Fragnelli, V., Tijs, S., Two Approaches to the Problem

of Sharing Delay Costs in Joint Projects, Annals of Operations Research, 109, 359–374, 2002.

[Briand et al. 2017] Briand, C., Ngueveu, S.U., Š̊ucha, P., Finding an optimal Nash equilibrium to

the multi-agent project scheduling problem, Journal of Scheduling, 20, 475–491, 2017.

[Brucker et al 1999] Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E., Resource-

constrained project scheduling: Notation, classification, models, and methods, European Journal

of Operational Research, 112, 3–41, 1999.

[Christodoulou and Koutsoupias 2005] Christodoulou, G. and E. Koutsoupias, On the Price of An-

archy and Stability of Correlated Equilibria of Linear Congestion Games, in Brodal G.S., Leonardi

S. (eds), Algorithms – ESA 2005. Lecture Notes in Computer Science, vol 3669, 59–70, Springer,

Berlin, Heidelberg, 2005.

[Ciurea and Ciupalâ 2004] Ciurea, E. and Ciupalâ, L. (2004). Sequential and parallel algorithms for

minimum flows. Journal of Applied Mathematics and Computing, 15:53–75.

[Confessore et al. 2007] Confessore, G., Giordani, S., and Rismondo, S., A market-based multi-agent

system model for decentralized multi-project scheduling, Annals of Operations Research, 150, 115–

135, 2007.

[Dantzig et al. 1959] Dantzig, G. B. and Fulkerson, D. R. and Johnson, S. M., On a Linear-

Programming, Combinatorial Approach to the Traveling-Salesman Problem, Operations Research,

Vol.7, No. 1, 58–66, 1959.

28

[De Ita Luna et al. 2015] De Ita Luna, G., Zacarias-Flores, F., Altamirano-Robles, L.C., Finding

Pure Nash Equilibrium for the Resource-Constrained Project Scheduling Problem, Computación y

Sistemas, Vol. 19, No. 1, 17-–27, 2015.

[De Reyck et al. 1999] De Reyck, B., Herroelen, W., The multi-mode resource-constrained project

scheduling problem with generalized precedence relations, European Journal of Operational Re-

search 119, 538–556, 1999.

[Demeulemeester and Herroelen 2002] Demeulemeester, E. L. and Herroelen, W. S., Project Schedul-

ing - A Research Handbook. Springer Science and Business Media, 2006.

[Demeulemeester et al. 2003] Demeulemeester, E., Vanhoucke,M., Herroelen,W., Rangen: A random

network generator for activity-on-the-node networks, Journal of Scheduling, 6, 17—38, 2003.

[Estévez-Fernández 2012] Estévez-Fernández, A., A game theoretical approach to sharing penalties

and rewards in projects, European Journal of Operational Research, 216(3), 647–657, 2012.

[Herroelen and De Reyck 1999] Herroelen, W.S. and De Reyck, B., Phase transitions in project

scheduling. Journal of the Operational Research Society, 50(2), 148—156, 1999.

[Kolisch et al. 1992] Kolisch, R., Sprecher, A., Drexl, A., Characterization and Generation of a Gen-

eral Class of Resource-Constrained Project Scheduling Problems, Institut für Betriebswirtschaft-

slehre Christian-Albrechts-Universität zu Kiel, working paper no.301, 1992.

[Kress et al. 2018] Kress, D., Meiswinkel, S. Pesch, E., Mechanism design for machine scheduling

problems: classification and literature overview, OR Spectrum, 40, 583—611, 2018.

[Moradi et al. 2019] Moradi, M., Hafezalkotob, A. and Ghezavati, V., Sustainability risk management

in a cooperative environment under uncertainty, Kybernetes, Vol. 48 No. 3, pp. 385-406, 2019.

[Phillips and Dessouky 1977] Phillips, S. and Dessouky, M. I., Solving the project time/cost tradeoff

problem using the minimal cut concept, Management Science, 24(4), 393–400, 1977.

[Spalek 2005] Spalek, S., Critical success factors in project management. To fail or not to fail, that

is the question! presented at PMI Global Congress 2005–EMEA, Edinburgh, Scotland. Newtown

Square, PA: Project Management Institute, 2005.

[Van Eynde 2017] Van Eynde, R., Multi-project scheduling - The application of a decoupled schedule

generation scheme and a game mechanic, Master’s Dissertation in Business Engineering, Univer-

siteit Gent, 2017.

[Varakantham and Fu 2017] Varakantham, P., Fu, N., Mechanism Design for Strategic Project

Scheduling, Research Collection School Of Information Systems, Proceedings of the Twenty-Sixth

International Joint Conference on Artificial Intelligence, IJCAI-17, 4433–4439, 2017.

29

Appendix

A.1 Finding any Nash equilibrium

The optimal solution to the following linear program defines a strategy SL which is a Nash

equilibrium.

max
∑

u∈A αu(wu(D̄ − tr)−
∑
∀(i,j)∈Eu

cij(pij − pij)−
∑
∀m∈Nm

qmuTm)

s.t.

tj − ti − pij − sij = 0 ∀(i, j) ∈ E

p
ij
≤ pij ≤ pij ∀(i, j) ∈ E

t0 = 0

tm − dm ≤ Tm ∀m ∈ Nm

ti, Tm, pij ∈ Z≥0, sij ∈ R≥0

where the weights α1 >> α2 >> · · · >> αa are such that lexicographic optimality is guaranteed.

A.2 Proof of Theorem 2

Proof. Consider a decreasing cut ω
(u)
dec(X) such that W

(u)
dec (X) > W̃

(u)
dec (X), and let M̃ be the set

of milestones for which a multiple makespan reduction is achieved. From the above discussion, this

means that there is a set Ũ of nodes (Ũ ⊆ X), which are not reachable from the initial node through

a path fully contained in X. Let us, therefore, consider the node subset X̃ obtained removing

from X all the nodes of Ũ , and consider a new cut ω
(u)
dec(X̃) = ω

(u)
dec(X \ Ũ). Now, in ω

+(u)
dec (X̃)

there can be no arc (k, i) such that i ∈ Ũ , since otherwise in X there would have been a path

from 0 to a node of Ũ , and the makespan of some milestone in M̃ would not have been multiply

reduced by applying ω
(u)
dec(X). As a consequence, considering the new cut ω

(u)
dec(X̃), one has that

ω
+(u)
dec (X̃) ⊆ ω

+(u)
dec (X) (i.e., the set of forward arcs has not been enlarged), and applying the cut

ω
(u)
dec(X̃) no milestone in N \X̃ experiences multiple reductions. So now the set N \X̃ includes exactly

all the milestones affected by the cut, and in conclusion, W̃
(u)
dec (X̃) = W

(u)
dec (X̃) < W

(u)
dec (X). Hence,

given any cut ω
(u)
dec(X), even if W̃

(u)
dec (X) < W

(u)
dec (X), there is certainly another cut ω

(u)
dec(X̃) such

that W̃
(u)
dec (X̃) = W

(u)
dec (X̃) < W

(u)
dec (X), so indeed minimizing W

(u)
dec (X) is equivalent to minimizing

W̃
(u)
dec (X). �

A.3 Proof of Theorem 3

Proof. Suppose that there is an increasing cut ω
(u)
inc(X) such that W

(u)
inc (X) < W̃

(u)
inc (X). This means

that there is a set M̃ of milestones such that, even if they lay in N \X, their respective makespans are

not increased by applying the cut. Let us, therefore, consider the node subset Ñ ⊂ N \X including all

the nodes of N \X that are on some critical path leading to some node of M̃ , and consider a new cut

ω
(u)
inc(X̃) = ω

(u)
inc(X ∪ Ñ). Now, observe that in ω

−(u)
inc (X̃) there can be no arc (k, j) such that j ∈ Ñ ,

30

since otherwise the makespan of some milestone in M̃ would have been affected by the increasing

cut ω
(u)
inc(X). As a consequence, ω

+(u)
inc (X̃) ⊇ ω

+(u)
inc (X) (i.e., passing from ω

(u)
inc(X) to ω

(u)
inc(X̃), the

set of forward arcs may have been enlarged), but the set of affected milestones in N \ X̃ is smaller

than N \X. The set N \ X̃ includes exactly all the milestones affected by the cut, so in conclusion,

W̃
(u)
inc (X̃) = W

(u)
inc (X̃) > W

(u)
inc (X). Hence, given any cut ω

(u)
inc(X), if W̃

(u)
inc (X) > W

(u)
inc (X), there is

certainly another cut ω
(u)
inc(X̃) such that W̃

(u)
inc (X̃) = W

(u)
inc (X̃) > W

(u)
inc (X), so indeed maximizing

W
(u)
inc (X) is equivalent to maximizing W̃

(u)
inc (X). �

31

