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ABSTRACT
We investigate the use of cooperative multi-agent allocation tech-

niques on problems related to Earth observation scenarios with

multiple users and satellites. We focus on the problem of coor-

dinating users having reserved exclusive orbit portions and one

central planner having several requests that may use some intervals

of these exclusives. We define this problem as Earth Observation

Satellite Constellation Scheduling Problem (EOSCSP) and map it

to a Mixed Integer Linear Program. As to solve EOSCSP, we pro-

pose market-based techniques and a distributed problem solving

technique based on Distributed Constraint Optimization (DCOP),

where agents cooperate to allocate requests without sharing their

own schedules. These contributions are experimentally evaluated

on randomly generated EOSCSP instances based on real large-scale

or highly conflicting observation order books.
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1 INTRODUCTION
Recent years have shown a large increase in the development of

satellite constellations. Instead of considering individual satellites,

they take advantage of a group of satellites, some of them often

sharing the same orbital planes, to provide richer services like

positioning, telecommunication or Earth observation [17].With few

satellites in a constellation (e.g. two in the PLEIADES project [8]),

and in low or medium Earth orbits (altitude inferior to 35,000km),

no region on Earth is permanently covered by the constellation

at any time. So, the main motivation to increase the size of these

constellations is to allow to capture with a high reactivity any

point on Earth, as the Planet company is doing with more than 150

Earth Observation Satellites (EOS) [16]. But, operating numerous

EOS requires improving cooperation between the assets and on-

board autonomy in order to make the best use of the system, which

becomes a highly combinatorial task. Besides their growing number,
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constellations’ composition is evolving too. Recent technological

advances allow the production and deployment of agile EOS able

to change their orientation, and to provide multiple types of image

shooting with multiple sensors. While providing richer services

to multiple users, this adds many degrees of freedom and decision

variables to schedule EOS activity, and opens many challenges

[18], especially from a multi-agent perspective [14]. Among these

challenges, we focus on the collective scheduling of observations on

a set of satellites on which some users have exclusive access to some
orbit portions, using distributed techniques, as to spread decisions

among the different users of the constellation. This anwers to strong

user expectations to benefit on the one hand from the advantages

of a system shared between several stakeholders (reduction of costs

compared to a very expensive global system) and on the other hand

from the advantages of a proprietary system (ability to do what

one wants with the satellite and potentially without disclosing it

to others). While the literature about multi-satellite scheduling

is rich, as confirmed by a recent review paper [18], considering

satellite constellations as shared resources requiring multiple users

to coordinate as to allocate observation tasks within exclusive orbit

portions is a completely novel problem, we address in this paper,

as illustrated in Figure 1.

In [13], auction-based approaches are proposed to allocate obser-

vation tasks to a set of satellites, where each satellite is managed by

a different mission center. Mission centers coordinate their alloca-

tion using auctions, by bidding on the open observations depending

on the impact on the on-board plan and its reward (valued using

the incidence angle of the scheduled observations). Contrary to this

approach, in this study, the distribution is related to some exclusive

users having full control on some orbit portions (using full direct
tasking1 operation) or having bought some orbit portions outside

direct communication, on which they have full priority to sched-

ule observations. In such setting, some user can request relatively

cheap observations to a satellite by the way of a central planner,

thereby also disclosing her intentions. Alternatively, users may

purchase exclusive time slots, and privately use the satellite dur-

ing these times. Here, the fact that schedules cannot be performed

by a single authority, for privacy reason in exclusive windows,

is a strong requirement. This is the reason to provide distributed

scheduler where agents coordinate without disclosing their plans,

1
Full direct tasking means a constellation user can directly send tasks to a satellite

entering in its communication window, and then download the results just before

the satellite is out of range. Such user masters the schedule on its orbit slot, but still

requires to meet some coupling constraints as energy constraints, memory capacity

and satellite orientation.
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Figure 1: An EOS system composed of a main mission center𝑢0, distributed stations (with ranges), agencies emitting observation
requests (to mission center), satellites (with image footprint), and exclusive users with their own ground stations.

while meeting coupling constraints like satellite capacity or inter-

observation configuration time, that could not be guaranteed by

non-coordinated schemes where users make their plans in parallel.

We will investigate here two different distributed resource alloca-

tion and coordination schemes: auctions and distributed constraint

optimization (DCOP).

Section 2 illustrates and defines Earth Observation Satellite Con-

stellation Scheduling Problem (EOSCSP). Section 3 focuses on cen-

tralized solution methods Mixed-Integer Linear Program (MILP)

and greedy approach to EOSCSP, we will use as our centralized

benchmark. Section 4 expounds some auction-based approaches

to solve EOSCSP, using different auction schemes (PSI, SSI and

CBBA), while Section 5 proposes another approach to coordination

between exclusive users using DCOPs. We experimentally evaluate

these different algorithms using randomly generated order books

on a constellation to be deployed, in Section 6. Finally, Section 7

concludes the paper with some perspectives.

2 EOSCSP MODEL
This section illustrates the problem we investigate using a sample

scenario, and then provides some core definitions.

2.1 Sample Scenario
Figure 2 illustrates a scenario, where we consider: 3 satellites, each

having a given planning period (e.g. planning on the next orbit, or

on horizons depending on the communication windows between

the satellite and ground stations); one user 𝑢0 without exclusive or-

bit portion; two users having exclusive orbit portions such that user

𝑢1 owns exclusives on satellite 𝑠0 and on satellite 𝑠1 (hashed red),

user 𝑢2 owns exclusives on satellite 𝑠0 and on satellite 𝑠2 (hashed

blue); several requests to be performed before a due date, denoted

𝑟𝑖, 𝑗 for the 𝑗th request for user 𝑖; several observation opportunities

(simply observations) per request, denoted 𝑜𝑖, 𝑗,𝑘 for the 𝑘th obser-

vation for the 𝑗th request of the 𝑖th user. Only one observation

should be planned to fulfill the request on temporal slots depending

on the satellites’ orbits and the position of zones of interest (slots

are represented as transparent areas). More precisely, we consider

2 observation opportunities per request, such that opportunities

𝑜1,0,0 and 𝑜1,0,1 are private for user 𝑢1 (in red), opportunities 𝑜2,0,0,

𝑜2,0,1, 𝑜2,1,0, and 𝑜2,1,1 are private for user 𝑢2 (in blue), opportuni-

ties 𝑜
0, 𝑗,𝑘 ’s (in green) which are directly requested to the central

scheduler 𝑢0 by other clients without exclusives. The proposed

solution fulfills all requests, by allowing non exclusive user 𝑢0 to

position observation on exclusive orbit portions (e.g. 𝑜0,0,0 in on

𝑢1’s exclusive on satellite 𝑠0). A simplified energy constraint states

that a satellite cannot perform more than 𝑛max observations on its

scheduling period (here,𝑛max = 4), and there are minimal transition

times between two observations 𝑜 and 𝑝 , depending on 𝑜 and 𝑝

and the date at which the transition is triggered on a given satel-

lite. At the global level, each exclusive user (𝑢1 or 𝑢2) could have

its own scheduling system to manage its exclusive periods, and a

central scheduling system (𝑢0) manages observations 𝑜
0, 𝑗,𝑘 ’s. In the

end, every user and the central scheduler have a local scheduling

problem to solve. Solving them in a separate manner may lead the

central scheduler not to be able to book slots on exclusive orbit

portions, while it may improve the solution. Without coordination,

and with a non-cooperative management of exclusive slots, the

overall schedule might not be optimal, wrt the number of possible

scheduled observations. Moreover, exclusive users may gain from

this cooperation by making profits from observation scheduled

on their orbit portions. Thus, we propose here to coordinate the

scheduling processes between users.

2.2 Definitions and Notations
Let’s provide the core concepts of this scheduling problem.

Definition 1 (EOSCSP). An Earth Observation Satellite Constel-
lation Scheduling with Exclusives Problem (or EOSCSP) is defined
by a tuple 𝑃 = ⟨S,U,R,O⟩, such that S is a set of satellites,U is a
set of users, R is a set of requests, and O is a set of observations to
schedule to fulfill requests in R.

Definition 2 (Satellite). A satellite is defined as a tuple 𝑠 =

⟨𝑡 start𝑠 , 𝑡end𝑠 , ^𝑠 , 𝜏𝑠 ⟩ with 𝑡 start𝑠 ∈ R the start time of its orbit plan,
𝑡end𝑠 ∈ R the end time of its orbit plan, ^𝑠 ∈ N+ its capacity (i.e.
the maximum number of observations during its orbit plan), 𝜏𝑠 :
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Figure 2: An example with 3 satellites, 2 exclusive users (red
and blue) with exclusives (hashed areas), and 1 non-exclusive
user (green). Observation time windows appear as transpar-
ent surfaces. Solid surfaces represent an optimal solution.

O × O → R the function defining transition times between two given
observations.

Definition 3 (User). A user is defined as a tuple 𝑢 = ⟨𝑒𝑢 , 𝑝𝑢⟩
with a (possibly empty) set of exclusive time windows 𝑒𝑢 =

{(𝑠, (𝑡 start, 𝑡end)) | 𝑠 ∈ S, [𝑡 start, 𝑡end] ⊆ [𝑡 start𝑠 , 𝑡end𝑠 ])} ⊂ (S × (R ×
R)), and a priority 𝑝𝑢 ∈ N+ (the lower the better, used in case of
conflict). We noteUex (resp.Unex) the set of users owning (resp. not
owning) exclusives.

We assume here that only one user has no exclusive orbit portion,

the central planner, denoted 𝑢0, i.e.Unex = {𝑢0}, and there is no

overlapping exclusive portions.

Definition 4 (Reqest). A request is defined as a tuple 𝑟 =

⟨𝑡 start𝑟 , 𝑡end𝑟 ,Δ𝑟 , 𝜌𝑟 , 𝑝𝑟 , 𝑢𝑟 , \𝑟 ⟩, with a validity time window defined by
𝑡 start𝑟 ∈ R and 𝑡end𝑟 ∈ R, a duration Δ𝑟 ∈ R, a reward 𝜌𝑟 ∈ R if 𝑟 is
fulfilled, a latitude-longitude-altitude position (LLA) to observe 𝑝𝑟 , a
requester 𝑢𝑟 ∈ U and a list \𝑟 ∈ 2O of observation opportunities to
fulfill the request.

\𝑟 is dynamically computed on current constellation configura-

tion and requested LLA position 𝑝𝑟 , since several agile satellites,

by changing their orientation may acquire the same position, thus

generating several observation opportunities.

Definition 5 (Observation). An observation opportunity (or
observation) is defined as a tuple𝑜 = ⟨𝑡 start𝑜 , 𝑡end𝑜 ,Δ𝑜 , 𝑟𝑜 , 𝜌𝑜 , 𝑠𝑜 , 𝑢𝑜 , 𝑝𝑜 ⟩,
with a validity time window defined by 𝑡 start𝑜 ∈ R and 𝑡end𝑜 ∈ R, a
request 𝑟𝑜 to which it contributes, a duration Δ𝑜 ∈ R (Δ𝑜 = Δ𝑟𝑜 ), a re-
ward 𝜌𝑜 ∈ R (combined from 𝑟𝑜 and information about the weather),

a satellite 𝑠𝑜 on which this observation can be scheduled, an owner
𝑢𝑜 ∈ U (𝑢𝑜 = 𝑢𝑟𝑜 ), and a priority 𝑝𝑜 ∈ N+ (𝑝𝑜 = 𝑝𝑟𝑜 ).

The difference between request reward and observation reward

comes from the fact that, in practice, weather conditions or inci-

dence angle of an observation may increase or decrease the basic

reward for a given request. So, our model can consider different

rewards, but in this study we only focus on cases where observation

rewards are directly inherited from the requests.

Definition 6 (Solution). A solution to an EOSCSP is a map-
pingM = {(𝑜, 𝑡) | 𝑜 ∈ O, 𝑡 ∈ [𝑡 start𝑜 , 𝑡end𝑜 ]} assigning a start time
to at most one observation per request such that exclusive users
have their observations scheduled on their respective exclusive win-
dows. An optimal solution is a solution where the overall reward
is maximized (sum of the rewards of the scheduled observations):
argmaxM

∑
(𝑜,𝑡 ) ∈M 𝜌𝑜 .

Definition 7. An EOSCSP for user 𝑢, denoted 𝑃 [𝑢] = ⟨S,U,

R[𝑢],O[𝑢]⟩ (or EOSCSP[𝑢]), is an EOSCSP, sub-problem of another
EOSCSP 𝑃 = ⟨S,U,R,O⟩ restricted to requests and observations
from 𝑢, where R[𝑢] = {𝑟 | 𝑟 ∈ R, 𝑢𝑟 = 𝑢} ⊆ R and O[𝑢] = {𝑜 | 𝑜 ∈
O, 𝑢𝑜 = 𝑢} ⊆ O.

More generally, we note 𝑃 [𝑥] (resp. 𝑃 [𝑥]) the problem 𝑃 lim-

ited to the only components related to 𝑥 , 𝑥 being a request, an

observation or a satellite. Later on, we will also use the notations

𝑃 [∅|M] (resp. 𝑃 [𝑢𝑙 , . . . , 𝑢𝑚 |M]) to define the problem (resp. sub-

problem for users 𝑢𝑙 , . . . , 𝑢𝑚) given some predefined allocationM
of some observations. Moreover, we will use notation 𝑃 to appoint

the EOSCSP 𝑃 , where only requests and related observations that

can be scheduled outside exclusive are considered (i.e. observations

whose time windows intersect non exclusive orbit portions). Fi-

nally, we note the union of two problems 𝑃 = ⟨S,U,R,O⟩ and
𝑃 ′ = ⟨S′,U′,R′,O′⟩, 𝑃 ∪ 𝑃 ′ = ⟨S ∪S′,U∪U′,R ∪R′,O ∪O′⟩.

3 CENTRALIZED PROBLEM SOLVING
We present here centralized approaches to EOSCSP. First, this plan-

ning problem is modeled as a MILP. Decision variables are the

following. 𝑥𝑠,𝑜 ∈ {0, 1} is the decision to perform observation 𝑜

from satellite 𝑠 , 𝑡𝑠,𝑜 ∈ R is the start date for the observation 𝑜 on

satellite 𝑠 , 𝛽𝑠,𝑜,𝑝 ∈ {0, 1} is the precedence between observations

on the same satellite, equals to 1 if 𝑜 is before 𝑝 on 𝑠 .

max

𝑥𝑠,𝑜

∑︁
𝑜∈O,𝑠∈S

𝜌𝑜𝑥𝑠,𝑜 (1)

s.t. ∀𝑠 ∈ S,∀𝑟 ∈ R,∀𝑜 ∈ O,∀𝑝 ∈ O, 𝑜 ≠ 𝑝

2 − 𝛽𝑠,𝑜,𝑝 − 𝛽𝑠,𝑝,𝑜 ≥ 𝑥𝑠,𝑜 (2)

2 − 𝛽𝑠,𝑜,𝑝 − 𝛽𝑠,𝑝,𝑜 ≥ 𝑥𝑠,𝑝 (3)

𝛽𝑠,𝑜,𝑝 + 𝛽𝑠,𝑝,𝑜 ≤ 1 (4)

𝑡𝑠,𝑝 − 𝑡𝑠,𝑜 ≥ 𝜏𝑠 (𝑜, 𝑝) + Δ𝑜 − Δmax

𝑠,𝑜,𝑝𝛽𝑠,𝑜,𝑝 , Δ
max

𝑠,𝑜,𝑝 > 0 (5)

𝑡𝑠,𝑜 − 𝑡𝑠,𝑝 ≥ 𝜏𝑠 (𝑝, 𝑜) + Δ𝑝 − Δmax

𝑠,𝑝,𝑜𝛽𝑠,𝑝,𝑜 , Δ
max

𝑠,𝑝,𝑜 > 0 (6)∑︁
𝑜∈O

𝑥𝑠,𝑜 ≤ ^𝑠 (7)∑︁
𝑜∈\ (𝑟 )

𝑥𝑠,𝑜 ≤ 1 (8)

𝑥𝑠,𝑜 ∈ {0, 1} (9)



𝑡𝑠,𝑜 ∈ [𝑡 start𝑜 , 𝑡end𝑜 ] ⊂ R (10)

𝛽𝑠,𝑜,𝑝 ∈ {0, 1} (11)

with Δmax

𝑠,𝑜,𝑝 = 𝑡end𝑜 − 𝑡 start𝑝 + Δ𝑜 + 𝜏𝑠 (𝑜, 𝑝)

This objective (1) aims to maximize the sum of the rewards from

scheduled observations. (2) to (6) ensure precedence of observa-

tions and their distance is at least the transition time required on

their satellite. (7) enforces the number of observations booked on a

satellite does not exceed its capacity. (8) checks at most one obser-

vation per request is scheduled. (9) to (11) are domain definitions.

This MILP can be solved using off-the-shelf solvers like CPLEX

or Gurobi, but they will hardly scale up when dealing with larger

problems (e.g. more than 100 observations with 3 satellites and 3

users). Even devising non-exact methods based on dynamic pro-

gramming, for instance, do not scale with increasing constellation

size [11]. To ensure observations from exclusive users have priority

over non-exclusive users’ observations, their reward must be set to

a high value. Thus, the solver will prefer scheduling exclusive ob-

servations within their time window instead of scheduling another

observation with less priority. While the solution to this problem

is optimal, it requires each exclusive user to fully disclose request
information to the central planner.

As to solve larger problems, one approach is to allocate in a

greedy fashion, by scheduling first exclusive users’s observations

and then more urgent observations, as described in Algorithm 1. In

practice, this is the technique used by most satellite/constellation

operators and is a candidate competitor for benchmarking solution

methods [1, 18]. For doing so, observations are sorted in increasing

order on priority and start time criteria (line 2). Then, for each

observation 𝑜 in this sorted list, the first free slot on its satellite orbit

plan is found (line 4-8), using first_slot function. This function

explores the satellite schedule (𝑅 [𝑠]) to find the first empty slot,

consistent with 𝑜’s time constraints. This algorithm is not optimal,

but provides very fast solutions. But, as for MILP, it requires sharing

all the constraints and information with a central planner.

4 AUCTION-BASED COORDINATION
One vision to allocate resources and/or tasks between several coop-

erative agents (here, our exclusive users) consists in auction-based

approaches, that have proven their flexibility, efficiency, fairness,

and privacy-preservation of users’ plans and resources. In multi-

robot task allocation problems, such approaches are used to allocate

tasks to robots, and integrate them into their plans [4]. In our set-

ting, one could consider allocating requests to satellites by such

auction-based mechanisms, as proposed in [13], with the difference

that distribution is not related to satellites, but to exclusive users

and their exclusive orbit portions. This is the approach we follow in

this section. But first, let’s introduce the auction-based mechanisms

we will implement.

4.1 Background on Auction-based Allocation
A generic task allocation framework consists in a set of resources

and a set of tasks to be performed by resources. The objective is to

assign tasks to resources so that it maximizes some objective (e.g.

the number of assigned tasks, or the sum of the rewards of the tasks).

So this is classical allocation problem that can be modeled as a MILP,

Algorithm 1: Greedy EOSCSP solver

Data: An EOSCSP 𝑃 = ⟨S,U,R,O⟩
Result: An assignmentM

1 M ← {}
2 Osorted ← sort(O)
3 𝑅 ← {(𝑠, [])} | 𝑠 ∈ S}
4 for 𝑜 ∈ Osorted do
5 𝑡 ← first_slot(𝑜, 𝑃, 𝑅)
6 if 𝑡 ≠ ∅ then
7 M ←M ∪ {(𝑜, 𝑡)}
8 Osorted ← Osorted \ \ (𝑟𝑜 )

9 returnM

Function first_slot (𝑜 , 𝑃 = ⟨S,U,R,O⟩, 𝑅)
10 for (𝑠, [𝑡 start, 𝑡end]) ∈ domains(𝑜) do
11 if |𝑅 [𝑠] | < ^𝑠 then
12 if 𝑅 [𝑠] = [] then
13 if 𝑡end ≥ 𝑡 start + Δ𝑜 then
14 𝑅 [𝑠] = {(𝑜, (𝑠, 𝑡 start))}
15 return (𝑠, 𝑡 start)
16 else
17 𝑖 ← 0

18 while 𝑖 ≤ |𝑅 [𝑠] | do
19 𝑡 start′ ← 𝑡 start

20 if 𝑖 > 0 then
21 (𝑜𝑖−1, (𝑠, 𝑡𝑖−1)) ← 𝑅 [𝑠] [𝑖 − 1]
22 𝑡 start′ ←

max(𝑡 start, 𝑡𝑖−1 + Δ𝑜𝑖−1 + 𝜏𝑠,𝑜𝑖−1,𝑜 )
23 if 𝑡 start′ + Δ𝑜 ≤ 𝑡end then
24 if 𝑖 = |𝑅 [𝑠] | then
25 𝑡upper ← 𝑡end

26 𝑡end′ ← 𝑡 start′ + Δ𝑜
27 else
28 (𝑜𝑖 , (𝑠, 𝑡𝑖 )) ← 𝑅 [𝑠] [𝑖]
29 𝑡upper ← 𝑡𝑖

30 𝑡end′ ← 𝑡 start′ + Δ𝑜 + 𝜏𝑠,𝑜,𝑜𝑖
31 if 𝑡 start′ < 𝑡end′ ≤ 𝑡upper then
32 𝑅 [𝑠] =

insert(𝑅 [𝑠], (𝑜, (𝑠, 𝑡 start′)), 𝑖)
33 return (𝑠, 𝑡 start′)

34 𝑖 + +

35 return ∅

as seen in previous section. Now, the idea is that the requests to

be scheduled are open for bidding by an auctioneer. Bidders (the
exclusive users) valuate the requests depending on their current

plan, and bid for some requests, as illustrated in Figure 3. The most

expensive computations in this process are the bidding step by each

bidder, which can have an exponential number of bundles to valuate,

and the winner determination problem (WDP) which amounts to
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Figure 3: A sample auction process with one auctioneer 𝑎 and
𝑛 bidders 𝑏𝑖 , following five main steps: (1) item announce-
ment of the items to allocate, (2) valuation of the items or
bundles by each bidder, (3) communication of the computed
bids, (4) winner determination problem solving, and (5) allo-
cation of items to bidders.

solving an Integer Linear Program with a potentially exponential

size, and falls into the combinatorial auction (CA) frameworks [3].

According to literature on multi-robot task allocation [4] and

multi-satellite observation allocation [13], to overcome these com-

putational limits, the classical relaxation consists in only allowing

bidding on item (and not on bundles). When bidders bid on the

whole set of items in parallel, we fall into PSI framework [7]. When

the auctioneer announces items iterativelly, and bidders build their

bid knowing the previous item allocation, we fall into the SSI frame-

work [7]. In general PSI has very good performances with very

limited computation time, while PSI solution quality are often lim-

ited, since bidders cannot easily reason on bundles. More recently,

consensus-based bundle algorithm (CBBA) combines ideas from

auctions and consensus to converge faster than SSI while yielding

similar solutions and having the benefits of traditional consensus

algorithms [2]. CBBA is a fully distributed solution to implement a

computationally cheap variant of combinatorial auctions (CA). Each

bidder constructs a unique bundle of items it wishes to be assigned

to, with respect to the marginal cost associated with the inclusion

of the considered item into its current bundle. Then during the con-

sensus phase, the bidders compare their bids with their teammates

bids. If a robot is outbid on an item 𝑡 , it drops the item and all the

items added after it, as the exclusion of 𝑡 made the valuation of

their marginal cost obsolete. This algorithm have been extensively

studied and modified to improve its performances and adapt it to

specific scenarios, like multi-satellite observation allocation [13].

4.2 Mapping EOSCSP to Auctions
Mapping an EOSCSP 𝑃 to a auction-based allocation problem is

quite straightforward. Bidders are exclusives users in Uex
, and

items are non exclusive requests in R emitted by the central planner

𝑢0, playing the role of auctioneer. The idea is that each exclusive

user𝑢 computes an initial planM𝑢 with its own requests by solving

𝑃 [𝑢]. Then, 𝑢0 announces the requests, either as a whole (for PSI
and CBBA) or iterativelly (for SSI). Each exclusive user 𝑢 valuates

each single request with function bid (for PSI and SSI) or bundle

with function bundle (for CBBA) by computing the marginal cost

to integrate the given item or bundle 𝑥 in its current plan. We

redirect the reader to the original CBBApaper formore details about

the bundle construction [2]. bid(𝑟,M𝑢 ) simply amounts to solve

𝑃 [𝑢] ∪ 𝑃 [𝑟 ] and to assess the difference with the current planM𝑢 .

It returns the bid itself B𝑢 [𝑟 ] (best marginal cost) and the schedule

for one observation to fulfill 𝑟 , 𝜎𝑢 [𝑟 ] = (𝑜, 𝑡). The bids (on single

items or bundles) are then sent to the auctioneer 𝑢0 (for PSI and

SSI) which determines the winners, or to the other bidders sharing

interest on the same request, namely N𝑢 , to find a consensus (for

CBBA). Once the winners are determined, requests are allocated

to the winners. If there remain some non allocated requests, 𝑢0
attempts to schedule them outside any exclusive window. These

processes are sketched in Algorithms 2, 3 and 4.

Algorithm 2: psi EOSCSP solver

Data: An EOSCSP 𝑃 = ⟨S,U,R,O⟩
Result: An assignmentM

1 M𝑢0
← ∅

2 for each 𝑢 ∈ Uex do concurrently
3 M𝑢 ← solve(𝑃 [𝑢])
4 for each 𝑟 ∈ R do B𝑢 [𝑟 ], 𝜎𝑢 [𝑟 ] ← bid(𝑟,M𝑢 )

// send B𝑢 , 𝜎𝑢 to 𝑢0

5 for each 𝑟 ∈ R do
6 𝑤 ← argmax𝑢∈Uex {B𝑢 [𝑟 ]}
7 M𝑢0

←M𝑢0
∪ {𝜎𝑤 [𝑟 ]}

8 M𝑤 ←M𝑤 ⊕ 𝜎𝑤 [𝑟 ] // send M𝑤 [𝑟 ] to 𝑤

9 M𝑢0
← solve(𝑃 [𝑢0 |M𝑢0

])
10 return

⋃
𝑢∈UM𝑢

Algorithm 3: ssi EOSCSP solver

Data: An EOSCSP 𝑃 = ⟨S,U,R,O⟩
Result: An assignmentM

1 M𝑢0
← ∅

2 for each 𝑢 ∈ Uex do concurrentlyM𝑢 ← solve(𝑃 [𝑢])
3 for each 𝑟 ∈ sorted(R) do
4 for each 𝑢 ∈ Uex do
5 B𝑢 [𝑟 ], 𝜎𝑢 [𝑟 ] ← bid(𝑟,M𝑢 )

// send B𝑢 [𝑟 ], 𝜎𝑢 [𝑟 ] to 𝑢0

6 𝑤 ← argmax𝑢∈Uex {B𝑢 [𝑟 ]}
7 M𝑢0

←M𝑢0
∪ {𝜎𝑤 [𝑟 ]}

8 M𝑤 ←M𝑤 ⊕ 𝜎𝑤 [𝑟 ] // send M𝑤 [𝑟 ] to 𝑤

9 M𝑢0
← solve(𝑃 [𝑢0 |M𝑢0

])
10 return

⋃
𝑢∈UM𝑢

In PSI and SSI, the ⊕ operator is used to add 𝜎𝑢 [𝑟 ] = (𝑜, 𝑡)
in the current plan. Depending on the setting, it can be a simple

aggregation if there is no conflict, or may require removing some

already planned observations with lower reward. In SSI and CBBA,

requests are sorted before looping over. This sorting can be donewrt

due date, reward, or any combination of criteria. In the experiments,

we will use the due date.



Algorithm 4: cbba EOSCSP solver

Data: An EOSCSP 𝑃 = ⟨S,U,R,O⟩
Result: An assignmentM

1 M𝑢0
← ∅

2 for each 𝑢 ∈ Uex do concurrentlyM𝑢 ← solve(𝑃 [𝑢])
3 for each 𝑟 ∈ sorted(R) do
4 for each 𝑢 ∈ Uex do
5 N𝑢 ← candidates(𝑟 )
6 R𝑢 ← R𝑢 ∪ {𝑟 }

7 while conflict do
8 for each 𝑢 ∈ Uex do concurrently
9 B𝑢 ,W𝑢 ,T𝑢 ← bundle(𝑢)

// send B𝑢 ,W𝑢 ,T𝑢 to N𝑢
10 for each 𝑢 ∈ Uex do concurrently

// solve conflicts and determine M𝑢 (see

[2])

11 for each 𝑢 ∈ Uex do
12 M𝑢0

←M𝑢0
∪ {(𝑜, 𝑡) | (𝑜, 𝑡) ∈ M𝑢 , 𝑢𝑜 = 𝑢0}

13 M𝑢0
← solve(𝑃 [𝑢0 |M])

14 return
⋃
𝑢∈UM𝑢

5 DCOP-BASED COORDINATION
Another approach to implement the allocation of requests between

the multiple candidate exclusive users is to adopt a distributed

constraint optimization vision. We devise here a cooperation mech-

anism between exclusive users to coordinate their scheduling pro-

cess, by exchanging messages to reach an agreement on request

allocations while meeting the coupling constraints, such as the

capacity constraints.

5.1 Background on DCOP
One way to model inter-agent coordination problems is to formalize

them as distributed constraint optimization problems (DCOP) [12].

Definition 8. A Distributed Constraint Optimization Problem

(or DCOP) is a tuple ⟨A,X,D, C, `, 𝑓 ⟩, where: A = {𝑎1, . . . , 𝑎 |𝐴 | } is
a set of agents; X = {𝑥1, . . . , 𝑥𝑛} are variables owned by the agents;
D = {D𝑥1 , . . . ,D𝑥𝑛 } is a set of finite domains, such that variable
𝑥𝑖 takes values in D𝑥𝑖 = {𝑣1, . . . , 𝑣𝑘 }; C = {𝑐1, . . . , 𝑐𝑚} is a set of
soft constraints, where each 𝑐𝑖 defines a cost ∈ R+ ∪ {+∞} for each
combination of assignments to a subset of variables (a constraint is
initially known only to the agents involved); ` : X → A is a function
mapping variables to their associated agent; 𝑓 :

∏D𝑥𝑖 → R is an
objective function, representing the global cost of a complete variable
assignment. The optimization objective is represented by function 𝑓 ,
which, in general, is considered as the sum of costs: 𝑓 =

∑
𝑖 𝑐𝑖 . A

solution to a DCOP 𝑃 is a complete assignment to all variables. A
solution is optimal if it minimizes 𝑓 .

DCOP have been widely studied and applied in many areas of

reference [6]. They have many interesting properties: (i) focus on

decentralized approaches where agents negotiate a joint solution

through local message exchanges; (ii) exploitation of the domain

structure (by encoding it in constraints) to address hard compu-

tational problems; (iii) wide variety of solution methods ranging

from exact methods to heuristic and approximate techniques; such

as, for example, ADOPT [10], DPOP [12], MaxSum [5], DSA [19]

or MGM [9], and their numerous variants and extensions, to name

only the most famous.

5.2 Coordinating Exclusive Users with DCOP
As for combinatorial auctions, using DCOPs for allocating all re-

quests as a whole is too computationally expensive to be used. So

we will take inspiration from SSI, and consider requests sequen-

tially, and coordinate exclusive user for each request using a DCOP

solver, instead of auctions. This lets the non exclusive users coordi-

nate to choose which one will fulfill it by scheduling an observation

in its exclusive time windows. Algorithm 5 sketches this method,

coined s_dcop (for sequential DCOP). First, exclusive users also

solve their own local sub-problem concurrently (line 1). Then, for

each request 𝑟 in the ordered list of remaining requests (line 2), a

new DCOP instance is collectively built between the exclusive users

(line 3), and then solved (line 4) using any DCOP solver available

(DPOP in our experiments). Once all requests have been consid-

ered, 𝑢0 gathers the sub-solutions to build its own final solution, by

scheduling as many observation outside exclusive time windows

as possible (line 6-7). Note that, the inner plan of each exclusive

user remains private, and only non exclusive schedule observation

are communicated to 𝑢0 (plus some extra information to handle

inter-observation transition times).

Algorithm 5: s_dcop EOSCSP solver

Data: An EOSCSP 𝑃 = ⟨S,U,R,O⟩
Result: An assignmentM

1 for each 𝑢 ∈ Uex do concurrentlyM𝑢 ← solve(𝑃 [𝑢])
2 for each 𝑟 ∈ sort(R) do
3 𝑝 ← build_DCOP(\𝑟 ,M,M𝑢1

, . . . ,M𝑢𝑛 , 𝑃)
4 M𝑢1

, . . . ,M𝑢𝑛 ← solve_DCOP(𝑝)
5 for each 𝑢 ∈ Uex do concurrently
6 M′𝑢 ← {(𝑜, 𝑡) ∈ M𝑢 |𝑢𝑜 ∈ Unex}

// send M′𝑢 to 𝑢0

7 M𝑢0
← solve(𝑃 [𝑢0 |

⋃
𝑢∈Uex

M′𝑢 ])

8 return
⋃
𝑢∈UM𝑢

5.3 DCOP Model
Let’s specify now the DCOP instance to be built in line 3 of Algo-

rithm 5 for a given request 𝑟 , and a current scheduling (M,M𝑢1
, . . . ,

M𝑢𝑛 ), as required in Definition 8. Straightforwardly, the set of

agents is the set of exclusive users which can potentially schedule

the current request 𝑟 :

A = {𝑢 ∈ Uex |∃(𝑠, (𝑡 start𝑢 , 𝑡end𝑢 )) ∈ 𝑒𝑢 , ∃𝑜 ∈ \𝑟
s.t. 𝑠𝑜 = 𝑠, [𝑡 start𝑢 , 𝑡end𝑢 ] ∩ [𝑡 start𝑜 , 𝑡end𝑜 ] ≠ ∅} (12)

We note O[𝑢]𝑟 = {𝑜 ∈ \𝑟 |∃(𝑠, (𝑡 start𝑢 , 𝑡end𝑢 )) ∈ 𝑒𝑢 , s.t. 𝑠𝑜 =

𝑠, [𝑡 start𝑢 , 𝑡end𝑢 ] ∩ [𝑡 start𝑜 , 𝑡end𝑜 ] ≠ ∅} these observations related to



request 𝑟 that can be scheduled on 𝑢’s exclusives. Each such agent

owns binary decision variables, one for each observation 𝑜 ∈ O[𝑢]𝑟
and exclusive 𝑒 in its exclusives 𝑒𝑢 , stating whether it schedules 𝑜

in 𝑒 or not:

X = {𝑥𝑒,𝑜 |𝑒 ∈
⋃
𝑢∈A

𝑒𝑢 , 𝑜 ∈ O[𝑢]𝑟 } (13)

D = {D𝑥𝑒,𝑜 = {0, 1}|𝑥𝑒,𝑜 ∈ X} (14)

The mapping ` associates each variable 𝑥𝑒,𝑜 to 𝑒’s owner.

Constraints should check that at most one observation is sched-

uled per request (15), that satellites are not overloaded (16), that at

most one agent serves the same observation (17).∑︁
𝑒∈⋃𝑢∈A 𝑒𝑢

𝑥𝑒,𝑜 ≤ 1, ∀𝑢 ∈ X,∀𝑜 ∈ O[𝑢]𝑟 (15)∑︁
𝑜∈{𝑜∈O[𝑢 ]𝑟 |𝑢∈A,𝑠𝑜=𝑠 },𝑒∈

⋃
𝑢∈A 𝑒𝑢

𝑥𝑒,𝑜 ≤ ^∗𝑠 , ∀𝑠 ∈ S (16)

with ^∗𝑠 being the current capacity of 𝑠 given the already sched-

uled observations inM,M𝑢1
, . . . ,M𝑢𝑛 .∑︁

𝑒∈⋃𝑢∈A 𝑒𝑢

𝑥𝑒,𝑜 ≤ 1, ∀𝑜 ∈ O (17)

Beside, the cost to integrate an observation in the current user’s

schedule should be assessed to guide the optimization process. We

thus add soft constraint to each 𝑥𝑒,𝑜 :

𝑐 (𝑥𝑒,𝑜 ) = 𝜋 (𝑜,M𝑢𝑜 ), ∀𝑥𝑒,𝑜 ∈ X (18)

where 𝜋 evaluates the best cost obtained when scheduling 𝑜

and any combination of observations fromM𝑢𝑜 , as to consider all

possible revisions of 𝑢𝑜 ’s current schedule. Practically, instead of

computing 𝜋 each time, some constraint compilation can be used to

assess all these combinations only once. These exponential number

of alternatives are evaluated using polynomial greedy algorithm.

To sum up:

C = {(15), (16), (17), (18)} (19)

6 EXPERIMENTAL EVALUATION
Experiments aim to analyze the performances of the investigated

algorithms with a growing number of requests (and observations).

They are coded in Python 3.7 and executed on 20-core Intel(R)

Xeon(R) CPU E5-2660 v3 @ 2.60GHz, 62GB RAM, Ubuntu 18.04.5

LTS. We ran 30 instances of randomly generated EOSCSP with

seed in [0:29] for each problem size, and plot the average, with

[0.05, 0.95] confidence. The solve procedure used in psi, ssi, cbba
and s_dcop is the greedy algorithm. The DCOP algorithm used by

s_dcop is the DPOP implementation from pyDCOP [15]. Randomly

generated values are uniformly chosen within provided intervals.

The computation time reported latter is a centralized computation

time (no real distribution over several computers).

Highly conflicting problems. We evaluate the algorithms on very

conflicting small-scale problems (5 min planning horizon). We gen-

erate EOSCSPs with only 3 satellites with a capacity of 20 observa-

tions, 4 exclusive users emitting 2 to 20 requests each, 8 exclusive

portions per user with a random duration in [15:20], a central plan-

ner emitting 8 to 80 requests, 10 observation opportunities per

request of duration 5 that can be scheduled in a time window with
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Figure 4: Results for the investigated distributed solution
methods on highly conflicting small-scale problems.

duration in [10:20], and a reward in [10:50:10] for exclusive user,

and in [1:5] for central planner. Satellites’ time window is [0, 300].

Transition times between observations are equal to 1. Exclusives

are randomly positioned, while ensuring they do not overlap. Ob-

servation time windows are randomly positioned, as to ensure they

are either included in one exclusive, or outside any exclusive. There

are many observation overlaps, and as many requests from central

planner than all requests from the exclusive users.

Figure 4 shows the results for this setting. Reward-wise, all the

distributed algorithms are almost as good as greedy, which is our

baseline. Still, cbba and s_dcop provides the best distributed solu-

tions. The decline with growing number of observations is due to

the satellites’ capacity saturation. s_dcop and cbba’s performances

are at the cost of extra computation time, while remaining reason-

able (approx. 1000 seconds), contrary to optimal solver (e.g. CPLEX)

that cannot solve instances with more than 100 observations (not

displayed here). s_dcop’s higher computation time results from

pre-computing function 𝜋 and the underlying DPOP solving pro-

cedure. cbba computational overhead is due to bundle valuation.

At some point (problems larger than 750 observations to schedule),

cbba requires more time to compute than s_dcop. This is due to the
exponentially growing number of bundles to consider and the fact

that at this size, with such a conflicting setting, the cbba neighbor-
hood network is a complete graph, meaning that each user has to

resolve conflicts with all the other users. Communication-wise, psi
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Figure 5: Results for the investigated distributed solution
methods on problems with realistic large-scale order books.

exchanges few large messages, since all requests are communicated

to all users, resulting in exchanging more 10Mb in larger instances.

ssi and s_dcop exchange numerous messages of smaller size (only

sending bids on requests of interest), due to the sequential process

they follow. On its side, cbba exchanges fewer messages of small

size (approx. total 30kB in large instances), which makes it a very

relevant candidate in distributed settings, with good compromise

between solution quality and communication load. If reactiveness

is a requirement, ssi remains the best candidate.

Realistic problems. Here, we generate large-scale EOSCSPs, with
realistic parameters, with respect with order books provided by

our partners, to schedule thousands of observations in a 6-hour

planning horizon. We generate instances as previously but with 8

satellites with a capacity of 500 observations, 5 exclusive users with

20 to 100 requests each, 10 exclusive orbit portions per user with a

duration in [300:600], 1 central planner with 25 to 250 requests, 5

observation opportunities per request of duration of 20 that can be

scheduled in a time window with duration in [40:60] included in an

exclusive windows (there is no request outside exclusive windows

in this setting), and the planning time window is [0, 21600]. This

setting corresponds to the first phase of a real constellation to be

deployed in the 2 next years.

Figure 5 shows results for this setting. All algorithms provide

good quality solutions equivalent to greedy. The results obtained

in this setting, only focusing on observations inside exclusive win-

dows, confirm the performances of the different benchmarked al-

gorithm, except that here cbba does require more time to compute

than s_dcop. This is due to the fact that these larger instances are

less conflicting, and that the neighborhoods are no longer complete.

Let’s note that both s_dcop and cbba are very distributed in nature,

and performs many computation concurrently. Therefore there is

room for computation speedup in real distributed settings.

7 CONCLUSION AND SYNTHESIS
This paper investigated for the first time the use of distributed and

cooperative multi-agent techniques to solve the novel EOSCSP,

keeping in mind the need to limit information disclosure between

users. We defined core components of EOSCSP, and proposed a

straightforward MILP encoding to optimally solve such problems.

This is unfortunately non usable in practice, even on small instances.

We thus proposed a greedy and fast algorithm to solve EOSCSP.

We devised and implemented several distributed algorithms (psi,
ssi, cbba and s_dcop), all keeping the inner user plans private.

s_dcop and cbba provides solutions equivalent to the best evaluated
algorithms on over-conflicting problems. This has a cost: higher

communication load and computation time to assess the reward to

integrate an observation in a given schedule. Yet, these techniques

are fully distributable, and may gain from concurrent execution. On

realistic large scale problems, the solution quality is still very good

wrt. greedy. While, these problems still require less coordination

because the probability for overlapping observations is smaller,

EOSCSP still implies numerous observations from exclusive users,

which makes the computation of the s_dcop evaluation function

𝜋 and the construction of the cbba bundles expensive. A good

compromise is thus to use ssi in larger settings, since computation

time, communication-load are very limited, while providing good

quality solutions. Note that this investigation was also a very good

terrain for confronting DCOP-based and auction-based techniques,

which are most often not compared in the literature.

This work raises several perspectives, notably the development

of dedicated DCOP or CBBA solvers adapted to EOSCSP speci-

ficity, e.g. the use of the evaluation function 𝜋 or the construction

of bundles, that may result from a learning process, instead of a

systematic assessment of every alternative. On may also consider

devising dedicated bidding language to assess bundles and perform

the winner determination problem in a efficient manner. Moreover,

we are currently working on integrating uncertainties about ob-

servation success into the decision process, which leads to even

more complex problems to solve. Finally, we aim at pushing in-

vestigations in the direction of non-cooperative and market-based

settings, and notably studying incentives for exclusive users to

accept observations in their schedules.
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