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ABSTRACT
In this paper, we explore a multiagent-based deconfliction strat-
egy in Unmanned Air Traffic Management (UTM). We equip au-
tonomous unmanned aerial vehicles (UAV) with decision capabil-
ities to update their trajectories (4D contracts) when facing un-
predictable events or when priority trajectories are added to the 
airspace. Current initiatives for UTM envision a multi-layered man-
agement system where the lowest one is composed of either au-
tonomous UAV or human-operated one, that may have to react to 
incidents and emergencies, while sticking to the contracted 4D tra-
jectories. We propose an agent-based approach, where UAVs, being 
aware of close potential conflicts provided by the UTM communica-
tion layer, can coordinate directly, without central UTM control, to 
update trajectories and solve resulting conflicts in a decentralized 
manner. This reduces the access to a central decision bottleneck 
and permits reactive deconfliction. We propose both uncoordinated 
and DCOP-based coordinated behaviors, that we experimentally 
evaluate on dense scenarios within a limited area with numerous 
4D contracts, potential incidents and emergency procedures.
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1 INTRODUCTION
In 2018, the NextGen office of the US Federal Aviation Administra-
tion (FAA) published a first global concept of operations (ConOps) 
for unmanned aircraft system traffic management (UTM) that presents 
a vision and describes the associated operational and technical 
requirements for developing a supporting architecture and op-
erating in a UTM ecosystem [9], depicted in Figure 1. This is a 
community-based traffic management system in which operators 
and entities providing operations support services are responsible 
for the coordination, execution, and management of operations, 
with rules of conduct established by the FAA. This federated set 
of services enables cooperative operations management among 
UAS (unmanned aircraft systems) operators, facilitated by third-
party service providers (USSP) through networked information

Figure 1: Candidate architecture for Unmanned Traffic Man-
agement, as proposed by FAA [9]

exchanges. UTM is designed to support the demand and expec-
tations for a broad spectrum of operations with ever-increasing
complexity and risk through an innovative and competitive open
market of service providers. The services provided by USSP are
interoperable to enable the UTM ecosystem to meet the needs of
the UAS operator community. This working document also pro-
poses a set of scenarios raising strong coordination issues, whose
resolution proves to be real scientific challenges as illustrated in
[12], and which also allow to define scenarios for the evaluation of
candidate solutions.

On the European side, the operational model envisioned by the
Single European Sky Air Traffic Management Research (SESAR),
called U-Space, also identifies the needs for coordination between
actors, and the distribution of decisions [25], and supported by the
CORUS concept of operations [24]. This service-oriented vision is
also promoted by manufacturers and companies as Airbus and Boe-
ing [1], and opens doors for various implementations, as in [5] for
instance. Although they display notable differences (classification
of UAVs, sectorization of airspace, level of security, responsibilities
of the USS) as identified in [15, 18], these ConOps converge on
many points (service orientation, modularity, confidentiality, high-
level actors, separation into strategic, tactical and reactive levels),
particularly concerning the coordination of USSPs and UAS.

In this paper, we propose an adaptive coordination mechanism
enabling unmanned aircraft systems (autonomous or operated)
evolving in a urban free route airspace to handle trajectory con-
flicts due to delays, incidents (e.g. the UAV has to stay in position for



capturing some image of amonitored area) or the appearance of new
high priority trajectories (e.g. emergency helicopter evacuation).
While there exist some adaptation strategies (postponing trajecto-
ries or elevating trajectories) to avoid future trajectory conflicts,
we propose here to make UAVs coordinate using a direct messaging
service (either direct vehicle-to-vehicle or using platform-wide com-
munication) to solve conflicts, and to choose the best actions wrt.
multiple objectives. The coordination mechanism is based on dis-
tributed constraint optimization, as to ensure UAVs will collectively
choose deconfliction actions, while minimizing some operational
indicators. The subject of our study being the interaction between
UAVs and USSPs, the proposed results aim be generic enough to
be applicable to the different UTM and U-Space concepts of opera-
tions. Our approach addresses the online 4D contract repair in a
distributed fashion. Multi-agent-wise, as far as we know, there is
no multi-agent approach to this problem, which is a novel topic
following these new concepts of operation in urban air spaces.

This paper is structured as follows. In Section 2, we present
an illustrative scenario emphasizing the need for coordination in
multi-UAV settings. Section 3 expounds the operational model we
use, based on recent concepts of operation [9, 24], and particularly
focus on the 4D trajectory model the UAV will commit to. It also
presents three uncoordinated deconfliction behaviors (namely, post-
pone, elevate, and skip), while Section 4 details the coordinated and
adaptive approach based on distributed constraint optimization. We
experimentally evaluate these behaviors, and multiple DCOP solu-
tion methods, on scenarios with randomly generated trajectories,
incidents and emergency trajectories. Section 6 finally concludes
the paper with some perspectives.

2 ILLUSTRATIVE SCENARIO
Let’s use an illustrative scenario to highlight the needs for coor-
dination and adaptation in unmanned Urban Air Traffic settings,
depicted in Figure 2. We mainly reuse the scenario proposed in
[9], focused on a free route airspace. We consider a 2km by 2km
urban area where several UAVs operators have requested some 4D
trajectories to perform different tasks, as delivery, surveillance or
ground image capturing. These trajectories have been requested
to the UTM, which in return sends the 4D way-points (3D space
and time) the UAVs have to follow to perform their tasks. UTM
also provides some tolerance margins to diverge from the initial
trajectory, represented as safety tubes encapsulating the trajecto-
ries. The trajectories (and their respective safety tubes) provided
by the UTM are ensured to be spatio-temporally conflict-free but
require to be requested some hours before the operations. In short,
as to flight in this free route area, operators have to inform UTM
in advance. The resulting 4D trajectories are thus contracted (and
then called 4D contracts), and UAVs commit to these contracts.

However, in some cases, UAVs may not be able to stick to their
trajectory. For instance, unpredictable wind may drastically change
the trajectories, especially on small and light UAVs [21]. Moreover,
some tasks may require an UAV to stay in position to implement
some surveillance routine (e.g. a monitoring UAV detecting a hazard
on its surveillance area has to capture the scene on different angles).
Finally, some high priority trajectories may be added to the airspace,
due to emergency reasons. For instance, following a road accident,

Figure 2: A sample scenario with 3 UAVs following their tra-
jectories (green, blue and yellow) handling some incidents
(orange stars), a Medevac helicopter on its emergency trajec-
tory (red), and some identified conflicts (red circles).

a Medevac Helicopter may fly to the accident destination, evacuate
the injured people, and then fly back to the hospital, thus potentially
generating several conflicts with current trajectories. 4D contracts
do not handle such conditional and non deterministic trajectories,
and thus must be updated when such events occur.

In our scenario and experiments, we will consider UAVs having
some surveillance trajectories, and that may have to implement
some incident surveillance routine (with stationary flight), thus sus-
pending their current trajectory. The occurrence of such incidents
is not known in advance, and is assumed fully random. We will
also consider some emergency events, with destination not known
in advance too, that are high priority and cannot be negotiated. In
Figure 2, 3 UAVs are following their trajectories (green, blue and yel-
low) and handling some incidents (orange stars), which will delay
their planned trajectories, and thus generate a conflict (red circle
at yellow-green crossing) at a position that was spatio-temporally
safe before. Even more conflicting, a Medevac helicopter has to
cross the airspace in emergency, thus leading so two other conflicts
(red circles at green-red and blue-red crossings).

We position the work at the UAS level of Figure 1, where UAVs
can directly exchange information via V2V communication, they
can receive commands and orders from operators, and obtain some
real-time info (e.g. about trajectories, conflicts, emergency proce-
dures) from some USSPs. We envision the proposed tactical and
reactive coordination mechanisms to take place between several
(semi-)autonomous UAS or between several UAS operators, depend-
ing on the autonomy of the vehicles. We notably focus on small
UAVs able to perform stationary flight and operating at low altitude
(between 0m and 300m).

3 CONCEPTS AND PROBLEM MODEL
This section presents the core models used in this study, namely
the 4D trajectories, the UAVs and the UTM services required to
implement deconfliction actions between the UAVs.



3.1 4D Trajectories
A trajectory is a set𝑊 ⊂ R4 of 4D points 𝑤 = (𝑥,𝑦, 𝑧, 𝑡) where 𝑥
and 𝑦 are coordinates on the 2D plane (or GPS coordinates), 𝑧 is
the altitude, and 𝑡 the time. These points define way-points UAVs
have to flight over. We call a segment 𝑙 = (𝑤𝑠 ,𝑤𝑒 ) a line between
two timely consecutive points. We will only consider horizontal
and vertical segments. UAVs evolves on planes or move to another
plane using a vertical segment. Thus the airspace is divided into
several planes separated by a constant height, noted 𝑍sep. On each
plane, the routes are free, which means there is no predefined flight
network. A trajectory is also defined by safetymargins, as to prevent
UAVs from collision, letting time and space for reactive avoidance
routines to subsume navigation orders. Classically, these safety
tubes are defined horizontally (for 𝑥 and 𝑦 dimensions), vertically
(for 𝑧) and timely (for 𝑡 ). So a safety tube is defined by 𝜏 = (ℎ, 𝑣, 𝑡). A
UAV is diverging when outside of the safety tube of its current flight
segment. A UAV is violating a trajectory if its position is inside
the safety tube of another UAV. Formally, A point 𝑤0 is inside a
safety tube (ℎ, 𝑣, 𝑡) for segment 𝑙 = (𝑤1,𝑤2) if it satisfies all three
conditions (1) and (2) and (3):

| (𝑥2 − 𝑥1) (𝑦1 − 𝑦0) − (𝑥1 − 𝑥0) (𝑦2 − 𝑦1) |
𝑑𝑥𝑦 (𝑤1,𝑤2)

≤ ℎ (1)

min(𝑧1, 𝑧2) − 𝑣 ≤ 𝑧0 ≤ max(𝑧1, 𝑧2) + 𝑣 (2)

|𝑡0 − (𝑡1 +
𝑑𝑥𝑦 (𝑤1, 𝑝𝑥𝑦 (𝑤0, 𝑙))

𝑑𝑥𝑦 (𝑤1,𝑤2)
𝑑𝑡 (𝑤1,𝑤2)) | ≤ 𝑡 (3)

with 𝑑𝑥𝑦 the 2D Euclidean distance, 𝑑𝑡 the 1D time distance, and
𝑝𝑥𝑦 (𝑤, 𝑙) the 2D projection of𝑤 on 𝑙 . Two segments are in conflict
if they are on the same plane (either horizontally or vertically) and
they intersect at the same time (at the tolerance 𝑡 ).

Building 4D trajectory is a classical operational problem with an
extensive literature. It has been very well studied in the context of
aircraft traffic management [6, 7]. Building conflict-free trajectories
is a hard optimization problem, often solved using metaheuristics
as simulated annealing [13] or evolutionary algorithms [26]. In
the presence of small UAVs able to change direction and speed in
a more flexible way than classical aircrafts, the problem remains
a hard one, but other techniques as PSO [2] or even multi-agent
based ones [29] have been considered. We study here unstructured,
free route airspace, i.e. there is no predefined air traffic route net-
work the trajectories are constrained to, contrary to usual ATM
operational concepts [20]. In our case, we will consider the ini-
tial trajectories to be conflict-free, obtained from any trajectory
generator (incremental in our experiments).

We focus on the repair procedure; not the generation of the initial
set of trajectories. We aim at optimizing some criteria related to the
quality of the repair. We consider here: (i) minimizing the number
of conflicts generated by the trajectory adaptation, as to ensure
flight safety; (ii) minimizing the number of missed way-points, as to
ensure the quality of the trajectories, especially in urban context,
where trajectories are defined to fulfill some missions between and
at these way-points; (iii) minimizing the overall delay induced by
the adaptation. Such a problem is non-trivial and may require some
trade-off; e.g. skipping a conflicting segments improves safety but
reduces quality of service.
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Figure 3: The UAV generic behavior.

3.2 UAVs
Our scenario considers a set𝑈 of UAVs, 𝑢 = (𝑝, 𝑠, 𝑑,𝑇 ), where 𝑝 =

(𝑥,𝑦, 𝑧, 𝑡) ∈ R4 is its position, 𝑠 = (ℎ, 𝑣, 𝑎) ≤ (ℎ𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥 , 𝑎𝑚𝑎𝑥 ) ∈
R3 represents its current horizontal (in m.𝑠−1), vertical (in m.𝑠−1)
and angular (rad.𝑠−1) speeds. 𝑑 ∈ [0, 2Π] defines its current di-
rection, and 𝑇 is its 4D trajectory/contract. Note that these speed
values can be equal to zero (e.g. no motion). In nominal conditions,
UAVs change their speed and direction as to reach their next way-
point on time, or to enter back into their safety tubes if they have
been forced to exit (e.g. due to strong wind or obstacle avoidance).
In case, there is an incident close to its position, a UAV will stay at
the same position (they keep a way-point at their current position)
to observe the situation for a given time. Then it will switch back
to its nominal trajectory. We model this target-following behavior
as a simple motion model. When 𝑢 is at position 𝑝 , aiming to reach
position 𝑜 at angle ∠(𝑝, 𝑜) ∈ [−Π,Π], it will apply the following
variations to its three degrees of freedom:

Δℎ =min(
𝑑𝑥𝑦 (𝑝, 𝑜)
𝑑𝑡 (𝑝, 𝑜)

,Δℎ𝑚𝑎𝑥 ) (4)

Δ𝑣 =min(𝑑𝑧 (𝑝, 𝑜)
𝑑𝑡 (𝑝, 𝑜)

,Δ𝑣𝑚𝑎𝑥 ) (5)

Δ𝑎 = sgn(∠(𝑝, 𝑜)) · (min(∠(𝑝, 𝑜),Δ𝑎𝑚𝑎𝑥 ) (6)

leading to the following position variation:

Δ𝑝 = (ℎ cos(𝑑), ℎ sin(𝑑), 𝑣, 𝑎) (7)

UAV nominal behavior depicted in Figure 3 consists first in per-
ceiving the environment and checking incoming messages. Then if
no conflict, nor close obstacle is detected, the UAV chooses a target
position (either a way-point, an incident location, or its contracted
position if it diverged), and then move by adjusting its speeds using
(4), (5) and (6) to reach a new position 𝑝 + Δ𝑝 bringing it closer
to its target position. UAVs communicate with UTM services (e.g.
geolocalization, conflict detection) and with their neighboring UAVs
(either directly or via USSP). Such communication may warn about
conflicts. In such case, the UAV will deconflict by possibly updating
its trajectory. UAVs are also equipped with reactive collision avoid-
ance routine if they detect a mobile too close to their position. In
such case the UAV will perform a "sense and avoid" behavior [27],
we do not detail in this paper.



3.3 UTM Services
UAV operators subscribe to services as to obtain information and
provide information about their ongoing missions. Real-time in-
formation (about positions, conflicts or new inserted trajectories)
are send by the services to the subscribed UAVs, while trajectory
update requests and incident report are sent by the UAVs to the
USSPs. We consider at least the following services:

• A direct messaging service (DMS), which enables UAVs to
communicate in a P2P manner. UAVs will make use of this
service to send coordination messages (related to the DCOP
solution method, see Section 4).

• A conflict detection service (CDS), which sends to subscribers
the conflicts to occur in the next few minutes, following a
trajectory update or a new trajectory addition. A conflict in-
formation contains the intersecting segments, the respective
UAVs, and the intersection point. We note 𝐶 (𝑢) the set of
conflicts in which𝑢 is involved. As to keep it reactive enough,
the conflict detection is performed at a limited horizon: it
only checks the 𝑘 next segments for each trajectory, starting
a the current time.

• A trajectory update service (TUS), that UAVs request to post-
pone their current trajectory or to add new way-points (e.g.
to bypass an obstacle outside the safety tubes). In return, the
service sends back the new trajectory and the new conflicts
(if any). Indeed, if a UAV has to postpone its trajectory, it
may produce conflicts on future segments.

• A trajectory assessment service (TAS) which is queried for
evaluating the replacement of a trajectory by another. This
service returns the new trajectory and some evaluation met-
rics (e.g. the number of generated conflicts and the resulting
delay compared to the replaced trajectory).

3.4 Deconfliction Actions and Behaviors
After the conflict-free system starts, non predicted events (as in-
cidents or emergencies) will eventually require the contracts to
be broken. Because conflicts mostly consist in intersections on
the same plan, and since the considered UAVs are able to perform
stationary flight, three main options are opened for updating the
contracts: postpone, elevate and skip.

Postpone. The principle of this update is simple: delaying all the
way-points of the contract after a given date for a given time, as
to be able to avoid a conflict or to have enough time to observe an
incident. Postpone is automatically called when a UAV detect an
incident close to its position. It will then request to the contract
update service a delay for a time depending on the incident. All the
way-points after its current spatio-temporal position are delayed
by this amount of time. Postpone can also be called by UAVs as to
avoid a future potential conflicts identified by the conflict detection
service. In such a case, the UAVswill add a newway-point before the
intersection and delay its route for an amount of time equals to the
time required to extract from a safety tube. We will call postpone
UAVs, UAVs only performing postpone deconfliction actions.

Elevate. Another approach to deconfliction with UAVs able of
vertical flight if make the UAVs change their plane (either down
or up), to bypass the conflict location, and then to flight back to is

previous plane. This action is performed as to avoid obstacles or
to prevent a future potential conflict. When requesting an elevate
update, a UAV provides the conflict or the position to avoid, and
the trajectory update service will send back an updated trajectory
with a "bridge" over the position to avoid, i.e. the addition of 4
way-points to create a vertical segment, followed by an horizontal
one, and finally another vertical one. A bridge is either upward or
downward (depending on the altitude). We will call elevate UAVs,
UAVs only performing elevate deconfliction actions.

Skip. Finally, one may just skip a conflicting segment, by remov-
ing its starting way-point. This the UAV will bypass the conflict
by moving directly to the way-point after the conflicting segment.
When requesting a skip, the UAV just provides the conflicts to the
trajectory update service that will remove the related way-point,
and send back the new trajectory. We will call skip UAVs, UAVs
only performing skip deconfliction actions.

4 DCOP-BASED COORDINATION
This section defines a cooperative coordination between UAVs, so
that they jointly decide which UAVs will trigger a specific deconflic-
tion action for a given conflict. We model this collective decision
problem as a DCOP.

4.1 DCOP Framework
Distributed Constraint Optimization Problem (DCOP) is the dis-
tributed variant of constrained optimization [19]. Here a group of
agents must choose values for a set of variables in a decentralized
way in order to minimize a cost function or to maximize a utility
function. Formally, A DCOP is a tuple ⟨A,X,D, C, 𝜇, 𝑓 ⟩, where:
A = {𝑎1, . . . , 𝑎 |𝐴 | } is a set of agents; X = {𝑥1, . . . , 𝑥𝑛} are vari-
ables owned by the agents; D = {D𝑥1 , . . . ,D𝑥𝑛 } is a set of finite
domains, such that variable 𝑥𝑖 takes values in D𝑥𝑖 = {𝑣1, . . . , 𝑣𝑘 };
C = {𝑓1, . . . , 𝑓𝑚} is a set of soft constraints, where each 𝑓𝑖 defines a
cost ∈ R+ ∪ {+∞} for each combination of assignments to a sub-
set of variables (a constraint is initially known only to the agents
involved); 𝛼 : X → A maps variables to their associated agent;
𝑓 :

∏D𝑥𝑖 → R is an objective function, representing the global
cost of a complete variable assignment. The optimization objective
is represented by function 𝑓 , which, in general, is considered as
the sum of costs: 𝑓 =

∑
𝑖 𝑓𝑖 . A solution to a DCOP 𝑃 is a complete

assignment to all variables. A solution is optimal if it minimizes 𝑓 .
DCOP have been widely studied and applied to many areas [10],

because: (i) they focus on decentralized approaches where agents co-
ordinate a joint solution through local message exchanges; (ii) they
exploit the domain structure (by encoding it in constraints) to ad-
dress hard computational problems; (iii) there exists wide variety
of solution methods ranging from exact methods to heuristic and
approximate techniques. We refer the reader to Fioretto et al.’s sur-
vey for a recent catalog of algorithms [10]. DCOP solution methods
implement direct message passing, which, in the context our UTM,
are send via a DMS.

4.2 Solving Conflicts with DCOP
Let’s now model our coordination problem into a DCOP to be
instantiated each time some UAVs are aware of some conflict. The
idea is twofold: (i) let UAVs choose between several deconfliction



actions when a conflict is detected; and (ii) make UAVs involved
in the same conflict coordinate to choose which one is the best for
performing the deconfliction.

The set of agentsA ⊆ 𝑈 is the set of UAVs that have been alerted
by the conflict detection service for being part of some conflict. Each
such UAV 𝑢 is aware of its conflicts 𝐶 (𝑢) and the other UAVs it is
in conflict with, 𝑈 (𝐶 (𝑢)) = {𝑣 ∈ 𝑈 | 𝑣 ≠ 𝑢,𝐶 (𝑢) ∩𝐶 (𝑣) ≠ ∅}. For
a given conflict 𝑐 , a UAVs is able to perform some deconfliction
actions; e.g. postpone(𝑐, 20), elevate(𝑐,−15), elevate(𝑐, +15) and
skip(c). We note I this set of actions.

The decisions consist in choosing the deconfliction action to
trigger for each known conflict. Let’s note𝑥𝑢,𝑐,𝑖 ∈ {0, 1} the decision
variable stating whether UAV 𝑢 decides to solve conflict 𝑐 using
action 𝑖 . Actions are either postpone, elevate or skip. Thus, X =

{𝑥𝑢,𝑐,𝑖 | 𝑢 ∈ A, 𝑐 ∈ 𝐶 (𝑢), 𝑖 ∈ I}, D = {𝑑𝑥𝑢,𝑐,𝑖 = {0, 1} | 𝑢 ∈ A, 𝑐 ∈
𝐶 (𝑢), 𝑖 ∈ I}, and 𝛼 : 𝑥𝑢,𝑐,𝑖 ↦→ 𝑢.

Constraints fall into two categories: unary costs (preferences for
actions), and coordination ones preventing the same conflict to be
solved more than once. Concerning unary costs, we model prefer-
ences for actions generating less conflicts without decreasing the
quality of service (i.e. increasing the number of missed way-points),
and delaying the mission. Agents should be able to valuate the
actions using the trajectory assessment service. We note 𝑣conflict (𝑖, 𝑐)
(resp. 𝑣missed (𝑖, 𝑐) and 𝑣delay (𝑖, 𝑐)) the number of conflicts (resp. the
number of missed way-points and the delay) of the trajectory when
performing action 𝑖 to solve conflict 𝑐 . We aggregate these multi-
ple local objective valuation by linearization and prioritization, as
follows, for all 𝑢 ∈ 𝑈 , 𝑐 ∈ 𝐶 (𝑢) and 𝑖 ∈ I:

𝑓pref (𝑥𝑢,𝑐,𝑖 ) = 𝜔2 · 𝑣conflict (𝑖, 𝑐) + 𝜔 · 𝑣missed (𝑖, 𝑐) + 𝑣delay (𝑖, 𝑐) (8)

with𝜔 a sufficiently large number to assign preference to conflict
resolution against missed way-points and delay reduction. This
aggregated valuations model the multiple objectives discussed in
Section 3. Concerning coordination constraints, we must ensure
exactly one 𝑥𝑖,𝑐,𝑢 variable is set to 1 for the same conflict. Thus, for
each such conflict 𝑐: ∑︁

𝑢∈𝑈

∑︁
𝑖∈I

𝑥𝑖,𝑐,𝑢 = 1 (9)

In order to fit into the DCOP framework, this hard constraint is
encoded into a soft constraint as follows:

𝑓exo (𝑥𝑢1,𝑐,𝑖1 , . . . , 𝑥𝑢 |𝑈 |,𝑐,𝑖 |I | ) =
{
0, if (9)
+∞, otherwise

(10)

Therefore, C is the set of constraints from (8) and (9). The objec-
tive function is the sum of all these constraints, thus aiming first at
solving existing conflicts and then reducing the overall delay.

This DCOP can be distributively solved by the involved agents,
using any DCOP solution method from the literature, each time
agents require to coordinate. In the case an agent detects a conflict
with a non-negotiable trajectory (e.g. an emergency), it will still
try to solve the same mono-agent problem, thus deciding which
alternative between skip, elevate and postpone is the better.

5 EXPERIMENTAL EVALUATION
We now evaluate the performance of the coordinated and adap-
tive behaviors on synthetic dense scenarios, where multiple UAVs

Figure 4: A sample dense scenario with 20 UAVs flying over a
2km x 2km urban area. UAVs are represented as circles (with
their current speed vector). 4D contracts (and their respective
safety tubes) are represented in green. Current segments are
represented in blue.

adapt their trajectories following the occurrence of incidents and
emergency trajectories.

5.1 Experimental Setup
We will analyze the performances of the investigated deconfliction
behaviors with a growing number of UAVs (and trajectories). They
are coded in Java and executed on 20-core Intel(R) Xeon(R) CPU
E5-2660 v3 @ 2.60GHz, 62GB RAM, Ubuntu 18.04.5 LTS, with an
OpenJDK 11.0.9.1 JVM. We ran 30 instances of randomly generated
sets of trajectories and incidents for each fleet size, and plot the
average values, with [0.05, 0.95] confidence interval. The DCOP
algorithms used here are the implementations from FRODO Library
[14]. Randomly generated values are uniformly chosen within pro-
vided intervals. The reported computation time is the mono-CPU
20-core simulation time.

We consider an area of 2km by 2km, illustrated in Figure 4,
with vertical airspace planes at 20m, 40m and 60m. We consider
UAVs with the following characteristics: ℎ𝑚𝑎𝑥 = 18𝑚.𝑠−1, 𝑣𝑚𝑎𝑥 =

6𝑚.𝑠−1, 𝑎𝑚𝑎𝑥 = Π/2rad.𝑠−1, Δℎmax = Δ𝑣max = 6𝑚.𝑠−2, Δ𝑎max =

Π/2rad.𝑠−2. Initial speed is set to (0, 0, 0). Initial UAV trajectories
are randomly and incrementally generated as follows. The starting
point is randomly positioned in the airspace, at altitude 𝑧 = 0
and at time 𝑡 = 0. The next points are randomly chosen within
a distance between 200m and 1000m, so that there is no conflict
with existing segments, by possibly increasing or decreasing the
altitude. The time for the next point is also set using a default cruise
speed, equals to (12, 3, 0) (equiv. to 40km/h horizontally). UAvs ave



initially 60 way-points to their destination, then a last segment back
to their origin, leading to a dense set of crossing trajectories. Safety
tubes are defined by (ℎ, 𝑣, 𝑡) = (30, 15, 1), which means that UAVs
must be separated by at least 30m horizontally, 15m vertically, with
1s temporal tolerance. To add unpredictable events, we generate
3 emergency trajectories, consisting in starting from a random
position at the border of the area, moving to a random point at at
least 1km distance from the initial point, then a waiting point for
360s (to simulate an emergency response), and finally a way back
to the initial point. These emergency trajectories are not editable.
Each simulated second there is also a 1% chance an incident occurs
close to a randomly chosen UAV, thus having to capture the scene
for a random duration between 30s and 120s.

We evaluate the following behaviors: (i) postpone characterizes
UAVs that only perform a postpone(𝑐, 20) action when a conflict is
identified (subscribing to CDS and TUS services); (ii) elevate charac-
terizes UAVs that only perform elevate(𝑐,±15) actions, depending
on their current plane, when a conflict is identified (subscribing
to CDS and TUS services); (iii) skip represents UAVs that only
perform skip(𝑐) action when a conflict is detected (subscribing to
CDS and TUS services); (iv) afb [11], dpop [22], dsa (variant C)
[28], mgm2 [16] represent UAVs which perform a coordinated and
adaptive decision using a DCOP algorithm1 to deconflict, that opt
between postpone(𝑐, 𝑑) with 𝑑 ∈ {20, 40, 60}, elevate(𝑐,±15) and
skip(𝑐) (subscribing to DMS, CDS, TAS and TUS services); and fi-
nally, (v) centralized is a tree-search based deconfliction algorithm
computing the optimal sequence of repair actions (from the same
set than DCOPs) to fully repair a conflicting set of trajectories,
by optimizing objective derived from equation (8). All UAVs are
equipped with collision avoidance routine and equipment. CDS
Service is configured with an horizon 𝑘 = 10, which in our case
represents approx. 10min in the future.

Figure 5 presents performance metrics obtained by simulation,
with an increasing number of UAVs (and trajectories); and Figure 6
shows the evolution of some metrics, with time, for a specific in-
stance with 25 UAVs, 3 emergency procedures and 25 incidents.

5.2 Conflicts and Contracts
The first row in Figure 5 (5a-5d) focuses on conflicts and trajectories.
While in classical ATM, with structured airspace, postponing at
departure is used to reduce conflicts [3], in our free route scenario,
postpone is generating numerous conflicts due to the accumulated
delays over crossing trajectories, which are not structured as flow
networks, as shown in Figure 5a. All the other behaviors still gen-
erate conflicts (around 200 on larger instances), since almost 70
trajectories are added to the airspace on larger instances.

Facing conflicts, UAVs update their contracts, which are no more
guaranteed to be conflict-free compared to the initial ones. Thus,
UAVs tend to request numerous contract updates, as illustrated in
Figure 5b. This is especially true for postpone and elevate, which
delays trajectories for some duration, which most of the time is
not sufficient for breaking the conflicts, or which generates other
conflicts. On larger instances, a trajectory update is requested every
second, on average. These dynamics of trajectory updates make

1We do not include MaxSum algorithm [8], since it cannot converge in most of our
instances, thus providing low quality results while requiring numerous messages.

some UAVs violate some others’ safety tubes, and often trigger the
anti-collision routines, as illustrated in Figures 5c and 5d. Indeed,
when a UAV requests for a contract update with a new segment very
close to its current position (in space and time) and to another UAV’s
position, this may lead to such situations, before any of the 2 UAVs
is able to update again its contract. Notably, elevate makes UAVs
violate 4 times more safety tubes than the other behaviors. These
numbers of contract updates and violations is high because we
choose here to generate very dense trajectories, which represents
some sort of worst scenario, where even safety margins are not
enough to prevent collisions.

Looking to our single instance (Figure 6), we can see how much
dynamic this setting is, letting no rest for the UAVs to repair the
trajectories and fulfilling their missions, which last for approx. 1h.
There is only a "calm" window between time 𝑡 = 291 and 𝑡 = 744.
We can observe how the addition of incidents immediately triggers
postpone action (that all agents implement to handle incidents).
In particular, postpone and elevate generate numerous conflicts
just after the addition of a first emergency trajectory, as shown in
Figure 6a. Facing such conflicts, UAVs constantly attempt to repair
the trajectories, until there is no more incidents and emergency in
the airspace, as illustrated by Figure 6b, after 𝑡 = 2290. Even when
contracts are stable, UAVs may still continue violating some safety
tubes, as shown in Figure 6c, since they have been computed using
some time projection, that may not be very precise.

5.3 Trajectory Conservation and Delays
The second row of Figure 5 presents metrics related to the sec-
ond and third optimization criteria we look at, namely trajectory
conservation and delays. In Figure 5e, which reports the average
percentage of conserved initial way-points in the final trajectories,
skip is the less conservative behavior (up to 12.5% of way-points are
skipped), since it automatically bypasses way-points when facing a
conflict, which also results in lower time to terminate all the trajec-
tories (reported in Figure 5f). Both elevate and postpone add delay
for solving conflicts (either by changing altitude, thus spending
time in elevation, or by postponing next way-points), as reinforced
in Figures 5g and 5h showing the total accumulated delay and the
average delay per UAV. Note that every behavior adds delay: this is
due to the fact that UAVs handle numerous incidents (around 35 in
larger instances) forcing them to stay in position for a while, thus
accumulating delay. Centralized solver loses performances on larger
instances since it first consider minimizing conflicts and missed
way-points, and thus postpone more frequently than DCOP-based
solvers. The DCOP-based approaches locally co-optimize conflicts,
trajectory conservation, and delays, which makes them an efficient
compromise.

Looking at our isolated instance, we can observe how skip con-
stantly skips way-points to answer to conflicts, as shown in Fig-
ures 6d and 6e. skip deleted 3 times more points than DCOP-based
behaviors. The adaptations to incidents continuously add delays to
trajectories, due to the postpone action triggered in such cases.

5.4 DCOP Operation
The third row of Figure 5 reports metrics about the DCOP opera-
tions. While the generated trajectories are dense within a limited
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Figure 5: Average values over 30 instances for several performance metrics with increasing number of UAVs.

area, the DCOP procedures between several UAVs is constantly but
not so frequently triggered, as seen in Figure 5i. This is explained
by the fact that DCOP-based coordinated decisions manage to solve
conflicts for the given horizon, and then do not require other co-
ordination for some time, expect when other disturbances occur.
Interestingly, incomplete solvers (dsa, mgm2) require more coor-
dination than complete solvers (afb and dpop). In fact, since the
decisions made by these incomplete solvers are non optimal, they
may result on conflicting decisions requiring further deconfliction
coordination. During coordination, conflicts are concerning one
third of the total fleet on average, as shown in Figure 5k. Coordi-
nation can theoretically regroup many agents, but in our setting,
restricted DCOP sizes allow the use of complete solution methods
as afb and dpop, which does not strongly impact the individual
UAV decision runtime as reported in Figure 5l. Looking at the
communication load in Figure 5j, dpop requires exchanging few
but large messages since the DCOPs to solve are cyclic and thus
require exchanging exponential size messages. mgm2, due to its
2-coordination settings, exchanges numerous small messages.

DCOP-based behaviors are triggered when facing some of the
disturbances, as shown in Figure 6f, and apply the most valued
actions, namely elevate (to conserve way-points) and skip (to limit
delays), as shown in Figures 6h and 6i. The postpone action is not

used in such conditions, as observed in the "calm" period in Fig-
ure 6g. This explains how DCOPs achieve good results as trade-offs
between contract conservation and delays. afb is the best competi-
tor, with good deconfliction requiring low communication load.
However, afb is not robust to message loss, contrary dsa. Further
experiments should be done to assess the impact of communication
unreliability on DCOP performances.

5.5 Summary
These results highlight how the setting is a very extreme dynamic
configuration, where UAVs have to constantly update that trajec-
tories. Clearly, the postpone behavior is bad on two dimensions:
delays and conflicts (therefore safety). The elevate behavior is a
good candidate for trajectory conservation, but with extra delays
and numerous safety violations, while skip generates few conflicts,
at the expense of some missed way-points. DCOP-based behavior
is positioned as a good compromise between elevate and skip, thus
meeting our objective of minimizing generated conflicts, maximiz-
ing the trajectory conservation and minimizing the delays, as good
as a centralized deconfliction. In other settings, with many cross-
roads on structured airspace, these results may not hold. In fact,
many of the performances depends on the fact that UAVs can freely
change altitude or bypass some way-points. In more structured
airspace, UAVs would normally change altitude in some limited
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Figure 6: Evolution of performance metrics during one simulation with 25 UAVs and 3 emergency procedures (gray dashed
lines) and 25 incidents (gray dotted lines).

vertical corridors, and cannot fly outside horizontal corridors, as
defined in [5] for instance. In such cases, postpone would probably
behaves better, while DCOPs would form larger groups of conflict-
ing trajectories, flowing through some limited number of crossroads.
We keep this investigation and analysis for future works.

6 CONCLUSION
In this paper we promoted and implemented a multi-agent coordi-
nation mechanisms to help UAVs evolving in a dynamic free route
airspace to adapt their trajectories. Coordination is built upon a
distributed constraint solving protocol, which aims at minimizing
the future conflicts, maximizing the conservation of the initial tra-
jectories, and reducing the overall delay implied by deconfliction
actions. On the simulated scenario we developed, forming a dense
airspace with random events to handle, we show that using a coor-
dinated and adaptive deconfliction, provides solutions with reduced
conflicts, missed way-points and accumulated delay, compared to
uncoordinated and fixed ones. Still, this coordination requires some
extra coordination communication messages to be exchanged. All

in all, the DCOP-based approach is a promising candidate for in-
stalling autonomous deconfliction in UAVs collective, and paves the
way for future research.

Since UTM and U-Space visions are evolving, especially towards
more structured airspace [4, 5], we envision to extend our frame-
work and services to such settings, which promise to be harder to
solve due to the lack of trajectory freedom to deconflict and the
larger size of deconfliction groups. We particularly aim to adapt
the DCOP solution method to use to the trajectory deconfliction
settings. In fact, we used here a straightforward linear aggregation
of three criteria, which still generates non-conflict-free trajectories.
Multiobjective DCOPs could be a relevant approach for future de-
velopments [17]. Moreover, devising less communication intensive
coordination algorithms appears to be a requirement to deploy
such protocol and services on real devices and UTM. This could be
achieved by either limiting the size of the deconfliction DCOPs or
by relying on lightweight and robust solution methods as A-DSA,
as proposed in the Internet-of-Things context [23], at the expense
of completeness.
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