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MEAN FIELD ANALYSIS OF STOCHASTIC NETWORKS WITH
RESERVATION

CEDRIC BOURDAIS, CHRISTINE FRICKER, AND HANENE MOHAMED

ABSTRACT. The problem of reservation in a large distributed system is analyzed via a new
mathematical model. A typical application is a station-based car-sharing system which can be
described as a closed stochastic network where the nodes are the stations and the customers
are the cars. The user can reserve the car and the parking space. In the paper, we study the
evolution of the system when the reservation of parking spaces and cars is effective for all users.
The asymptotic behavior of the underlying stochastic network is given when the number N of
stations and the fleet size increase at the same rate. The analysis involves a Markov process on a
state space with dimension of order N2. It is quite remarkable that the state process describing
the evolution of the stations, whose dimension is of order N, converges in distribution, although
not Markov, to an non-homogeneous Markov process. We prove this mean-field convergence. We
also prove, using combinatorial arguments, that the mean-field limit has a unique equilibrium
measure when the time between reserving and picking up the car is sufficiently small. This result
extends the case where only the parking space can be reserved.
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1. INTRODUCTION

The paper deals with a problem of reservation in a large distributed system. Our motivation is
a car-sharing system in which a fleet of cars move around and is parked in a set of stations, mainly
for electric issues. A crucial problem is the presence of empty and full stations. In an empty
station, users cannot pick up a car, while in a full station, also called saturated, users cannot park
the car. Reservation could help the user to find both a car at the departure and a parking space
at the destination. In this paper, we focus on a reservation policy called double reservation which
is to reserve both the car and the parking space at the same time, a moment before picking up
the car. Note that if the time between the reservation and the pick-up is zero, the policy is to
reserve the parking space when the car is picked up. This policy is called simple reservation. In
free-floating systems, users cannot reserve the parking spaces as the cars are parked in the public
space. These systems are outside the scope of the paper.

1.1. Simple reservation model. The simple reservation model can be described as follows. It
consists of N stations of finite capacity K and My cars. Users arrive at rate A in each station.
Such a user reserves a parking space at a randomly chosen destination station when he or she
picks up a car. If it is not possible, the unhappy user leaves the system. Otherwise, after a trip
with exponential distribution of parameter pu, the car is parked at its reserved parking space in the
destination station.

The system is said to be large when N and My tend to infinity with sy = My /N tending
to a constant s called the average number of cars per station. This sizing parameter s is a key
parameter of the system. In [5], this policy is studied in a homogeneous framework by a mean-field
approach, using a large-scale analysis similar to that of bike-sharing systems in [g].

Due to the the parking space reservation, the state of a station is described in [5] by two
components: the number of cars and the number of reserved parking spaces, which is the main
difference with [§]. This bi-dimensional process is Markovian. With standard arguments, mean-
field convergence is established. Note that the analysis of the equilibrium point is much more
delicate with parking space reservation.

The aim of the paper is to prove these results extended to the double reservation model intro-
duced as follows. In particular, it gives the proof of [B], Theorem 2] omitted in [5] on the simple
reservation model.

1.2. Double reservation model. Station-based car-sharing systems offer the possibility of re-
serving a car and a parking space in the desired station online, a moment before actually picking
up the car. In this paper, we present a model that meets this user demand. The user reserves a
car at a given departure station and, at the same time, a parking space at a destination station. If
there is no car or no parking space available, the user leaves the system. Otherwise, it takes a time
called reservation time between the car reservation and the car pick-up. The reservation time has
an exponential distribution with mean 1/v. Then follows the trip whose duration is assumed to
have an exponential distribution with mean 1/u. Eventually the user parks the car at the reserved
space in the destination station and leaves the system.

1.3. Mean-field approach. A three-dimensional state space (reserved cars, reserved spaces and
available cars) does not allow this process to be fully described as a Markov process, because the
parking space reservation time is the sum of two exponentially distributed variables (car pick up
time and trip time). This leads to the introduction of a fourth variable to distinguish between
parking spaces reserved by users not yet travelling and users travelling. But even this state process
is not Markov. As we will see on the transitions described in Section [2] the Markov process
associated to this model, denoted by (X™(t)), is more complicated and especially of dimension
(N +1)2, where N is the total number of stations. Therefore, for a given station, the state space
is of dimension N, which is not suitable for an asymptotic analysis when IV tends to infinity. To
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solve this problem, we introduce the process, denoted by (Z¥(t)), which describes the state of
each station i, 1 < i < N, as a function of the Markov process (X (¢)). Indeed Z}(¢) has four
components,

RZ’N(t) the number of parking places reserved by non-driving users at station ¢ at time ¢,
- RN (t) the number of parking places reserved by users driving at station i at time ¢,
VN (t) the number of cars available at station 7 at time ¢ and

Vf’N(t) the number of reserved cars at station ¢ at time ¢.

As previously mentioned, process (ZV(t)) = (R™M(t), RV (t), VN (t),V"N(t)) is of dimension
4N but is not a Markov process. The loss of the Markov property is the price to pay to this
dimension reduction. Nevertheless, it is remarkable and we prove that, despite this non-Markovian
description, the state (Z}(t)) of a given station i (1 <4 < N) converges in distribution, as N goes
to infinity, to a non-homogeneous Markov process (Z(t)) = (R"(t), R(t), V(t), V" (t)) satisfying the
following Fokker—Planck equation

d

ZE(F(Z2(1))) = XP(V (1) > O ((f(Z(t) + e1) = F(ZE)(5()<})

+ 0B ((fZ(1) + e = e1) = FZON 750 )

+ 1 ((FZ(0) + €5 — e2) = FZO) Fi=0y)
M) FAB(S(t) < KJE ((F(Z(0) + 1 — e3) = FZE) 700y )

+0E ((FZ(0) ~ e5) ~ FZO) 7050y
with e; = (1,0,0,0), e = (0,1,0,0), e3 = (0,0,1,0), e5 = (0,0,0,1), f a function with finite
support on N* and S(t) = R (t) + R(t)+ V(t)) + V7 (t) the limiting number of unavailable parking

places at station i at time ¢. The asymptotic process (Z(t)) = ((R"(t), R(t), V(t), V" (t)) is a jump
process with time-dependent rates, the so-called McKean—Vlasov process.

1.4. The equilibrium. For non-homogeneous Markov processes, recall that there can be several
invariant measures. We prove that there is a unique invariant measure in a restricted framework.
The proof is based on three main arguments. First, by applying queueing theory, the McKean—
Vlasov process on the basic state space is identified with a tandem of four queues with an invariant
measure of explicit product form. Thus, by simplifications, the problem of existence and uniqueness
of the invariant measure of the non-homogeneous Markov process amounts to the same problem
for a fixed point equation in dimension 2. Finally, the global inversion theorem and a monotonicity
property allow us to conclude. The last two arguments are based on combinatorial calculations.
Monotonicity is just proved when the mean reservation time is sufficiently small, but it seems to
be true without this technical assumption.

1.5. Related works. For car-sharing systems, a first part of the literature investigates the location
problem. In Boyaci et al. [6], OR optimization is used to plan an efficient car-sharing system in
terms of the number, location and capacity of stations and fleet size, applied to the case of Nice,
France.

Vehicle redistribution and staff rebalancing is a big issue in one-way vehicle sharing systems
(see for example [I1]). For simple reservation, called complete parking reservation (CPR), Kaspi
et al. show by simulation in [J] and then with OR techniques in [10] that CPR outperforms NR (no
reservation) for a specific user-oriented metric. This metric is the excess time users spend in the
system due to lack of cars or parking spaces, i.e. the difference between actual time and ideal trip
time, including walking times to stations. Some papers do not investigate the reservation impact,
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but the charging problem. In [7], a queueing analysis for dimensioning the fleet size is proposed
for a closed network taking account car charging.

Despite the potential of car sharing, even data analysis remains largely unexplored. This is also
due to the lack of data provided by the operators. In [3], Boldrini et al. exploit one month (April
2015) of publicly available data from a large car-sharing system in Paris, France, with 960 stations
and 2700 electric cars. We get an idea of the average car pickup rate and the availability of cars
at a station. Furthermore, a dichotomy between Paris and the suburbs is highlighted.

Mean-field is an efficient tool for studying the behavior of large distributed systems or interacting
systems in many different application domains. These systems have both a large number of nodes
and customers (particles, cars, etc). To the best of our knowledge, our large-scale stochastic
analysis is the first for a stochastic model of car sharing systems with double reservation. Our
main result is that the non-Markovian state process for a given station converges to an non-
homogeneous Markov process. Furthermore, we note that this limiting Markov process can be
described using a simple queueing system. This result was first obtained by simulation in [4]
Section 5]. In [4], an artificial Markov model on the state of the stations, called the approximate
model process, is introduced for the double reservation. Its mean-field limit at equilibrium fits with
the real dynamics at equilibrium, which allows the authors to guess such an outcome. The same
phenomenon is proved in an entirely different framework, for a model of a network with failures
by Aghajani, Robert and Sun [I]. Note that the framework in [I] induces simultaneous jumps,
which make the proofs more technical. Our paper discusses a simpler framework which focuses on
the main arguments and it provides the proof of the result expected in [4]. We believe that this
methodology can be useful in many other contexts. A main contribution of the paper relies on
the result of uniqueness of the equilibrium point in high dimension (dimension 4), thanks to a nice
interpretation in terms of queues. As far as we know, there is no such result in the literature.

Outline of the paper. In Section [2| the Markov process (X*(t)) associated to our model is
defined and the stochastic evolution equations are given. In Section the second process (Z (t))
describing the state of the stations is introduced. A heuristic computation of its McKean—Vlasov
asymptotic process is derived. Theorem 1| which establishes the existence and uniqueness of this
stochastic process is proved. Section {4|is devoted to Theorem [2| giving the mean-field convergence
for (ZN(t)) and highlights the probabilistic interpretation of the Mckean—Vlasov process. Section
analyses of its invariant distribution.

2. THE MODEL

In this section, we describe the dynamics of our stochastic model. We recall that the system
has N stations of capacity K. The Markov process that gives the dynamics of the system is the
following,

X(t)=(XN(t),0<i,j<N)

where, for 1 <4,j < N, at time ¢,
- Xf\; (t) is the number of cars reserved at i with parking space reserved at 7,
- X(])Y j(t) is the number of parking spaces reserved at j by users driving
- and XY)(¢) is the number of cars available at station .

The total number of cars is My and the fleet size parameter, defined as the mean number of
cars per station if they are all parked, is
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2.1. Transitions of the Markov process. The transitions of the Markov process (X (t)) are
reservations, car picks up and car returns.

- Reservations. At station i, at rate A\, an available car is replaced by a reserved car and an

available parking space is reserved at the same time at a random station, say j. If there
is either no available car at ¢ or no available parking space at j, the reservation fails. If a
reservation is made at time ¢,

XN =Xt )—1 for1<i<N,

XNt)=xN@t")+1 for1<i,j<N.
where the limit from the left of function f at ¢ is denoted by f(¢t7).
Car picks up. After a reservation, the user takes a time with an exponential distribution
with parameter v to come and pick the car. So, at rate v, each car reserved at station i

disappears and the associated parking space reserved at station j moves to a parking space
reserved by a driving user. When taking such a car at time ¢,

Xfyj(t):Xij(t_)—l, for 1 <i,5 <N,
Xoi(t) = X{(t7)+1 for 1 <j <N,
Car returns. After a trip with exponential distribution with parameter p, a user driving

returns his car. Thus, at rate u, each parking space at station j reserved by a user driving
his car becomes an available car. When a car is returned at station j at time ¢,

Xé\,]j(t) = Xé\,fj(f) -1,
XN = XN+ 1.

Note that (X (¢)) is an irreducible Markov process on the finite state space

(2)

N N N
2
{w=(2:;) NV N "0 i 4> i <K, > @iy =My},
=0 =0 0<ij<N

where K is the finite capacity of each station, thus (X (t)) is ergodic.

2.2. Stochastic evolution equations. The dynamics of (X (¢)) can be given in terms of sto-
chastic integrals with respect to Poisson processes. Let us introduce the following notations.

- A Poisson process on Ry with parameter £ is denoted by Ne¢. A sequence of such i.i.d.

processes is denoted by (Mg ;.7 € N).

- A Poisson process on Ri with intensity dtdh is denoted by N¢. A sequence of such i.i.d.

processes is denoted by (N¢ ;i € N).

- A marked Poisson process (t,,U,), where (t,,n € N) is a Poisson process on R} with

parameter ¢ and (Up,,n € N) is a sequence of i.i.d random variables with uniform distri-
bution on {1,..., N}, is denoted by NgU’N. Note that, for 1 < i < N, NgU’N(.,{i}) isa
Poisson process on Ry with parameter £/N and ./\/'gU’N(.,N) is a Poisson process on R,
with parameter &.

Let us introduce the following independent point processes. A reservation of a car in station 4 is

a point of a Poisson process N, g ’iN on Ri. For reservations of both a car at station 7 and a parking
space at station j, the times from the moment the user makes a reservation to the moment the
car is picked up form a Poisson process N, ; ; on R;. We need a sequence of such i.i.d processes
(NMviji,l € N) as cars are picked up independently. And the same for the trip times of cars
returned at station j, associated to a sequence (N, ;j;,1 € N) of independent Poisson processes.
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Using the previous notations, process (XV(t)) is given by the following stochastic differential
equations. For 1 <4, < N and t > 0,

U,N
+1{X5Y )50, SN (x, ()4 x %, )<y M ({7,

co N
(4) dXg'(t) Zzl{l<XN (t-)3Nuvii g (dt) Zl{l<XN (t-13N g1 (dt)
=1 1i=1
and
U,N
(5) dXz]\{) Zl{x )>0, AL (XN, )+ XN, (7)) <K} N)\z (dt,{j})

+ Z 1{l§Xé\f,i(t7)}NM’i7l (dt)

=1

3. THE ASYMPTOTIC PROCESS

3.1. Introduction to the asymptotic process. Some other notations are needed for that. The
state of each station ¢ is given by the quadruplet

Z () = (RPN (8), RY (0), Vi (1), Vi (1))
where, at node i at time t,

- RT N( t) is the number of parking spaces reserved by non-driving users,
- ( ) is the number of reserved parking spaces by users driving,

- Vl (t) is the number of available cars,

- VN (#) is the number of reserved cars.

Process (Z™N(t)) takes values on

N

SN = {(wi, w1, yi, zi)1<i<n s (Wi, T4, yi, 21) € szwi +x; +yi + 2 = My}
i=1

where
x ={(w,z,y,2) eN w+z+y+2z< K}
Moreover, let us denote by

S0 = RN (@) + BY (0 + V() + VN 0

7

the number of unavailable parking spaces at station i at time t. Note that SN (¢) is a function
of ZN(t). This process (Z(t)) gives some refined state of the stations and can be obtained as a
function of the Markov process (X (t)) by

N
MOEDPP MO Ry () = Xg, (1),

VN () = XN (1), VN ( ZX

3
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So the evolution equations of (Z™(t)) can be obtained from equations (3)—(F] as follows

N
(6) dR]N (1) = > LivN(=)>0, SN (t-)<K} N){{}‘N(dta {i})
j=1

N [e)
- (Z 1{l§XjYi<t—>}Nu,j,z‘,l(dt)> 7
j=1 \i=1

(7) dRN ZZI{ZSXN }N J’Ll dt Z]‘{l<RN(t }N‘ull(dt)

=1 1 =1

(8) dVN (1) Z L<ry (- N i (dt)

U,N .
- Z 1{V5N(t*)>0, SN(t7)<K} N/\,i (dta {J})v

N
9) av; N (t) :Zl{vN( -)>0, SN (t-)<K} NM (dt, {j})
j=1
N 0o
_ Z (Z Ly (i NN, wl(dt))
j=1 \i=1

This process (Z™V(t)), in dimension 4N, is not a Markov process because the evolution equations
for (ZN(t)) are not autonomous. They depend on the Markov process (X (¢)) which lives in
dimension (N + 1)2. See equation (2). We introduce process (Z™(t)) because it is sufficient to
capture the performance of the system, such the fact that a station is empty or full. The quite
remarkable property is that the limit as N gets large of (ZV(t)) is a non-linear Markov process.
We will present this process in this section and prove the convergence result in the next section.

3.2. Heuristic computation of the asymptotic process. The proof of the convergence will
be given in the next section. Here we show how we can guess the asymptotic process. Suppose
that, for 1 <i < N, (ZN(t)) converges in distribution to some process

(Z(t)) = (R (), R(t), V(£), V" (1)).

Let P be the random measure on Ry defined by

t N oo
(10) PN ([0,1]) :/0 Z (Z 1{l§Xﬁi(s)}Nu,j,i7l(d5)> .
j=1 \i=1

It shows that P}V is a counting process (with jump size 1) on R, and its compensator is

/Z dS—V/RNT

See Robert [12, Proposition A.9] for example. Thus, due to the convergence in distribution of
(ZN(t)) and the standard results on convergence of point processes, P~ converges to an non-

homogeneous Poisson process P with intensity (vR"(¢)). It can be written as follows

Poo(dt> - ‘/]R 1{O§h§ﬁ(t7)}ﬁy’l(dt7 dh)
+
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where, with our notations, NV, 1 is a Poisson process with intensity vdhdt, using the characterization
of a Poisson process by the martingale of its stochastic integral.

Following the same lines, it gives also that 771 , the random measure on R defined by

~ t N oo
) A=Y (z1{1%<s_)}m,i,j,l<ds>>
=1 \i=1

is a counting process (with jump size 1) on R, with compensator

t N t
V/ ZX%(S) ds = 1// VN (s) ds.
0 = 0
It converges to an non-homogeneous Poisson process P> with intensity (vV7(t)), i.e.
P (dt) = /R Lgcn<vr—y Noa(dt, dh).
+

Remark 1. Point processes N1 and N, o are independent because PN (respectively PN ) is a

function of (N, ;.,7) (respectively (N, .. .,7)), where (N, ;. ,j # i) and (N, . ,j # i) are
independent.

Then let us consider the random measure Q¥ on R, defined by

(12) (l0.4)) / Zl{ws o0, 53 (e y<y NIV (ds, 1)

with compensator

t N
1
A/0 Lisn(<icr 3y D Ly (9)>0345-
j=1
Heuristically, by asymptotic independence of stations and the law of large numbers, as N tends to
infinity,
N

1 —
j=1

Thus formally, as N tends to +oo, OV converges to an non-homogeneous Poisson process Q> with
intensity (Al <xyP(V(t) > 0)). In other words,

Q> (dt) = /R+ Lio<n<ig, - )<K}P(V(t*)>0)}N)\’1(dtvdh)'
With exactly the same work, va on R, defined by
(13) N ([0,4]) / Zl{vN )>0, SN (s=)<K} NN (ds, {5})

formally converges in distribution when NN tends to +oo to the non-homogeneous Poisson process
Q% with intensity (A1)~ P(S(t) < K)) also defined by

Q™ (dt) = /ﬂh 1{0§h§1{v(t,)>0}]}‘7(§(t*)<K)}N>\,2(dt7dh)'
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Note that for the same reason as previously, Ny 2 is independent of Ny ;. By formally taking the
limit in equations @7@, it leads to

dR7(t) = [g, Liocn<a 7> N a1t dh) = Jo oo <mry Noa(dt,dh),

{S5@t™)<K}

dR(t) = [p, Yocn<mr-pNvaldt, dh) — 3 Leri )y Nualdt),

AV (t) = Zliof 1{zgﬁ(r)}N 1(dt) — f]R+ 1{0§h§1{7(t,)>0}]P’(§(t*)<K)}N/\;2(dt’ dh),

dvr(t) = fR+ 1{0§h§1 P(?(t*)<K)}N>\72(dta dh) — fR+ 1{0§h§W(t*)}Nv,2(dtv dh).

3.3. A first result. Then the first result gives the existence and uniqueness of a stochastic process
solution of the system of SDEs (14). Let T > 0 be fixed. Let Dy = D([0,T],P(x)) be the set of
cad-lag functions from [0,7] to P(x).

{V(t—)>0}

Theorem 1 (McKean—Vlasov process). For every (w,xz,y,z) € X, the system of equations

Bt = vt [fogxm, 1{0§hs1{§<5—)<K}P(V<s*>>0>}ﬁkvl(ds’ dh)
=03, Losnsmrs-pNva(ds, dh),

Rit)= o+ [[o yxr, Lioch<mms-nNvilds, dh)
- fot z+:o1o 1{13@(57)}/\/’#,1(655)7

V)= y+ [y o5 Lj<R(s— ) Nua(ds)
- ff[o,t]xR+ 1{0§h§1{7(5,)>O}P(§(Sf)<1<)}]vx\,2(d3> dh)

Vi) = z+ [fioqxr, Lo<n<a PE(s-)< i)V az2(ds, dh)

{V(s7)>0}

— JJio.gxz, Lo<n<vr(s-nNva2(ds, dh),
has a unique solution (R"(t), R(t),V (t),V"(t)) in Dr.

Note that the solution of equation satisfies the Fokker—Planck equation in the intro-
duction.

Proof. Let us introduce the Wasserstein distances on P(Dr). For w1, w2 € P(Dr),

WT(7T1,7T2) = inf / (dT(wh(.JQ)/\l) dﬂ(w),
W:(lewz)E’D%

m€Cr(m1,m2)

m€Cr(m,m2)

pr(m,m) = inf / (lw1 = wslloo.) A 1) drr(w)
w:(wl,wQ)ED%

where, for f € Dy, ||flloo,r = sup{||f],0 <t < T} = sup{X:?Z1 |f:(®)],0 <t < T}, Cp(m,m)
is the set of couplings of m and 7, i.e. the subset of P(D3Z) with first marginal is 71 and the
second is ma, (Dr,dr) with dr the distance associated to the Skorohod topology is complete and
separable thus (P(Dr), Wr) is complete and separable and W (my, m2) < pr(71, m2).
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Let us define

®: (P(Dr), Wr) — (P(Dr), Wr)
= O(m)

where ®(m) is the distribution of (Z.(t)) = (RL(t), Rx(t), Vx(t), VI(t)), unique solution of the
SDEs Ri(t) = w+ [fogxr, Ho<h<ty 4 ooy mes— >0 N a1 (ds, dh)

= Jio.gxr, Losh<rr (=) Nva(ds, dh),
R.(t)= z+ ff[O,t]xD&r l{Ogth;(s*)}Nu,l(dsydh)
t —+00
— Jo 257 Yi<ry (s N (ds),
Velt) = y+ J3 25 Luzr, sy Noa(ds)
— Jo.nxr, Lozn<i oo ooymllizso)ll< k)N 22(ds, dh)

Vi) = 2+ [[iogur, Lo<hapy, om0y nllzsHl<k)N 2 2(ds, dh)

= JJio.qxr, Loghzvy (s Nva(ds, dh).

Note that 7(v(t) > 0) = [,
to is equivalent to the existence and uniqueness of a fixed point © = & (7).

Let us prove that # = ®(7) has a unique fixed point. For m, ma € P(Dr), let Z,, and
Zx, be solutions of (16). Thus (Zr,,Zx,) is a coupling of ®(m;) and ®(ms) and, for ¢t < T,
(1), ®(72)) < E([Zn, — Zry ).

For ¢t < T, using the definition of Zr, and Z,,,

”Zﬂ'l - Z7rg”oo,t

=S (177, (s) = B, (8) + [Rry (5) = Ry (8)| + [Viry (8) = Viey ()| + [V, () = Vi, (9)])

< // L{A,, (5 )M Ay (57) Sh< A, (=W ARy (s~ )3V A1 (ds, dh)
[0,¢] xR

— (" 0,07 ) €D Liy)>03dm(2). The existence and uniqueness of a solution

t +oo
+2/0 DL <ha, (51 = Li<a, (-0} Nt (ds)
=1
+2// L{Rr (s-)AR7. (s-)<h<Rr (s-)WEr. (s—)}Nv1(ds,dh)
[0,¢] xR 1 2 1 2
+2// L(B,, (s~ )ABay (s~ ) Sh< By (s~ )V By (s~ )N 1,2(ds, dD)
[0,t] xRy

(17) + // Livr (s)ave (s-)<h<vr (s-)vvr (s- 3N v2(ds, dh).
[0, xRy 1 2 1 2

Ax(t) = 1y 2, (1) <xym(v(t) > 0) and B (t) = 1y, p>oym([|2(1)]| < K).
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The mean of each term of the right-hand side of the previous equation is bounded as follows. For
the first term,

E (// (A, (s7)AApy(s—)<h<An, (s)vAm(s)}NA,l(d&dh))
[0,t]XR+
t
< )\/ |m1(v(s) > 0) — wa(v(s) > 0)|ds
0
t

= ; |7 (z,v1(8) > 0) — 7w(z,v2(s) > 0)|ds

t
B A/ / L oi ()50} = Lua(s) >0} T (dw)ds
0 Jw=(z1,22)€D2

t
S )‘/ / [v1(s) —va(s)| A1 7(dw)ds
0 =(z1,22)€D2

t
< )\/ ps(m1,m2)ds.
0

For the second term of the right-hand side of equation (17)),

t +oo
E (/0 D lp<r, sy - 1{1§Rﬂ2<s)}/\/u,l(ds)>

=1

t +oo
< u/o E (Z 1Lu<R,, () — Lu<ha, (s>}|> ds

=1

IN

i [ BB ()~ (o)) ds

t
<1 / E (| Zn, — Zn, loo.s) ds.

For the third term of the right-hand side of ,

E (// Liry, (s*)/\RZ_}_Z(S*)ShSRZJ_l(S*)VRQQ(S*)}NV,l(dsa dh))
[O,t]XR+
¢

< [ BORL () =~ R (s)Dds

t
<v [ E(1Zn - Zul. s
0
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For the fourth term,
// L{B,, (s~ )ABa (s~ )Sh<Ba, (s~ )V B, (s~ 3N A 2(ds, dD)
[0,t]><]R+
t
<A / E (1L, soymll=(s) < K) = L, qsom(l=(s)] < K)l) ds
t
< )\/ E (|1{vﬂ1(s)>0} - 1{vﬁ2(s)>0}|) ds
0
t
SA/O E [V, (5) — Vs (5)]) ds
t
< [ 5120~ Vel ds.

As for the third term, for the fifth term,

E (// Livy, (s)AV;2<s><h<v,r1<s)vvz2<s>}Nv,2(d5»dh)>
[0,t]><R+
t

< V/o E(HZm - Zﬂz”OQS)dS'

Thus

t

t
B Zn, ~ Zralloa) < @30 +20) | E(1Z, = Zoslo)ds 42 [ pum,ma)ds.
0 0

By Gronwall’s inequality,

t
B(|Zn, ~ Zrallos) < Ci [ pulm, m)ds
0

with Cy = Aexp((2u + 3v + 2A)t). For t < T,

(18) pr(B(my), &(ms)) < Cr / palmy, m2)ds.

It leads to the uniqueness of the solution of ®(7) = w. Indeed, if m; and w5 are fixed points of P,
then equation is rewritten

t
pe(my,m2) < CT/ ps(my,m2)ds.
0

By Gronwall’s inequality again, for each ¢ < T, ps(my,m) = 0 thus m; = m3. The existence is
proved by an iteration argument. Let w9 € P(Dr) and m,41 = ®(7,). By equation ,

Wr(Tnt1, Tn) < pr(Tnt1,Th)

T n
= C?PT(M’?TO)/ dsy ... ds, < <r)"

pPT(7T1,70)-
0<51<89...6n<T n! (m1,mo)

Thus (7,) converges since (P(Dr), Wr) is complete. Because of equation , ® is continuous for
the Skorohod topology and its limit is a fixed point of ®. |
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4. MEAN-FIELD LIMIT

Recall that, by Theorem |1} the so-called McKean—Vlasov process (Z(t)) is the unique solution
of the system of equations (15)). The empirical distribution AN (¢) of (ZN(¢),1 < i < N) is defined,
for f on x, by

1 Y 1 Y

AY@)(f) = 5 D FEZY®) = 5 Do FER (@), BRY (1), ViV (), V"N (1)

=1 i=1

Process (A (t)) takes values in

N
(19) yN = {A € P(X)7A(w,a:,y,z) € N7 (waxa Y, Z) X Z (x + Yy + Z)A(w,w,y,z)N = MN}

(w,z,y,2)EX

As process Z% is not Markov, process (A (t)) is not Markov. The aim of this section is to prove
the mean-field convergence for (ZV(t)), i.e. that the sequence of processes (A (t)) converges in

distribution to (Z(t)). It means that, for any function f with finite support, the sequence of
processes (AN (t)(f)) converges in distribution to (E(f(Z(t))).

Theorem 2 (Mean-field convergence). The sequence of empirical distribution process (AN (t))
converges in distribution to a process (A(t)) € D([0,T],P(x)) defined by, for f with finite support
on X,

A@)(f) =E(f(Z(1))

with (Z(t)) the unique solution of equation (L5). Moreover, for any k > 1 and for 1 < iy <
. < i < N, the sequence of finite marginals (Z (t),..., Z)(t)) converges in distribution to

» g

(Zi,(t), ..., Zi, (1)), where (Z;,(t)),..., (Z;,(t)) are independent random variables with the same

distribution as (Z(t)).

The last property is the propagation of chaos. The proof is presented in Section

4.1. Evolution equations of the empirical measure. Let us introduce the following notations.
For z € x, f: x — Ry and (e;,1 < i < 4) the canonical basis of R* i.e. e; = (1,0,0,0),...,e4 =
(0’ 07 07 1)7

Nii1(f)(z) = flz—ei+eip1) — f(z), 1<i<3,
AT (f)(2) = f(z+e1) — f(2),
AL ()(2) = f(z —es) = f(2).
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Let Y = {(w,2,9,2) € NNw+ax+y+2z < K}. For f: g — Ry, straightforwardly by
equations @—@,

N
df(ZY (1) =AT (£)(Z ZI{VN(t )>0, SN (¢ <K}N N (dt, {i})
j=1
N o)
+ Aa(f)(ZN (1)) Z <Z 1{l<XJ1,\)’i(t)}Nu,j,i,l(dt)>
j=1 \i=1

N
+ 8342 )Y Lyv -y, SN (t-)<K} NN (@t {5}

N
+ AL (NH(Z Z (Z Lu<xy )}Nu,i,j,l(dt)>

Thus, using the martingale decomposition for Poisson processes,

N
A
(20) df (ZN (1)) ZAf(f)(ZfV(t))l{s;V(tKK}Zl{vjN(t»o}th

j=1
+ Ao (NEZN O)RPY (tvdt + Do 5(F)(ZN (0)RY (t)pdt
N
A
+ 834NN O vy ysop D Lisy<ry 2yt
=1

+ AT (HEZN )V (vt + dMEY (1)

where (MY,(t)) is a martingale which will be detailed in Section By summing equation
for i from 1 to NV and dividing by N,

AN(@)(f) = AV (0)(f) + M ()

=y AV (5)(Sk 1 {y > OPAY (S)(AF ()1, )ds

(21) v [ ANO@ia(Ppds +n [ A () Baa(Hpa)ds
0 0
+ A ; AN(S)(E<K)AN(S)(A3,4(f)1{y>0})ds+V/O AN (s)(A7 (f)pa)ds
where
(22) MF(t) = (Mfl( )+ MFy(t) . 4+ MP N (1)),
(23) E<K—{(w,x7y, 2)eNLwt+azt+y+z< K}
and

(24) pi : N* = N is the i — th projection (for example p; (w,x,y, z) = w).
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4.2. The martingale term. The martingale term is M;V (t) given by equation where, for

1<i<N,
N A
M) AT (N 0) L v 50,50y W30 () = g

Z Lu<xni-) Ny ji(dt) — vat)

Mz

+Aq2(f)
j:1 =1
+ Do 3(f)(ZN (1)) Z (<ry (-} Ny (dt) — pdt)
=1
al A
+ N34 (f)(ZN (1)) Zl{\/iN(t )>0, SN (t-)<K} (N N(dt, {j}) - th)
j=1
N oo
+ AL (f) Z Z Liexn -y} N ja(dt) — vdt)

I
_

J =1

whose increasing process is expressed as follows
(M) = (/\11 (t) + ply () + vI5'(t))

where, from careful calculations,

N ,
:Z/O <(A1+(f)(va(8))) 1{55V(5)<K}AN(3)(EKﬁ{y > 0})

+ (Dsa(NEZN ) Ly )50 AV (5) (Bek)

+ %Af(f)( N () Dsa(F)(ZN ()1 v ()50, s (s )<K}>

B0 =Y [ (Baaln(2¥(s)) BY (s)as
7,;1 t 2

o=y [ <<A1,2<f><zzv<s>>) RN () + (A5 ()2 (5)° Vi (s)
2NN () AT (DN ()Xl >)ds

The term with X/ (s) comes from the fact that only sequences (N ., j # i) and (N, i, # i)
are independent. See Remark [I] It yields then straightforwardly that there exist Cy, Cy > 0 such

that, for 1 <17 < 3,

[TV ||oo < (CoN + C)T|| f||%.

C

C
(25) M3z < ot 0) (524 1) TIAIR
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Thus, applying Cauchy-Schwarz then Doob’s inequalities,

(= m,areon)) <= up, Jarcor)
o < (MY (1))

= 4E((M)(T)),
and the martingale (M} (t)) converges in distribution to 0 when N tends to co.
4.3. Convergence of the empirical measure process. This section is devoted to the proof of

the mean-field convergence theorem (Theorem . The proof is based on tightness and uniqueness
arguments.

Proposition 1 (Tightness of the empirical measure process). The sequence (AN (t)) is tight with
respect to the convergence in distribution in D(Ry, YN), YN defined by equation . Any limiting
point (A(t)) is a continuous process with values in

(26) Y={AeP(Ex), Y. (@+y+2)Muways =5}
(w,z,y,2)EX K

solution of

AB)(F) = AO)(f) + A / A()(Sx N {y > OPAG)AT ()L )ds
+v / A() (A o(f)pr)ds + g / A(3)(Aa5(f)p2)ds

(27) A / A() (i) AS) (gt (F)Lpyoop)ds + v / A(S) (AT (f)pa)ds

for any function f on X = {(w,z,y,2) E N, w+x+y+ 2 < K} and Xk and the p;’s defined

by equations and .

Proof. This amounts to proving that, for any function f on X x, the sequence of processes (AY (t)(f))
is tight with respect to the topology of the uniform norm on compact sets. For this, using the the
modulus of continuity criterion (see Billinsley [2]), it suffices to prove that, for T, ¢, n > 0, there
exist 0g > 0 and Ny € N such that, for all § < §y and all N > Ny,

(28) P O<§1<113<T\AN(t)(f)) — AN >0 | <e
|s—t|<5

Let T >0,e>0,17>0,0 >0 and s,t € [0,T] such that |s — t| < § be fixed. For the third term
of the right-hand side of equation , there exists Cy > 0 such that

t
[ A @0 (> DAY @) (AT (5.0 )d
and the same holds for the other terms. Thus there exists C's > 0 such that

AN (@) () = AN (s)()] < 6Cs] flloo + IMF (£) = MT (s)].
Using equation for the martingale term, it holds that there exists Cy > 0 such that

B sw WO - AV | <00+ 28 s (M 0)).

0<s<t<T
|s—t|<d
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Thus, as the martingale term converges in distribution to 0 (see Section ), there exist dp > 0 and
Ny € N such that, for all § < g and all N > Ny, the left-hand side of the previous equation
is less than e. Then, using Markov’s inequality, the sequence of processes (AN (t)(f)) satisfies
equation thus is tight. Therefore, if A is a limiting point of A"V, using again equation , as
(/\/ljfv (t)) converges in distribution to 0, equation holds. As function f has finite support, all
the terms of the right-hand side are straightforwardly continuous on t. O

The following proposition gives the uniqueness of a limiting point of (AN (¢)).

Proposition 2 (Uniqueness). For every probability Ag on Xk, equation has at most one
solution (A(t)) in D(R4, P(Xk)) with initial condition Ag.

Proof. Let Al(t)) and A%(t)) in D(Ry,P(Xk)) be two solutions of equation with initial con-
dition Ag. For f function on ¥ and ¢ > 0,

AL = A2()(f)
= A/O (A'(s) = A%())(Bk N {y > OPA () (AT (F)Ls, )ds

A / A2(s)(Sk O {y > 0})(AL(s) — A2(8))(AT (f)Ls., )ds
v / (AL(s) — A2(5))(Ara(F)pr + AF (Ppa)ds + / (A1(s) — A2(5))(Days(f)pa)ds
A / (AL(s) — A2(5)) (S i) A () (As 4 F) Lpysop )ds

A [ A% () (Bar) (A (5) = A%(5))(A3,4(f) 10} )ds.

0
Recall that, for a signed measure m on X,

I7llry = sup{[x ()], f : Xk = R, | fllo <1}

From the previous equation, it holds that

t
A1) ~ A2 (O)lrv < (83 -+ 4w+ 20) [ A (s) — A3(6) v,
0
Applying Grénwall’s lemma,
[AY(t) = A%(t)[|7v = 0.
It ends the proof. |

Proof of Theorem Let (w,z,y,2) € ¥k and Ag = d(w,z,y,2)- If (Z(t)) is the unique solution
of equation and the measure valued process (A(t)) is defined, for f function on Xk, by

A)(f) =E(f(Z(1)))
then it is easy to check that (A(t)) is a solution of equation (27). The convergence of (AN (t))
follows from Propositions 1 and 2. See Sznitman [I3] Proposition 2.2] for the propagation of chaos
property.
4.4. Probabilistic interpretation of the asymptotic process. Note that the Fokker—Planck

equation is the functional form of the stochastic equation . Recall that, in equation ,
equalities in distribution hold, as

// Locn<rrs N ov(ds, dh) /Z1H<RT 1N (ds).
[0,t]XR+

=0
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R" R vr

w0

AP(S(t) < K)

<l

AP(V(t) > 0)

rate n; rate pp rate p2 rate 1

FIGURE 1. Dynamics of (Z(t)) as a tandem of four queues. The vertical queues
are M /M /oo queues, the horizontal is a M/M/1 queue. The overall capacity is
K.

Thus the non-homogeneous Markov process (Z(t)) can be seen as the state process of four queues
in tandem, with overall capacity K. This means that R"(¢), R(t), V(¢) and V7 (¢) are the numbers
of customers in respectively

- the first queue, an infinite-server queue with service rate v,

- the second one, an infinite-server queue with service rate p,

- the third one, a one-server queue with variable service rate AP(S(t) < K) at time ¢
- and the last one, an infinite-server queue with service rate v,

while the arrival process is an non-homogeneous Poisson process with intensity AP(V (¢) > 0)dt.
Let 71, p1, p2 and 19 be the arrival-to-service rate ratios for the four queues from the left to the
right (as shown on Figure [l}). By definition, one gets

m(t) = 2B(V(t) >0), p(t) = 3P(V(t)>0),
(29) _ P(V(t) > 0) anT
p2(t) = ma n(t) = 2P(V(t) > 0).

5. EQUILIBRIUM OF THE ASYMPTOTIC PROCESS

The quadruplet of the numbers of customers in such four queues in tandem with fixed arrival-
to-service rate ratios 71, p1, p2 and 72 and finite overall capacity K is an ergodic Markov process as
an irreducible Markov process on a finite state space. Moreover, the unique invariant probability
measure has a well-known product form given by

L mpt g
Z(p) jlk! " m!

(30) Tk tom(P) =

where, to shorten the notations, (11, p1, p2,72) is denoted by p and the normalizing constant is

J k m
mei o7
(31) Z(p) = E ;,k,l Plgﬁ
GHE+IHmM<K

If the process (Z(t)) of the number of customers in the four queues in tandem is at equilibrium
then, denoting by L, its generator, it holds that

0=7(p(t)) Lyt
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where p(t) = (n1, p1, p2,n2)(t) is given by equation (29). It means that the equilibrium point is
the probability measure 7(p) on Y defined by where p = (1, p1, p2,n2) satisfies

(32) m =0~ (o),
(33) pr = gu -
~ 1—mv(p)
4 = T
(35) N2 = %(1 = mov(p))

with mov(p) = 2,4 1nmex Ti00m(p) and ms(p) = D2k 1iv ek Tikim(p). Viewing the tandem
of four queues as a station, moy (p) is the probability that there is no car available and wg(p) the
probability that the station is saturated.

Because 7(p) has support on )Y, it holds that

(36) s = Z (k+14+m)Tjk1m(p).
J+k+Hl+m<K

Theorem 3. Ifv is enough large then there exists a unique equilibrium point for the Fokker—Planck

equation which is w(p) defined by equation where p = (£p1,p1,p2,2p1) and (p1, p2) is
the unique solution of

(37) p1= %(1 —mov(p)),
(38) s = Z (k+1+m)mjkim(p)-
j+k+l+m<K

Remark 2. The assumption that v is enough large is a technical assumption for the proof. It
seems that the result is true for all v > 0 but the proof is for the moment out of reach.

Let us prove Theorem [3] in five steps. Steps 2, 3 and 4 are devoted to the special case where
v tends to infinity. This case is called the simple reservation case. Indeed, when v gets large, it
turns out that the model corresponds to the case where the car is not reserved in advance, and
the parking space is just reserved when the user takes the car. This model is studied in [§]. Step
1 is here to present the framework for the simple reservation case.

STEP 1: THE SIMPLE RESERVATION CASE. For the model with simple reservation, the
problem of existence and uniqueness of an equilibrium point amounts to finding (p1, p2) such that

A

(39) p1= ﬁ(l — 7. 0(p1,p2)),
1 -7 o(p1,p2)

40 =,

(40) P2 1 —7s(p1, p2)

(41) s = Z (i 4 7)mi i (p1, p2)-
i+j<K

where the invariant probability measure is now

P
Wi,j(ﬂupz) = mzﬁlpé

. K
with Z(p1, p2) = Zi+j§K i (P15 p2)s T0 = D i 0 and Ts = ZiJr_j:K T,

STEP 2: EQUATIONS (39)-{I) AMOUNT TO EQUATIONS and (@I). Note that any p
solution of (39) and (#0) lies in T' = [0, \/u[ x RT. For any p € T, p is solution of equation (40)
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because
1 Pl 1 o
p2(1 —7s(p1, p2)) = P2 o o) 7,1/)5 = 2o ) > T,IP% =1—m o(p1,p2)-
PLP2) Gk Y PLP2) s oivi<k
STEP 3: DIFFEOMORPHISM FROM EQUATION (39).

Lemma 1 (Diffeomorphism). There exists a strictly increasing diffeomorphism ¢ : 10, \/u] —
10,00[, and ¥ = ¢~ 1, such that (p1, p2) is a solution of equation if and only if pa = ¢(p1).

Proof. First, (p1,p2) € T is solution of equation if and only if f(p1, p2) = 0 where f is the C*°
function defined by

(42) flp1,p2) = (A - p1> Z(p1, p2) — A i il
| a 7 His0 it

To prove the existence of a strictly increasing diffeomorphism ¢ which maps p; to pa, we apply
the global inverse function theorem to auxiliary function h defined on I" by

h(p1, p2) = (p1, f(p1, p2))-
Indeed, h is injective if and only if, for any p; €]0,\/u[ and ps, p) €]0,+00], f(p1,p2) = f(p1, Ph)
implies that py = ph. As fis C* on |0, \/u[x]0, +ool, it is sufficient to prove that df/dps # 0 on
10, A/ u[x]0, +00] to obtain that pa — f(p1, p2) is strictly monotone thus injective.
Note that it is easy to see that df/dps is positive on |0, \/u[x]0, +oo[. Indeed, since py < A/p
and pa — Z(p1, p2) is non decreasing,

af (A > o0z
—(p1, =(-- —(p1, > 0.
9 (p1,p2) 0 P1 9 (p1,p2)

As a consequence, h is injective and C on ]0, \/u[x]0, +00[. By global inversion function theorem,
h=tis C* on h(]0, A/pu[x]0, +oc]) and it exists ¢ C' defined on ]0, A/u[ by

h_l(phO) = (p1,0(p1))-

Thus, to prove that diffeomorphism ¢ is strictly increasing on ]0, A/u[, it amounts to showing that,
for all p; €]0,A\/p[, one gets

g—im,m)) <0,

or equivalently that, for all (p1, p2) €]0, A/u[x]0, +o0[ such that f(p1,p2) =0,

ﬁ(plvPQ) <0.

dp1
First, from equation , one obtains the first partial derivative of function f,
i K-1
0 A U by i
(43) aff(Pth):—Z(Pth)—i— (—p1> Z %pé—f %
P a i+j<K-1 Pz v

thus, subtracting equation to equation yields
K ,
of A PP
(44) Flor.02) = 52-(p1.p2) = Z(pr o) + (M - m) >t L

By equation ([#2)), f(p1, p2) = 0 can be rewritten
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Thus, the second term of the right-hand side of equation is

X S D S SV B VA
) 2 K0 WPl & 1t 2 K= 70
P o
A 1 Pl Ak L PPy
= —p . — > —pP] 5~ YT
u"t Z(p1,p2) Z.;OZ!(K—])! p't Z(pl,pz)w;q il(K —j)!

using that all the terms are positive. For the sum of the right-hand side of , it holds that

Z Pli_jﬂé :i Z K!P]fpé > Z(p1, p2)
iI(K—-j7)! K! G+ WK -4~ K!

0<j<i<K JHR<K

using that, for any j,k e N, j +k < K|

K! 1 K H 1
(G+EUK -5 k(K- )(J+k TR ]+k:—z—k!'

In conclusion, equation gives that

A P2 P P{( i )\Pl
4 A >
(46) ¢ ”1) (K—1)!  w K

Plugging equation in equation and using that Z(p1, p2) > 0, it turns out that

of
f(p1,p2) — op1 (p1,p2) > 0.
Therefore, as f(p1,p2) =0,

of
Tm(pl’pz) <0

for all (p1, p2) €]0,A/u[x]0, +-00[ such that f(p1,p2) = 0.
(Il

Lemma |1l means that the solutions of equation can be expressed with only one parameter.
Note that it will be useful for the study of the equilibrium, especially in calculations to obtain
asymptotics. This concludes the third step of the proof.

STEP 4: A MONOTONICITY ARGUMENT TO CONCLUDE SIMPLE RESERVATION CASE.
After equations and , let us focus now on equation . The idea is to prove that the
mean number in a tandem of two queues with total capacity K is a strictly increasing function of
both arrival-to-service rates. It generalises the monotonicity argument in the similar proof in [8]
Section 3.1]. Then using Lemma it concludes to the existence and uniqueness of the equilibrium
point.

Lemma 2 (Monotonicity). The average number E(R+ V') of vehicles and reserved spaces per sta-
tion, where (R, V') is a random variable with distribution 7(pa, p1), is a strictly increasing function
of both ps and p;.

Proof. Let (p1,p2) — E(R+V) be denoted by gx. It is sufficient to prove that, for all (p1,p2) €T,

d9K 09k
—_— 0 and — 0
a1 (p1,p2) > 0 an 2 (p1,p2) >

by induction on K.
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By a change of indexes, gk can be rewritten

i K
> GH+NEe S kp
k=0

g i+ <K
K = T =%
> e
i P kZ::OPk
where, by definition,
koo pkﬂ
Pe= P
= (k—J)
Define also, for (k,[) € N2,
T = —.
Pk
Let k& > 0 be fixed. We first show that 7 ;—1 is an increasing function of both p; and ps. Indeed
P + pt /k!
Pl = k_ _ P2Pk—1 P1/ = oot 071'
Pk—1 Pk—1 Kl pra’
thus
Org o Yopr—1 1
(47) Tkk=1 _ 4 _PF1 Pk12 '
Op2 kl' Op2 py_q
But, by definition of py,
O = oy p? = o
48 k — = kS S ST A B s S
(48) s ;JPQ ) ;(wr ey
And, using that all terms of the sum in the following equation are positive,
ka U—v
k" 2 _ k' ut+v—2 1
Pe—1 > 7 k — )k —0)!
1<u,v<k
i+1
49 > 2h—i—2 _
( ) Zprl Z 72714»])(]{:7]-)!
Forall j, 0<j<i+1,whilek—-2—i+j <l<:, it holds that
k! S 1
(k—2—i+ )l k—j)" " (k—i-2)!
and then 4
% k! L i+l
jzl(k—Q—i—Fj)!(k—j)! (k—i—2)l
Plugging in equation and comparing with equation , it gives
Opr—1
klp? | > ph :
DPk—1 = P1 9
Therefore, using , it allows to conclude that
Org. —
Thk=1 o g,
dp2

Moreover,

Org k-1 Pt ( P1 31%1)
50 ’ = 1-— > 0.
(50) Ip1 (k= 1)lpr—1 kpe—1 Op1
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because it is easily checked that dpi_1/0p1 = pr—2 and then kpr_1 > p1pr—o.
l

Therefore, if I > k, r1, = ][] ri:—1 is an increasing function of py and p;. This gives that ug
i=k+1
defined by
PK 1
UK = 7 T K
> Pk > kK
k=0 k=0

is non decreasing in = € {p1, p2}, because ry x = 1/rk ; is non increasing in x.
Note that gg is constant with = and that

gk = (1 —ug)gx—1 + Kug,
which yields that

Ogr Oug 09K 1
—— = (K — gig_ 1-— —
ox ( gx-1) ox + ) ox
Since K —gx—1 >0, uxg < 1 and dug /0x > 0, by induction we can conclude that dgx /dz > 0
for all K > 1. It ends the proof. |

By step 2, it remains to prove that, for any s > 0, there exists a unique (p1, p2) solution of both

equations and . By Lemma 1, equation can be rewritten p; = 1, (p2) with ps > 0.
Then equation becomes

(51) 8 = gx (¥p,(p2), p2).

Let us denote the right-hand side of equation by function sk defined on [0, +00[ which maps
p2 to g (Y, (p2), p2) = E(R+V). It is sufficient to prove that sy is strictly increasing. It is true,
using that
r_ dg9r | 09k,
S =— 4+ —
dp2  Opr "

as equation holds with v,, at ps but also in a neighborhood of ps and using both Lemmas
and To conclude the proof, one can easily check that sk covers the whole interval [0, 4+o0].
Indeed if po = 0, the only p; solution of f(p1,p2) =01is 0 and E(R + V) = 0. Similarly, when py
tends to infinity, p; has to tend to A/u to keep f(p1,p2) =0 and E(R+ V) tends to +o0. It ends
the proof for the single reservation case.

STEP 5: THE DOUBLE RESERVATION CASE. Straightforwardlly equations and
leads to

m="mn2= le-
12

Then the main argument is that equations and can be rewritten as equations (39))
and where p; is replaced by g1 = (1 4+ 2u/v)p; and A/u by a = A/u(l + 2u/v). Indeed, by
straightforward algebra, it holds that mov (p) = 7 _o(p1, p2) and wg(p) = ws(p1, p2)-

Unfortunately, (36]) is not rewritten as with the previous change of variables g3 = (1 +
2u/v)p1 but, with careful calculations, as

(52) s= Y (HM/VZ'JFJ') 7ij (01, p2)-

ifsx N2/

To complete the proof for any v > 0, it amounts to proving that, for a > 0 and K € N,

1 Lt
Z (i+2¢7)jyj

2(x,y) Sk

S(;&y) =
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is a strictly increasing function of z € [0, a[ under f(z,y) = 0, where

K i

x xi :
f(l’,y>:<a/_$>Z<.’IJ,y)_a ?) Z(x,y): Z jyj
=0 i+i<K

Indeed, the ratio in the right-hand side of equation is a non increasing function from

(2

+00) to (1/2,1). By linearity of differentiability and multiplication by a scalar, it suffices to

prove that the right-hand side of equation is non-increasing as a function of g1, for po = ¢(p1)
defined in Lemma [1| for the two values 1/2 and 1 of this ratio. For value 1, it is exactly Lemma
It remains to prove it for value 1/2, which has been asserted previously.

Nevertheless, due to simple reservation case (steps 2 to 4), by continuity, the proof is complete

for

(1]

[2

(3

(10]

(11]

[12]
(13]

v enough large.
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