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Abstract
Resistive switching (RS) devices are promising forms of non-volatile memory. However, one of the
biggest challenges for RS memory applications is the device-to-device (D2D) variability, which is
related to the intrinsic stochastic formation and configuration of oxygen vacancy (VO) conductive
filaments (CFs). In order to reduce the D2D variability, control over the formation and configuration
of oxygen vacancies is paramount. In this study, we report on the Zr doping of TaOx-based RS
devices prepared by pulsed-laser deposition as an efficient means of reducing the VO formation energy
and increasing the confinement of CFs, thus reducing D2D variability. Our findings were supported
by XPS, spectroscopic ellipsometry and electronic transport analysis. Zr-doped films showed
increased VO concentration and more localized VOs, due to the interaction with Zr. DC and pulse
mode electrical characterization showed that the D2D variability was decreased by a factor of seven,
the resistance window was doubled, and a more gradual and monotonic long-term potentiation/
depression in pulse switching was achieved in forming-free Zr:TaOx devices, thus displaying
promising performance for artificial synapse applications.

Supplementary material for this article is available online

Keywords: TaOx, oxygen vacancy engineering, memristor, variability, doping, resistive
switching, synaptic behavior
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1. Introduction

Resistive switching (RS) memories based on oxide thin films
are a promising technology for next-generation high-density
non-volatile memory applications and the hardware imple-
mentation of artificial neural networks [1–4], due to their
impressive switching operation performance in terms of
speed, endurance, scaling and multistate resistance modula-
tion [5–8]. However, both cycle-to-cycle (C2C) and device-
to-device (D2D) variability in the switching characteristics
still hinders the widespread use of this technology, as these
reduce the average performance and generate cost increases
due to the need for complex overhead circuits [5, 9, 10]. RS is
generated by the creation and dissolution of conductive
channels within an oxide layer in a capacitor-like structure, as
a result of the nanoionic movement of oxygen vacancies (VO)
under the application of high electric fields [11, 12]. An initial
operation step called a forming process is typically required in
order to generate sufficient VOs to allow for the formation of
conductive filaments (CFs). The stochastic nature of the
forming and switching steps leads to slightly different CF
configurations for each device, resulting in D2D and C2C
variability [5, 10, 12–16]. Understanding and control of the
formation, movement and arrangement of VOs in RS devices
is therefore paramount [13, 17, 18].

Various strategies have been explored for the creation of
excess oxygen vacancies in a controlled manner, in order to
mitigate forming-induced variability [19–21]. The most
common and direct method of VO generation is intrinsic
doping, i.e. the use of low oxygen partial pressure during
fabrication of the oxide layer, using methods such as reactive
sputtering or pulsed-laser deposition (PLD). This approach
has been particularly successful for tantalum oxide films
[20–22]. Intrinsic doping has certain limitations, however, as
it is difficult to control, relies on external parameters and is
subject to instabilities in the processing conditions [17,
23–25]. A more reliable alternative is extrinsic doping, which
consists of adding dopant atoms with a valence that is lower
than the host metal cation; this leads to the formation of VOs
in order to maintain electroneutrality [12, 17, 26, 27].
Extrinsic doping also helps to reduce the randomness of VO

generation. Theoretical studies of Ta2O5 doped with Ti, Zr
and Al have indeed shown that the formation of VOs is
favored near the dopant species [26]. In these cases, charged
VOs are compensated and attracted by p-type dopants,
forming dopant-VO complexes. These complexes trap VOs,
and can interconnect to form CFs. A reduction in variability
has been experimentally observed for extrinsically doped
TaOx [28] and HfO2 based [29, 30] devices. It has been
claimed that implanted or embedded dopant elements (e.g.
Gd, Al) in HfO2 help to localize VO formation and lead to
more confined CFs, resulting in significantly lower device
variability. This interaction between the dopant species and
VOs can change the switching dynamics and switching volt-
age operation [18], meaning that extrinsic doping can be
leveraged to further optimize switching performance for
specific applications, such as artificial synapses.

In this work, we report the fabrication of TaOx-based
memristors with reduced D2D variability and controllable pulse
switching dynamics, thanks to doping of the active layer with Zr.
For comparison purposes, Zr-doped (Zr:TaOx) and pure
TaOx-based devices were prepared in an oxygen-poor atmosphere
using PLD. Oxygen-poor conditions are used to suppress elec-
troforming step and its effect on the active layer properties. The
chemical compositions of both types of devices were investigated
using x-ray photoelectron spectroscopy (XPS) analysis and
spectroscopic ellipsometry (SE). RS investigations in DC and
pulsed mode revealed that D2D variability was decreased by a
factor of seven, the resistance window was doubled and more
gradual and monotonic long-term potentiation and depression
(LTP/LTD) in pulse switching was achieved in Zr:TaOx devices.
By analyzing the device current density–electric field (J–E)
curves using a hopping transport model, we demonstrate that
Zr:TaOx devices have a higher VO concentration and a lower
variability of this concentration between different devices.

2. Methods

Devices were fabricated on silicon substrates covered with
200 nm of SiO2 (figure 1(a)). Sputtering was used to deposit
tungsten (W) on the bottom (BE) and top electrodes. The
latter were patterned to give 80 μm round pads, using UV
photolithography and lift-off. TaOx and Zr:TaOx layers were
deposited at room temperature via PLD (with a TSST system)
using a Ta2O5 target and a Ta2O5:20 mol% ZrO2 target,
respectively, at a target−substrate distance of 45 mm, with a
laser fluence of 3 J cm−2 and a repetition rate of 10 Hz under
an oxygen flow of 2 sccm. Layer thickness was estimated to
be 10 nm by using the growth rate as determined by SE
measurements. Based on previous studies [22], we used an O2

partial pressure of 2×10–2 mbar to induce the formation of
slightly sub-stoichiometric active layers. The generation of
VOs by extrinsic and intrinsic doping was investigated using
XPS (KRATOS Axis UltraDLD), SE (JA Woollam, model
M-2000) and J–E conduction transport analysis of the devi-
ces. The electrical properties of the RS devices under DC and
pulsed conditions were carried out with a Keithley S4200
semiconductor parameter analyzer and a Keithley 4225-PMU
module. For all measurements, the BE was grounded and the
signals were applied to the top electrodes.

3. Results and discussions

The thin films were analyzed using XPS and SE. The ratios
(O/M) between oxygen and the sum of the metal atoms
(M=[Ta] for TaOx and M=[Ta]+[Zr] for Zr:TaOx) was
determined by quantification of the Ta 4f, Zr 3d and O 1s
peaks shown in figures 1(b)−(d)). Due to the low pO2 during
deposition, TaOx and Zr:TaOx films had O/M ratios of 2.45
and 2.25, respectively. This is lower than the value of O/
M=2.5 corresponding to the oxygen concentration of the
stoichiometric tantalum pentoxide (Ta2O5), thus indicating
the presence of VO [20, 21]. This effect was also confirmed
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by the change in the XPS Ta 4f peak, which suggests the
presence of Ta cations in lower valence states (Ta4+ and
Ta3+) (figure 1(b)). The energy positions of the chemical
components Ta5+, Ta3/4+ and O 2s were 26.3, 25.7 and
22 eV, respectively. For the Ta 4f components, the area ratio
was fixed at 0.75 and the spin–orbit splitting at 1.9 eV
[20, 31]. The presence of Ta in a lower oxidation state is
expected to result from the partial reduction of tantalum oxide
(intrinsic doping), as given by the following reaction in
Kröger–Vink notation [32]

( )··
( )+  ¢ + +2Ta O 2Ta V

1

2
O . 1x x

Ta O Ta O 2 g

As expected, the Zr-doped films are more sub-stoichiometric,
since the presence of Zr4+ cations induces VO formation

according to the reaction

( )·· ¢ + +2ZrO 2Zr V 4O . 2x
2

Ta O
Ta O O

2 5

Furthermore, as shown in figure 1(c), the O 1s peaks
have an asymmetric line shape that can be deconvoluted into
two components centered at 531.3 and 530.0 eV; these can be
assigned to non-lattice (Onl) and lattice oxygen, respectively.
The non-lattice oxygen peak can be associated with the pre-
sence of VO [33, 34]. The fact that Zr:TaOx films contain a
larger percentage of non-lattice oxygen (26%) compared to
TaOx films (20%) suggests that Zr4+ substitution indeed
promotes VO formation. This is in agreement with results
reported by Park et al [35] for KNBO films doped with Cu2+,
and by Kim et al [36] for Si-doped tantalum oxide-based
memristors. The XPS spectrum for the Zr 3d peak was
deconvoluted into Zr 3d3/2 and Zr 3d5/2, centered at 182.4
and 184.7 eV respectively [37–39], corresponding to Zr4+

states (figure 1(d)). The nominal relative concentration of Zr
with respect to the concentration of Ta atoms [Zr]/[Ta] was
determined as 8%.

Figure 1(e) shows the optical absorption spectra obtained
by fitting the ellipsometry data using a Tauc-Lorentz analy-
tical function, which is widely used to describe the optical
properties of amorphous and polycrystalline semiconductors
and dielectric films [40, 41]. In this function, the imaginary
part of the dielectric function is described by a Tauc
expression for photon energies above the gap, and is forced to
zero below the band gap. The overall interband transition in
the higher range of photon energies analyzed here is described
by a Lorentz oscillator. Although this function can be used to
describe pure stoichiometric dielectric Ta2O5 films, absorp-
tion in the sub-gap region is observed for sub-stoichiometric
films. This feature can be modeled using a broad Lorentz
function. Sub-gap absorption has been observed previously in
sub-stoichiometric TaOx films [42], and was associated with
the presence of VOs [43–45]. From figure 1(e), it can be seen
that the optical responses of both TaOx and Zr:TaOx exhibit
considerable sub-gap absorption, thus confirming the XPS
results. It is interesting to note that the optical absorption
intensity is similar for both samples, even though the Zr-
doped films have a higher VO concentration. One possible
explanation for this is that the dopant-VO interaction may
suppress the optical activity of the VO due to changes in the
charge [18, 44].

To gain insight into the effects of Zr doping on the
characteristics and variability of RS, current- and DC voltage-
controlled sweeps were used for SET and RESET operations,
respectively. For each device, in the SET and RESET
operation, the current compliance and the maximum operation
voltage values, respectively, were defined to maximize the
device resistance window while avoiding irreversible damage.
These values slightly vary among devices due to an intrinsic
variation in the threshold voltage and maximum resistance
window of each device. Figure 2 shows RS characterizations
of W/TaOx/W (figure 2(a)) and W/Zr:TaOx/W (figure 2(b))
devices. Up to five full RS cycles were performed on each
device, and the resistance state was measured at 0.2 V. For

Figure 1. (a) Schematic of W/Zr:TaOx/W and W/TaOx/W RS
devices and active layer characterization results: (b) XPS analysis of
Ta 4f, (c) O 1s and (d) Zr 3d peaks for the Zr:TaOx and TaOx

samples. (e) Absorption spectra of TaOx and Zr:TaOx obtained
via SE.
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more RS cycles and performance information see supple-
mentary material (available online at stacks.iop.org/NANO/
32/405202/mmedia). In each RS plot, ten switching curves
(the last RS cycle of each device) are given, corresponding to
ten different devices with the same stack structure. The
coefficient of variation (CV), defined as the standard devia-
tion (σ) divided by the average value (μ) of a given device
parameter, is used to account for the variability and disper-
sion. Table 1 summarizes the statistical data for main RS
parameters. In the pristine state, most devices had resistance
values ranging between the subsequent high resistance states
(HRSs) and low resistance states (LRSs), and hence a forming
process was not required. Few devices had initial resistance
values higher than the HRS values, and these were switched
with a voltage that was lower than in the subsequent SET and
RESET operations. For both the Zr:TaOx and TaOx devices,

the forming-free behavior was due to the high vacancy con-
centrations resulting from both intrinsic and extrinsic Zr4+

doping [20, 21]. The devices showed bipolar switching, with
the SET operation occurring with a positive bias (VSET) and
the RESET operation with a negative bias (VRESET) for all
devices. The average values of VRESET, VSET were slightly
increased for Zr:TaOx devices (up to ∼2.3 V as compared
with ∼2 V for TaOx), an effect that can be ascribed to the
dopant-VO interaction that may lead to defect clustering and
consequent change in defect mobility. In addition, the current
density values (@0.2 V) were slightly higher for the Zr:TaOx

devices, which can be explained by the increased VO con-
centration. C2C variability in LRS and HRS resistance was
similar for both the Zr:TaOx and TaOx devices, with average
values for the CV of around 18% and 14%, respectively (see
the curves in the supporting information). On the other hand,

Figure 2. Current–voltage (I–V ) characteristics for the 10 devices tested, with a statistical analysis of the resistance states per device:
(a)W/TaOx/WRS devices and (b)W/Zr:TaOx/WRS devices. To improve visibility, the switching curve for one random device is shown in
color. The resistance was measured at 0.2 V. The resistance values for the Zr:TaOx devices exhibit improved D2D variability.

Table 1. Comparison of key parameters of Zr:TaOx- and TaOx-based memristors

Zr:TaOx TaOx

μ±σ CV (%) μ±σ CV (%)

LRS/HRS 21.8±3.3 15.1 12.5±7.6 60.8
RLRS (kΩ) @0.2 V 0.70±0.07 10.0 3.7±2.7 73.0
RHRS (kΩ) @0.2 V 14.5±2.2 15.2 46.5±49.6 106.7
J(A cm−2) @0.2 V – LRS 6.0±0.7 11.6 1.4±0.7 50.0
J(A cm−2) @0.2 V – HRS 0.30±0.05 16.7 0.20±0.10 50.0
VSET (V) 2.3±0.4 17.4 1.7±0.5 29.4
VRESET (V) 2.3±0.5 21.7 2.0±0.6 30.0
a (nm) – HRS 0.6±0.1 16.7 0.7±0.2 29.0
a (nm) – Pristine 1.0±0.2 20.0 1.6±0.7 43.8
[nVo] (10

21/cm−3) – HRS 6.6± 3.4 51.5 5.5±4.4 80.0
[nVo] (10

21/cm−3) – Pristine 1.5±1.4 93.3 1.1±1.8 163.6
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significant contrast was observed in the D2D variability, and
especially in the resistance values in both the LRS and HRS
states, in which the CV for the Zr:TaOx device in the LRS was
reduced from 68% to 9% and in the HRS from 110% to 15%
compared to TaOx (see table 1). Another important feature
observed for the Zr:TaOx devices was an increase in the
average resistance window, from 12.5 for the TaOx-based
devices to 21.8 for the Zr-doped ones. A similar contrast was
previously noted in a comparison of sub-stoichiometric to
purely stoichiometric TaOx devices [20], and was attributed to
CF confinement and an increase in carrier concentration,
which results in higher current densities. This localized Joule
effect gives rise to greater filament dissolution and thus a
larger resistance window [20]. These results indicate that Zr
doping helps to improve RS performance by lowering D2D
variability.

To further evaluate the effects of doping on the transport
mechanisms, we conducted a carrier transport analysis by
applying a hopping model that has been used previously in
studies of tantalum oxide-based devices [46–48]. The J–E
curves for the devices in both the pristine state and the HRS
were fitted using the following expression [47, 49, 50]

⎜ ⎟
⎛
⎝

⎞
⎠

( )= -
Æ

J qanv
qaE

k T k T
exp , 3

B

t

B

where a denotes the average distance between trap sites, ∅t

is the trap energy, kB is the Boltzmann constant, q is the
electronic charge, n is the carrier concentration and ν is
the attempt-to-escape frequency. As can be seen from
figures 3(a)–(d), the I–V characteristics are well described by
the hopping model (the fitted curves and parameters extracted
for all devices are provided in the supplementary material).
The values obtained for the average distance between traps
for pristine Zr:TaOx- and TaOx-based devices were 1.0±0.2
and 1.6±0.7 nm, respectively (see table 1). The HRS trap
distances were 0.6±0.1 and 0.7±0.2 nm for Zr:TaOx and
TaOx devices, respectively. The trap concentration for each
type of device can be estimated by calculating [51, 52]

[ ] ( )= -n a . 4Vo
3

Pristine Zr:TaOx devices had a higher concentration of traps,
with a value of (1.5±1.4)×1021 cm−3 compared with
(1.1±1.8)×1021 cm−3 for TaOx devices. The same trend
was observed for the HRS states: the Zr:TaOx-based device
has a trap concentration of traps (6.6±3.4)×1021 cm−3 as
compared to (3.6±1.1)×1021 cm−3 for TaOx.

The transport mechanism in TaOx films depends critically
on the VO concentration. TaOx exhibits Fermi glass behavior,
in which VO complexes are trap sites and transport occurs via
electron hopping [53, 54]. An increase in VO concentration
gives rise to a percolation process, and once the fraction of
hopping sites exceeds a certain threshold, they form a con-
tinuous conductive path. The results in figure 3 indicate that
the distances between traps for both Zr:TaOx and TaOx

devices are in good agreement with reference values
[44, 48, 54, 55]. The shorter distance in the Zr:TaOx-based
devices explains the increased current density (@0.2 V). It is
also important to emphasize that the variability of the devices

is directly correlated with the variability in the distance
between VOs or VO concentration, indicating that extrinsic
doping is a more controllable way of changing the VO

configuration.
In order to assess the synaptic-like behavior of the

devices, the switching dynamics were evaluated using pulsed
measurements. We investigated comparative potentiation and
depression characteristics using same time interval for LTP
and LTD. As shown in figure 4(a), a sequence of 200 pulses
for each LTD and LTP process was performed using time
intervals of 200 μs and 600 ns, respectively. The LTD voltage
amplitudes used were 2.4 V and 3.2 V, and LTP voltages
were 2.1 V and 3.0 V for the TaOx and Zr:TaOx devices,
respectively. The values of the applied voltage for the TaOx

and Zr:TaOx devices were different because the voltage for
RS operation is higher for the latter, as previously discussed.
However, even at a higher voltage amplitude, it was observed
that Zr:TaOx had more gradual potentiation and depression
dynamics in its operation at a similar LRS/HRS ratio, as
shown in the normalized pulse switching curves in
figures 4(b), (c). CV for both maximum and minimum con-
ductance states are given for nine full LTD/LTP cycles. A
non-monotonic increase in conductance can be seen in the
first few potentiation pulses in the TaOx-based device, and it
has been claimed that this is related to a competition between
thermal- and field-driven effects on the movement of VOs and
the consequent CF stability [56]. This feature is detrimental
for synaptic applications where weight update dynamics
should be monotonic. The LTP curve for Zr:TaOx devices
does not exhibit this problem however. This improvement can
be attributed to the additional energy needed to overcome the
attractive interaction between VOs and Zr cations. Although
extrinsic doping generates a higher vacancy concentration, the
trapping of VOs by dopant-Vo complexes also leads to a
reduction in the overall VO kinetics. This tunability of the

Figure 3. Experimental J–E plot and hopping model with fitted lines
and extracted hopping distances for pristine (a) TaOx and (b) Zr:
TaOx devices, and subsequent LRSs and HRSs for (c) TaOx and
(d) Zr:TaOx. Zr:TaOx-based devices have a lower distance between
traps in all resistance states.

5

Nanotechnology 32 (2021) 405202 J H Quintino Palhares et al



switching dynamics through extrinsic doping can be gen-
eralized to other p-type dopants, as previously mentioned by
Lübben et al [18]

Low C2C and D2D variability has been associated with a
more reproducible formation and homogenous distribution of
CFs [14, 57]. In this work, the decrease in D2D variability
cannot be attributed solely to the higher concentration of VO,
but is also related to the interaction between VOs and dopant
species, which promotes VO localization around the dopant
cations. This interaction has been well described for several
doped oxides, in both experimental and theoretical simulation
studies [26–28]. This localization may provide a guiding path
for the formation of CFs, resulting in a less random dis-
tribution of CFs along the active layer. Moreover, simulation
has shown that the presence of dopants reduces the VO for-
mation energy [26, 27]. It is interesting to note that Ambrogio
et al [58] have demonstrated that device variability is asso-
ciated with fluctuations in VO energy barrier for hopping
conduction. It can be argued that the presence of the dopant
reduces this fluctuation, thus pinning the VO energy to a fixed
value and reducing the variability. The VO-dopant interaction
is also reflected in the slower VO kinetics and the consequent
change in the pulsed switching dynamics.

In this study, we have demonstrated that doping can be
used to tune the VO content and consequently the defect trap
density and CF configuration in tantalum oxide-based mem-
ristor devices. It was shown that Zr doping (extrinsic doping)
and control over the partial pressure of oxygen during PLD
(intrinsic doping) can promote VO formation and lead to
forming-free devices. In addition, extrinsic doping proved to
be better in terms of controlling the VO configuration and
content. The unique effect of Zr doping is that it localizes VOs
and consequently reduces the D2D variability. It was also
used to tune the pulse switching dynamics for the devices.
This enhancement in device parameters in terms of switching
variability and dynamics reinforces the importance of
exploring vacancy engineering for the tuning of memristor
behavior for high-density memory applications and memris-
tor-based artificial synapses.

See the supplementary material for additional informa-
tion on target preparation, C2C variability, device perfor-
mance (endurance), hopping model fitted curves, retention
measurements and thin film topography using an atomic force
microscope.
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