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I. Introduction

A MOT is nowadays extensively used to study properties of neutral atoms, or as a part of more elaborate setups for creating, e.g., quantum degenerate gases. The limit of large atom number N , in particular, has attracted interest in various applications, notably random lasing [START_REF] Baudouin | A cold-atom random laser[END_REF], Anderson localization [START_REF] Cottier | Microscopic and macroscopic signatures of 3D Anderson localization of light[END_REF], self-organization [START_REF] Labeyrie | Optomechanical self-structuring in a cold atomic gas[END_REF], super- [START_REF] Araújo | Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime[END_REF] and subradiance [START_REF] Guerin | Subradiance in a large cloud of cold atoms[END_REF]. This limit can, moreover, allow for investigations of nonlinear phenomena that possess similarities with pulsating stars [START_REF] Labeyrie | Self-sustained oscillations in a large magneto-optical trap[END_REF][START_REF] Cox | Theory of stellar pulsation[END_REF] and unstable plasmas [START_REF] Mendonça | Collective oscillations in ultracold atomic gas[END_REF]- [START_REF] Hansen | Statistical mechanics of dense ionized matter. III. Dynamical properties of the classical one-component plasma[END_REF].

At low N , a MOT is governed by single-atom physics, such that each atom in the cloud is independently subjected to a cooling and confining force applied by the laser beams in the presence of the magnetic field. At large N , many-atom physics become important as collective forces appear, e.g., the shadow force [START_REF] Dalibard | Laser cooling of an optically thick gas: The simplest radiation pressure trap?[END_REF] and the rescattering force [START_REF] Sesko | Behavior of neutral atoms in a spontaneous force trap[END_REF]. The shadow force is caused by an imbalance of beam intensities in the cloud due to attenuation, which occurs because of light's scattering as it traverses through the cloud. This force is compressive but is countered by the repulsive, Coulomb-like force caused by photon rescattering between the atoms. With these antagonistic forces present, large MOT clouds can exhibit spatiotemporal instabilities in the form of spontaneous oscillations.

Spatiotemporal instabilities have been studied in several MOT configurations [START_REF] Labeyrie | Self-sustained oscillations in a large magneto-optical trap[END_REF][START_REF] Sesko | Behavior of neutral atoms in a spontaneous force trap[END_REF]- [START_REF] Kim | Observation of the Hopf bifurcation in parametrically driven trapped atoms[END_REF], and many theoretical models have been explored to gain insight into the experimentally observed features [START_REF] Pohl | Self-driven nonlinear dynamics in magneto-optical traps[END_REF]- [START_REF] Moon | Nonlinear, nonequilibrium and collective dynamics in a periodically modulated cold atom system[END_REF]. In our case, the so-called balanced MOT configuration is considered, where the laser beams are independent and have same, constant intensities before entering the cloud. In our recent works [START_REF] Gaudesius | Instability threshold in a large balanced magnetooptical trap[END_REF] and [START_REF] Gaudesius | Phase diagram of spatiotemporal instabilities in a large magneto-optical trap[END_REF], we have made experimental observations of instability thresholds and regimes, respectively, and reached qualitative agreements with results of our 3D simulations. In the present work, we explain the kinetic model and technicalities employed in these simulations. Moreover, the simulations are employed to investigate the role of different effects on the instabilities.

The remainder of this article is structured as follows. In Sec. II.a, the kinetic model employed in the 3D simulations is described, followed up by Sec. II.b, where details surrounding its implementation are covered. Then, Sec. III investigates the impact of its physical effects on the instabilities. Finally, Sec. IV provides a conclusion and a discussion on the future perspectives.

II. Simulation method and approximations a. Kinetic model

In the development of our kinetic model, the considered conventions for the MOT magnetic field and beams are displayed in Fig. 1(a). The magnetic field, which is quadrupole in nature, is assumed to be B(r) = B -x 2 , -y 2 , z , where B > 0 is the field gradient along the z-axis, and r = (x, y, z) is the atom position with the origin at the trap center. This assumption holds when |r| is much smaller than both the radius of the MOT coils and the separation between them. In accordance with the chosen magnetic field convention, the z-axis beams have right-handed circular helicity, whereas the xand y-axis beams have left-handed circular helicity.

We base our model on the hyperfine transition F = 0 → F = 1. It is evidently much simpler than in our experiments, F = 2 → F = 3 [START_REF] Gaudesius | Instability threshold in a large balanced magnetooptical trap[END_REF][START_REF] Gaudesius | Phase diagram of spatiotemporal instabilities in a large magneto-optical trap[END_REF], but allows for a proper description of the features related to the magnetic field and light polarization. As depicted in Fig. 1

(b), each of the three Zeeman transitions m = 0 → m = -1, 0, +1 (b) (a) x z y m = 0 m' = -1 m' = 0 m' = +1 σ + σ - π m = 0 m = 0 m = 0 σ + σ - π F' = 1 F = 0 μB(r) μB(r) m' = 0 m' = -1 m' = +1 μB(r) μB(r) ⇒ Figure 1: (a)
Sketch of a MOT, displaying the considered conventions for the MOT magnetic field and beams in the derivation of the kinetic employed in our 3D simulations of instabilities. The coils produce a magnetic field (curved arrows) that has a positive gradient along the z-axis. Accordingly, the beams have the following circular helicities (circular arrows): Right-handed for the z-axis beams, and left-handed for the xand y-axis beams. (b) Simplification of the Zeeman sub-level structure of the hyperfine transition F = 0 → F = 1, in the employed kinetic model. Each of the three Zeeman transitions m = 0 → m = -1, 0, +1 between F = 0 and F = 1 is treated as an independent 2-level system (right picture). They are induced by respectively only σ -, π, σ + polarized light. The MOT magnetic field leads to the Zeeman splitting of the hyperfine levels depending on the atom position (µB(r)).

between the hyperfine levels is treated as an independent 2-level system and driven by either σ -, π or σ + polarized light. We expect this approximation to hold only in the regime of low saturation, s = I∞/Isat

1+ 4∆ 2 Γ 2
1, where I ∞ is the intensity of a beam before entering the cloud, I sat is the saturation intensity, ∆ = ω L -ω 0 is the detuning of the laser frequency ω L from the atomic transition m = 0 → m = 0 frequency ω 0 , and Γ is the natural linewidth.

We also neglect sub-Doppler effects, which seems to be reasonable considering that large MOT clouds have been observed to be mostly unaffected by these effects [START_REF] Kim | Direct observation of the sub-Doppler trap in a parametrically driven magneto-optical trap[END_REF].

We include the following main four physical effects in our model: (i) the mean cooling and confining force stemming from the MOT beams, hereafter referred to as the trapping force, (ii) the diffusion resulting from its fluctuations, (iii) the beam intensity attenuation caused by light's scattering in the cloud, and (iv) the rescattering force due to photon exchange between the atoms. In the following, we explain how these effects are described.

i. Trapping force

To describe the trapping force, we use the standard Doppler model. It relies on an assumption, expected to be valid for s 1, that this force can be expressed as a sum of six radiation pressure forces, one for each beam:

F tr (r, v) = α=x,y,z F + α (r, v) + F - α (r, v) (1) 
where v = (v x , v y , v z ) is the atom velocity, and F + α and F - α are the radiation pressure forces exerted by the beams traveling in respectively positive and negative direction of α = x, y, z, given by

F ± α (r, v) = F ± α,-(r, v) + F ± α,0 (r, v) + F ± α,+ (r, v) (2) 
where F ± α,-, F ± α,0 , F ± α,+ are the radiation pressure forces acting on the atom's 2-level transitions that are driven by respectively σ -, π, σ + polarized light, given by

F ± α,q (r, v) = ± p ± α,q (r)I ± α (r, v)σ ± α,q (r, v) c α
(3) In this equation, q = -, 0, + refers to the respective σ -, π, σ + transitions, c is the vacuum light speed, and the remaining quantities are defined as follows.

The coefficient p ± α,q denotes the fraction of the positive/negative (±) α = x, ŷ, ẑ directed light that drives the σ -, π, σ + (q = -, 0, +) transitions, respectively [START_REF] Brickman | Magneto-optical trapping of cadmium[END_REF]. It introduces anisotropy to the trapping force. There is a total of eighteen fractions, as there are three transitions corresponding to each of the six MOT beams:

p ± α,q (r) =          1 2 1 ± α B 2B(r) 2 , q = + (σ + ) 1 2 1 ∓ α B 2B(r) 2 , q = -(σ -) 1 -(p ± α,+ + p ± α,-) , q = 0 (π) (4 
) where α = x, y, 2z for respectively α = x, y, z, B(r) = B z 2 + 1 4 (x 2 + y 2 ) is the magnitude of the magnetic field B(r). The quantization-axis has been chosen to be along the direction of B(r). Consequently, as shown in Fig. 1(b), the Zeeman shifts of the excited levels with m = -1, 0, +1 are given by µ q (r) = qµB(r), where q = -, 0, +, respectively, and µ is the gyromagnetic ratio.

For the final quantities in Eq. (3), I ± α is the corresponding beam intensity, which is subject to attenuation as will be covered later, and σ ± α,q is the corresponding scattering cross-section for a single 2-level transition of the atom, given by

σ ± α,q (r, v) = σ 0 1 + Itot,q(r,v) Isat + 4 (∆∓k L vα-µq(r)) 2 Γ 2
(5) where σ 0 = 6π/k 2 L is the resonant scattering cross-section, where k L = ω L /c denotes the laser wavenumber, ∓k L v α is the Doppler shift for a positive/negative (±) beam, µ q is the Zeeman shift defined previously, and

I tot,q (r, v) = α=x,y,z p + α,q (r)I + α (r, v) + p - α,q (r)I - α (r, v) (6) 
is the total beam intensity that a single 2-level transition receives, which is observed to be generally different for all three (σ -, π and σ + ) due to p ± α,q . Because this intensity enters into scattering cross-sections, the beam cross-saturation effect gets naturally introduced into our model. In the section on attenuation, we will mention a difficulty (luckily, solvable) that is encountered by having this effect included.

ii. Diffusion

The fluctuating part of the trapping force can be introduced via a momentum diffusion coefficient. Here we describe such diffusion processes approximately by adapting the known description for a 2-level atom in a single laser beam [START_REF] Cohen-Tannoudji | Atomic motion in laser light[END_REF] to our 3D situation involving six laser beams. Explicitly, we write for the momentum diffusion coefficient:

D(r, v) = D vac (r, v) + D las (r, v) (7) 
where

D vac (r, v) = 2 k 2 L Γ 4 
s tot (r, v) 1 + s tot (r, v) (8) 
D las (r, v) = 2 k 2 L Γ 4 
s tot (r, v) (1 + s tot (r, v)) 3 × 1 + 12∆ 2 -Γ 2 4∆ 2 + Γ 2 s tot (r, v) + s 2 tot (r, v) (9) 
are the momentum diffusion coefficients of respectively the vacuum and laser field, with being the reduced Planck constant and s tot being the total saturation parameter that is a sum of the total saturation parameters s tot,-, s tot,0 , s tot,+ for the atom's 2-level transitions that are driven by respectively σ -, π, σ + polarized light, i.e.,

s tot (r, v) = q=-,0,+ s tot,q (r, v) (10) 
where

s tot,q (r, v) = α=x,y,z s + α,q (r, v) + s - α,q (r, v) (11) 
and

s ± α,q (r, v) = p ± α,q (r)I ± α (r, v)/I sat 1 + 4 (∆∓k L vα-µq(r)) 2 Γ 2 (12) 
denotes the saturation parameter for a single beam and atomic transition. Note that the diffusion is affected by the attenuation of the laser beams and therefore is a collective effect that depends on N [START_REF] Drewsen | Investigation of sub-Doppler cooling effects in a cesium magneto-optical trap[END_REF][START_REF] Cooper | The temperature of atoms in a magneto-optical trap[END_REF]. While our model necessarily involves an approximate treatment of diffusion and its dependence on the attenuation, its inclusion is nevertheless important for unstable balanced MOTs [START_REF] Heimonen | Synchronization of a self-sustained cold-atom oscillator[END_REF]. In Sec. III, we will discuss the significance of diffusion in more detail.

iii. Beam attenuation

The attenuation of the MOT laser beams in the cloud gives rise to an additional compression known as the shadow force, as illustrated in Fig. 2(a). The inclusion of attenuation in our model is fully justified given that the experimentally-observed optical depths at instability threshold are typically on the order of 1 (along the z-axis). To describe this effect, we employ the lowsaturation regime assumption, s 1, under which a given beam intensity decays exponentially as

I ± α (r, v) = I ∞ e -OD ± α (r,v) (13) 
where OD ± α is the optical depth of the cloud for a given beam. For, e.g., the positive ẑ directed beam,

OD + z (r, v) = z -∞ dz ρ(x, y, z ) × q=-,0,+ p + z,q (x, y, z )σ + z,q (x, y, z , v(x, y, z )) ( 14 
)
where ρ is the cloud density, and v(x, y, z ) refers to the velocity at (x, y, z ). For the remaining five MOT beams, analogous expressions of the optical depth can readily be obtained. Note that for the negative α = x, ŷ, ẑ directed beam, the integral limit is from x/y/z to +∞.

We point out that calculating intensity requires prior knowledge of I tot,q , due to it entering into scattering crosssections (Eq. ( 5)). Although the precise determination of I tot,q is numerically demanding, this difficulty can be overcome, and thus the beam cross-saturation included, by implementing an iterative procedure that will be presented in Sec. II.b. Moreover, in Sec. III, we will proceed showing how attenuation impacts the instabilities.

iv. Rescattering

To understand the origin of the rescattering force, let us consider the basic situation in Fig. 2 has Coulomb-like character, as the rescattered intensity I R is diminished according to the inverse-square law of propagation. Importantly, the scattering cross-section of atom 1, σ L , is different from the rescattering cross-section of atom 2, σ R , due to, e.g., inelastic scattering at atom 1. In the well-known Wieman model for the multiplescattering regime [START_REF] Sesko | Behavior of neutral atoms in a spontaneous force trap[END_REF], one has σ R > σ L , and thus the cloud expands as N is increased; this inequality relies critically on the presence of inelastic scattering in the cloud.

In our model, the rescattering is more complex than described above, and in Fig. 3 we provide an illustration of our employed approximate description. As atom 1 is exposed to all the MOT beams, each of its σ -, π, σ + transitions produces a characteristic radiation pattern of scattered light. At atom 2, each transition of this atom rescatters the scattered light by an amount depending on the fractions that play a similar role as the fractions in Eq. ( 4). Under this description, the rescattering force on an atom with the position r j and velocity v j , due to surrounding atoms with the positions r l and velocities v l , is

atom 1 atom 2 𝑏 - - 𝑏 0 - 𝑏 + - 𝜂 - 𝜂 0 𝜂 + σ -(r 1 ) π(r 1 ) σ + (r 1 ) σ -(r 2 ) π(r 2 ) σ + (r 2 ) 𝐼 z - 𝐼 z + 𝐼 x + 𝐼 y + 𝐼 y - 𝐼 x -
F rsc (r j , v j ) = l =j P R (r l , r j , v l , v j ) c rl,j (15) 
where rl,j is the unit vector corresponding to r l,j = r j -r l , which points from atom l to atom j, and P R is the power rescattered by atom j due to atom l. It is given by

P R (r l , r j , v l , v j ) = q =-,0,+ I R,q (r l , r j , v l )σ R,q (r l , r j , v l , v j ) = q =-,0,+ q =+,0,- b q q (r l , r j )I S,q (r l , r j , v l ) σ R,q (r l , r j , v l , v j ) (16) 
where q and q refer to the 2-level transitions of respectively atom l and atom j. The sum in the brackets is the intensity I R,q rescattered by a single 2-level transition of atom j. The coefficient b q q denotes the fraction of the scattered radiation with the intensity I S,q that drives its σ -, π, σ + (q = -, 0, +) transitions, respectively. Finally, σ R,q is the rescattering cross-section for a single 2-level transition of this atom.

The coefficients are given by

b ± q (r l , r j ) =                      1 2u     n=l,j rl,j • Bn   ± 1   2 , q = + (σ + ) 1 2u     n=l,j rl,j • Bn   ∓ 1   2 , q = -(σ -) 1 -(b ± + + b ± -) , q = 0 (π) (17) b 0 q (r l , r j ) =          1 2 rl,j • Bj 2 , q = + (σ + ) 1 2 rl,j • Bj 2 , q = -(σ -) 1 -(b 0 + + b 0 -) , q = 0 (π) (18)
where Bl and Bj are the unit vectors corresponding to the MOT magnetic fields at respectively the atom l and j position, and u = 1 + rl,j • Bl 2 is a normalization constant common to both b + q and b - q . The scattered intensity is given by

I S,q (r l , r j , v l ) = η q (r l , r j ) × P L,tot,q (r l , v l ) 4π|r l,j | 2 (19)
where P L,tot,q = α=x,y,z |F + α,q | + |F - α,q | c is the topower scattered by a single 2-level transition of atom l (refer to Eq. ( 3)), and η q is the corresponding normalized radiation pattern:

η q (r l , r j ) =            3 4 1 + rl,j • Bl 2 , q = + (σ + ) 3 4 1 + rl,j • Bl 2 , q = -(σ -) 3 2 1 -rl,j • Bl 2 , q = 0 (π) (20)
The rescattering cross-section σ R,q is found by evaluating an overlap integral between (a) the emission spectrum that atom l produces when illuminated by the laser field and (b) the absorption spectrum of a single 2-level transition of atom j for the scattered field in the presence of the laser field. Denoting the emission spectrum of atom l by S tot,q and the absorption spectrum of a single 2-level transition of atom j by σ A,q , we have σ R,q (r l , r j , v l , v j ) = dω S tot,q (ω, r l , r j , v l )σ A,q (ω, r j , v j ) [START_REF] Hennequin | Stochastic dynamics of the magnetooptical trap[END_REF] where S tot,q (ω, r l , r j , v l ) = q =+,0,-w q q (r l , r j )S q (ω, r l , v l ) [START_REF] Moon | Nonlinear, nonequilibrium and collective dynamics in a periodically modulated cold atom system[END_REF] is composed of the normalized emission spectra S -, S 0 , S + for the respective σ -, π, σ + transitions of atom l, together with their spectral weight w q q (r l , r j ) = b q q (r l , r j )η q (r l , r j )

q =+,0,-b q q (r l , r j )η q (r l , r j )

where w - q + w 0 q + w + q = 1, such that S tot,q (Eq. ( 22)) is a normalized emission spectrum.

In Refs. [START_REF] Mollow | Power spectrum of light scattered by twolevel systems[END_REF] and [START_REF] Mollow | Stimulated emission and absorption near resonance for driven systems[END_REF], quite general expressions for the emission and absorption spectra for a 2-level atom have respectively been derived. Normalizing these expressions and adapting them to our approximate description, we obtain the expressions for S q (ω, r l , v l ) = S q (ω) and σ A,q (ω, r j , v j ) = σ A,q (ω) seen below. We have defined the total Rabi frequency for a single 2-level transition of the

F = 0 → F = 1 model atom, Ω tot,q (r, v) = Γ Itot,q(r,v) 2Isat
, and the corresponding detuning incorporating the Zeeman effect, ∆ q (r) = ∆ -µ q (r). Note that S q is written as a sum of two contributions. The first term, which involves a Dirac delta function, is an elastically scattered spectrum, which is centered at a single frequency specified by ∆ q . The second term is an inelastically scattered spectrum, which, on the other hand, is polychromatic. Because, in the Wieman model, the inelastic scattering is critical for the repulsion to win over the compression, we have been motivated to investigate the impact of elastically and inelastically scattered spectrum on the instabilities, and in Sec. III we will see the outcome. The impact of rescattering (as a whole) will there also be investigated.

Note that the Doppler effect can be included in ∆ q (r) in an alternative description, where each of the six MOT beams is separately scattered by the respective three atomic transitions. In such a case, eighteen rescattering cross-sections would have to be used, instead of the current three (Eq. ( 21)). Nevertheless, neither of these descriptions is fully justified considering the complexity involved in modeling of the atom's behavior as it is coupled to the interacting field of several beams. In our simulations, we usually have k L |v α | Γ, |∆|, and thus the Doppler effect can be omitted. However, when deeply in the unstable regime, this is no longer true, and k L |v α | can become on the order of Γ.

S q (ω) = Γ 2 + 4∆ 2 q Γ 2 + 4∆ 2 q + 2Ω 2 tot,q δ(ω -∆ q ) + ΓΩ 2 tot,q 2π    (ω -∆ q ) 2 + 1 2 Ω 2 tot,q + Γ 2 Γ 2 1 2 Ω 2 tot,q + ∆ 2 q + 1 4 Γ 2 -2(ω -∆ q ) 2 2 + (ω -∆ q ) 2 Ω 2 tot,q + ∆ 2 q + 5 4 Γ 2 -(ω -∆ q ) 2 2    (24) σ A,q (ω) = σ0Γ 4 × Γ 2 + 4∆ 2 q Γ 2 + 4∆ 2 q + 2Ω 2 tot,q × (-iω + i∆ q + Γ) -iω + i2∆ q + Γ 2 + 1 2 iΩ 2 tot,q (ω -∆ q )/ i∆ q + Γ 2 (-iω + i∆ q + Γ) -iω + i2∆ q + Γ 2 -iω + Γ 2 + Ω 2 tot,q -iω + i∆ q + Γ 2 + c.c. ( 25 
)
We finally discuss the similarities and differences between our model and that of Ref. [START_REF] Pohl | Self-driven nonlinear dynamics in magneto-optical traps[END_REF]. In both cases, the same physical effects except for diffusion are used. In particular, both models include Doppler trapping force, attenuation, rescattering force, with atomic crosssections possessing complete spatial dependence, thus resulting in all the forces being nonlocal. However, an important difference is that, unlike in Ref. [START_REF] Pohl | Self-driven nonlinear dynamics in magneto-optical traps[END_REF], we do not make any assumption of spherical symmetry of the forces. This allows us to observe, e.g., center-of-mass (COM) oscillations of the cloud, which are also seen in experiments [START_REF] Gaudesius | Phase diagram of spatiotemporal instabilities in a large magneto-optical trap[END_REF]. Moreover, we work with the more complex F = 0 → F = 1 system compared to the 2-level system in Ref. [START_REF] Pohl | Self-driven nonlinear dynamics in magneto-optical traps[END_REF]. This improvement allows us to properly describe, e.g., the anisotropy of the trapping force or, more generally, the features related to the magnetic field and light polarization.

b. Implementation

We continue now explaining the algorithm and methods used in the implementation of the F = 0 → F = 1 model (Sec. II.a) in our simulations. The algorithm is the Leapfrog algorithm [START_REF] Kaya | The Leapfrog algorithm: Background and demonstration[END_REF], and the methods include the super-particle method [START_REF] Birsdall | Plasma physics via computer simulation[END_REF] and our developed tube method. Before getting into detail about these, we sketch first how the simulation proceeds. At the initial time t 0 , a Gaussian cloud is generated, composed of super-particles, i.e., particles that represent collections of regular particles for increasing the simulation speed. Next, the beam intensity attenuation is evaluated at the super-particle positions, with help of the tube method. Forces acting on each super-particle are then computed, and, using these forces, the Leapfrog algorithm propagates the cloud in time by one time-step δt. At the new positions, the attenuation is first evaluated, then the forces are computed, and the algorithm propagates the cloud by one δt -this cycle is repeated until the simulation end time t end .

Spatiotemporal instabilities can arise in the simulations, and in Refs. [START_REF] Gaudesius | Instability threshold in a large balanced magnetooptical trap[END_REF][START_REF] Gaudesius | Phase diagram of spatiotemporal instabilities in a large magneto-optical trap[END_REF] we have demonstrated that we are successful in reproducing experimental behaviors. The 3D nature of our simulations is showcased in Fig. 4 (see also online supplementary material [35], displaying clouds belonging to different regimes obtained also experimentally (see Ref. [START_REF] Gaudesius | Phase diagram of spatiotemporal instabilities in a large magneto-optical trap[END_REF] for the discussion). Prior to this work, simulations of balanced MOT instabilities have only been achieved in quasi-1D, with the beforementioned kinetic model [START_REF] Pohl | Self-driven nonlinear dynamics in magneto-optical traps[END_REF].

The exact iterative scheme we employ in the Leapfrog algorithm for updating the super-particle velocity and po-sition in time is as follows:

1. Compute total force F tot (t n ) = F tot (r(t n ), v(t n )). 2. Update velocity v(t n+1/2 ) = v(t n-1/2 ) + Ftot(tn)
Msup δt.

Update position r(t

n+1 ) = r(t n ) + v(t n+1/2 )δt.
Here the integer n = 0, 1, 2, . . . marks the iteration step of fixed size δt, with n = 0 used when initiating the scheme, and M sup = εM is the super-particle mass, with M being the regular particle mass and ε = N/N sup being a fixed super-particle number N sup scaling (i.e., the number of regular particles represented by one super-particle) that we note also scales σ 0 , so one correspondingly has σ sup,0 = εσ 0 . We have in Refs. [START_REF] Gaudesius | Instability threshold in a large balanced magnetooptical trap[END_REF][START_REF] Gaudesius | Phase diagram of spatiotemporal instabilities in a large magneto-optical trap[END_REF] used N sup = 7•10 3 -a choice that was based on tests for the simulation outcome to be independent of N sup ; we found that below N sup = 10 3 the clouds are stable. Observe, in the iterative scheme, that the velocity and position are updated in an interleaved manner, i.e., they leapfrog over each other. When the scheme is initiated (n = 0), the velocity v(t -1/2 ) and position r(t 0 ) are specified. To obtain v(t -1/2 ), we utilize the approximation v(t -1/2 ) ≈ v(t 0 ), which is assumed to be valid for a small enough δt. In Refs. [START_REF] Gaudesius | Instability threshold in a large balanced magnetooptical trap[END_REF][START_REF] Gaudesius | Phase diagram of spatiotemporal instabilities in a large magneto-optical trap[END_REF], the x-, y-, z-components of v(t 0 ) have been picked to be random between 0 and 0.01 m/s (much less than the root-mean-square (RMS) velocity of Rb-87 at the Doppler temperature). To pick δt, a rule of thumb is employed, telling that for a given set of MOT parameters we use δt < 0.1/ω tr , where ω tr = κ/M is the trap fre-

quency, with κ = µB k L I∞ Isat -8 k 2 L Γ 3 ∆ (Γ 2 +6Γ 2 I∞/Isat+4∆
2 ) 2 being the trap spring constant (found from the linear expansion of Eq. ( 1) for low velocities and positions near the trap center, with fixed intensity I ∞ ). In Refs. [START_REF] Gaudesius | Instability threshold in a large balanced magnetooptical trap[END_REF][START_REF] Gaudesius | Phase diagram of spatiotemporal instabilities in a large magneto-optical trap[END_REF], we have used the following constants (related to Rb-87 and its D2 line):

M = 1.443 • 10 -25 kg, µ = 2π × 1.4 × 10 6 Hz/G, Γ = 2π • 6.07 MHz, k L = 2π 780×10 -9 m -1 and I sat = 1.67 mW/cm 2 .
The total force acting on a super-particle with the position r s and velocity v s is

F tot (r s , v s ) = εF tr (r s , v s ) + ε 2 F rsc (r s , v s ) + εD(r s , v s ) (26)
where F tr is the trapping force given by Eq. ( 1), F rsc is the rescattering force given by Eq. ( 15), and D is the stochastic force given by [START_REF] Sachs | Langevin dynamics with variable coefficients and nonconservative forces: From stationary states to numerical methods[END_REF] Eq. ( 7). We note that, in addition to D, the velocitydependence in our total force makes the Leapfrog algorithm no longer time-reversible.

D = 2D 3δt × (Gaussian white noise) ( 
In Eq. ( 26), F tr is scaled by ε as it is written as a sum of terms that contain σ ± α,q ∝ σ 0 (see Eq. ( 3)). F rsc is scaled by ε 2 as it is written as a sum of terms that contain a product of σ ± α,q ∝ σ 0 and σ R,q ∝ σ 0 (see Eqs. [START_REF] Terças | Driven collective instabilities in magneto-optical traps: A fluiddynamical approach[END_REF][START_REF] Felinto | Influence of the number of atoms in a ring-shaped magneto-optical trap: Observation of bifurcation[END_REF][START_REF] Hennequin | Stochastic dynamics of the magnetooptical trap[END_REF][START_REF] Kim | Direct observation of the sub-Doppler trap in a parametrically driven magneto-optical trap[END_REF]). D is scaled by ε for the following reasons. As the diffusion coefficient D describes the equilibrium between the diffusive heating and Doppler cooling processes, one can write D ∝ γT lim [START_REF] Cohen-Tannoudji | Atomic motion in laser light[END_REF], where the trap friction constant γ is scaled by ε as F tr is scaled likewise, and the limit temperature T lim is scaled by ε as T lim ∝ M according to the equipartition theorem. Moreover, D involves a square root of D (see Eq. ( 27)). Taking everything into account, D is thus scaled by ε.

For evaluating beam intensity attenuation at the super-particle positions, we employ our developed tube method, whose name is attributed to the fact the attenu-ation of each beam is calculated in rectangular tubesegments parallel to the beam's propagation direction. This method is implemented by extending its 2D illustration detailed in Fig. 5. In particular, we numerically generate a fixed grid of points in 3D space and calculate the intensity of each beam at the positions of the grid-points that contain the super-particles, after which the intensity at each super-particle position is found by means of interpolation. The interpolated intensity values are then used in the calculation of the forces (see Eq. ( 26)). Finding a beam intensity at a given gridpoint position involves the assumption that a given superparticle at r s is represented by a Dirac delta function δ(r -r s ), allowing us to write the density of the cloud as ρ(r) = s δ(r -r s ) = s δ(x -x s )δ(y -y s )δ(z -z s ). With this assumption, the intensity for, e.g., the positive ẑ directed beam (see Eqs. [START_REF] Romain | Spatial instabilities in a cloud of cold atoms[END_REF][START_REF] Kim | Observation of the Hopf bifurcation in parametrically driven trapped atoms[END_REF]) is numerically determined from

I + z (x, y, z) = I∞e -OD + z (x,y,z) , OD + z (x, y, z) ≈ ε W 2 × zs<z |xs-x|<W/2 |ys-y|<W/2
q=-,0,+ p + z,q (xs, ys, zs)σ + z,q (xs, ys, zs, v(xs, ys, zs))

where x, y, z are the grid-point coordinates, the superparticle scaling ε is taken into account, W is a fixed tube-width, and W 2 is the corresponding transverse tubearea. From this equation, we observe that the only superparticles that contribute at a given grid-point position are those inside the tube of this point (|x s -x|, |y s -y| < W/2) and positioned before it (z s < z). The remaining beam intensities are found in an analogous way. The value of W is picked according to our tests' results with uniform and Gaussian clouds, where numerically determined attenuation profiles were checked to converge with corresponding analytically calculated profiles. In the simulations of Refs. [START_REF] Gaudesius | Instability threshold in a large balanced magnetooptical trap[END_REF][START_REF] Gaudesius | Phase diagram of spatiotemporal instabilities in a large magneto-optical trap[END_REF], we have used W = 0.15 • σ, where σ is the RMS width of the initial Gaussian cloud (t 0 ), picked to be as close as possible to the RMS radius of the cloud after transient behavior (Fig. 3 in Ref. [START_REF] Gaudesius | Instability threshold in a large balanced magnetooptical trap[END_REF] exemplifies this behavior). We note that the choice of the value of W is a compromise. Indeed, if W is too small compared to σ, too few super-particles will participate in the determination of the attenuation, thus yielding large spatial fluctuations.

In the opposite limit where W is larger than σ, the spatial dependence of the attenuation will be washed out. In this case, W is expected to limit the size of the structures that can appear in a simulated cloud (such as ones seen in Fig. 4). Lastly, we explain the implementation of the beam cross-saturation effect, which we recall from Sec. II.a appears because I tot,q enters into scattering cross-sections (see Eqs. [START_REF] Guerin | Subradiance in a large cloud of cold atoms[END_REF][START_REF] Labeyrie | Self-sustained oscillations in a large magneto-optical trap[END_REF]). To implement this effect, the beam intensities at the grid-point positions are calculated selfconsistently. To initiate this calculation, one must specify initial beam intensity values (discussed below), which are used to determine I tot,q . With this I tot,q , new beam intensities can be found (as in Eq. ( 28)). 

III. Impact of different effects on the instabilities

The simulations offer a better understanding of the complex collective dynamics of the atom cloud by varying the magnitude of the different effects. In this section, we investigate how the instabilities are separately impacted by diffusion, attenuation and rescattering. Additionally, the impact of elastically and inelastically scattered light is investigated. The goal here is to bring some answers to the important question: What causes the instabilities? For this, we look at how the detuning at threshold, ∆ thr , is affected. Indeed, the detuning is the most sensitive parameter for determining the state (stable or unstable) of a MOT. Let us begin by investigating how ∆ thr is affected as the stochastic force D (Eq. ( 27)) is scaled by a constant factor d. We use d = 0, 0.5, 2, 5 and concentrate on the case with B = 3 G/cm. We display, in Fig. 6, the outcome of this investigation. As can be seen, with no diffusion (d = 0), ∆ thr is the same as in the ordinary simulation (d = 1; -∆ thr /Γ = 2.99). Importantly, because the instabilities can exist without the diffusion, this tells us that it is not essential for triggering them. We note that such conclusion stands in agreement with results of Ref. [START_REF] Pohl | Self-driven nonlinear dynamics in magneto-optical traps[END_REF], where diffusion was neglected. Our studied ins-tabilities are thus different from retroreflected MOT instabilities of the stochastic type, where noise is necessary [START_REF] Hennequin | Stochastic dynamics of the magnetooptical trap[END_REF]. With an increased diffusion (d > 1), ∆ thr is seen to shift closer to the resonance, with the change being ∼0.4 Γ per half a decade. A smaller -∆ thr means a reduced instability range and therefore a weakened instability mechanism. This may not be surprising considering that, in a feedback system, the phase of the feedback is

d 0 0.5 1 2 5 
!" thr =! critical in determining whether the system is stable or unstable; increasing the diffusion may be regarded as destroying the phase relationship, thus preventing the unstable regime from being entered. In conclusion, the diffusion is not an essential effect and, otherwise, suppresses the instability mechanism if it becomes great enough. Next, we continue with our investigation on whether the instabilities persist when either attenuation is removed (i.e., the beam intensity is constant) or rescattering is removed, for B = 3 G/cm at different ∆ values in the previous range of simulated unstable and stable clouds [START_REF] Gaudesius | Phase diagram of spatiotemporal instabilities in a large magneto-optical trap[END_REF]. Note that while the former case is experimentally relevant (for relatively low atom number and/or weak magnetic field gradient), the latter one is not, as one cannot have large attenuation without multiple-scattering. Without attenuation, we find for all the explored parameter range that the MOT is stable. When attenuation is present but rescattering is turned off, we observe small clouds with temporal fluctuations in their COM positions, but relatively stable RMS radii. The COM fluctuations are in this particular case attributed to diffusion. These tests thus seem to show that both attenuation and rescat-tering are necessary to reach the unstable regime. This is consistent with previous models [START_REF] Labeyrie | Self-sustained oscillations in a large magneto-optical trap[END_REF][START_REF] Pohl | Self-driven nonlinear dynamics in magneto-optical traps[END_REF] and supports the view that the shadow force (produced by attenuation) takes part in a feedback mechanism, where this force works against the cloud expansion due to the rescattering force in order to produce unstable motion in a balanced MOT. The beam attenuation alone can be noted to be critical for instabilities in a retroreflected MOT [START_REF] Hennequin | Stochastic dynamics of the magnetooptical trap[END_REF][START_REF] Di Stefano | Deterministic instabilities in the magneto-optical trap[END_REF] as well as in the case of collective phenomena that parameter-modulated MOT instabilities can exhibit [START_REF] Moon | Nonlinear, nonequilibrium and collective dynamics in a periodically modulated cold atom system[END_REF]. Moreover, Ref. [START_REF] Gaudesius | Self-oscillating clouds in magnetooptical traps[END_REF] has recently identified both attenuation and rescattering as necessary effects for a spatiotemporal instability in a misaligned MOT, using a slightly modified version of our simulation model.

Finally, we investigate the impact of elastically and inelastically scattered light on the instabilities. Here we use the notations σ el,q and σ inel,q in denoting the parts of σ R,q (Eq. ( 21), with q = q) that result from the contribution of respectively elastically and inelastically scattered spectrum; they satisfy σ R,q = σ el,q + σ inel,q . In Fig. 7, we display how ∆ thr is affected for B = 3 G/cm after removing either part. Importantly, the fact the instabilities !" thr =! < el;q = 0 , < inel;q 6 = 0 < el;q 6 = 0 , < inel;q 6 = 0 < el;q 6 = 0 , < inel;q = 0 Figure 7: Investigation on how the threshold detuning ∆ thr for the magnetic field gradient B = 3 G/cm is affected after removing either σ el,q or σ inel,q , being the parts of rescattering cross-section that result from the contribution of respectively the elastically and inelastically scattered spectrum. The small asterisks are the test results, and the large asterisk is the result of the ordinary simulation (from Fig. 6 in Ref. [START_REF] Gaudesius | Instability threshold in a large balanced magnetooptical trap[END_REF]).

still are obtained, indicates that none of these parts alone is necessary. This is surprising considering the (beforementioned) Wieman model prediction that the cloud expansion relies critically on the presence of inelastic scattering in the cloud. The thresholds are seen to be shifted further away from the resonance compared to the ordinary simulation result (-∆ thr /Γ = 2.99), by ∼2.5 times (-∆ thr /Γ = 7.22 for σ el,q = 0 and -∆ thr /Γ = 8.06 for σ inel,q = 0). The shift to larger absolute values is correlated with the fact that we observe the simulated clouds to become smaller (by ∼1.5 times, with the σ inel,q = 0 case being slightly smaller in cloud size), which is consistent with the Wieman model (there is less rescattering). With this decrease, one is led to an increase in the optical depth and thus the shadow force. On the opposite hand, we find that artificially increasing σ R,q , and consequently the size, shifts the threshold closer to the resonance. This result makes perfect sense considering the second investigation's finding (on attenuation), as for a vanishing shadow force the instabilities should disappear.

To summarize, both attenuation and rescattering seem to be necessary for generating instabilities in a balanced MOT, and their mechanism is strengthened when the shadow force (produced by attenuation) gets larger compared to the rescattering force. Also, great enough diffusion suppresses this mechanism, and neither elastically nor inelastically scattered light alone is critical for the generation. To understand further implications of these findings, a more detailed analysis is required.

IV. Conclusion

In this paper, we presented a numerical tool for studying MOT instabilities in a full-blown 3D environment. It has been successfully employed to predict instability thresholds [START_REF] Gaudesius | Instability threshold in a large balanced magnetooptical trap[END_REF] and various unstable regimes [START_REF] Gaudesius | Phase diagram of spatiotemporal instabilities in a large magneto-optical trap[END_REF] in a large balanced MOT. These simulations can be used in the future to investigate features that are challenging to access experimentally, such as, e.g., velocity fields and 3D density distributions. Other lines of research include the analysis of the cloud dynamics in terms of turbulence, to compare with recent experimental observations [START_REF] Griffin | Turbulence in a magneto-optical trap[END_REF]. With some minor modifications, our model is applicable to different MOT configurations, as recently exemplified for the misaligned MOT [START_REF] Gaudesius | Self-oscillating clouds in magnetooptical traps[END_REF]. In the case of the retroreflected MOT, the added value of the spatial information could be strongly beneficial for studying the observed spatiotemporal instabilities [START_REF] Romain | Spatial instabilities in a cloud of cold atoms[END_REF]. Improving the understanding of MOT instabilities can effectively continue through investigations on how these are impacted by simulation model's physical effects, and broader perspectives can be opened up by refining the descriptions of currently included effects and/or by adding new ones (e.g., dipole forces, higher-order rescattering).
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 2 Figure 2: (a) Depiction of the mechanism behind the shadow force. As the oppositely directed beams travel through the cloud, their respective intensities I +α and I - α (α = x, y, z) become attenuated, giving rise to an intensity imbalance in the cloud. This imbalance yields an additional compression, i.e., the shadow force. (b) Depiction of the mechanism behind the rescattering force with two 2-level atoms. Atom 1 first scatters laser light of intensity I L , and atom 2 then rescatters the scattered light, thus experiencing a repulsion. The rescattered light has the intensity I R determined by the inverse-square law of propagation, such that this repulsion is Coulomb-like. The scattering cross-section σ L and the rescattering cross-section σ R determine respectively the power scattered and rescattered.

Figure 3 :

 3 Figure 3: Illustration of the rescattering in the F = 0 → F = 1 model. Each of the σ -, π, σ + transitions of atom 1 produces a characteristic radiation pattern of light scattered from the total laser field (resp. η -, η 0 , η + ). The scattered light polarization seen by atom 2 depends on the quantization-axis orientations of the two atoms, such that each transition of atom 2 rescatters light in specific fractions (resp. b - -, b - 0 , b - + , when considering light from the σ -transition of atom 1).

igure 4 :

 4 [START_REF] Cohen-Tannoudji | Atomic motion in laser light[END_REF] where D is the momentum diffusion coefficient given by Display of 3D images (upper row) and corresponding 2D images (lower row) of simulated clouds belonging to different instability regimes discussed in Ref.[START_REF] Gaudesius | Phase diagram of spatiotemporal instabilities in a large magneto-optical trap[END_REF]. Each image is a single-shot image. In the 3D images, the individual dots are super-particles. The 2D images are the cloud densities integrated along the z-axis and are Gaussian filtered; the diagonals correspond to the directions of two pairs of MOT beams; the field of view is 10 × 10 cm 2 for all these images. The xand y-axes have been rotated by 45 • between the 3D and 2D images. A video version of this figure is available as online supplementary material[35].
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 5 Figure 5: (a) First and (b) second part of a 2D illustration of the numerical method called the tube method. (a)The upper two drawings display the same cloud composed of super-particles (black dots), and it is imagined that each beam is segmented into rectangular tubes parallel to the beam's propagation direction. During the cloud's evolution, the tubes remain at fixed positions, with their width W being of a set size. The lower drawing displays the same cloud, with the added green dots indicating the positions of the points where intensity of each beam is calculated first. The green dots are placed at grid-point positions located through the center of the tubes. (b) In the calculation of, e.g., the +ẑ directed beam's intensity at the position of a given green dot, the super-particles that contribute are those inside the tube of this green dot and positioned before it. Once the intensities of each beam at the positions of the green dots are calculated, the intensities at the positions of the super-particles are found by means of interpolation.

Figure 6 :

 6 Figure 6: Investigation on how the threshold detuning ∆ thr for the magnetic field gradient B = 3 G/cm is affected as the stochastic force D (Eq. (27)) is scaled by a constant factor d. The empty stars are the test results, and the filled star is the result of the ordinary simulation (from Fig.6in Ref.[START_REF] Gaudesius | Instability threshold in a large balanced magnetooptical trap[END_REF]).

  These new intensities are next used to construct intensities that are equal mixtures of new and last intensities, i.e., we construct "[{New intensities} + {Last intensities}]×1/2". The constructed intensities are compared to last intensities, and this is reiterated until convergent intensities are found. (These convergent intensities are then used in the interpolation of the intensities at the super-particles positions, after which the forces acting on the super-particles are found.) Regarding initial beam intensity values, these are picked to be equal to I ∞ ; any values can in principle work, due to the convergent intensities being independent of such choice. At the second Leapfrog algorithm iteration step, the intensity calculation starts with the convergent beam intensities found in the previous iteration step, and so on for the remaining iteration steps (this increases the simulation speed).
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