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Abstract 28 

Scheduling anticancer drug administration over 24h may critically impact treatment success in a patient-29 
specific manner. Here, we address personalization of treatment timing using a novel mathematical model 30 
of irinotecan cellular pharmacokinetics and –dynamics linked to a representation of the core clock and 31 
predict treatment toxicity in a colorectal cancer (CRC) cellular model. The mathematical model is fitted 32 
to three different scenarios, mouse liver, where the drug metabolism mainly occurs, and two human 33 
colorectal cancer cell lines representing an in vitro experimental system for human colorectal cancer 34 
progression. Our model successfully recapitulates quantitative circadian datasets of mRNA and protein 35 
expression together with timing-dependent irinotecan cytotoxicity data. The model also discriminates 36 
time-dependent toxicity between the different cells, suggesting that treatment can be optimized in a time-37 
dependent manner according to the cellular clock. Our results suggest that the time-dependent 38 
degradation of the protein mediating irinotecan activation, as well as an oscillation in the death rate play 39 
an important role in the timing of drug toxicity. In the future, this model can be used to support 40 
personalized treatment scheduling by predicting drug toxicity based on the patient’s gene expression 41 
profile. 42 
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1. Introduction 53 
Mammalian physiological and behavioural processes follow a daily rhythm of approximately 24 h, which 54 
is regulated by the circadian system. In mammals, the suprachiasmatic nuclei (SCN), a central pacemaker 55 
located in the brain, accounts for organismal entrainment to the geophysical time, primarily via light 56 
cues. The SCN passes on time information, in the form of physiological signals, to peripheral clocks, 57 
located in each nucleated cell of the organism. The cellular circadian clock is a molecular machinery of 58 
interconnected transcriptional-translational feedback loops that produces sustained 24h-oscillations [1]. 59 
Via the regulation of clock-controlled genes (CCGs), the circadian clock controls the timing of multiple 60 
cellular and organismal processes, including the cell division cycle, DNA repair or energy metabolism 61 
and the immune system [2-4]. Large inter-individual differences have been observed in several endpoints 62 
aiming to measure circadian rhythms, from chronotype questionnaires to melatonin onset timing or 63 
circadian biomarkers measured by wearables [5]. Sex appears as a major determinant of circadian 64 
rhythms, as women, in general, have higher amplitude behavioural rhythms than men [6]. The disruption 65 
of circadian rhythms leads to mis-regulation in the timing of cellular processes and organ functions, and 66 
accumulating evidence points to a negative impact on human health. Again, sex differences exist, as 67 
women tend to be more resilient to circadian disruption as compared to men [6]. Several pathologies 68 
have been associated to the mis-regulation of the circadian system including cardiovascular diseases, 69 
metabolism disorders and cancer [7, 8].  70 
Also, most physiological processes involved in the transport and metabolism of xenobiotics are regulated 71 
in a time-dependent manner, which impacts the pharmacokinetics (PK) of numerous drugs that may vary 72 
largely depending on the administration timing [9, 10]. On the other hand, several drugs target circadian 73 
regulated genes. Recent findings showed that more than 50% of the top 100 best-selling drugs in the 74 
United States target products of circadian genes [11]. Thus, timing drug administration may also impact 75 
drug pharmacodynamics (PD) and eventually treatment outcome. In the field of cancer management, 76 
several clinical studies have addressed the effect of timing medications for treatment optimization –77 
chronotherapy – with promising results [8, 12-14]. Giacchetti and colleagues reported data from three 78 
international Phase III clinical trials involving 842 patients (345 females and 497 males) treated with 5-79 
fluorouracil, leucovorin and oxaliplatin administered as chronomodulated or conventional infusions [15]. 80 
The results showed that male patients lived significantly longer on chronomodulated chemotherapy 81 
compared to conventional chemotherapy. Yet, while this specific chronomodulated administration 82 
scheme showed a beneficial trend in males, leading to an increase in overall survival (OS), an increase 83 
in OS was reported in females undergoing this chronomodulated regimen, in comparison to a control 84 
group receiving the conventional therapy [15]. Moreover, a recent international clinical trial concluded 85 
that irinotecan hematological and clinical toxicities were lower for morning administration in men and 86 
for early afternoon infusion in women, based on colorectal cancer patients receiving the drug in 87 
combination with 5-fluorouracil and oxaliplatin [16]. Such results highlight the need for more research 88 
in this field to understand inter-patient discrepancies and enable safe and efficient clinical application of 89 
chronotherapy. Given the reported alterations in circadian gene expression profiles of cancer cells [17], 90 
administering anticancer treatment at a time of least toxicity to healthy tissues is likely to provide a higher 91 
selectivity relative to the toxic effect of chemotherapy on healthy cells. In addition, by timing treatment, 92 
it would be possible to increase the tolerated dose, or prevent treatment discontinuation, to achieve a 93 
more effective toxicity to the tumor cells [8]. 94 
Chronotherapy might be more efficient when adapted to the internal time of the patient. Yet, the 95 
definition of a single internal time is challenging since the circadian timing system involves multiple 96 
inter-connected central and peripheral oscillating processes [18]. We suggest to base chronotherapy 97 
individualization on the patient’s circadian profiles of selected genes including core-clock genes and 98 
genes involved in drug pharmacology. Several patient-friendly methods for measuring clock gene 99 
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expression using saliva or blood sampling have been recently tested in the clinics [18]. Such patient 100 
datasets, combined with mathematical modeling and machine learning may allow to predict the times of 101 
least toxicity to healthy tissues, and optimal antitumor efficacy for a particular patient [18]. In particular, 102 
computational models representing the chronopharmacology of a specific drug can help to predict 103 
therapy time windows of decreased toxicity and optimal efficacy [18]. Such models can also be optimized 104 
for a given patient and used to generate personalized treatment timing indications. In the past years, 105 
several ODE (ordinary differential equation) models have been developed, which either aim to model 106 
the circadian clock network [19-24] or the biochemical and biophysical interplay between the circadian 107 
timing system and a given drug [25-27]. These chronoPK-PD models consider both the impact that the 108 
organism has on the drug, i.e. its PK, as well as the impact of the drug on the organism, i.e. its PD, and 109 
further include the control of the circadian time system on these processes. 110 
Currently, there is a gap between existing mathematical models for the core-clock network and 111 
mathematical models of drug PK-PD. Here we aimed at merging the core-clock network with a model 112 
of the chronoPK-PD of irinotecan, an anticancer drug widely used against digestive malignancies. We 113 
generated a new mathematical model, which enables predictions of the cytotoxicity timing for irinotecan, 114 
having as an input the circadian gene expression of a set of core clock and irinotecan metabolism-related 115 
mRNAs. For that, we refined and combined two previously published ODE mathematical models, a core 116 
clock from Relógio et al. [23] and a model of irinotecan chronoPK-PD from Ballesta et al. [26, 27], 117 
which have been successfully used for simulating the mammalian core clock and the time-dependent 118 
cytotoxicity of irinotecan, respectively. The core-clock model was refined using newly available 119 
quantitative circadian datasets of gene and protein expression in the liver of C57Bl6 male mice. 120 
Representing the clock of the liver is important in view of predicting the drug metabolism that mainly 121 
occurs in that organ in the whole-body scenario [28, 29]. To connect it with the PK-PD model, we 122 
extended the transcription-translation network of the core clock with a set of irinotecan-related genes. 123 
We fitted our new clock-irinotecan model with transcriptomic data from an in vitro colorectal cancer 124 
(CRC) experimental progression model and carried out time-dependent irinotecan treatment in both cell 125 
lines across 24h. The CRC in vitro progression model includes two cell lines derived from the primary 126 
tumor (SW480), and from a metastasis site (SW620), of the same patient, which are known to display 127 
different circadian profiles [30]. 128 
Our mathematical model for timing of irinotecan cytotoxicity nicely reproduced gene circadian 129 
expression as well as experimental data obtained via constant monitoring of cytotoxicity for both cell 130 
lines. In addition, we found that particular parameters associated with BMAL1 and CLOCK (BMAL1 131 
degradation rate, CLOCK activation rate, cytosolic BMAL1 degradation rate), show high sensitivity, 132 
high impact on drug toxicity emphasizing the relevance of the core clock for irinotecan PK-PD, and 133 
propose candidates for molecular biomarkers of drug chronotherapy (e.g. CES and UGT1A1). 134 

 135 

  136 
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2. Material and Methods 137 
 138 

2.1.Cell culture 139 
SW480 (ATCC® CCL-228™), SW620 (ATCC® CCL-227™) cell lines were maintained in Dulbecco's 140 
Modified Eagle Medium (DMEM) low glucose (Lonza, Basel, CH) culture medium supplemented with 141 
10% fetal bovine serum (FBS) (Life technologies, Carlsbad, CA, USA), 1% penicillin-streptomycin (Life 142 
technologies), 2 mM Ultraglutamine (Lonza) and 1% HEPES (Life technologies). Cells were incubated 143 
at 37 °C in a humidified atmosphere with 5% CO2. The SW480 cell line originated from a surgical 144 
specimen of a primary tumour of a moderately differentiated colon adenocarcinoma (Dukes' type B) of 145 
a 51-year-old Caucasian male (blood group A, Rh+). The SW620 cell line was derived from a lymph 146 
node metastasis (Dukes' type C) taken from the same patient one year later. 147 

2.2.shRNA-mediated knockdown 148 
For the knockdown of BMAL1, a TRC lentiviral shRNA glycerol set (Dharmacon, Lafayette, CO, USA) 149 
specific for BMAL1 was used consisting of five individual shRNAs. The construct that gave best 150 
knockdown efficiency was determined by gene expression analysis and used for further experiments. 151 

2.3 RNA extraction  152 
Total RNA isolation was performed using the RNeasy Mini kit (Qiagen, Venlo, NL) according to the 153 
supplier's manual. Medium was discarded and cells were washed twice with PBS and lysed in RLT buffer 154 
(Qiagen) prior to the purification procedure. RNA was eluted in 30 μl RNase-free water. Final RNA 155 
concentration measurement was performed using a Nanodrop 1000 (Thermo Fisher Scientific).  156 

2.4 c-DNA and synthesis RT-qPCR 157 
For Real Time quantitative PCR (RT-qPCR) analysis, the extracted RNA was reverse transcribed into 158 
cDNA (4ng/µl) using random hexamers (Eurofins MWG Operon, Huntsville, AL, USA) and Reverse 159 
Transcriptase (Life technologies). RT-qPCR was performed using SsoAdvanced Universal SYBR Green 160 
Supermix (Bio-Rad Laboratories, Hercules, CA, USA) in 96-well plates. GAPDH human QuantiTect 161 
Primer assays (Qiagen) was used as reference housekeeping gene due to its high abundance and to the 162 
lack of circadian oscillations, as confirmed by a cosinor analysis carried out in microarray and RNA-Seq 163 
data for SW480 cells (Supplementary Figure 2d). Primers:  164 

Primer Sequence (5'->3') 

PER2 forward AGCCAAGTGAACGAACTGCC 

PER2 reverse GTTTGACCCGCTTGGACTTC 

NR1D1 forward CTCCATCGTCCGCATCAATC 

NR1D1 reverse AACGCACAGCGTCTCG 

ARNTL forward AACCTTCCCACAGCTCACAG 
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ARNTL reverse CTCTTTGGGCCACCTTCTCC 

TOP1 forward CCAAGCATAGCAACAGTGAAC 

TOP1 reverse GAGGCTCGAACCTTTTCCTC 

Table 1: Primers used for the RT-qPCR analysis of SW480 and SW620 cell lines. The primers for mouse 165 
can be found in the original publication [31], in the Supplementary File S2. 166 
 167 

The qPCR reaction was performed using a CFX Connect Real-Time PCR Detection System 168 
(Biorad). Relative gene expression was calculated using the 2-ΔΔCt method [32]. Biological and technical 169 
replicates were included into the analysis. 170 

2.5 Time-dependent treatment with irinotecan 171 
SW480 and SW620 cells were seeded in 96-well plates at 5000 cells and total volume 150 µL per well. 172 
The cells were synchronized by medium change at 4 different time points (6 h, 12 h, 18 h and 24 h) 173 
before treatment with 2 µM of irinotecan. Cells (at 60% confluence at the start of measurements) were 174 
incubated at 37 °C in a humidified atmosphere with 5% CO2. The corresponding untreated control 175 
condition was measured in parallel with the treated cells. Cytotoxicity was evaluated in real time with 176 
the IncuCyte® S3 Live-Cell system. Cytotox dyes are inert, non-fluorescent and do not enter viable cells, 177 
when added to the cell culture. In dying cells, the membrane integrity is lost, the cytotox dye enters the 178 
cells and fluorescently labels the nuclei. The cells are then identified and quantified by the appearance 179 
of red labelled nuclei. Because confluency saturated after 84.5 h for the control conditions, the analysis 180 
was restricted to 84.5 h, compare with Supplementary Fig. 7.  181 
 182 
 183 

2.6 Omics data 184 
The models were fitted to microarray time series data of 24 hours sampled with an interval of 3 hours for 185 
the SW480 and SW620 cells and of 48 hours sampled with an interval of 2 hours for the liver, which was 186 
scaled to concentrations based on RNA-seq data. The microarray data and RNA-seq data for liver tissue 187 
was published by Zhang et al. 2014, accession numbers GSE54650 and GSE54652 [11]. For the SW480 188 
and SW620 cells, the microarray time series data was published by El-Athman et al. 2018, accession 189 
number E-MTAB-5876 [33], and the RNA-seq time series data was published by El-Athman et al. 2019, 190 
accession number E-MTAB-7779 [34]. To relate the microarray data with concentrations, the following 191 
steps were done for each gene separately. RNA-seq transcript data was used to calculate the temporal 192 
mean of the expression in TPM, which was then converted into mean concentrations in mol/L by a simple 193 
rescaling, see Supplementary Information for details. The microarray data was first unlogged (2values) 194 
as the data was given in fold change. Then the data was rescaled such that its mean expression matched 195 
that of the RNA-seq derived mean concentration, i.e. for a time series x of the original microarray data, 196 
we used C * 2x/<2x>, where <.> denotes a temporal mean, and C is the concentration calculated for this 197 
gene based on the RNA-seq data. For gene families, genes with good oscillations were selected as 198 
representative gene for the gene family, as denoted in the figures. 199 
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Dataset Organ / Cell line Used for model Acquisition technique Accession 
number 

Narumi et al. 
2016 

Mouse liver (WT mouse 
and Bmal1-/-) 

Liver core-clock  mRNA: RT-qPCR 
proteins: mass spectrometry 

RNA-seq: 
GSE54652 
Microarray: 
GSE54650 

Zhang et al. 2014 Mouse liver Liver transcripttion-
translation network 

mRNA: microarray and RNA-seq GSE54650 and 
GSE54652 

Wang 2017 Mouse liver Liver core-clock Nuclear proteins: mass spectrometry E-MTAB-
5876 

El-Athman et al. 
2018 

SW480 / SW620 CRC core-clock  
CRC full model 

mRNA: microarray E-MTAB-
7779 

El-Athman et al. 
2019 

SW480 / SW620 CRC core-clock 
CRC full model 

mRNA: RNA-seq E-MTAB-
7779 

Hesse et al. 2021 SW480 / SW620, control 
and siRNA Bmal1 

CRC core-clock 
CRC full model 

mRNA: RT-qPCR NA 

Dulong et al. 
2015; Ballesta et 
al. 2011 

Caco-2 human colorectal 
cancer cell line 

CRC full model CPT11 and SN38 cellular PK: HPLC 
TOP1 activity: DotBlot 
CPT11 and SN38 cytotoxicity: 
viability assays 

NA 

Hesse et al. 2021 SW480 / SW620 CRC full model CPT11 cytotoxicity NA 

Zheng et al. 2019 Mouse liver Liver core-clock Cytoplasmic and nuclear proteins 
CLOCK and BMAL abundance: 
immunoprecipitation 

NA 

Aryal et al. 2017 Mouse liver Liver core-clock Cytoplasmic proteins PER and CRY: 
immunodepletion 

NA 

Schwanhäusser 
et al. 2011 

Mouse fibroblasts 
NIH3T3 

Liver core-clock mRNA transcription rates: RNA-seq SRA030871 

Table 2: Resources for the data used in the current study. 200 
 201 

2.7 Mathematical model  202 
Model equations and parameters of the core clock are listed in the Supplementary Information, 203 
Supplementary Equations (1.1-18) and Table 2, model equations and parameters of the clock-204 
irinotecan model are listed in Supplementary Equations (3.1-30) and Table 6. Parameter optimization 205 
was done using the evolutionary algorithm CMA-ES [35]. The cytoplasm/nucleus volume ratio was set 206 
for CRC cells to 5 (manual curation). Computations for the core clock were carried out on a laptop with 207 
i5 2.9 gHz dual core processor using Python's pycma for the optimization and Python's 208 
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scipy.integrate.odeint for the numerical integration (method: lsoda, relative tolerance = absolute 209 
tolerance = 10-12. Computations for the clock-irinotecan network were carried out on a compute cluster 210 
with the same Python packages. Model fits are restricted to oscillating mRNAs, with a minimum relative 211 
amplitude of 5%, i.e. (max-min)/max > 0.05 for each gene expression time series. The fit of the clock-212 
irinotecan network uses the same algorithm and constraints as the core clock model, see Supplementary 213 
Information. The cost function is extended to account for the additional genes in the network. 214 

The model variables representing proteins relevant for irinotecan PK-PD, i.e. UGT, CES, ABCB and 215 
ABCC, do not regulate gene expression within our transcription translation network and are thus not 216 
constrained by the experimental data used for the model fit. Maximal protein concentration for UGT, 217 
CES, ABCB and ABCC are scaled to the maximal concentrations used in the original model. As the 218 
protein concentrations predicted by the transcription-translation network are rescaled, the prediction of 219 
toxicity is based on the relative amplitude and the phase of the protein oscillations, but not on their 220 
absolute levels. The model of Dulong et al. 2015 [27] explicitly involves ABCG, which is in our case 221 
replaced by ABCC with an appropriate rescaling, and it uses protein dynamics that result from a fit of a 222 
cosine curve to protein data. We replaced the cosine fit with the dynamics that result from the clock-223 
irinotecan network. For the cell line Caco-2 (cell line derived from a human colorectal adenocarcinoma), 224 
the PK-PD model was fitted to cell death following irinotecan treatment [26, 27]. To fit the circadian 225 
variation in toxicity, we change the PK-PD model output by replacing the equation modelling apoptosis 226 
with two equations for the time series of proliferation and cytotoxicity, see Supplementary Equations 227 
(3.29) and (3.30). As it turns out, the changes in the model due to treatment are not sufficient to explain 228 
the large differences observed experimentally, likely due to the small relative amplitudes of the protein 229 
oscillations, which in our model is defined by Supplementary Equations (3.1) to (3.19) and cannot be 230 
larger than the fitted mRNA oscillations. To relax this constraint, we replace constant protein degradation 231 
for UGT, CES, ABCB and ABCC with oscillatory degradation [36]. Abundances of dead cells are 232 
measured experimentally as red florescent objects. To prevent dependence on initial conditions, the 233 
cytotoxicity curves are all shifted along the cytotoxicity axis such that the first value of all curves overlaps 234 
with the control curve.  235 
For convenience, acrophases are rescaled to the range from 0 to 1 instead of 0 to 2π. 236 

 237 

2.8 Statistical analysis  238 
The experimental toxicity profile is fitted by a harmonic regression using matlab, significance is set to 239 
p≤0.05. The Area Under the Curve is calculated using the linear trapezoidal method, using as weights wk 240 
a vector with n elements (where n is the number of time points considered), with 1 hour for the first and 241 
last element, and 2 hours for the other elements, with the error associated calculated as 𝑣𝑎𝑟(𝐴𝑈𝐶) =242 

* 𝑤!"𝑆𝐸𝑀!
"#$%

!&' , 243 

where SEMk is the standard error at the time point related to time point k, and var is the variance of the 244 
AUC calculated as 𝐴𝑈𝐶 = ∑ 𝑤! 	𝑥!#$%

!&' . 245 

 246 
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3. Results 248 
The effect of a drug results from an intricate interplay between its metabolites and the organism, which 249 
is under circadian control. Regarding the anticancer agent irinotecan, multiple genes and proteins 250 
involved in its PK-PD are directly or indirectly regulated by the cellular core clock. The aim of the study 251 
was to design a mathematical model combining the core clock and irinotecan PK-PD-related elements to 252 
investigate possible cellular biomarkers predicting irinotecan chronotoxicity rhythms (Fig. 1a, top). This 253 
model was developed and calibrated for three biological systems: the healthy mouse liver, and two cell 254 
lines derived from human colorectal cancer (CRC) (Fig. 1a bottom). The combined model was trained 255 
for the CRC cell lines using circadian datasets of mRNA levels and with experimental results on time-256 
related irinotecan cytotoxicity. We first present a quantitative version of the core-clock model (Fig. 1b), 257 
followed by its extension to account for the clock-controlled regulation of genes involved in irinotecan 258 
PK-PD. Finally, this model was connected to a representation of irinotecan chronoPK-PD. 259 

 260 

3.1 A quantitative model of the core clock in mouse liver 261 
To investigate the interactions between the circadian clock and the irinotecan cellular PK-PD, we started 262 
by designing a quantitative model of the cellular core clock (Fig. 1b). We used the previously published 263 
ODE model by Relógio et al. [23], which represents the molecular mechanisms of the core clock at the 264 
cellular level based on experimental data for the mammalian SCN. Clock gene paralogs and isoforms 265 
were merged into the following model variables for mRNA elements: Per (Per1, Per2, Per3), Cry (Cry1, 266 
Cry2), Ror (Rora, Rorb, Rorc), Rev-Erb (Rev-Erbα, Rev-Erbβ) and Bmal1. We applied the same principle 267 
for model variables representing proteins and protein complexes. The dynamical variable 268 
CLOCK/BMAL representing the CLOCK/BMAL1 dimer is assumed to activate the transcription of the 269 
core-clock genes Rev-Erb, Ror, Per, and Cry and the PER/CRY complex to inhibit this transcriptional 270 
activity. The model includes two main negative feedback loops. The first one involves the self-inhibition 271 
of the dynamical variable Per and Cry through the inhibition of CLOCK/BMAL by the PER/CRY 272 
complex. In addition, REV-ERB inhibits the transcription of Cry, thus inhibiting its own inhibition 273 
through the regulation of PER/CRY. The second feedback loop is induced by the self-repression of the 274 
dynamical variable Bmal through the activation of its repressor REV-ERB by CLOCK/BMAL. Contrary, 275 
ROR, which is transcriptionally activated via CLOCK/BMAL, acts positively on Bmal regulation.  276 
The Relógio et al. model differentiated between phosphorylated and unphosphorylated PER proteins 277 
[23]. However, in the absence of time-dependent quantitative data on PER phosphorylation, we opted to 278 
simplify the PER/CRY (PC) loop and to merge the phosphorylated/unphosphorylated variables (Fig. 1b). 279 
Similarly, the equations for the dynamical variables CLOCK/BMAL and PER/CRY cytoplasmic 280 
complexes originally included both a term for complex dissociation into free proteins and for complex 281 
degradation, which were not identifiable from the available data so that the degradation terms were 282 
removed (Supplementary Information, Section 1).  283 
We further refined the core-clock model to represent the core clock in organs relevant for irinotecan 284 
pharmacology, in particular the liver, where the drug is processed. The Relógio et al. model did not 285 
explicitly consider Clock given its lack of rhythmicity in the SCN [37]. However, this is not the case in 286 
the liver [38]. Moreover, CLOCK/BMAL1 is a key transcriptional regulator of genes involved in the 287 
irinotecan network [39, 40]. Thus, we expanded the initial model by explicitly including Clock as follows. 288 
Similarly to the dynamical variable Bmal, Clock transcription is assumed to be positively regulated by 289 
ROR and negatively impacted by REV-ERB [41]. The cytoplasmic protein CLOCKC dimerizes with the 290 
dynamical variable BMALC and translocates to the nucleus to form the heterodimer complex 291 
CLOCK/BMALN. The dynamical variable CLOCKC representing the cytosolic CLOCK protein is 292 
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assumed not to be able to enter the nucleus, as it was not detected in the nucleus of cells not expressing 293 
Bmal1 [42]. Of note, BMAL1 and CLOCK nuclear protein expressions shared the same circadian phase 294 
and amplitude experimentally, suggesting that both species exist mostly as dimers in the nucleus [43] 295 
(Fig. 1b). One last modification was made to the model structure to increase the accuracy of 296 
cytoplasm/nucleus transport terms. The equations now account for the ratio between the compartment 297 
volumes to ensure that the quantity of matter is conserved during transport (Supplementary 298 
Information, Section 1.1.5). The cytoplasm/nucleus volume ratio was set for mouse hepatocytes to 14 299 
[44].  300 
 301 

 302 

 303 

Fig. 1: The action of the drug irinotecan involves the core clock and a set of clock-regulated genes, experimentally 304 
assessable in different cell types. a Workflow of the clock-irinotecan model construction. Irinotecan induces DNA damage 305 
and potentially cell death via its interaction with clock-controlled proteins. Mathematical models were fitted to different data 306 
sets in healthy mouse liver, and in human cancer cell lines. b Network representation of the core-clock model. Inhibitory 307 
interactions are presented in red with flat arrowheads, activating interactions in green, and complex formation in black. 308 

 309 

Our new core-clock model allows to quantitatively simulate gene and protein levels, expressed in mol/L, 310 
thus allowing for the fitting of quantitative datasets informing on absolute concentrations. Parameter 311 
estimation was done using the time series data reported by Narumi et al. [38] (Supplementary 312 
Information, Section 1.3.4). Starting from the Relogio et al. model, we performed a linear change of 313 
variables, mapping the original model variables to their scaled versions with respect to the maximum of 314 
the observed data (Supplementary Information, Section 1.3.2). The obtained scaled parameter values 315 
were then used as an initial guess for the subsequent parameter estimation procedures. 316 
The liver data set also included protein expression for Bmal1-/- mice [38]. Assuming that Bmal1 knockout 317 
(KO) led to a loss of oscillations in the clock [45], this data could be seen as a glance at the system at 318 
steady state. This enabled us to derive functional relationships to compute three transcription rate 319 
parameters as a function of the KO mice and other parameters (Supplementary Information, Section 320 
1.3.3), thus decreasing the number of parameters to estimate. This led to a simplification in the parameter 321 
estimation. We further reduced the number of parameters by assuming that Hill power coefficients were 322 
equal for all activators (parameter b) and all inhibitors (parameter c) of the transcription across genes. 323 
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This led to a decrease of 8 parameters to be estimated while producing next to no change in the goodness 324 
of fit as expected from the argument of unidentifiability. Only Cry kept separated Hill coefficients due 325 
to its transcription being regulated by 3 species (the dynamical variables CLOCK/BMAL, PER/CRY and 326 
REV-ERB). The final core-clock model has 18 state variables and 58 parameters to be estimated.  327 
The parameter estimation procedures consisted in a numerical minimization of a cost function, which 328 
was the sum of two terms (Supplementary Information, Section 1, Equation (1.28)). The first term is 329 
the least square error between the data and the model’s simulation, while the second term accounts for 330 
biological constraints. These constraints were derived from co-immunoprecipitation experiments and 331 
provided bounds for complex concentrations with respect to free protein concentrations [42, 46]. 332 
Additional constraints were specified on the bounds of parameter search intervals including those of 333 
degradation or transcription rates based on mRNA and protein half-lives and levels [47]. Fig. 2 shows 334 
the model best-fit, which convincingly reproduced the data (R2 = 0.86). Bmal1 and Clock mRNA model-335 
predicted profiles presented a similar phase but different mean levels (5.3 and 19.5 pmol/L, respectively) 336 
and relative amplitude (84% and 62% of the mean, respectively). Differences were also observed at the 337 
protein level as free BMAL1 and CLOCK protein mean levels were equal to 13.9 and 8.85nmol/L 338 
respectively, with relative amplitudes of 35% and 25%. These differences came as a justification to the 339 
addition of the Clock gene into the core-clock model. 340 

 341 

 342 

Fig. 2: Best fit of the quantitative core-clock model to mRNA and protein circadian datasets in the mouse liver. a 343 
mRNA expression for core-clock elements in pmol/L. b Protein levels for core-clock elements in pmol/L. Model simulation 344 
(orange lines), experimental data used for calibration (black circles). Depicted are mean values (n = 2 biological replicates) ± 345 
SEM. 346 

 347 

Validation of the model was done using an external time course dataset from mouse hepatocytes, which 348 
was not used for the model design and calibration [43]. This study reports a phase between 8.5h and 349 
10.8h for the circadian rhythm of REV-ERB nuclear expression and a relative amplitude of 98%, while 350 
the model simulation for phase and relative amplitude were 9.7h and 90%, respectively. Similarly, for 351 
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ROR nuclear expression, the reported phase was 20.8h, as compared to 21.1h for model predictions, and 352 
its relative amplitude was 80% as compared to 69% for the model. Both predictions are in close 353 
agreement with the study and serve as a validation of the model. For the other clock proteins, as our 354 
model only tracked them as complexes in the nucleus, the comparison to data was not possible. A 355 
subsequent robustness analysis was performed by analyzing whether the model could maintain sustained 356 
oscillations upon parameter perturbation. Gaussian noise was added to the best-fit parameter vector with 357 
a standard deviation of 10%, leading to oscillating simulations in 73% of the cases, thus demonstrating 358 
the model robustness (Supplementary Fig. 1). 359 

 360 

3.2 The clock model reproduces the expression profiles of core-clock genes in CRC cell lines  361 
To test our mathematical model in a colon cancer context, we chose a well-known in vitro cellular model 362 
of CRC progression, which includes two cell lines from the same patient (SW480, SW620), derived from 363 
the primary tumour and from the metastasis, respectively. We carried out a time course of 45 hours (9h 364 
- 54h after synchronization) with a 3 hours sampling interval, for the gene expression analysis of PER2, 365 
REV-ERBα and BMAL1 via RT-qPCR, in either control or shBMAL1 conditions. This dataset was 366 
combined with microarray data for the expression of Cry, Ror and Clock in order to calibrate the core-367 
clock model for each of the CRC cell lines (see section 2.6). Quantitative mean concentration levels 368 
expressed in mol/L for the clock genes of CRC cell lines were derived from an already published RNA-369 
seq transcriptomic dataset [11]. Thus, in total, three datasets were combined for the calibration of the 370 
core-clock model for the CRC cell lines. The transcription-translation network was assumed to be similar 371 
in either control or shBMAL1 conditions, yet with a different parameter to account for shBMAL1 activity. 372 
Accordingly, the RT-qPCR datasets obtained from the control and shBMAL1 conditions were fitted 373 
simultaneously to their respective models using the same set of parameter values with the exception of 374 
BMAL1 basal transcription, which was allowed to differ between both conditions (Supplementary Fig. 375 
3). The shBMAL1 condition provided a view of a dampened circadian clock, due to the knockdown of 376 
Bmal1, which induced a lower activation power of the transcription factor CLOCK/BMAL1. Upon model 377 
calibration, a 375-fold reduction in the BMAL1 estimated basal transcription rate was necessary to allow 378 
for a good fit of both conditions. This demonstrates the ability of the model to reproduce two different 379 
physiological scenarios by tuning a single parameter. 380 
Concerning the SW480 cell line, the model achieved an excellent fit of the data (R2 = 0.75) (Fig 3a, 381 
Supplementary Fig. 2a). The fit for the SW620 was reasonable as well (R2 = 0.67), but lacked a proper 382 
fit of CRY, ROR and CLOCK expression reported in the microarray dataset (Fig 3b, Supplementary 383 
Fig. 2b). Oscillations of the core-clock genes, normalized to the mesor, showed larger relative amplitudes 384 
in the healthy mouse liver than in CRC-derived cell lines, with the circadian rhythms in SW620 cells 385 
being largely dampened as compared to both other systems (Fig. 3c). The peaks of BMAL1 mRNA levels 386 
of the best-fit model for mouse liver and SW480 cells were aligned to allow for an in vitro/in vivo systems 387 
comparison. This highlighted a moderate phase shift in PER2 and REV-ERBA gene expression of 5 hours, 388 
and less than 1 hour in BMAL1 expression between the SW480 cell line and liver tissue. On the opposite, 389 
larger phase delays were observed in the case of the SW620 cell line. Although the three models represent 390 
different organs in different conditions, their comparison exhibited a moderate agreement between the 391 
clocks of the healthy liver and of the SW480 colorectal cancer cell line, and large differences in terms of 392 
oscillation dampening and phase differences in comparison to the clock of the SW620 metastatic colon 393 
cancer cell line. 394 

For most core-clock genes, the oscillations displayed a non-cosine shape, with longer intervals of high 395 
gene expression for PER2, BMAL1 and CLOCK compared to REV-ERBA and CRY. Overall, the here 396 
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presented core-clock model, based on cellular mRNA and protein concentrations, reproduced the 397 
circadian gene expression profiles for different sets of experimental data with good precision. Thus, this 398 
model provided a reasonable starting point for the following extension with irinotecan PK-PD-related 399 
genes.  400 

 401 

 402 

 403 

Fig. 3: Comparison of the core-clock models fitted to healthy mouse liver or human cancer cell lines. Best fit of the 404 
quantitative core-clock model to (a) the SW480 cell line and (b) the SW620 cell line. Model simulation (line) against the RT-405 
qPCR data used for calibration (dots), depicted are mean values (n = 3) ± SEM. c Comparison of the model fit for liver 406 
(orange), SW480 (dark blue) and SW620 (sky blue). Bmal1 circadian phases were aligned for mouse liver and SW480 cell 407 
line, and all gene expression profiles were normalized to the mesor to allow for comparison. See Supplementary Fig. 2 for 408 
the other genes of the core clock model. 409 

  410 

3.3 Filling the gap: connecting the core clock with irinotecan PK-PD related genes  411 
We extended the core-clock network with eight clock-controlled genes relevant for irinotecan 412 
pharmacology as depicted in Fig. 4, named in the following clock-irinotecan network. The elements 413 
added to the core-clock model are involved in irinotecan metabolism, transport, and pharmacodynamics. 414 
Irinotecan is a prodrug, which needs to be converted into its active metabolite, SN-38, through the 415 
enzymatic activity of CES2 (Carboxylesterase 2) [48]. Subsequently, UGT1A1 (uridine diphosphate 416 
glucuronosyltransferase 1) regulates the conversion of SN-38 into its inactivated form, SN-38G [28]. The 417 
ATP-Binding Cassette (ABC) transporters ABCB1, ABCC1, ABCC2 and ABCG2 control the efflux of 418 
these molecules out of the cells [49]. Central to irinotecan action, SN-38 binds to the protein TOP1 (DNA 419 
topoisomerase 1), which under normal conditions releases the supercoiling and torsional tension of DNA 420 
by transiently cleaving and rejoining one strand of the DNA, thereby controlling DNA topology during 421 
replication and transcription. SN-38 binds to the DNA-TOP1 complexes to stabilize them. This leads to 422 
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double-stranded breaks, erroneous transcription and likely cell death [50, 51]. Besides these proteins 423 
directly relevant for irinotecan PK-PD, the clock-irinotecan network contains three elements that act as 424 
transcription factors for the above-mentioned genes, DBP (D site of albumin promoter (albumin D-box) 425 
binding protein), which is also considered as a core-clock element, NFIL3 (Nuclear factor, interleukin 3 426 
regulated), and PPARA (Peroxisome proliferator-activated receptor alpha), a regulator of liver lipid 427 
metabolism that also acts as transcription factor for UGT1A1, which deactivates SN38 [52-54]. For the 428 
clock-irinotecan network, we only consider the ABC transporter ABCB1 for irinotecan efflux and 429 
ABCC1 for SN38 and SN38G efflux as ABCC2 showed less clear circadian oscillations and ABCG2 did 430 
not appear in our RNA-seq data for the studied cell lines. The mathematical description of the clock-431 
irinotecan network contains 39 equations and 115 parameters (Supplementary Table 5 and 6, 432 
Supplementary Equations (3.1) - (3.19)). In the clock-irinotecan network, oscillations are inherited 433 
from the core clock to genes outside of the core-clock network via the CLOCK/BMAL1 complex, ROR 434 
and REV-ERB. Accordingly, most connections go from core clock to the remaining elements. Only the 435 
inhibition of REV-ERB by NFIL3 and the inhibition of BMAL1 by TOP1 provide a feedback from the 436 
irinotecan-related genes to the core clock [55, 56]. From the clock-irinotecan network fitted to 437 
experimental mRNA expression data, we use the mRNA dynamics of UGT1A1, CES2, ABCB1 and 438 
ABCC1 as an input to the protein dynamics and the PK-PD model to predict irinotecan toxicity, see 439 
below.  440 

  441 

 442 

Fig. 4: Model of the interplay between irinotecan PK-PD and the core clock. Irinotecan treatment is simulated 443 
by a transcriptional-translational network that comprises the core clock, irinotecan-relevant genes, and the PK-PD 444 
of irinotecan. Different types of interactions are represented among the elements of the network: inhibition (red 445 
arrows with flat arrowhead) and activation interactions (green arrows); complex formation (black lines). Grey 446 
boxes represent post-transcriptional sub-networks necessary for a model fit to the data. The double black line 447 
indicates equal concentrations between nucleus and cytoplasm, the double black line with arrowheads indicates 448 
CPT-11 and SN-38 cellular transport inside and outside of the cell. All indicated molecular interactions are based 449 
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on experimental evidence from a number of different sources and corresponding references are provided in 450 
Supplementary Table 3. 451 

 452 

The clock-irinotecan network was fitted to experimental time-series data sets of mRNA concentrations 453 
[34], available for mouse liver [11] and extracted from microarray and RNA-seq data for CRC cell lines, 454 
see section 2 for details. We fitted the clock-irinotecan model to the temporal dynamics of mouse liver, 455 
as well as to untreated SW480 and SW620 cells, which resulted in R2 scores of 0.72, 0.61 and 0.40, 456 
respectively (Fig. 5a-c), see Supplementary Fig. 4 for an example with all genes. For acrophases and 457 
relative amplitudes of the model fits see Supplementary Fig. 5. Periods predicted by the model are 23.5h 458 
for the liver (in accordance with literature values for the circadian period of mice [57]), 21.6h for the 459 
SW480 cells and 28.8h for SW620 cells (within the range of previously reported values [17, 30]). 460 
A first version of the model assumed direct (i.e. one step) regulation of irinotecan-related gene 461 
transcription by elements of the core clock (Supplementary Equations (3.1) to (3.12), i.e. Fig. 4 without 462 
the grey boxes). While this restriction did not hamper the fitting of most genes, the resulting best-fit 463 
curves for CES2 and ABCC1 mRNA levels were phase shifted compared to corresponding microarray 464 
data in SW cell lines. This originated from large phase delays between the clock-controlled regulators 465 
and the expression of the regulated genes. For example, CES2, which showed clear circadian oscillations 466 
in the SW480 cell line (harmonic regression for a 24 h period results in p-value=0.014, acrophase=0.09 467 
rad/2π, relative amplitude=30%), peaked seemingly before its two regulators, REV-ERBA and NFIL3, 468 
see Supplementary Fig. 5. Thus, more intermediate elements might play a role in the network. As a 469 
simple solution, we extended the model for CES2 clock-controlled transcription by a simple chain of 470 
post-transcriptional modifications, compare Supplementary Equations (3.13) to (3.19) and see Fig. 4, 471 
grey boxes; to cover the phase delay between Ces2 and NFIL3 of 0.60 rad/2π (12.9 hours, phase delay 472 
between Ces2 and REV-ERBA is 0.85 rad/2π, i.e. 18.2 hours), three unidirectional activation steps with 473 
one parameter for both activation and degradation rates were required. As ABCC1 showed a similar 474 
problem, we added an analogue set of intermediate reactions for ABCC1 transcription, for which two 475 
steps were sufficient, as the phase delay with its regulators was smaller (phase delay between Ces2 and 476 
NFIL3 of 0.39 rad/2π, i.e. 8.4 hours, phase delay between Ces2 and REV-ERBA of 0.64 rad/2π, i.e. 13.8 477 
hours), see Supplementary Fig. 5. The fit of the additional genes does not reduce the quality of the fit 478 
of the core-clock model, with R2 scores for the core clock of the full fit of 0.93, 0.78 and 0.57 compared 479 
to 0.84, 0.67 and 0.52 for a fit of only the core clock using the rescaled microarray data (see section 2), 480 
for liver tissue, SW480 and SW620 cell lines, respectively. Lower R2 scores for the full fit likely result 481 
from the longer optimization required for a good fit of all genes compared to the optimization required 482 
for fitting only the core clock genes. From liver to SW480 to SW620, the relative amplitude of the 483 
oscillation was reduced for genes of the core clock and for genes directly regulated by the core clock, 484 
whereas this amplitude reduction was relaxed for genes only indirectly controlled by the core clock (Fig. 485 
5d and Supplementary Fig. 5b).  486 
From the fit of the gene expression data, we obtained a calibrated model computing clock and irinotecan-487 
related mRNA circadian rhythms. However, mRNAs need to be translated into proteins that eventually 488 
interact with the drug. Hence, the link between the clock-irinotecan network and the PK-PD model for 489 
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treatment toxicity was assumed via the protein dynamics and allows us to investigate the interplay 490 
between the circadian clock and irinotecan action. We designed a new model of protein dynamics of 491 
UGT1A1, CES2, ABCB1 and ABCC1, which are the inputs for the irinotecan chronoPK-PD model 492 
(Supplementary Equation (3.3) with (3.29)), replacing the forced cosine function utilized in the 493 
original model by Dulong et al. 2015 [27]. The protein dynamics include a circadian degradation as 494 
common for many proteins [36]. Magnitude, amplitude and phase of the circadian degradation are fitted 495 
to cytotoxicity data; the translation rate is set to 1 as protein abundances are re-scaled in the PK-PD 496 
model, see section 2 [36].  497 

 498 
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Fig. 5: Comparison of the fitted clock-irinotecan network for healthy mouse liver and human cancer-500 
derived cells. Selected gene expression and fit of the clock-irinotecan network for (a) mouse liver data, (b) SW480 501 
and (c) SW620, all data without treatment. d Comparison of the model output when fitted to liver (orange), SW480 502 
(dark blue) and SW620 (sky blue). Profiles were normalized to the mesor, and BMAL1 phases were aligned 503 
between mouse liver and the SW480 cell line to allow for comparison. 504 

 505 

3.4 The full clock-irinotecan model recapitulates different chronotoxicity rhythms for CRC cells 506 
To investigate the putative effects of time-dependent treatment in CRC, SW480 and SW620 cells were 507 
synchronized by media change and treated with 2µM of irinotecan at four different circadian times (CT 508 
after synchronization: 6h, 12h, 18h and 24h). The SW480 cell line exhibited a circadian cytotoxicity 509 
response to treatment (harmonic regression with the period of the model fit, p = 0.043 for SW480, see 510 
Supplementary Fig. 7; not significant for SW620). SW480 cells showed the highest toxicity when 511 
irinotecan was administered 24h after synchronization, while the lowest toxicity was observed when 512 
irinotecan was administered 12h post synchronization (acrophase of 0.006 ± 0.03 rad/2π, Fig. 6 c). The 513 
differences in cytotoxicity values between different treatment time points where higher in SW480 as 514 
compared to SW620 cells, which resulted in larger circadian amplitudes for the SW480 toxicity rhythm 515 
(Fig. 6b). Here it is relevant to notice that, in the absence of treatment, the number of dead cells in SW480 516 
cultures is higher than for SW620 cell cultures (ratio of the area under the curve of SW480 and SW620 517 
is 2.46±0.07, Fig. 6 a and d) pointing to cell death and cell cycle differences between the tumor and the 518 
metastasis-derived cells, which might be due to their altered circadian clock.  519 
To allow for the comparison of the model with this experimental data, we supplemented the model by 520 
Dulong et al. 2015 [27] with two cell population equations that explicitly track the number of alive and 521 
dead cells. An exponential growth and a first-order natural cell death were assumed in both control and 522 
treated conditions. Irinotecan was assumed to act negatively on cell proliferation and survival through 523 
DNA damage formation, and a circadian oscillation in the cell death rate was added, see Supplementary 524 
Equations (3.30) and (3.31). Parameters of the original model were kept unchanged apart from the 525 
formation rate of the irreversible complex, which had to be adapted for a successful fit, and which ended 526 
up being reduced as compared to its former estimation.  527 
Using the mRNA dynamics computed by the clock-irinotecan model, the irinotecan PK-PD model allows 528 
to derive a prediction of the circadian dynamics of cell death (Fig. 6). The best-fit full model generated 529 
a prediction that agreed with the toxicity phase of the experimental data for the SW480 cell line. The 530 
model also recapitulated a different toxicity profile for the SW620 cell line, supporting the hypothesis 531 
that the same drug at the same concentration could lead to different responses based on the time of 532 
treatment administration and on the cancer clocks. Interestingly, while the highest and lowest cytotoxicity 533 
trends were the same in both cell lines, the overall response to the cytotoxic effect of the drug was higher 534 
in SW480 (derived from the primary tumour) in comparison to SW620 (derived from a metastasis, but 535 
from the same patient). This also alludes to a role of the cellular clock profile in treatment outcome, as 536 
the two cell lines have different oscillatory patterns. We further tested a simplified version of the equation 537 
for the protein dynamics assuming constant, i.e. non-circadian, protein degradation (Supplementary 538 
information, Equation (3.3) with constant degradation rate). As anticipated by the mathematical 539 
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analysis, toxicity oscillation amplitudes were drastically reduced to approximately 1% of the mesor and 540 
were then much smaller than those observed experimentally. Yet, the clock-PK-PD model with minor 541 
adaptations to the experimental settings gave reasonable toxicity phases using non-circadian protein 542 
dynamics with an appropriately chosen degradation rate (Supplementary Fig. 6), without fitting the 543 
model to the circadian toxicity values obtained experimentally, see Supplementary Fig. 7.  544 

 545 

 546 

Fig. 6: Fitting of the time-dependent treatment from human cancer cell lines. a Experimentally measured cytotoxicity 547 
curves, estimated by measuring red fluorescent objects (see Methods), for SW480 cells that are untreated (Ctrl), or treated at 548 
indicated time points with irinotecan (6h, 12h, 18h or 24h after synchronization). Time is aligned to treatment onset. b Best-549 
fit of the extended PK-PD model (shown is the number of dead cells, the dynamical variable D of Supplementary Equation 550 
(3.31)) to the experimental cytotoxicity data of the SW480 cell line. c Area Under the Curve (AUC) of treated SW480 cells 551 
normalized by the untreated control (dots), compared with the area under the curve of the best-fit model (grey line). d 552 
Experimentally measured cytotoxicity curves for SW620 cells untreated (Ctrl), or treated at indicated time points with 553 
irinotecan (6h, 12h, 18h or 24h after synchronization). e Best-fit of the extended PK-PD model to the experimental cytotoxicity 554 
data of the SW620 cell line. f Area under the curve of treated SW620 cells normalized by the untreated control (dots), 555 
compared with the area under the curve of the best-fit model (grey line).  556 

 557 

To test for the sensitivity of our final model to parameter variations, we evaluated parameter sensibility 558 
of a set of 123 parameters with respect to the phase and amplitude of the irinotecan circadian toxicity 559 
profile (i.e. the curves depicted in Fig. 6c and f) by calculating Sobol sensitivity total order indices, see 560 
Supplementary Fig. 9. A close agreement was found between the parameter sensitivity on the phase and 561 
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on the amplitude of the drug chronotoxicity rhythms. Our analysis highlighted the impact of the protein 562 
dynamics on the toxicity profile, most importantly the relevance of the phases of the circadian 563 
degradation of CES2 (parameter phiCes from Supplementary Fig. 9) and UGT1A1 (parameter phiUgt) 564 
and the amplitude of CES2 (parameter ampCes).  Besides those parameters, several core-clock elements 565 
- in particular parameters associated with the loop formed by ROR, BMAL1 and CLOCK (maximal 566 
transcription rates, degradation rates, production rates) - showed high sensitivity, probably because 567 
existence of oscillations depends on the core clock. The feedback from irinotecan-relevant genes to the 568 
core clock, through the inhibition of REV-ERB by NFIL3 (parameter i_RevNfil) and the inhibition of 569 
BMAL1 by TOP1 (parameter i_BmalTop), only showed a weak impact on the toxicity curve. All 570 
parameters associated with ABC transporters showed a low impact on the toxicity profile. 571 

 572 

4 Discussion 573 
The circadian clock regulates the timing of various crucial molecular pathways including drug 574 
metabolism, apoptosis, DNA damage repair and cell cycle [58-60]. The malfunctioning of these 575 
pathways is involved in cancer onset and progression. On the other hand, several drugs used in cancer 576 
treatment target genes, which are expressed in a circadian manner and also the metabolism of these drugs 577 
is carried out by circadian-regulated genes and proteins. Hence, timing treatment in accordance with the 578 
patient’s circadian timing system is likely to contribute to improved treatment outcome, and several 579 
studies have shown promising results using chronotherapy in cancer treatment [8].  580 
We developed a novel mathematical model of irinotecan cellular PK-PD, which links the core clock with 581 
predicted treatment toxicity for CRC cells. The model simulations highlighted the existence of time-582 
dependent toxicity for the different cells, which was different for the tumour-derived cell line as 583 
compared to the metastasis-derived cell line. Our results suggest that, in addition to gene expression, the 584 
dynamics of protein translation, with circadian variation in the degradation, plays an important role in 585 
the timing of drug toxicity. In particular the phase (the time of maximal expression) and amplitude 586 
(difference between minimal and maximal normalized expression) of the circadian oscillation in protein 587 
degradation of CES2, which controls the activation of irinotecan, seems to be relevant in shaping the 588 
toxicity profile. Moreover, elements associated with core-clock genes, such as BMAL1 or CLOCK 589 
showed high sensitivity which proved the importance of the core-clock parameters on irinotecan toxicity.   590 

 591 

4.1 A comprehensive mathematical model for circadian regulation of irinotecan PK-PD 592 

Our clock-irinotecan model can be fitted to different scenarios providing different circadian toxicity 593 
profiles for CRC cells. The core-clocmodel was initially developed from multiple datasets of mammalian 594 
SCN cells [23], and was successfully refined here using quantitative measurements of the clock of the 595 
mouse liver, and of SW480 and SW620 cell lines.  Regarding the model of irinotecan PK-PD, it was 596 
designed based on extensive datasets in Caco-2 cells [27], and was further validated in both SW480 and 597 
SW620 cell lines. Using SW480 and SW620 cell lines here provided a proof of principle that a 598 
personalization of the model to other cell lines was possible. Hence, models of both the 599 
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transcriptional/translational clock network and irinotecan pharmacodynamics and -kinetics were 600 
validated in several in vitro and in vivo experimental settings, which argues in favour of their reliability. 601 
The reduction in fit quality from liver to SW480 to SW620 cells likely results from the decreasing 602 
amplitudes of circadian oscillations [17, 30, 61], see also Supplementary Fig. 5b. Indeed, assuming that 603 
the experimental data of the same gene, yet from different biological sources (liver or CRC cell lines), 604 
shows the same level of noise, arising from biological stochasticity or from experimental constraints, 605 
larger oscillation amplitudes lead to higher signal to noise ratios, which facilitates fitting. In addition, the 606 
fact that the core-clock model did not fully fit the SW620 data was an indication that clock gene and 607 
protein interactions may be impaired in this cell line or at least different from the ones implemented in 608 
the model. It is also important to notice that each patient (or healthy individuals) and each cancer are 609 
unique. Accordingly, also different cell lines, patients or healthy individuals [62] have specific clock 610 
phenotypes, and this requires personalization of treatment [63]. Thus, any clinical application requires 611 
that our model is fitted to the individual patient, or to a group of patients with similar clock molecular 612 
profiles. 613 
Another ODE-based model of the mouse liver clock was designed by Woller et al. to investigate the 614 
effect of feeding cycles on liver circadian rhythms [64, 65]. That model was developed to address a 615 
different question as compared to this study and could not be readily used here, as for instance the energy 616 
metabolism part was out of the scope of this study. In addition, that model did not include different 617 
compartments for the nucleus and the cytoplasm, which we were able to precisely do thanks to the recent 618 
publication of data on clock-gene subcellular trafficking [43]. Further, we included the gene Clock to the 619 
model, to incorporate available data on this gene and investigate its importance in the clock machinery. 620 
Finally, our model integrates both mRNA and protein circadian datasets in a quantitative manner, 621 
meaning that it does not only predict the phase and relative amplitude of the gene expression data as 622 
existing models do [23, 65], but also the mean level, such information being critical for the connection 623 
to PK-PD models. A very interesting perspective for future studies would be to consider coupling the 624 
model by Woller et al. with ours to investigate the impact of feeding/fasting cycles on irinotecan 625 
chronopharmacology. 626 

Our core-clock model represents intracellular regulatory feedback loops that implicitly include extrinsic 627 
circadian regulators such as temperature or light/dark cycles. Such external synchronizers were not 628 
present in our cell culture setting, so that the SW480 and SW620 models are likely to represent the actual 629 
events at stake. On the opposite, external or systemic regulators have a great influence on the mouse liver 630 
clock. This precise question was the topic of another of our recent studies, in which we have explicitly 631 
modelled the influence of temperature cycles and food intake on the core clock in four classes of mouse 632 
(2 strains, 2 sexes) [66, 67]. Regarding CES2 modeling, we chose not to connect its protein degradation 633 
rate directly to the core clock, since there is no published data regarding the existence or absence of such 634 
molecular links. Thus, instead of including unreliable reactions to the model, we preferred to estimate 635 
the circadian rhythm of CES2 protein degradation directly from the data. The parameter sensitivity 636 
analysis evidenced the importance of this part of the model and strongly advocates the generation of 637 
additional biological results about the circadian control of CES2 degradation. 638 
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Our experimental results obtained from time-dependent treatment using a CRC in vitro cellular system 639 
highlight the cytotoxicity differences obtained by timing treatment, which were further emphasised by 640 
our simulations. Compared to the predicted toxicity acrophase of the SW480 cell line, the toxicity 641 
acrophase of the SW620 cell line is delayed by about four hours. In particular, the metastasis-derived 642 
cell line showed the lowest variations in cytotoxicity among different treatment times. Our data also 643 
shows a difference in terms of drug resistance between the two CRC cell lines, which, we hypothesize, 644 
could be overcome if using treatment times of high cytotoxicity with the same amount of drug, or 645 
potentially by increasing dosages in times of less toxicity. Yet, these are still speculative ideas, which 646 
need further studies and validation in a clinical setting. The limited number of cell lines included in our 647 
experimental setup present some limitations to the generalization of our findings and thus further 648 
investigation of time-dependent treatment with a higher variety of cell lines and anticancer treatment 649 
agents needs to be carried out in future research.  650 

 651 

4.2 Personalized models to optimize timing in cancer treatment 652 

Chronotherapeutic studies aim at increasing treatment efficacy and minimizing toxicity for healthy cells 653 
leading to a reduction of the side effects for patients [68]. Previous clinical results have shown that 654 
personalization is a key element of successful chronotherapy outcome, for example, males and females 655 
have shown different toxicities depending on treatment timing [6, 16, 69]. Sex should be considered as 656 
a relevant determinant of circadian rhythms and optimal drug timing in the light of recent preclinical and 657 
clinical findings [6, 16, 69]. Here, the mouse liver data was obtained from male mice, and the cell lines 658 
were derived from a human male, so that the sex specificity seemed out of the scope of this study. 659 
However, we have started to investigate the impact of sex on the circadian timing system as mentioned 660 
above and did find significant sex-related differences in the shape and intensity of systemic controls on 661 
the core clock, which augurs implications for drug optimal timing [66]. 662 
 663 
One aspect of personalized chronotherapy is an adaptation of medication timing to the patient’s internal 664 
time, which can be best assessed by a combination of mathematical modelling and machine learning [63]. 665 
Existing models of irinotecan PK-PD offer to predict best drug timing based on circadian rhythms of 666 
proteins involved in irinotecan pharmacology, in the organ of interest (e.g. liver, or intestine) or in the 667 
tumour. However, such datasets are unlikely to be obtained in the clinics on an individual patient basis 668 
as it would involve multiple around-the-clock biopsies, which obviously raises questions of feasibility 669 
and ethics regarding the benefit/risk ratio. Furthermore, circadian datasets on irinotecan-related proteins 670 
would not be informative for personalizing the timing of other drugs, in particular the ones usually 671 
combined with irinotecan (e.g. 5-fluorouracil, oxaliplatin). Instead, our new combined model provides 672 
the option of computing irinotecan best timing from circadian rhythms of core-clock mRNA levels. The 673 
major advantage of measuring core-clock genes – and not directly drug-related genes – is that it can be 674 
done in any organ, since the peripheral core clock is synchronized across healthy tissues as suggested by 675 
mouse and baboon studies [34]. Several patient-friendly methods for measuring clock-gene expression 676 
in saliva or blood samples have been recently validated in the clinics (see [12] for a review). Furthermore, 677 
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strong oscillations, clearly above noise level, are expected in core-clock gene expression, which 678 
facilitates the characterisation of their circadian profiles and reduces the number of needed time points 679 
to do so [62]. In addition, a newly available statistical algorithm offers to derive clock gene mRNA 680 
circadian rhythms from a single-time-point measurement of 10 clock genes [70]. Such methodology 681 
could potentially be used to predict clock gene variations when only one time point is available, which 682 
is often the case for the tumour. Our combined model could then be used to infer irinotecan personalized 683 
best timing from clock-gene expression. As such chronoPK-PD models could be developed for any other 684 
drug, optimal timing could be derived for multiple compounds from a single dataset of clock gene mRNA 685 
circadian variations. In addition, instead of simplifying a patient’s complex circadian profile to an 686 
estimate of a value associated with their circadian time, by estimates based on a single time point 687 
measurement, our model has the potential to fit the circadian rhythms of the patient based on their 688 
personal gene expression data from peripheral tissues (e.g. saliva [62]), relevant to the clock-irinotecan 689 
PK-PD network. Thus, in a clinical application, the model can be fitted both to the tumour clock and to 690 
the healthy peripheral clock of the patient. Several therapeutic strategies may then be considered from 691 
maximizing efficacy, or minimizing side effects, of a given drug dose, to more advanced approaches 692 
aiming to optimize antitumor efficacy under strict tolerability constraints [26]. To exemplify the power 693 
of our model for personalization, we fit the model to two different cell lines derived from human CRC 694 
with cell line-specific toxicity profiles, which are different in the metastasis-derived cells as compared 695 
to the primary tumour cells likely due to a disruption of the circadian profile and an alteration of 696 
metabolism in the former cells [61]. Overall, our approach provides a promising direction for 697 
mechanism-based chronotherapy personalization in the clinical setting. 698 
 699 
The sensitivity analysis of the circadian toxicity profile is in accordance with the previously published 700 
sensitivity analysis by Dulong et al. 2015 [27], highlighting especially the importance of CES2, which 701 
is responsible for activation of irinotecan. Using our fitted mathematical model, changes in toxicity in 702 
response to relevant alterations in core-clock or protein dynamics can in principle be predicted based on 703 
circadian data for core-clock and drug-pharmacology genes. Further, the model can also be adapted for 704 
patients with alterations in irinotecan PK-PD proteins, such as patients with increased sensitivity against 705 
irinotecan due to a reduced UGT1A1 activity (reduced deactivation of SN-38) [71], or patients with a 706 
decreased sensitivity to irinotecan due to an overexpression of ABC transporters, which leads to a faster 707 
drug removal from the cell [72]. 708 

The strong influence of the core clock on the toxicity profile supports a strong dependence of optimal 709 
treatment times on the personal circadian rhythm of patients, in accordance with previous reports [8]. In 710 
particular, several core-clock parameters associated with BMAL1 and CLOCK (BMAL1 degradation rate, 711 
CLOCK activation rate, cytosolic BMAL1 degradation rate), show high sensitivity in our model, 712 
highlighting the relevance of the core clock for irinotecan PK-PD. This is particularly relevant for cancer 713 
patients, who often show alteration in their circadian rhythms that might be further changed during 714 
hospitalization, as bedridden patients seem to have disrupted circadian rhythms [73-77]. This suggests 715 
that even during a treatment frame of a few weeks, optimal treatment times might be shifted by a 716 
flattening of the circadian rhythms. Light therapy might help to stabilize toxicity profiles, as it has been 717 
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shown to improve circadian oscillations in breast cancer patients [74]. Also melatonin administration or 718 
pharmacological modulation of core-clock genes may have a positive impact on cancer therapy [78, 79]. 719 
We here report differently timed toxicity peaks for CRC cell lines. Naively, one would assume that cancer 720 
cells show less robust oscillations compared to healthy cells, but this remains to be shown in future 721 
research. While the toxicity of Caco-2 cells in the model of Dulong et al. was predicted following a 722 
repeated 2-hour treatment [27], we here predict toxicity phase following a 84.5-h long treatment. The 723 
situation in the patient is most likely somewhere between these values as irinotecan terminal half-life 724 
after a 30-min infusion to colorectal cancer patients in the morning was approximately equal to 12h [68]. 725 
As the treatment administration scheme may present complex and chronomodulated shapes, irinotecan 726 
whole-body pharmacokinetics must be precisely modelled in order to faithfully predict plasma and tissue 727 
exposure concentrations.. A mathematical model relating infusion pump and administration schedules to 728 
predict actual drug concentrations in the body has been developed [80], and a corresponding extension 729 
could be used to further improve predictions of the here presented cellular model in a whole-body 730 
context. Thus, for personalized medical treatments the personalization of mathematical models is key, 731 
using easily accessible patient data to predict unassessable information relevant for medication. 732 
 733 
Conclusion 734 

Our clock-irinotecan model can be further optimized in a personalized manner and may be used to 735 
predict the toxicity profile of a particular patient upon fitting his or her molecular circadian profile. The 736 
model can be additionally used to investigate whether the differential regulation of PK-PD elements, 737 
for example via additional medication with melatonin, can result in circadian toxicity profiles that 738 
would support chronotherapy in irinotecan-treated cancers [78]. Altogether, our findings highlight the 739 
relevance of investigating the effect of chronomodulated therapy in a clinical setting as it may 740 
contribute to providing better personalized medical treatment with higher efficacy and lower 741 
cytotoxicity, leading to a decrease of side effects and an increase of life quality for the patient.  742 
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