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Abstract 31 

 32 

Eutrophication and dystrophy are two of the main problems affecting coastal ecosystems. In the 33 

Bay of Seine, phosphorus (P) inputs from the Seine estuary have been largely reduced in the 34 

last decade, in contrast to nitrogen (N), which leads to high N/P ratio inputs. To study the effect 35 

of dystrophy, an enrichment bioassay using water sampled from the Bay of Seine was repeated 36 

19 times over a period of 18 months with six different enrichments. After a few days, 37 

chlorophyll a (chl a), alkaline phosphatase activity (APA), transparent exopolymeric particles 38 

(TEPs), cytometric size structure, and maximum quantum yield of photosystem II were 39 

measured. The data provide strong evidence for an N & P colimitation system in the vast 40 

majority of the incubations, as only the N+P and N+P+Si enrichments supported phytoplankton 41 

growth, and Si only appeared to play a secondary role in our incubations. A N/P ratio of 16 42 

equal to the Redfield ratio was identified as the optimum for balanced growth, as chl a was the 43 

highest and TEP and APA production was the lowest at this ratio. To fit the requirements of the 44 

colimited system, a new resource use efficiency (RUENP) calculation was developed to account 45 

for N and P colimitation instead of only one nutrient, as is usually the case. This calculation 46 

allows better representation of RUE in dystrophic conditions, as found in many highly 47 

anthropized ecosystems. The relationships between RUENP and the size structure of the 48 

phytoplankton community were explored, and a significant positive correlation between RUENP 49 

and larger cells (> 2 µm) and a negative correlation with smaller cells (< 2 µm) were noted, 50 

showing a better use of nutrients by larger cells. This study highlights an increase of RUENP 51 

with the phytoplankton cell size in a colimited system. 52 

 53 

Keywords: Eutrophication; N/P ratio; Alkaline phosphatase activity; Transparent 54 
exopolymeric particles; Flow cytometry, ecophysiological parameters   55 
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1. Introduction 56 

 57 

Coastal ecosystems provide important economic services, and their decline, due to multiple 58 

human pressures, could have long-term impacts (Barbier et al., 2011). The main problem facing 59 

coastal ecosystems is eutrophication (Rabalais et al., 2009), caused by excessive inputs of 60 

nutrients, usually nitrogen (N) and phosphorus (P), into the system associated with a dystrophic 61 

ratio. Phytoplankton uptake is mainly described by the Redfield ratio (N/P = 16), which 62 

regulates the nutrient system (Falkowski, 2000), but in dystrophic conditions, deviation from 63 

this paradigm can be observed at multiple scales from cellular to environmental requirements 64 

(Fraga, 2001; Geider and La Roche, 2002; Glibert and Burkholder, 2011; Ptacnik et al., 2010). 65 

However, unbalanced nutrient inputs affect phytoplankton community composition (Leruste et 66 

al., 2019; Shen et al., 2019) and growth rate (Nwankwegu et al., 2020). Thus, knowing which 67 

nutrients limit phytoplankton growth is crucial. Recently, multiple coastal ecosystems have 68 

been described as colimited systems (Chorus and Spijkerman, 2020; Conley et al., 2009; 69 

Harpole et al., 2011) with N and P as independent nutrients (Saito et al., 2008). The Bay of 70 

Seine (France) is a typical eutrophic system, and nutrients are mainly supplied by the Seine 71 

River (Aminot et al., 1998) and at a smaller scale by local rivers (Lemesle et al., 2015). In recent 72 

decades, nutrient management programmes in the Seine River have successfully reduced 73 

nutrient inputs, particularly phosphorus inputs (Aissa-Grouz et al., 2018) by improvement of 74 

domestic wastewater treatment, but N levels have nevertheless remained high (Garnier et al., 75 

2019). This causes an abrupt change in nutrient stoichiometry with high N/P ratios measured in 76 

both the Seine estuary and the Seine River (Garnier et al., 2019; Meybeck et al., 2018). 77 

One way to better assess the link between the phytoplankton community and nutrients is the 78 

resource use efficiency (RUE) parameter. RUE measures the supplied resources converted into 79 

biomass (Hodapp et al., 2019) and is useful to characterize the use of nutrients by phytoplankton 80 

populations. To our knowledge, only a few authors, e.g., Han et al. (2016), have broached the 81 
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multiple limitations of RUE, one being that RUE usually focuses on one nutrient at a time (e.g., 82 

RUEN, RUEP.). Today, given the growing interest in colimitation systems, new insights are 83 

needed to describe these nutrient regimes more precisely. 84 

Enrichment bioassays are an effective way to investigate the effects of nutrient inputs on the 85 

phytoplankton community (Rahav et al., 2018; Reed et al., 2016; Song et al., 2019; Van 86 

Meerssche and Pinckney, 2019). Varying the composition, stoichiometry and quantity of 87 

nutrients added pinpoint limitation patterns more easily (Tamminen and Andersen, 2007). 88 

Repeating the bioassays throughout the year enables the identification of time-dependent 89 

interactions (Xu et al., 2010). 90 

To investigate the effect of nutrient enrichment on phytoplankton in the Bay of Seine, we 91 

conducted repeated bioassays. After a few days of incubation, the community structure of 92 

natural populations of phytoplankton was measured to assess the nutrient regime of the 93 

phytoplankton community. A new approach was proposed to calculate a RUE constrained by 94 

two colimiting nutrients. 95 

The specific objectives of our study were to investigate the ratio of N/P consumed by the 96 

phytoplankton community under unbalanced nutrient input conditions and characterize 97 

physiological status and population structure responses to sudden nutrient enrichments. This 98 

approach should allow us to identify the limitation system in a dynamic anthropized macrotidal 99 

bay at a temperate latitude. 100 

  101 
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2. Materials and Methods 102 

 103 

2.1 Measurements in the Bay of Seine 104 

High-frequency data were monitored in situ over a two-year period using the SMILE 105 

(System of Measurement Integrated for Littoral and Environment) buoy. It is a moored buoy 106 

localized in the Bay of Seine (0°19'41.00"O 49°21'14.00"N) equipped with physico-chemical 107 

and biological sensors working in continuous and autonomous conditions (data available 108 

at Claquin et al., 2018).  109 

In vivo fluorescence (Cyclops-6K, Turner Design, USA), fluorescein fluorescence units (FFU), 110 

temperature (WTWTM, TetraCon, Germany) and turbidity (Seapoint Turbidity Meter, Seapoint 111 

Sensors, USA) were measured together in a multiparameter probe NKE instrument (MP7, NKE 112 

Instrumentation ®). Photosynthetically active radiation (PAR) was measured with a Satlantic 113 

sensor (Satlantics, Italy). NO
3

- was measured with an OPUS optical sensor (TriOS Mess- & 114 

Datentechnik GmbH Germany). All these parameters were measured at 20-min intervals at a 115 

depth of one metre since 2016. 116 

PO
4

3- data and additional NO
3

- data come from a bimonthly sampling program (French Coastal 117 

Observation Service, https://www.somlit.fr/, Cocquempot et al., 2019) where water has been 118 

sampled near the SMILE buoy at a depth of one metre since 2013 and analysed as described in 119 

Part 2.2.1. 120 

 121 

2.2 Enrichment experiment 122 

Bioassays were designed to assess the impacts of enrichment on the phytoplankton 123 

assemblages and on their physiological responses. The design was modified from  Ly et al. 124 

(2014) to fit our specific requirements as described in Serre-Fredj et al. (2021). The 125 

experiment was repeated 19 times over a period of 2 years on different dates (see 126 
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supplementary table for starting date, and Supplementary figure 2). Each incubation will be 127 

referred to by its number corresponding to chronological order. Seawater was sampled at the 128 

SMILE buoy site. To remove large grazers, the seawater was filtered through a 100-µm mesh 129 

immediately after sampling. For the bioassays, enrichments were added to 500-ml subsamples 130 

in polycarbonate bottles one hour after sampling and placed in an incubator. All bioassays 131 

were incubated in a water bath incubator for 4 to 5 days (see supplementary table for specific 132 

duration) under natural sunlight in a greenhouse. The water bath incubator was fuelled 133 

continuously with seawater pumped directly from the sea maintaining the incubator to the 134 

temperature of the bay. Seawater temperature and PAR were recorded at 5-min intervals using 135 

an RBRsolo T logger and an RBR solo3 PAR logger connected to a Li-COR LI-192 136 

Underwater Quantum Sensor, respectively. Up to six types of enrichment treatments, each 137 

with five replicates, were performed in the incubator for each incubation experiment: Control 138 

with no addition of nutrients (C), +P (P), +N (N), +N+Si (NSI), +N+P (NP), or +N+P+Si 139 

(PNSI). The enrichments applied in the bioassays were defined by the maximum value of N 140 

(50 µmol.l-1), P (3 µmol.l-1) and Si (50 µmol.l-1) measured in 2018 in the Bay of Seine by the 141 

French Coastal Observation Service (SOMLIT, https://www.somlit.fr/, Cocquempot et al., 142 

2019). Two enrichments were added during the experiment: NSI was added after the 4th 143 

incubation experiment, and NP was added after the 13th incubation experiment. 144 

  145 

After 4 or 5 days, 25 ml was sampled in all bioassay bottles and homogenized before measuring 146 

photosynthetic, flow cytometer and alkaline phosphatase activity (APA). TEP, nutrient and 147 

chlorophyll a (chl a) concentrations were also measured at day 4 or 5. APA was included after 148 

the 7th incubation and TEPs after the 9th incubation. 149 

The analyses, duration, and enrichments performed are summarized in the additional table. 150 

 151 
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2.2.1 Measurements of inorganic nutrients (NO
3

-, PO
4

3-
, Si(OH)4) 152 

Water samples were collected and filtered through a ClearLine, CA, 33 mm, 0.45 µm cellulose 153 

acetate filter and immediately frozen (-20 °C), with the exception of Si(OH)4, which was stored 154 

at 4 °C. Analyses were conducted using a SEAL Analytical AA3 system (Aminot and Kérouel, 155 

2007). The quantification limits were 0.02 µmol.l-1 for PO
4

3- and 0.05 µmol.l-1 for NO
3

-, NO2
-, 156 

Si(OH)4. The N/P ratio was calculated as NO
3

-/ PO
4

3-. The N/Pconsumed was calculated as (Nstart-157 

Nend)/(Pstart-Pend), where Nstart and Pstart represent the concentrations of N and P at the beginning 158 

of the incubation (i.e., the stock of nutrients in the sampled water plus specific enrichment) and 159 

Nend and Pend the concentrations of N and P at the end of the incubation. 160 

2.2.2 Chlorophyll-a measurements 161 

Water samples (250 ml) were filtered through a Whatman GF/F 47 mm, 0.7 µm glass-fibre filter 162 

and immediately frozen (-20 °C) until analysis. Ten millilitres of 90% acetone (v/v) was added 163 

to extract the pigment, and the samples were then left in the dark at 4 °C for 12 h. After being 164 

centrifuged for 5 min at 1,700 g twice, the concentration of chl a in the extracts was measured 165 

using a Trilogy fluorometer (Turner Designs, Sunnyvale, USA) according to the method of 166 

(Strickland and Parsons, 1972). The Δchl a is calculated as chl aend – chl astart. 167 

2.2.3 Transparent exopolymeric particles (TEP) 168 

Water samples (150-200 ml) were filtered through Millipore, 0.4 µm polycarbonate 169 

membrane filters and immediately frozen (-20 °C) until analysis. Following Claquin et al. 170 

(2008) adapted from Passow and Alldredge (1996), the filters were stained with a solution of 171 

0.02% Alcian Blue solution (Sigma) with 0.06% acetic acid (pH: 2.5). Excess dye was removed 172 

by adding water before centrifugation at 3,000 g at 19 °C for 15 min. This washing cycle was 173 

repeated twice, after which 6 ml of 80% H2SO4 was added. After 2 h, measurements were taken 174 

using a Pharmacia Biotech Ultrospec 1000 Spectrophotometer at 787 nm. Calibration was 175 

performed using xanthan gum (10-700 µg) as a standard, as described in Claquin et al., (2008). 176 
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After being divided by the chl a concentration, TEP concentrations are expressed in µg Xanthan 177 

eq.µg chl a-1. 178 

2.2.4 Alkaline phosphatase activity (APA) 179 

The potential maximum APA per chlorophyll unit was measured according to Hrustic et 180 

al. (2017). Samples (3,920 µl) were placed in a UV cuvette, and 80 µl of 500 µM 4-181 

methylumbelliferyl phosphatase (MUF-P) substrate was added. While incubating at room 182 

temperature, the samples were measured at hourly intervals over a total period of 7 h. 183 

Measurements were made with an RF-6000 spectrofluorophotometer (Shimadzu, Japan). APA 184 

was calculated as the slope of the linear regression. Using an MUF standard curve, the results 185 

are expressed in concentration units per hour divided by the concentration in chl a to normalize 186 

by the biomass, thus obtaining APAchl a (nM.h-1.µg chl a-1.l-1). 187 

 188 

2.2.5 Fluorometry to assess photosynthetic parameters 189 

To measure the maximum quantum efficiency of photosystem II photochemistry (Fv/Fm), three 190 

fluorimeters were used during the experiment: a Water PAM (Walz, Germany), a FRRf-ACT2 191 

(Chelsea Technologies, UK) and a LabSTAF (Chelsea Technologies, UK). Oxidation of 192 

quinone A (QA) in the samples was analysed after a 5-min period of incubation in the dark. 193 

For the water-PAM measurements, the sample was excited by weak blue light (1 µmol 194 

photons.m-2.s-1, 470 nm, frequency 0.6 kHz) to record the minimum fluorescence (F0). The 195 

maximum fluorescence (Fm) was obtained during a multiturnover (MT)-saturating light pulse 196 

(0.6 s, 1700 µmol photons.s-1.m-2, 470 nm), which enabled reduction of the quinone A (QA) 197 

pool. 198 

For the ACT2-FRRF measurements, a single turnover (ST) saturation phase was delivered with 199 

one hundred 1-µs flashlets at 2-µs intervals to measure Fo and maximum fluorescence (Fm) (452 200 

nm) using the biophysical model of Kolber et al. (1998). 201 
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For the LabSTAF measurements, a single turnover (ST) saturation phase was delivered with a 202 

solid 100-µs flash (450 nm) to measure minimum and maximum fluorescence, as described in 203 

Boatman et al. (2019). 204 

Following Genty et al. (1989), the maximum quantum efficiency of photosystem II 205 

photochemistry (Fv/Fm) was calculated in Equation 1: 206 

 207 

 
��

��
=  

(�����)

��
 (1) 208 

 209 

A discrepancy in the Fv/Fm measurement is known between the different methods of variable 210 

fluorometry used (Kromkamp and Forster, 2003). Therefore, data normalization per incubation 211 

(between 0 and 1) allowed us to compare the whole set of incubations. 212 

 213 

2.2.6 Flow cytometry 214 

Unfixed samples were analysed within one hour of sampling with a CytoSense 215 

(Cytobuoy b.v., Netherland) equipped with a blue laser (488 nm, 50 mW) and a green laser (552 216 

nm, 50 mW). This produces pulse shapes based on the inherent optical properties of the particle 217 

when they cross the laser: sideward angle scatter (SWS), forwards scatter (FWS), red (FLR, 218 

668-734 nm), orange (FLO, 601-668 nm) and yellow fluorescence (FLY, 536-601 nm). The 219 

threshold was set at 16 mV to reduce data acquisition concerning nonphotosynthetic particles 220 

triggered on FLR; for each sample (5 per enrichment), 380 µl was analysed with a speed of 2.0 221 

µl.s-1. CytoSense can analyse chains, cells, or colonies between 1 and 800 µm in diameter. 222 

Microspheres of 1 µm (yellow–green fluorescent, FluoSpheres®), 1.6 µm (nonfluorescent, 223 

provided by Cytobuoy) and 2 µm, 6 µm, 10 µm, and 20 µm (Fluoresbrite® YG microspheres, 224 

Polyscience) were used to calibrate size recordings (daily use). To distinguish the phytoplankton 225 
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(Supplementary Fig. 1), five clusters were determined using the cells’ optical properties and 226 

attributed to Synechococcus spp., picoeukaryotes, nanoeukaryotes and microphytoplankton and 227 

cryptophytes. The Synechococcus spp. cluster has the smallest FWS signal and a high orange 228 

fluorescence (FLO) signal, which matches very small cells with a high concentration of 229 

phycoerythrin. 230 

Picoeukaryote cells are small cells (< 2 µm) and produce low FLR and FWS signals. 231 

Nanoeukaryotic (2–20 µm) and microphytoplankton (> 20 µm) cells were differentiated from 232 

picoeukaryotic cells using the amplitude of the FLR signal and the bead signal. Cryptophytes 233 

clusters have higher FLO than Synechococcus due to the high concentrations of phycoerythrin 234 

in their cells and an FWS equivalent to the nanoeukaryotic and microphytoplankton cells (Olson 235 

et al., 1989; Thyssen et al., 2014). 236 

 237 

2.3 RUE calculation 238 

RUE is the amount of biomass produced per unit of supplied resource (Hodapp et al., 2019). 239 

The equation proposed by Ptacnik et al. (2008) to calculate RUE (chl a/total P) is quite simple 240 

and is the one most frequently reported in the literature (Chai et al., 2020; Filstrup et al., 2019; 241 

Lehtinen et al., 2017; Yang et al., 2021) with total P as the limiting nutrient. This equation can 242 

also be used with other limiting nutrients, including N (Amorim and Moura, 2021; Frank et al., 243 

2020; Olli et al., 2015; Otero et al., 2020). The dissolved organic fraction (DIN or DIP) can also 244 

be used instead of the total elemental concentration (Amorim and Moura, 2021; Otero et al., 245 

2020). The need to consider stoichiometry constraints for RUE calculation has already been 246 

highlighted in Frank et al. (2020). 247 

Thus, to fit the colimitation hypothesis (Arrigo, 2005; Saito et al., 2008), we considered more 248 

than one nutrient. The concept of colimitation and/or alternation between N and P limitation 249 

according to Davidson and Howarth (2007) and Elser et al. (2007) describes how, depending 250 
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on the balance, N and P could incrementally limit growth one after another until one is too low 251 

for uptake. The nutrient present in the smallest proportion will be the last limiting nutrient in 252 

the sequence. To directly compare the concentration of both nutrients (N & P), a scale of 253 

limitation has to be applied. The simplest approach largely admitted is to consider the Redfield 254 

ratio as the balanced N/P ratio (Falkowski, 2000; Lips and Lips, 2008), even if it can be 255 

discussed primarily in the context of coastal anthropized ecosystems (Arrigo, 2005; Chorus and 256 

Spijkerman, 2020; Glibert and Burkholder, 2011). Then, N/P ratios lower than 16 are considered 257 

N limited, and ratios higher than 16 are considered P limited. 258 

Based on the equation of Ptacnik et al. (2008), a RUENP equation using the N/P ratio was 259 

applied: 260 

 
��� =  
��� ����

��� {
�

�/������ �� !�"#$
,�}

 (2) 261 

 262 
where chl aend is the concentration at the end of the incubation, N and P concentrations 263 

correspond to values of Nstart and Pstart of NO
3

- and PO
4

2-, respectively, at the beginning of 264 

each incubation (i.e., the stock of nutrients in the sampled water plus specific enrichment). 265 

Here, the N/Pbalanced ratio accounts for the 16/1 Redfield ratio (Redfield, 1958) (Equation 2). 266 

The minimum function (min) makes it possible to account for the last limiting nutrient in the 267 

alternating nutrient limitation system. 268 

In other words, this RUENP calculation is equal to RUEP when N/P > N/Pbalanced and to RUEN 269 

when N/P < N/Pbalanced (Figure 1). This prevents underestimation of the RUE value in 270 

dystrophic cases. To illustrate the case of an extremely high N/P (e.g., 300), the RUEN would 271 

be reduced due to the excessive presence of N, even if the limiting nutrient here is P, thus 272 

making the RUEP more appropriate. The RUENP allows to cover both dystrophic cases. 273 

 274 
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2.4 Statistical analysis 275 

All analyses were conducted in R (R-project, CRAN) version 3.6.1. To better display 276 

variations due to the enrichment data used for the heatmap (e.g., Figures 2, 3, 4 and 5) are all 277 

normalized between 0 and 1 per incubation, such that the maximum value of the parameter in 278 

each incubation is 1 and the minimum is 0. As the incubation data did not follow a normal 279 

distribution, a Kruskal–Wallis test was performed using the “stats” package, and a Conover-280 

Iman pairwise test was performed using the “conover.test” package. Only significant tests 281 

with a p value < 0.05 were accepted. PCA and hierarchical cluster analyses were performed 282 

using the “FacoMineR” (Lê et al., 2008) and “factoextra” (Kassambara, 2017) packages. The 283 

last six incubations were included in the multivariate analysis (13th to 19th incubations) to 284 

include all types of enrichment. The number of clusters for the k-means clustering analysis 285 

was chosen using silhouette analysis. 286 

  287 
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3. Results and discussion 288 

 289 
3.1 Environmental parameter in the Bay 290 
 291 
Figure 2 shows two years of high-frequency data in the Bay of Seine measured by the SMILE 292 

buoy. The temperature ranged from 8.1 °C to 22.5 °C, and a maximum fluorescence value of 293 

481 FFU was recorded on the date of the 19th sampling (12/10/2020). Fluorescence followed 294 

standard patterns (Napoléon et al., 2012) with higher values in spring and summer, while late 295 

blooms could occur in autumn, as shown by the 9th incubation event, which represented the 296 

highest value in 2019 (170 FFU) (Fig. 2. A). The two inorganic nutrients (NO
3

- and PO
4

3-) 297 

displayed the opposite pattern of temperature, i.e., replenished in winter and depleted in 298 

summer due to nutrient consumption. NO
3

- ranged from the limit of detection 0.01 to 69.27 299 

µmol.l-1 (Fig. 2. C) and PO
4

3-ranged from the limit of detection 0.02 to 1.01 µmol.l-1 (Fig. 2. 300 

D). A wide range of variation is depicted by the incubation that may affect phytoplankton 301 

community and response even if a majority (60%) are gathered within the high production 302 

zone from May to October. Out of this time period, light intensity may be more limiting than 303 

nutrients, as displayed by replenishing nutrient levels (Napoléon et al., 2014, 2012). 304 

Moreover, some extreme events are present, such as the 9th or 19th incubation, which both 305 

account for massive blooms, as flagged by the fluorescence increase. 306 

 307 

3.2 Phytoplankton growth link with nutrient balance 308 

Figure 3 presents the chl astart concentration measured at the beginning of the incubation and 309 

final concentration for each enrichment for all bioassays and all enrichments. The results 310 

showed that in 17 incubations out of 19, NPSi enrichment presented the highest chl a 311 

concentration (Fig. 3. A). Both NP and PNSI enrichments showed high chl a concentrations 312 

with averages of 20.9 µg chl a-1.l-1 and 24.5 µg chl a-1.l-1, respectively, and differed 313 
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significantly from other treatments (Kruskal–Wallis: χ 2 = 29.26, pvalue = 5.4x10-5; followed by 314 

Conover test, pvalue = 3.6x10-4, 8.7x10-4). This result highlights evidence for colimitation of N 315 

and P, as NP and PNSi enrichment displays maximum growth. The lack of a significant 316 

difference between NP and NPSI indicates the secondary role of Si. Incubations 3, 5, 10, 11 317 

and 12 display little to no growth regardless of the enrichment, indicating other limitations. As 318 

underlined in Section 3.1, this could be due to suboptimal temperature and light conditions for 319 

phytoplankton growth. 320 

When compared to the log of the N/Pconsumed ratio during the incubation, the chl a distribution 321 

showed a peak. The weighted mean of the 9th percentile of the chl a distribution 322 

corresponding to the N/P ratio peak value was 16.01, which corresponds to the Redfield ratio 323 

(Fig. 3. B). This optimum growth of the phytoplankton community at a N/P Redfield is not 324 

surprising (Klausmeier et al., 2004) and is in agreement with the results of a recent study by 325 

Zheng et al. (2020), who showed a consumed N/P ratio of 16 in the overenriched Bohai Sea in 326 

China. However, a discrepancy from this ratio could have been expected under dystrophic 327 

input (Geider and La Roche, 2002; Glibert and Burkholder, 2011). 328 

 329 

3.3 Limitation assessment by physiological parameter 330 

 3.3.1 APA - TEP 331 

TEPchl a displayed a nonhomogenous distribution in the “high-TEPchl a concentration” groups, 332 

with C, P, N, and NSi enrichments, and in the “low-TEPchl a concentration” group, with D0, NP 333 

and PNSi enrichments (Kruskal–Wallis: χ 2 = 36.5, pvalue = 2.2x10-6; followed by the Conover 334 

test: mean p value= 5.9x10-4) (Fig. 4. A). When TEPchl a concentrations were compared to 335 

log(N/P), the minimum value of TEPchl a identified by the regression function corresponded to 336 
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an N/P ratio of 26.42, diverting from this minimum the function rise up at low and high N/P 337 

values (Fig. 4. B). 338 

The same approach was applied to the APAchl a dataset. Data analysis of APAchl a (Kruskal–339 

Wallis: χ 2 = 16.78, pvalue = 1.0x10-2; followed by the Conover test: mean pvalue= 3.0x10-4) 340 

highlighted two groups: “high APAchl a” corresponding to C, N, NSi enrichments and “low 341 

APAchl a” corresponding to D0, P, NP and PNSi enrichments (Fig. 4. C). When compared to the 342 

log(N/P ratio), the minimum value of APAchl a of the regression function, which resembled a 343 

parabola, corresponded to an N/P ratio of 16.26, diverting from this minimum, the function rose 344 

faster at a high N/P ratio than at a low N/P ratio (Fig. 4. D). 345 

As APA is produced by phytoplankton and prokaryotes to convert organic P into accessible 346 

inorganic P (Falkowski and Raven, 1998; Lin et al., 2016), it is used as an indicator of P 347 

limitation (Serre-Fredj et al., 2021; Tanaka et al., 2006). Enrichment without P addition (e.g., 348 

C, N and NSI) displays a higher APA value, which is in agreement with Elser and Kimmel 349 

(1986). Surprisingly, no difference was found between the D0 value of APA and the APA 350 

measured for P, NP and PNSI enrichments. This result may contradict a potential P limitation. 351 

Even after sustaining P, APA levels may remain high due to internal storage of the alkaline 352 

phosphatase enzyme (Litchman and Nguyen, 2008). 353 

When compared to the N/P ratio values, the increase in APA at a low N/P (i.e., N-limited) ratio 354 

can be disconcerting but has already been reported in the literature (Kuenzler and Perras, 1965). 355 

APA production can be triggered by N limitation (Kuenzler and Perras, 1965) or change as a 356 

function of the community structure (Lin et al., 2015; Yuan et al., 2017). Our results show that 357 

a high level of APA may reveal an unbalanced N/P ratio rather than being an absolute indicator 358 

of P limitation. 359 

TEPs are indicators of carbon excretion (Claquin et al., 2008; Klein et al., 2011) and could be 360 

used as a metabolic overflow of carbon under nutrient limitation. Although Claquin et al. (2008) 361 
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showed that TEPs are also produced during balanced growth, in the literature, an increase in 362 

TEP production has been reported to be associated with N limitation (Beauvais et al., 2003; 363 

Corzo et al., 2000; Deng et al., 2016), with P limitation (Pandey and Pandey, 2015) and with 364 

variations in the N/P ratio (Engel et al., 2015; Mari et al., 2005). Our results are consistent with 365 

these hypotheses, suggesting that digressing from a balanced N/P ratio (i.e., N/P = 16) increases 366 

TEP production. Only the addition of at least N and P appeared to reduce TEP production. All 367 

other partial enrichments (C, N, P and NSi) increased TEP, which is consistent with the nutrient 368 

limitations of the phytoplankton community we identified in this study. 369 

Some exceptions to this general trend were observed. During the 10th (16/09/2019) incubation, 370 

a high concentration of TEPs was associated with an N/P ratio near the Redfield ratio. High 371 

TEP concentrations are frequently observed at the end of summer due to increased 372 

phytoplankton biomass (Parinos et al., 2017; Serre-Fredj et al., 2021), and Claquin et al. (2008) 373 

showed that under balanced growth, an increase in temperature was associated with an increase 374 

in TEP production by diatoms. The high value of TEPs in the 10th incubation could be caused 375 

by a high initial stock of TEPs in the water sample because of a bloom of Lepidodinium 376 

chlorophorum (Serre-Fredj et al., 2021), a huge TEP producer (Claquin et al., 2008), which 377 

occurred two weeks before (Serre-Fredj et al., 2021). 378 

 379 

The physiological response of the phytoplankton community, illustrated here by APA and TEPs, 380 

supports the hypothesis of the optimum balance of the N/P ratio of approximately 16, as the 381 

addition of balanced nutrients reduces the values of both physiological indicators. In addition, 382 

the dynamics of both indicators (APA and TEPs) confirmed the secondary role played by Si 383 

inputs in the bioassays. 384 

 385 

3.3.2 Maximun quantum efficiency of photosystem II (Fv/Fm) 386 
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The Fv/Fm in the bioassays ranged from 0.19 to 0.62. These values display intraincubation 387 

patterns that distinguish the two groups. In 9 out of 13 incubations (70%), complete enrichment 388 

showed the highest values among incubation, resulting in PNSI being a separate group 389 

(Kruskal–Wallis: χ2 = 20.6, p value = 3.8x10-4, Conover: mean = 2.2x10-3). In all other cases, D0 390 

displayed the maximum value but was not significantly different from the other enrichments 391 

(Fig. 5. A). In addition to influencing the biomass or physiology of the bulk community, 392 

enrichment with a different stoichiometry affects the structure (Piehler et al., 2004), growth 393 

(Watanabe et al., 2017) and photosynthesis (Song et al., 2019) of the phytoplankton community 394 

(Serre-Fredj et al., 2021). A decrease in the maximum quantum yield of photosystem II (Fv/Fm) 395 

has been associated with many factors, including temperature (Zhang et al., 2012), parasite 396 

attacks (Park et al., 2002) and particularly nutrient limitation (Behrenfeld et al., 2004; Claquin 397 

et al., 2010). Here, the addition of both N and P increased this physiological indicator status in 398 

most cases, which is in accordance with the APA and TEP dynamics. 399 

 400 

3.5 Phytoplankton community 401 

The concentration of Synechococcus dropped in most incubations regardless of the enrichment. 402 

NP enrichment was still identified as a separate group (Kruskal–Wallis: χ2 = 16.8, pvalue = 403 

7.8x10-3, Conover: mean = 4.4x10-3) due to the high concentration of Synechococcus measured 404 

in the final (from the 15th -16/06/2020 to the 19th – 12/10/2020) incubations, with a maximum 405 

of 8.9x104 cells.cm-3 in the 19th incubation (Fig. 5. B). 406 

The concentration of picoeukaryotes appeared to be affected over time, and PNSI enrichment 407 

was identified as a separate cluster due to the high concentration of this population (Kruskal–408 

Wallis: χ2 = 22.3, pvalue = 4.0x10-4, Conover: mean = 5.2x10-4), as the maximum value was 409 

1.7x105 cells.cm-3 in the 4th incubation, PNSI enrichment (Fig. 5. C). Nanoeukaryotes followed 410 

exactly the same pattern as picoeukaryotes, with PNSI enrichment identified as a separate 411 
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population (Kruskal–Wallis: χ2 = 25.2, pvalue = 1.3x10-4, Conover: mean = 3.6x10-3). The pattern 412 

of cryptophytes was less certain, depending on the incubation, the maximum value could be 413 

reached by all enrichments, nonetheless, NP was highlighted as a separate group (Kruskal–414 

Wallis: χ2 = 20.0, pvalue = 9.3x10-4, Conover: mean NP= 4.4x10-3, mean PNSI= 2.3x10-3 ), as the 415 

Synechococcus-normalized value of cryptophytes was high in the final incubations (15th to 19th) 416 

(Fig. 5. C). 417 

The concentration of microphytoplankton followed a pattern similar to that of the 418 

nanoeukaryotes, and PNSI was again identified as a separate group (Kruskal–Wallis: χ2 = 419 

25.0, pvalue = 1.1x10-4, Conover: mean = 5.0x10-4) (Fig. 5. D). The size structure of the 420 

phytoplankton population must be taken into account, as PNSi enrichment allowed maximum 421 

growth of the picoeukaryotes, nanoeukaryotes and microphytoplankton in most of the 422 

incubations. With the exception of the 15th and 16th incubations, Synechococcus seemed 423 

unable to grow in these conditions. This result could be a bias caused by the closed system, 424 

which could increase predatory pressure associated with a higher death rate of this taxon 425 

(Agawin et al., 2000). Another possible hypothesis is that larger cells, such as diatoms, 426 

compete more successfully with high enrichment pulses than Synechococcus and cryptophytes 427 

(Van Meerssche and Pinckney, 2019). 428 

 429 

3.6 Multivariate analysis and overall trend 430 

Figure 6 shows the multivariate results of the last six incubations (see Section 2.4 for 431 

precision on the choice). The two dimensions of the PCA explained up to 66.3% of the total 432 

variance and are summarized by a few statements (Fig. 6. A): The chl a concentration was 433 

positively correlated with the concentration of picoeukaryotes, nanoeukaryotes and 434 

microphytoplankton  (i). APA, TEPs, RUE and the proportion of picoeukaryotes were 435 

positively intercorrelated and negatively correlated with chl a (ii). The proportions of 436 
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microphytoplankton and nanoeukaryotes were opposite but not correlated with any of the 437 

other parameters (iii). This pinpoints a change in the phytoplankton community linked with 438 

nutrient enrichment and the N/P ratio, as limitations seem to favour populations with higher 439 

proportions of picoeukaryotes, while replete and balanced conditions favour nanoeukaryote 440 

and microphytoplankton populations. 441 

Cluster analysis identified three groups (Fig. 6. B & C): The first group was only composed of 442 

C, N, P and NSi enrichments, the second group was composed of NP and PNSi enrichments, 443 

with the exception of P enrichment in the 13th incubation, and the last group was composed of 444 

all the enrichments in the 19th incubation already highlighted as an extreme event of massive 445 

bloom. 446 

 447 

3.7 Link between RUE and the phytoplankton community 448 

RUE is usually calculated as chl a or the primary production divided by N or P (Filstrup et al., 449 

2014; Olli et al., 2015; Ptacnik et al., 2008), but our result highlights the fact that N and P 450 

colimitation and the stoichiometry constraint summarized in the N/P ratio are important 451 

regarding the RUE (Frank et al., 2020). Moreover, both the increase in chl a and phytoplankton 452 

physiological parameters (TEPs and APA) suggest that the Redfield ratio is optimum for 453 

community uptake. In our case, only accounting for nutrients would have involved loss of 454 

information and an important skew due to a colimited system. The equation of RUENP we use 455 

accounts for both the quantity of nutrients—by directly using the concentration—and the 456 

balance of nutrients—by prioritizing the limiting nutrient. This kind of model, which resembles 457 

multiple resource use efficiency (mRUE), could be more effective and help understand both 458 

resource use efficiency and ecosystem production (Han et al., 2016). 459 

The relation between RUENP and the cytometric size structure of the phytoplankton population 460 

(Figure 7) pointed out two trends: the proportion of picoeucaryotes was negatively correlated 461 
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(r2 = 0.13, F = 13.7, pvalue= 3.8x10-4) with RUENP (Fig. 7. A), while both proportions of the 462 

largest phytoplankton classes, nanoeukaryotes (r2 = 0.13, F = 11.3, pvalue= 1.2x10-3) and 463 

microphytoplankton (r2 = 0.27, F = 29.2, pvalue= 6.8x10-7), were positively correlated with 464 

RUENP (Fig. 7. B & C). 465 

Concerning the RUE, we provide evidence for a relationship between size-structure groups and 466 

RUENP, where smaller classes of phytoplankton (< 2 µm) are negatively correlated and higher 467 

classes (> 2 µm) are positively correlated. RUE has been positively linked with diversity (Chai 468 

et al., 2020; Otero et al., 2020; Paczkowska et al., 2019), but to our knowledge, no information 469 

linking size structure with RUE has been reported to date. The use of size class instead of classic 470 

diversity may be more powerful, as cell size largely controls the efficiency of the nutrient uptake 471 

rate (Zaoli et al., 2019). 472 

Furthermore, the coastal environment with rich inputs found in the Bay of Seine creates a 473 

dynamic nutrient system with nutrient pulses (e.g., inputs from local rivers). Larger cells can 474 

have 200,000 and 20,000 times more biovolume and carbon/cell volume, respectively, than 475 

smaller cells (Harrison et al., 2015), and larger cells may grow better and especially have 476 

more storage capacity, which helps them maintain a highly dynamic system (Malerba et al., 477 

2018). Their storage capacity and luxury uptake of carbon may also render night-time nutrient 478 

uptake possible (Gardner-Dale et al., 2017), and larger cells may have even better carbon 479 

acquisition (Malerba et al., 2021). These characteristics balance the lower nutrient uptake of 480 

picoeukaryotes (Hein et al., 1995; Probyn and Painting, 1985). In this study, colimitation was 481 

observed in the incubations. The balance of a Redfield N/Pconsumed ratio has been highlighted 482 

as optimum for increased biomass of the phytoplankton population, and both APA and TEPs 483 

pointed to the same ratio needed to reduce nutrient stress. No other single resource use 484 

efficiency can fulfil these needs compared to RUENP. This study provides evidence that using 485 

stoichiometry (Frank et al., 2020) and multiple resources in resource use efficiency (mRUE) 486 
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(Han et al., 2016) can advance our understanding of resource use efficiency and ecosystem 487 

production. Furthermore, the relationship highlighted between RUE and size community 488 

structure should help to understand and establish ecosystem trajectories as a function of 489 

management programs to reduce nutrient inputs in coastal ecosystems.490 
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4. Conclusion 491 

 492 
This study investigated the effect of nutrient composition on the growth, population structure, 493 

and physiological status of phytoplankton using bioassays. The N/P ratio was shown to be the 494 

main driver of the phytoplankton community composition and physiology in the Bay of Seine, 495 

even if both a balanced (e.g., N/P = 16) and a nutrient stock are needed to maintain 496 

phytoplankton growth. The nutrient balance of the inputs affects both the physiological and 497 

population structure of phytoplankton. To fulfil our requirements, we proposed a new RUENP 498 

approach, which showed a correlation with the size structure of the phytoplankton 499 

community. 500 

  501 
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