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A B S T R A C T

Proteins are essential to nearly all cellular mechanism and the effectors of the cells ac-
tivities. As such, they often interact through their surface with other proteins or other
cellular ligands such as ions or organic molecules. The evolution generates plenty of
different proteins, with unique abilities, but also proteins with related functions hence
similar 3D surface properties (shape, physico-chemical properties, . . . ). The protein
surfaces are therefore of primary importance for their activity. In the present work, we
assess the ability of different methods to detect such similarities based on the geome-
try of the protein surfaces (described as 3D meshes), using either their shape only, or
their shape and the electrostatic potential (a biologically relevant property of proteins
surface). Five different groups participated in this contest using the shape-only dataset,
and one group extended its pre-existing method to handle the electrostatic potential.
Our comparative study reveals both the ability of the methods to detect related proteins
and their difficulties to distinguish between highly related proteins. Our study allows
also to analyze the putative influence of electrostatic information in addition to the one
of protein shapes alone. Finally, the discussion permits to expose the results with re-
spect to ones obtained in the previous contests for the extended method. The source
codes of each presented method have been made available online.
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1. Introduction1

Proteins are key molecular effectors at the cellular level.2

Proteins are linear assemblies of amino-acids that fold in spe-3

cific, energy-driven 3D structures [1, 2] linked to their activity.4

Identifying similarities within protein structures is therefore of5

tremendous importance in various fields, from biochemistry to6

drug design. Numerous methods have been dedicated to struc-7

tural similarity search of proteins in structural bioinformatics,8

that mainly rely on the analysis of the 3D point clouds defined9

by the 3D coordinates of their individual atoms [3, 4, 5, 6, 7].10

These methods are mostly based on the conserved core structure11

of proteins, and therefore, may be inefficient to detect proteins12

sharing similar surface. The protein surface is a higher-level13

description of the protein structure that abstracts the underly-14

ing protein sequence, structure and fold into a continuous shape15

with geometric and chemical features that fingerprint its inter-16

actions with the other molecules of its environment (solvent,17

ligands, proteins, nucleic acids, . . . ) [8]. Methods able to detect18

protein surficial similarities are then of major importance.19

Only a limited number of methods have been proposed so20

far:21

• Sael et al. use 3D Zernike descriptors to detect either22

global or local similarities between protein’s surfaces [9].23

This method is able to use surficial physico-chemical prop-24

erties like the electrostatic potential or the hydrophobic-25

ity [10].26

• MaSIF (molecular surface interaction fingerprinting) is a27

geometric deep learning framework that allows to finger-28

print biomolecular surfaces [11]. Both geometric and29

chemical features are extracted and embedded into nu-30

merical vectors which is subsequently processed in an31

application-dependent manner.32

• FTIP (Farthest point sampling-enhanced Triangulation-33

based Iterative-closest-Point) is a global protein surface34

comparison method that uses the Farthest point sampling35

method to extract a subset of protein surfaces, and then36

uses a triangulation-based efficient Iterative-closest-Point37

algorithm to align these so-called feature-points [12].38

• BioZernike [13] adopts a slightly different approach: in-39

stead of using the 3D point cloud formed by the atoms40
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Fig. 1. Structural similarity between the protein structure queries. The
TM-score (in the (0, 1] range) measures the topological similarity between
two protein structures: the higher the TM-score, the more similar the two
structures. Scores below 0.17 correspond to unrelated proteins, while those
above 0.5 usually indicate two structures having the same fold [15].

coordinates, it uses the density distribution. A 3D Zernike 41

moment normalization procedure is applied to orient the 42

density volumes to be compared, allowing for for fast re- 43

trieval of proteins/protein assemblies. 44

The aim of this track is therefore to assess the performance of 45

currently available methods and to stimulate the development of 46

novel methods. To this end, the dataset encompasses (1) A va- 47

riety of protein domains, with some of them closely related, to 48

query the dataset. (2) A dataset of experimental structures that 49

contain one or more domains. (3) A few protein shapes cor- 50

responding to protein that contains two of the query domains. 51

(4) Two versions of the same dataset, one made of the protein 52

shapes only, and the other with an additional physico-chemical 53

property, the electrostatic potential, encoded along the shapes. 54

We selected this surficial physico-chemical feature as it is the 55

main driving force in many biological recognition processes, 56

such protein-ligand and protein-protein interactions [14]. In the 57

present work, we detail the dataset proposed by the challenge 58

organizers to the participants and how it differs from the previ- 59

ously proposed datasets in Section 2. In Section 3, we describe 60

the 5 methods submitted to the contest. The evaluation met- 61

rics are briefly introduced in Section 4, and the performance of 62

the methods is presented in Section 5. Finally, we discuss the 63

outcomes of the different submitted methods in Section 6. 64

2. The Dataset 65

2.1. Constitution of the SHREC’21 dataset 66

The SHREC’21 protein dataset is based on the Pfam 33.1 67

database [16]. Basically, this database classifies protein se- 68

quences into domains and families, that can be grouped into 69

clans whenever they are evolutionarily related. Protein do- 70

mains of structures from the Protein Data Bank (PDB [17, 18]) 71
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Fig. 2. The Upset Plot of ten selected Pfam domains in SHREC2021 chal-
lenge datasets. The dataset is composed of 554 individual shapes, of which
22 bears two of the domains of the dataset.

can therefore be attributed to a Pfam domain and, possibly,1

a clan. To build up the track dataset, we relied on this no-2

tion of domain, and manually selected 10 Pfam domains: the3

SH2 domain (PfamID PF00017), the SH3 domain (PfamID4

PF00018), the variant SH3 domain (SH3_2, PfamID PF07653),5

the PDZ domain (PfamID PF00595), the PDZ_6 domain6

(PfamID PF17820), the peptidase family M50 (m50, PF02163),7

the bromodomain family (PF00439), the DNA-binding domain8

of the STAT protein (STAT-binding, PF02864), the PHD-finger9

domain (PfamID PF000628), and the C2H2 Zinc-finger domain10

(zf-C2H2, PfamID PF00096).11

For each selected domain, all corresponding structures from12

the PDB were listed, and the best resolution structures were re-13

trieved to serve as a query for the track. When applicable, the14

NMR (Nuclear Magnetic Resonance) structures were assigned15

an arbitrary resolution of 2.25 Å [19], while structures with no16

resolution were discarded. The residues corresponding to the17

Pfam domains were then extracted from the selected structures18

when necessary, so that the selected domains were left alone.19

For example, only the DNA-binding domain of the STAT (Sig-20

nal Transducer and Activator of Transcription) protein was kept21

as a query, its others domains being discarded.22

The remaining structures were filtered according to their23

Uniprot [20] identifier, and duplicates were discarded to (1) En-24

sure a diversity of sequence structures among the dataset.25

(2) Limit the dataset size to a tractable size given the track26

timeline. Finally, only the best resolution structures for each27

Uniprot entry were kept. When NMR structures were selected,28

only the first model was considered. Unlike the query struc-29

tures, we kept the other domains present in these structures that30

eventually constitute the dataset. Therefore, many dataset struc-31

tures display several domains, at least one of which is one of the32

query domains.33

For all structures (queries and dataset structures), we re-34

moved all hetero-atoms, and unwanted chains. The resulting 35

PDB structures were then protonated using pdb2pqr [21], us- 36

ing propka [22, 23] to compute the pKa values of the ionizable 37

groups at pH=7.2. The solvent-excluded surface of all proto- 38

nated structures were computed using the default parameters of 39

EDTSurf [24, 25] except that inner cavities were discarded. We 40

then computed the electrostatics using APBS suite [26], and 41

used the multivalue to compute the electrostatic potential at the 42

mesh vertices locations. Two datasets were then assembled, one 43

with only the protein surface shapes (shape-only dataset) and 44

one combining the protein surface shapes and electrostatics val- 45

ues (shape+electrostatic dataset). Similarly, two sets of query 46

surfaces were produced (shape-only and shape+electrostatic). 47

Each dataset (shape-only and shape+electrostatic) includes 554 48

molecular surfaces which were made available to the track par- 49

ticipants, along with the 2 sets of 10 queries, on the track web– 50

page (http://shrec2021.drugdesign.fr). 51

Regarding the dataset, it is important to note that SH3 52

and SH3_2 domains were annotated as similar according to 53

HHsearch (a tool commonly used to detect homologous pro- 54

teins [27]), as well as the PDZ, PDZ_6 and m50 domains. We 55

present in Figure 1 the TM-scores matrix for all queries of the 56

dataset. A TM-score above 0.5 indicates that the two structures 57

are likely to share the same topology, while unrelated structures 58

are usually associated to TM-scores below 0.17 [28]. SH3 and 59

SH3_2 query structures show a TM-score of 0.84, while, PDZ 60

and PDZ_6 query structures show a TM-score of 0.79. Surpris- 61

ingly, the m50 query structure only has a TM-score of 0.28 and 62

0.32 with PDZ and PDZ_6 structures, respectively. A visual in- 63

spection of these structures confirmed that the peptidase M50 is 64

topologically different from both the PDZ and PDZ_6 domains: 65

while the peptidase M50 is mainly α-helical, PDZ and PDZ_6 66

are mixed α−β proteins. Overall, most query structures present 67

an intermediate topological similarity with all other queries, 68

as evidenced by the fact that all TM-scores range from 0.19 69

to 0.47, except for the aforementioned pairs of classes (SH3 / 70

SH3_2 and PDZ / PDZ_6). 71

Finally, as the dataset encompasses multi-domain proteins, 72

22 dataset proteins display two of the query domains. Namely, 73

9 proteins of the dataset encompass both a SH2 and a SH3 do- 74

mains, 6 proteins encompass both a SH2 and a Stat-binding do- 75

mains, 4 proteins encompass both a bromodomain and a PHD- 76

finger domain, 2 proteins encompass a PDZ_6 and a peptidase 77

family M50 domains, and one structure encompass a PDZ and 78

a peptidase m50 domains. The final structure of the dataset and 79

the size of each class is summarized in Figure 2. 80

2.2. Comparison to previous SHREC datasets on proteins 81

Compared to previous SHREC datasets dealing with protein 82

structures or surfaces [29, 30, 31, 32, 33, 34], the SHREC’21 83

protein track dataset is characterized by three main aspects : 84

(1) The presence of two datasets representing the same set of 85

proteins, one shape-only and one shape+electrostatic dataset. 86

(2) The close evolutionary relationship of some of the query 87

domains, further characterized by a similar topology (Figure 1). 88

(3) The intermediate similarity of the domains topologies (Fig- 89

ure 1). And (4) The use of individual domains to query a dataset 90

of single- as well as multi-domain proteins shapes. 91
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The main novelty of the SHREC’21 track is arguably the1

availability of protein surfaces with electrostatic values, which2

has been shown to improve the retrieval performance of protein3

surfaces [11, 35]. This additional feature might therefore allow4

to better distinguish structurally related proteins based on their5

surficial properties and improve the methods’ performance.6

2.3. Challenge proposed to the participants7

SHREC, or 3D Shape Retrieval Challenges, are challenges8

primarily organized in order to evaluate the effectiveness of 3D-9

shape retrieval algorithms. A group organizes a challenge by10

building up a dataset, then proposes the challenge publicly to11

the community, and finally gathers, analyses and verifies the re-12

sults. The theme of the challenge may vary from one to another,13

but all challenges take place in a limited time, which ranges14

from 1 to 1 ½ months.15

In our contest, the participants were asked, given each of the16

10 query surfaces, to retrieve the molecular surfaces of pro-17

teins from the dataset that encompass the same domain as the18

query. Each query-to-dataset-surface distance was expected to19

be expressed as a dissimilarity score. The results were there-20

fore 10 × 554 matrices of dissimilarity scores. Each participant21

was allowed to submit one dissimilarity matrix for each dataset:22

one matrix for the shape-only dataset, and one matrix for the23

shape+electrostatic dataset.24

3. Participants and methods25

Among the seven groups that initially registered to this track,26

only 5 were able to produce the results in time and returned a27

shape-only dissimilarity matrix. Only one method (3DZD, see28

3.1) returned a dissimilarity matrix for the shape+electrostatic29

dataset. The other groups were not able to produce a satisfying30

training dataset or willing to develop their algorithm to han-31

dle the electrostatics values. In the following subsections, each32

group describes their new, respective methods.33

3.1. Network trained with encoded 3DZD (3DZD) by Tunde34

Aderinwale, Charles Christoffer, Woong-Hee Shin, Genki35

Terashi, Xiao Wang & Daisuke Kihara36

Our group submitted two (shape-only and37

shape+electrostatic) dissimilarity matrices of the target pro-38

teins to the 10 query proteins provided by the organizers. These39

methods are based on the 3D Zernike Descriptor (3DZD).40

3DZD is the rotation-invariant shape descriptor derived from41

the coefficients of 3D Zernike-Canterakis polynomials [36].42

3.1.1. Summary of the 3DZD method43

Similar to SHREC’20 [34], our group trained two types of44

neural network to output a score that measures the dissimilarity45

between a pair of protein shapes. Briefly, the first framework46

(the Extractor model) is structured into multiple layers: an en-47

coder layer with 3 hidden units of size 250, 200 and 150, a fea-48

ture comparator layer which computes the Euclidean distance,49

cosine distance, element-wise absolute difference and product,50

and a fully connected layer with 2 hidden units of size 100 and51

50. There are multiple hidden units in each layer, and our group52

uses the ReLu activation function in all except the output of the 53

fully connected layer where the sigmoid activation function is 54

used to output the probability that the two proteins belong to the 55

same protein– or species–level in the SCOPe dataset classifica- 56

tion [37, 38]. The second framework (the end–to–end model) 57

is similar to the first except the feature comparator layer is re- 58

moved and the output of the encoder is directly connected to the 59

fully connected layer. 60

The network is trained on the latest SCOPe dataset of 61

259,385 protein structures. 2,500 protein structures were set 62

aside for network validation. Proteins in Class I (Artifacts) were 63

removed. Each of the two network frameworks is trained with 64

two datasets. The first dataset is 3DZDs of the surface shape of 65

proteins and the second one is feature vectors that concatenate 66

3DZD of shape and 3DZD of the electrostatic properties. 67

Our group examined the performance of the networks on the 68

validation dataset to determine which models to use. For the 69

shape-only dataset, we submitted predictions generated by the 70

Extractor model. For the shape+electrostatic dataset, we sub- 71

mitted the average predictions between the Extractor model and 72

the end–to–end model. 73

For each protein in the provided dataset, our group performs 74

a pre–processing step as follows: (1) The PLY mesh data file is 75

converted to a volumetric skin representation (Situs file) where 76

points within 1.7 grid intervals are assigned with values that are 77

interpolated from the mesh [9]. For the electrostatic features, 78

the interpolated values are the potentials at the mesh vertices. 79

For the shape feature, a constant of 1 is assigned to grids that 80

overlap with the surface. (2) The resulting Situs file is fed into 81

the EM-Surfer pipeline [39] to compute 3DZD. 82

3.1.2. Runtimes and computational cost 83

It takes approximately 12–13 min to pre-process each file. 84

Generating 3DZD took ~8.00 s on average for each protein 85

on an Intel® Xeon® CPU E5-2630 0 @ 2.30GHz. The train- 86

ing of each models took 12 h. Dissimilarity prediction be- 87

tween two proteins using the trained model took ~0.22 s on av- 88

erage on a Nvidia® Titan X GPU. The averaging of the two 89

matrices was almost instant and negligible. The code is avail- 90

able at the following url: https://github.com/kiharalab/ 91

shrec_2021_shape_retrieval. 92

3.2. ProteinNet: Deep learning based protein characterization 93

from 3D point clouds (ProteinNet) by Halim Benhabiles, 94

Karim Hammoudi, Adnane Cabani, Feryal Windal&Mah- 95

moud Melkemi 96

Our group proposes a deep learning approach to calculate 97

a protein descriptor from its 3D point cloud. To this end, we 98

developed a variant of PointNet [40] which is a point cloud 99

deep architecture dedicated for 3D classification and segmen- 100

tation. We adapted this architecture in order to learn an affine 101

transformation matrix that allows to align the coordinates of 102

the input 3D protein point cloud into a canonical representa- 103

tion. The new representation maintains interesting properties 104

demonstrated in [40], including invariance to rigid geometric 105

transformations as well as point order permutations. The Pro- 106

teinNet deep architecture is illustrated in Figure 3. More specif- 107

ically, the architecture is based on a PT-Net module (Protein 108
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Fig. 3. ProteinNet deep architecture for protein point cloud transformation into canonical representation. Step (1): affine transformation matrix estimation.
Step (2): protein point cloud transformation using the estimated affine matrix. Step (3): similarity calculation between the original protein point cloud (the
input) and its transformed point cloud. Step (4): cosine similarity loss calculation between the original input protein point cloud and its transformation;
and back–propagation over the network to optimize the estimation of the affine transformation matrix.

Transformer Network) which is inspired from the T-Net (Trans-1

former Network) module of the original PointNet architecture.2

The PT-Net module is trained to predict an affine transforma-3

tion matrix M that is constrained to be close to an orthogonal4

matrix, namely |(M.Mt)− I| = 0 (step 1 in Figure 3). The matrix5

M is used to transform the input protein into its canonical repre-6

sentation (step 2 in Figure 3). A cosine similarity loss between7

the original protein and the transformed one is then calculated8

(step 3 in Figure 3) in order to back-propagate the error over the9

network (step 4 in Figure 3) and optimize the matrix M.10

3.2.1. PT-Net module11

The module is composed of a sequence of 3 convolution12

blocks (32, 64 and 512 layers) followed by a global max pool-13

ing layer and 3 successive dense layers (256, 128 and 9). As14

shown in Figure 3, each convolution block as well as the dense15

layers (except the last one) undergo a batch normalization and a16

tangent hyperbolic activation function. The last dense layer of17

9 units is reshaped to output the (3 × 3) M matrix (see details18

in [40]).19

3.2.2. Data preparation and architecture training20

All the proteins of the dataset of the track have been sampled21

to 2,048 points using a Poisson disk sampling technique [41]22

and then normalized into a zero-center unit sphere based on23

their respective minimum bounding spheres [42]. The archi-24

tecture has then been trained using a batch size of 16 on 80% of25

the dataset over 150 epochs and validated on the remaining 20% 26

of the data. The training data were augmented on-the-fly (dur- 27

ing the training process) by adding some geometric noise (e.g. 28

random displacement of point coordinates in a limited interval). 29

3.2.3. Protein feature extractor 30

The trained ProteinNet model has then been exploited to cal- 31

culate a protein feature descriptor, for each input protein, by ex- 32

tracting its intermediate Global Max Pooling hidden layer. This 33

descriptor corresponds to a 1-dimension vector of 512 values. 34

3.2.4. Dissimilarity matrix computation 35

The dissimilarity matrix between the ten protein shape 36

queries and the set of 554 protein shapes has been calculated 37

using Euclidean distance between their respective 512 feature 38

vectors. 39

3.2.5. Runtimes and computational cost 40

This framework has been developed in Python 3.7.6 using 41

different libraries, namely Open3D 0.8.0.0, and Keras 2.2.4-tf 42

on a TensorFlow-GPU 2.1.0 backend. The experiments have 43

been conducted on an Intel Xeon® Gold® 5118 CPU@2.30 44

GHz with 128 GB of memory and NVIDIA® Tesla® T4 GPU 45

with 16 GB of memory. The running times in sof each stage 46

performed on CPU are reported in Table 1 for one protein. Ta- 47

ble 2 shows the training times of the ProteinNet model trained 48

on GPU. The code is available at the following url: https: 49

//github.com/Benhabiles-JUNIA/ProteinNet. 50
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Table 1. Running times in s using CPU for each stage of the ProteinNet framework obtained for one protein.

Point cloud maximum and
minimum sizes of two

proteins

Point cloud sampling (2,048)
and normalization

Feature descriptor (512)
calculation of one protein

Distances from one protein to
all protein dataset (554

proteins)

582,496 points 1.14 0.005 0.00437,658 points 0.9

Table 2. Running times in s using CPU for each stage of the ProteinNet
framework obtained for one protein.

Deep learning model ProteinNet

Training data size 499
Epochs 150

Training time (s) 155

3.3. Fisher Kernel agglomerated local Augmented Point Pair1

Feature Descriptors, trained with Gaussian Mixture2

Model (APPFD-FK-GMM) by Ekpo Otu, Reyer Zwigge-3

laar, David Hunter & Yonghuai Liu4

Our group presents a novel APPFD-FK-GMM 3D shape re-5

trieval method (see Figure 4) based on Fisher Kernel (FK) and6

Gaussian Mixture Model (GMM) agglomeration of the Aug-7

mented Point-pair Feature Descriptor (APPFD) [43]: a 3D8

key point shape descriptor that robustly captures the physi-9

cal geometric characteristics of 3D surface regions. Previous10

APPFD binning technique involves bucketting each of the 6-11

dimensional features of the APPFD into a multi-dimensional12

histogram with at least 7 bins in each feature-dimension, result-13

ing to approximately 76 = 117649-dimensional final feature-14

vector (APPFD), which is very high-dimensional final descrip-15

tor.16

In this work, we contribute a simpler approach, where each17

of the 6-dimensional feature is binned into a 1-dimensional18

histogram with 35 bins for each feature-dimension to pro-19

duce a 210-dimensional local descriptor (APPFD) for every key20

point or local surface patch (LSP). Finally, the locally com-21

puted APPFDs are agglomerated into a compact code called22

the Fisher Vector (FV) with 4210 dimensions, which is L2 and23

power-normalized, and represents a single protein model, using24

the FK and GMM [44] framework.25

The goal of the APPFD-FK-GMM method/contribution is to26

provide a straight-forward, efficient, robust, and compact repre-27

sentation, describing the geometry of 3D protein surfaces, with28

a knowledge-based (i.e. non-learning) approach. While a single29

protein surface in this challenge contains an average of 120, 00030

vertices and 200, 000 triangular faces, our implementation ad-31

dress this very high data-structure by reducing 3D protein sur-32

face representation to 3, 500 points sample.33

3.3.1. Summary of The APPFD-FK-GMM Method34

Our method involves two main stages: (1) Computing local35

APPFDs for selected key points on 3D protein surface. (2) Key36

points APPFDs aggregation with FK and GMM described be-37

low. Figure 4 shows the processing pipeline of the APPFD-38

FK-GMM algorithm with complete implementation details pro- 39

vided in [44]. The reader is referred to [45], for further details 40

regarding this method. 41

Stage (1) - Computing Local APPFDs. Following key points 42

(pki ) determination for each 3D protein surface, represented 43

as point cloud (P), the 4-dimensional feature, f1 = (α, β, γ, δ) 44

in [46] is augmented with a locally-extracted 2-dimensional fea- 45

ture: f2(pi, p j) = (ϕ, θ) for every possible combination of point 46

pair, pi, p j (without their estimated normals, ni, n j) in the lo- 47

cal surface patch (LSP), {Pi, i = 1 : K} around each key point 48

{pki , i = 1 : K} in Ps, where K is the number of key points. 49

The extraction of f2 (see Figure 5) is because f1 is not robust 50

enough to capture the entire geometric details of the underlying 51

surface, whereas, the PPF approach opens up possibilities for 52

additional feature space. 53

The angular projections: θ and ϕ in Figure 5 are derived by 54

taking the scalar products of (
−→
S ·
−→
V1) for ∠1, and (

−→
S ·
−→
V2) for ∠2 55

about a point pi in a given LSP. Mathematically, scalar products 56

defined in this manner are homogeneous (i.e. invariant) under 57

scaling and rotation. Therefore, f2 is considered rotation and 58

scale invariant for 3D shapes under rigid and non-rigid trans- 59

formations [34]. 60

Finally, a 6-dimensional f3 = ( f2 + f1) are locally obtained 61

thus: f3(pi, p j) = ( f2(pi, p j), f1(pi, p j)) = (ϕ, θ, α, β, γ, δ), and 62

binned into a 1-dimensional histogram with bins = 35 in each 63

feature-dimension, normalized and concatenated to give 35 × 6 64

= 210-dimensional single local APPFDs per LSP. 65

66

Stage (2) - Key points APPFDs Aggregation with FK and GMM. 67

Here, the final descriptor (i.e. fisher-vector, FV) computation 68

approach involves an initial step of training a GMM, given ag- 69

gregated key points local APPFDs for all database 3D objects, 70

then FK is applied on the trained model and a single protein’s 71

local APPFDs to derive a global signature (APPFD-FK-GMM) 72

for the protein surface (see Figure 4). 73

3.3.2. Runtimes and computational cost 74

Our group submitted a dissimilarity matrix D = [10 × 554], 75

where the entry D = [i, j] corresponds to the L2 distance from 76

ith FV in the query set to the jth FV in the collection set. 77

While implementing the APPFD-FK-GMM for this task, K 78

is specified by the parameter, vs = 0.20, which is the voxel 79

size for point cloud down-sampling, while the radius parameter, 80

r = 0.50 specifies the size of P. Regarding point cloud size, 81

P = 3, 500 points are sampled. 82

In conclusion, we present a pure Python 3.60 implementa- 83

tion code that computes the APPFD-FK-GMM method. All 84
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Fig. 4. APPFD-FK-GMM processing pipeline involving Phase 1 (fitting a GMM to all the keypoints or LSPs descriptor, i.e. local APPFDs from each 3D
protein surface and for all database protein surfaces) and Phase 2 (computing a single compact descriptor called fisher-vector (FV) for each 3D protein
by aggregating all its keypoints or local APPFDs using the fisher kernel (FK) framework and the trained GMM in Phase 1. Within each LSP around a
keypoint, six different geometric features are first extracted, and each feature-dimension is binned into a 1D histogram with 35 bins, where all histograms
are combined to form a 210-dimensional descriptor, i.e. local APPFD for each LSP. All such LSP descriptors from each 3D protein are compacted into a
4210-dimensional FV for that protein model, as in Phase 2.

Fig. 5. Local Surface Patch (LSP), Pi with pairwise points (pi, p j) as
part of a surflet-pair relation for (pi, ni) and (p j, n j), with pi being
the origin. θ and ϕ are the angles of vectors projection about the
origin, pi. θ is the projection angle from vector ⟨pi − p j⟩ to vector
⟨pi − pc⟩ while ϕ is the projection angle from vector ⟨pi − p j⟩ to
vector ⟨pi − l⟩. The LSP centre is given by pc, keypoint is given as
pki where i = 2. Finally, l is the vector position of pki − pc. [34]

experiments were carried out under Windows® 7 desktop PC 1

with Intel® Core® i7-4790 CPU @ 3.60GHz, 32GB RAM. It 2

takes an average of 30 s to compute the APPFD-FK-GMM. The 3

implementation code is available at the following url: https: 4

//tinyurl.com/shrec21. 5

3.4. Projected Wave Kernel Signature Maps (PWKSM) by Léa 6

Sirugue & Matthieu Montès 7

This method is based on the 2D projection of the surface 8

and the Wave Kernel Signature (WKS) descriptor. Wave Kernel 9

Signature [47] is an isometric invariant descriptor that has been 10

extensively improved and used in the field of computer vision 11

[48, 49, 50, 51]. We have combined WKS with a 2D projection 12

on a unit sphere [52]. Lowering one dimension of the space 13

allows us to have a fast and dense comparison of the surface 14

while having a smaller storage size for files. 15

Descriptor calculation. In a first step, the WKS descriptor is 16

computed on the surface of the 3D object for each point of the 17
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mesh. The surface is flattened on the unit sphere using a confor-1

mal transformation [52]. Then, the 2D spherical coordinates of2

the unit sphere are converted into 2D cartesian coordinates on3

the plane [53]. A maps of size (θmax − θmin)/δ, (ϕmax −ϕmin)/δ is4

created. θmax and θmin are the maximum and minimum values of5

θ on the unit sphere and the same with ϕ, each representing an6

angle coordinate. δ is a coefficient to adapt for resolution. This7

type of projection is similar to topographic maps, that is why8

our group called this descriptor Projected Wave Kernel Signa-9

ture Maps (PWKSM). An interpolation in the space of discrete10

integers is done to densify the maps. To reduce impact of de-11

formation at the poles when converting to 2D cartesian coordi-12

nates, we computed 7 different maps with different pole orien-13

tations.14

Descriptor comparison. A dense comparison is made using15

GPGPU sum reduction technique [54] [55] [56]. Each point’s16

WKS of a PWKSM is compared to all points’ WKS of another17

PWKSM. The Earth Mover’s distance L is used to compare the18

WKS descriptor of each point. Then, the smallest distance be-19

tween a point of a first PWKSM T and all points of a second20

PWKSM V is selected. The sum of all the smallest distances21

for each point of the first PWKSM are summed to create the22

score S T . The same is done for computing S V .23

S T (T,V) =
NT∑

kT=1

min
kV

L(T (kT ),V(kV )) (1)

The final score is the average of S T and S V defined as fol-24

lows:25

S =
S T + S V

2
(2)

3.4.1. Runtimes and computational cost26

All the calculations were made on a computer based on a27

64-bit OS with an Intel® Xeon® CPU @ 2.30GHz, a Nvidia®28

Quadro® k4200 GPU with 4GB and 32GB of RAM.29

Computing the WKS took on average 9 min and 31 s. It re-30

quired on average 44 s to compute one PWKSM. The compar-31

ison of two surfaces (i.e. 7 versus 7 PWKSM) takes on aver-32

age 23 s. The code is available at the following url: https:33

//gitlab.cnam.fr/gitlab/siruguej/PWKSM.34

3.5. Graph-based learning methods for Surface-based protein35

domains retrieval (DGCNN) by Huu-Nghia H. Nguyen,36

Tuan-Duy H. Nguyen, Vinh-Thuyen Nguyen-Truong, Danh37

Le, Hai-Dang Nguyen & Minh-Triet Tran38

In this deep learning method, our group exploits the avail-39

ability of protein class labels from [35] to optimize the rep-40

resentation of protein surfaces without any additional proper-41

ties. Particularly, we designed a message-passing graph convo-42

lutional neural network (MPGCNN) with the Edge Convolution43

(EdgeConv) paradigm [57] for the protein classification objec-44

tive. Then, the latent representation of protein surfaces from45

this neural network is used for the retrieval task in this track.46

3.5.1. Data pre–processing 47

For the meshes in each 3D model of a protein surface, we first 48

sample 512 points on the surfaces of the meshes based on the 49

area of the meshes. Then, to re-assign the topological structures 50

for sampled points, we connect each nodes with their k-Nearest 51

Neighbors based on their original coordinates (k = 16). 52

3.5.2. Edge Convolution 53

In this geometry-only setting, the initial node features is the 54

coordinates of sampled points. Each protein surface is repre- 55

sented by a k-Nearest Neighbors graph generated in the pre– 56

processing step with 512 vertices (nodes). 57

The module that performs the graph message-passing func-
tion is the EdgeConv layer [57]. In the EdgeConv layer, the
information of a vertex i after layer l is calculated as follows:

xl+1
i = max j∈N h(xl

i, x
l
j) (3)

where N is the neighboring vertices of vertex i with

h(xl
i, x

l
j) = ReLU(MLP(xl

i ⊕ xl
j)) (4)

where ReLU is Rectified Linear Unit (in this implementation, 58

we used LeakyReLU—a variant of ReLU), MLP is a standard 59

multilayer perceptron (MLP), and ⊕ is the concatenation oper- 60

ator. 61

In this implementation, our group uses a dynamic variant of 62

EdgeConv instead of the standard EdgeConv described above. 63

At each Dynamic EdgeConv layer, each vertex’s k–Nearest 64

Neighbors is re-calculated in the feature space produced by the 65

previous layer, before applying the standard EdgeConv opera- 66

tion. After the graph has been recomputed, standard EdgeConv 67

operation is performed. 68

After the pre–processing phase, the vertex features first go 69

through 4 layers of Dynamic EdgeConv. The dimensions of 70

output features for each vertex after these first-4 layers are 71

64, 64, 128, and 256, respectively. Then, the outputs of these 72

4 layers are concatenated to become a 512-dimensional vector 73

for each vertex. This 512-dimension vector is then fed through 74

another Dynamic EdgeConv layer, creating the output vector v 75

with 512 dimensions. The feature vector v is pooled using the 76

concatenation of the outputs of a max-pooling and a mean pool- 77

ing layer to generate the first graph-level feature vector. This 78

vector is passed through two MLP blocks with BatchNorm, 79

Leaky-ReLU, and Dropout layers. Finally, the vector is passed 80

through a Fully-Connected layer for classification. 81

The latent representation of the graph is extracted as vec- 82

tors by removing the last Fully-Connected layer from the net- 83

work. The retrieval task is then performed by exploiting the 84

L2-distances between these vectors. 85

3.5.3. Runtimes and computational cost 86

This method is implemented in Python 3.8 [58], using Py- 87

torch [59] and Pytorch Geometric [60] libraries. The exper- 88

iments were carried out a machine with an Intel® Core® i7- 89

8700K 6-core CPU Processor @3.70 GHz with 32 GB of RAM 90

and an NVIDIA® TITAN V with 12 GB of VRAM. The train- 91

ing and test set’s embedding extraction uses both the CPU and 92
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Fig. 6. Dynamic Edge Convolutional Neural Network

the GPU, while computation of distance matrix only uses the1

CPU. The detailed time report is represented in Table 3. The2

code is available at the following url: https://github.com/3

huunghia160799/SHREC-protein-domains.4

Table 3. Time report of each step of the DGCNN method.

Training Test Set
Extraction

Matrix
Computa-

tion

Total

≈ 1100 min ≈ 7 min ≈ 3 min 1173 min

4. Evaluation metrics5

We use common evaluation metrics to assess the perfor-6

mance of the proposed methods, most of which are used in7

other SHREC tracks [61] or similar works evaluating the per-8

formance in retrieval [62]. For each method, we compute the9

overall metrics (i.e. the metrics averaged over all queries) and10

the individual metrics (i.e. the metrics for each query) to pro-11

vide a better understanding of the performance of each method12

for each query. Two composite classes are also presented: the13

SH3-like and the PDZ-like, which correspond to the grouping14

of the SH3 and SH3_2 classes, and of the PDZ and PDZ_615

classes, respectively. To set the dissimilarity values for these16

composite classes, for each entry of the dataset, we kept the17

minimal dissimilarity value from the SH3 / SH3_2 queries and18

from the PDZ / PDZ_6 queries.19

4.1. Nearest neighbor, First tier and Second Tier20

These metrics measures the ratio of relevant objects among21

the k retrieved objects, and ranges in the interval [0, 1]. For the22

nearest neighbor (NN), only the first retrieved object is consid-23

ered (k = 1), while the top C objects are considered for the first24

tier (FT), and the top 2 × C objects for the second tier (ST).25

Here, C represents the cardinal of the class under investigation,26

i.e. the size of the class to which the query belongs. Higher val-27

ues of nearest neighbor, first tier and second tier indicate better28

performance.29

4.2. Precision-Recall curves30

The Precision (P) represents the fraction of relevant ob-31

ject retrieved compared to the top k retrieved objects: P =32

(relevant
⋂

retrieved)/retrieved. Therefore, precision can be33

evaluated at different intervals. The Recall (R) represents the34

fraction of relevant objects retrieved compared to the size C of35

the class of the query: P = (relevant
⋂

retrieved)/relevant. 36

Both metrics range from 0 to 1. Precision-Recall curve plots 37

the precision values at given recall values, which produces, in 38

an ideal case, an horizontal line at P = 1 that spans the entire 39

range of recall values. 40

4.3. Confusion matrix 41

A confusion matrix (CM) is a square matrix, whose columns 42

represents the different classes of the dataset and rows the class 43

of the query. For each row, each element CM(i, j) gives the 44

number of objects from class i retrieved using the query j, con- 45

sidering the top k = C retrieved objects, C being the size of 46

the class corresponding to query j. The elements CM(i, i) in 47

the diagonal of the confusion matrix indicates the objects clas- 48

sified correctly, while the off-diagonal indicates mis–classified 49

elements. To ease the comparison between classes of different 50

sizes, the numbers were normalized over the class sizes C of the 51

queries. Consequently, the sum
∑

j CM(i, j) of all elements of 52

each row equals 1. 53

4.4. Reciprocal Rank and Mean Reciprocal Rank 54

The Reciprocal Rank (RR) measures the performance to find 55

the first relevant item. For a given query, it equals to the inverse 56

of the rank r of the first relevant item found: RR = 1/r. The Re- 57

ciprocal Rank ranges from 0 (no relevant object found) to 1 (the 58

first retrieved object is relevant). The Mean Reciprocal Rank 59

(MRR) is the Reciprocal Rank averaged over all queries. This 60

metric is useful as: (1) It is considered order-aware, contrary 61

to the previous metrics. (2) Typical use cases only consider 62

the few first retrieved items; therefore, the higher the reciprocal 63

rank, the better the performance. 64

5. Results 65

Among the participants of the track, all teams returned a 66

dissimilarity matrix for the shape-only dataset, and only one 67

method (3DZD) was adapted to handle the shape+electrostatics 68

dataset. 69

5.1. Shape-only challenge 70

The results for the shape-only dataset are presented in Table 4 71

and in Figures 8 and 7. Table 4 summarizes the performances 72

of all submitted matrices for the shape-only dataset. For each 73

metric (Nearest Neighbor, First Tier, Second Tier and Mean Re- 74

ciprocal Rank), the highest value is indicated in bold. Given 75

the dataset structure and the selected query domains, the best 76
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Fig. 7. Per-query precision-recall curves for the shape-only dataset, for
each method. All plots are colored according to the legend on the bot-
tom right of the figure.

Table 4. Summary of the average evaluation metrics for the shape-only
dataset. The composite classes are excluded from the average; they are
presented in Tables C.7 to C.10.

Method Nearest
Neighbor

First Tier Second
Tier

Mean Re-
ciprocal

Rank

3DZD 0.5 0.160 0.292 0.523
ProteinNet 0 0.088 0.195 0.126
APPFD 0.3 0.136 0.237 0.410

PWKSM 0.1 0.105 0.201 0.236
DGCNN 0 0.098 0.189 0.193

method achieves an overall level of 0.5 for the nearest neigh-1

bor metric, 0.160 for the first tier, 0.292 for the second tier and2

0.523 for the mean reciprocal rank. These results must be bal-3

anced by the fact that a few classes have only a small number4

of models (namely, the Stat-binding and m50 classes only have5

6 and 4 members, respectively, see Figure 2), and thus impact6

negatively the averaged results. For completeness, Tables C.7,7

C.8, C.9 and C.10 in Appendix C contain the per-class evalua-8

tion metrics for all methods.9

The precision-recall curves for each individual classes (Fig-10

ure 7) show that most methods display a similar behavior for11

all classes, characterized by a quick drop of the precision at12

low recall values. A few methods, however, show a differ-13

ent pattern for a few classes (Figure7): see the PDZ class for 14

the 3DZD method (green curve, top left plot) or the SH3 class 15

for the APPFD-FK-GMM method (dark blue curve, middle left 16

plot), for instance, whose corresponding curves display medium 17

precision values at medium recall. The confusion matrices for 18

all methods are shown in Figure 8. Combined with Figure 1, 19

they allow us to put the performance into perspective. For in- 20

stance, PDZ and PDZ_6 domains are topologically very simi- 21

lar (TM-score: 0.79, Figure 1) and therefore were expected to 22

be confusing. When using the PDZ_6 query, ProteinNet re- 23

trieved only 1 (4%) of the 26 PDZ_6 shapes within the first 24

26 retrieved results, but also 12 (46%) shapes from the PDZ 25

class (Figure 8, middle top confusion matrix). More strikingly, 26

3DZD only found 1 (3%) of the 33 SH3_2 shapes within the 33 27

first retrieved shapes using the SH3_2 query, but the other 32 28

retrieved shapes belong to the SH3 class (Figure 8, second row 29

of the top left confusion matrix), which is closely related to the 30

SH3_2 class (TM-score: 0.84, Figure 1). 31

5.2. Shape+electrostatics challenge 32

Table 5. Summary of the average evaluation metrics for the
shape+electrostatics dataset. The composite classes are excluded
from the average; they are presented in Tables D.11 to D.14.

Method Nearest
Neighbor

First Tier Second
Tier

Mean Re-
ciprocal

Rank

3DZD 0.5 0.160 0.321 0.454

Similarly to the shape-only dataset, results for the 33

shape+electrostatics dataset are presented in Table 5 and Fig- 34

ures 9 and 10. Only one team returned a dissimilarity matrix 35

for the shape+electrostatics dataset. The evaluation metrics are 36

listed in Table 5. The results show similar trends compared to 37

the shape-only dataset, with a nearest neighbor of 0.5, a first tier 38

value of 0.16, a second tier value of 0.321 and a mean reciprocal 39

rank of 0.454. These metrics are similar to the results obtained 40

from the shape-only dataset for the 3DZD method (the second 41

tier value increased while the mean reciprocal rank decreased). 42

The per-class metrics are shown in Appendix D (Tables D.11, 43

D.12, D.13 and D.14). 44

The precision-recall curves (Figure 9) show a similar overall 45

behavior for the 3DZD method, whose performance improved 46

significantly for the SH3 domain but decreased significantly for 47

the PDZ domain (dark blue and green curves, respectively, left 48

plot of Figure 9). The confusion matrix (Figure 10) is in line 49

with the previous results, indicating that 3DZD performs simi- 50

larly in terms of overall performance but with a few differences 51

at the per-class results. 52

6. Discussion and concluding remarks 53

6.1. Shape-only dataset 54

Overall, the 3DZD method obtained the best results, in line 55

with the previous tracks on protein shapes, where this group 56
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Fig. 8. Confusion matrices of all methods for the shape-only dataset. The color-range is the same for all matrices. Confusion ranges from 0 (white
background) to 1 (deep purple background). The original classes are separated from the composite classes (SH3-like and PDZ-like) by a black line.

Fig. 9. Per-query precision-recall curves for the shape+electrostatics
dataset, for each method. All plots are colored according to the legend
on the far right of the figure.

similarly obtained overall good results [33, 34]. This method re- 1

lies on the use of 3D Zernike polynomials, which has been suc- 2

cessfully used to retrieve proteins based on their shapes [9] or 3

their Cα coordinates [13]. It then uses a neural network trained 4

on the SCOPe [37, 38] database, whose classification largely 5

overlaps with the classification of the Pfam database [16]. As 6

instance, in the SCOPe databases, the SH3 domain and the 7

SH3_2 domain are classified in two different SCOPe domains, 8

similarly to the Pfam classification. The DGCNN used the 9

data from another SHREC’21 track, the Retrieval and classi- 10

fication of protein surfaces equipped with physical & chemical 11

properties track [35]. The organizers of this track, similarly to 12

a previous track [33], proposed a set of shapes derived from 13

NMR structures along their surficial physico-chemical prop- 14

erties to allow the participants to train their methods, and the 15

resulting classification of the proteins was derived from the 16

SCOPe database as well. The DGCNN and 3DZD methods 17

were therefore trained on similar data, but produced different 18

performance. 19

Another point to consider, is that the DGCNN method uses a 20

sampling (down to ≈ 8, 000 points) of the initial point clouds 21

(see 3.5.1) that potentially resulted in a loss of information 22
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Fig. 10. Confusion matrix for the shape+electrostatics dataset. Confusion
ranges from 0 (white background) to 1 (deep purple background). The
original classes are separated from the composite classes (SH3-like and
PDZ-like) by a black horizontal line.

that might explain the difference of performance between these1

two groups (DGCNN and 3DZD). However, the ProteinNet and2

APPFD-FK-GMM methods use more severe down-sampling3

steps as well to reduce the number of points down to 2, 0484

for ProteinNet (see 3.2.2) and to 3, 500 for APPFD-FK-GMM5

(see 3.3) with various outputs in terms of performance. These6

numbers should be compared to the initial meshes sizes, which7

range from 37, 658 to 582, 496 points. The APPFD-FK-GMM8

group, however, was able to better retrieve relevant results9

within the first hits, as evidenced by higher values of Nearest-10

neighbor and Mean Reciprocal Rank for the shape-only dataset11

(Table 4).12

While some methods were able to maintain medium preci-13

sion levels at medium recall values (see section 5.1), a few14

queries were difficult to handle for all methods. For the DNA-15

binding domain from the STAT protein family or the peptidase16

M50 domain, the low number of such surfaces (6 and 4, re-17

spectively) in the datasets explains the low performance ob-18

served for all methods. For the other queries, like the PDZ_619

domain or the SH3_2 domain, the explanation is the presence20

of closely related domains, the PDZ and SH3 domains, respec-21

tively. These confusing classes are significantly more populated22

(128 versus 26, for the PDZ / PDZ_6 domains, and 115 versus23

33, for the SH3 / SH3_2 domains). This is supported by the con-24

fusion matrices, which showed that, for instance, the ProteinNet25

group retrieved a great amount of SH3 domains (and almost no26

SH3_2 domains) within the top results using the SH3_2 query,27

or the DGCNN group retrieved a significantly higher propor-28

tion of PDZ domains than PDZ_6 domains within the first re-29

sults using the PDZ_6 query. In these cases, the high level of30

similarity between the domains coupled to the imbalanced size31

of the classes have negatively impacted the results. In the mean32

time, these results highlight the limits of the currently available 33

methods to distinguish between the most closely related pro- 34

teins. 35

Also, we observed different results for order-aware (mean 36

reciprocal rank) and order-unaware (nearest neighbor, first ter 37

and second tier) metrics. While DGCNN, ProteinNet and 38

PWKSM methods display similar values for order-unaware 39

metrics, PWKSM displays a higher Mean Reciprocal Rank. 40

When converted back to ranks, these results mean that, on av- 41

erage, PWKSM ranked better the first relevant match, but did 42

find a similar amount of relevant items within the top results. 43

6.2. Shape+electrostatic dataset 44

While the shape of a protein is of tremendous importance, 45

its surficial properties are important as well. Therefore, in this 46

track, we generated the shape+electrostatic dataset which en- 47

compass both properties, in order to stimulate the development 48

of such methods. However, only one groups returned a dissim- 49

ilarity matrix for this dataset, namely the 3DZD group. Most 50

groups that participated to this challenge come from the com- 51

puter vision field. As such, most of the methods presented in 52

this work are the result of methodological developments dedi- 53

cated to the analysis of 3D point clouds. The development of 54

new, specific methods to handle both shapes and electrostatics 55

would require an amount of time far greater than the SHREC 56

timeline. Nevertheless, we hope that this challenge along with 57

the other challenge dedicated to protein shapes [35] would stim- 58

ulate the development of such methods. 59

The overall results showed that the treatment of the electro- 60

statics by the 3DZD marginally improved the results, compared 61

to the shape-only results. Interestingly, the electrostatic po- 62

tential impacted differently each class: it improved the ability 63

of the 3DZD method to handle the SH3 or the Bromodomain 64

classes, as evidenced by the precision-recall curves (Figures 7 65

and 9, Tables in Appendix C and Appendix D). The 3DZD 66

method is derived from previous attempts from the same team 67

to couple shape and electrostatics analysis to classify protein 68

surfaces [10]. As noted in this exploratory work, electrostat- 69

ics may be suitable to compare closely related proteins, while 70

our datasets was mainly composed of loosely related proteins 71

(Fig 1). The electrostatics potential feature is likely to be more 72

beneficial for protein surface comparison of local features rather 73

than global shapes. In such local cases (like comparison of 74

catalytic or binding sites), local electrostatic hot spots would 75

represent the major local feature rather than one of the many 76

features of the global protein surface, as it is the case for the 77

MaSIF method [11]. 78

6.3. Current machine learning–based methods: pitfalls and 79

challenges 80

Pitfalls of previously mentioned methods lies in the exploited 81

protein datasets and their characteristics, notably the class im- 82

balance as well as the high inter–class shape similarity. Indeed, 83

the protein datasets are often highly imbalanced in terms of pro- 84

tein classes, which introduces a bias in the training process of 85

these methods towards learning efficiently class representation. 86

One common technique consists of using data augmentation to 87
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overcome this lack of original data. Hence, it is important to1

bear in mind that several protein classes cannot be considered as2

representative groups of protein families. Moreover, our prob-3

lematic tackles a large quantity of classes composed of protein,4

which are e.g. visually highly similar. In such a case, a chal-5

lenge lies in the design of new methods with a high discrimi-6

nating power that allows to extract the most significant features7

for distinguishing between protein classes. In this sense, other8

aspects of the proteins (in addition to the shape) such as molec-9

ular properties and electrostatic properties could be considered.10

These parameters have to be carefully analyzed through exper-11

iments before envisaging method generalizations.”12

6.4. Concluding remarks13

In conclusion, we have presented the results of the14

SHREC’21 challenge on Surface-based protein domains re-15

trieval. The number of participants remained stable compared16

to the last two years, indicating a constant interest of the shape17

retrieval community towards biologically relevant problems.18

Each group relied on different methods and theoretical back-19

ground with respect to recommended modeling/machine learn-20

ing practices [63, 64] in order to solve the problem proposed21

by the organizers, and represent a variety of approaches to the22

same problem. As a step towards open science, all partici-23

pants accepted to share their programs publicly with the com-24

munity. Overall, the results are decreased compared to simi-25

lar past tracks [34]. Indeed, two methods based on descriptors26

similar to 3DZD and APPFD-FK-GMM (3DZD and HAPPS,27

respectively) were presented in the SHREC’20 contest and per-28

formed very well (e.g. both methods exceeding 0.95 for the NN29

metric) on a problem similar to the shape-only problem (see Ta-30

bles 6 and 7 of [34]). However, the adapted versions (3DZD and31

APPFD-FK-GMM) did not reach the same level of performance32

by exploiting this new, particular dataset of proteins. This de-33

crease of performance (and low performances from the three34

other methods) reveals that this year dataset was particularly35

hard to analyze, and that there is still room for improvements.36

Among the proposed methods, we observed that 3 over 5 used a37

learning-based protocol at some point. This proportion is in line38

with last year track, and show that such approaches continue39

to be investigated as they usually improve the results. To this40

regard, the SHREC’21 track on Retrieval and classification of41

protein surfaces equipped with physical & chemical properties42

might highlight some interesting points on the best architecture43

to learn protein surficial properties [35]. Similarly, the organiz-44

ers of this track computed a set of additional chemical proper-45

ties (electrostatic potential, location of potential hydrogen bond46

donors and acceptors, hydrophobicity). In this track, the par-47

ticipants first used the surface geometry then the combination48

of the geometry and physico-chemical features of the protein49

surfaces. The results showed that all methods improved their50

results when using both the geometric and physico-chemical51

data compared the the geometry only. Particularly, the results52

generated by the machine learning based methods increased53

more compared to the other methods. As each of the physico-54

chemical feature was not considered individually, it remains55

hard to knowpredict whether one feature hasbeat a greater im-56

portance than the other. However, in their work, Gainza et al.57

showed that the electrostatic potential have the greatest impact 58

of the physico-chemical features they computed. In our work, 59

the electrostatic potential was used by the 3DZD team as an 60

additional feature to help the retrieval task. The results reveals 61

only slightly improved results compared to the results from the 62

shape–only dataset. As noted in [10], the electrostatic potential 63

may be of better use to compare closely related proteins, rather 64

than comparing loosely related proteins, as it is the case in our 65

work. Alternatively, shapes and electrostatics may be used in 66

hierarchical way, i.e. using first the shape then the electrostatics 67

to achieve a better result. 68

This track reveals significantly lower results when compared 69

to past tracks [31, 32, 33, 34]. However, satisfactory solutions 70

exist to distinguish between loosely related proteins, or to iden- 71

tify identical proteins with different conformations, based on 72

their shapes only. Our work also reveals some limits of the 73

methods used by the participants for the challenge. Very closely 74

related proteins (such as SH3 and SH3_2 protein domains), 75

i.e. proteins displaying a high topological similarity and lim- 76

ited variations of their amino-acid sequences, hence surfaces, 77

are still difficult to separate in different classes, but some meth- 78

ods distinguish them from the other classes. Also, when we 79

consider the DNA-binding domain from the STAT proteins, no 80

method was able to produce satisfactory results. While the 81

DNA-binding domain used as a query has a globular shape, 82

the STAT proteins are significantly bigger, with a non-globular 83

shape, and have 3 additional domains (1 of which is a SH2 do- 84

main, a domain included in the dataset), which means that only 85

partial matches compared to the query may be achieved. This 86

specific issue (the comparison of partially overlapping objects) 87

may require further development. 88

In the future, this latter point could be the subject of a ded- 89

icated SHREC track, and a good indicator of the overall pro- 90

gresses made in the field of the retrieval of proteins based on 91

their surfaces. Currently, most methods have difficulties to han- 92

dle such cases, which are quite common. Solving this chal- 93

lenge would be a step forward for the community. At the same 94

time, explainable artificial intelligence (XAI) methods [65] may 95

highlight the latent features responsible for good or bad pre- 96

dictions, and help decipher the results of machine learning– 97

based methods. XAI methods may help explain the perfor- 98

mance difference observed for each class of protein, and pro- 99

vide a human-interpretable representation of machine learning 100

descriptors, and therefore help identifying the current limits of 101

these algorithms. Finally, deciphering to which extend, if any, 102

the standard physico-chemical features (electrostatics potential, 103

charges distribution, hydrophobicity, etc.) improve the results 104

may be the main focus of the next SHREC tracks devoted to 105

protein surfaces. 106
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Table A.6. List of the Protein Data Bank [17, 18] structures used as queries for the track.

Domain name Pfam ID PDB code chain residues Reference

SH2 domain PF00017 1P13 B 161-243 [66, 67]
SH3 domain PF00018 1ABO B 67-113 [68, 69]
Variant SH3 domain (SH3_2) PF07653 5O99 B 474-527 [70, 71]
PDZ domain PF00595 2HE2 B 421-499 [72, 73]
PDZ_6 domain PF17820 3KHF B 982-1034 [74]
Peptidase family M50 (m50) PF02163 3B4R B 111-186 [75]
Bromodomain PF00439 6CW0 B 10-95 [76]
PHD-finger domain PF00628 3KV5 D 39-88 [77, 78]
Zinc-finger domain, C2H2 type (zf-C2H2) PF00096 4ISI D 472-493 [79, 80]
STAT protein, DNA-binding domain (Stat-binding) PF02864 5D39 D 277-413 [81, 82]

Table C.7. Per-class nearest-neighbor for the shape-only dataset.

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like
Class size 115 33 92 128 26 4 6 55 53 64 148 154

3DZD 0 0 1 1 0 0 0 1 1 1 1 1
ProteinNet 0 0 0 0 0 0 0 0 0 0 1 0

APPFD 0 0 0 1 0 0 0 1 1 0 0 1
PWKSM 0 0 0 1 0 0 0 0 0 0 0 1
DGCNN 0 0 0 0 0 0 0 0 0 0 0 0

Table C.8. Reciprocal rank for the shape-only dataset.

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like
Class size 115 33 92 128 26 4 6 55 53 64 148 154

3DZD 0.143 0.033 1 1 0.030 0.002 0.021 1 1 1 1 1
ProteinNet 0.071 0.036 0.25 0.5 0.25 0.005 0.002 0.010 0.071 0.067 1 0.5

APPFD 0.5 0.042 0.1 1 0.2 0.01 0.022 1 1 0.167 0.333 1
PWKSM 0.333 0.053 0.125 1 0.333 0.015 0.042 0.083 0.042 0.333 0.333 1
DGCNN 0.333 0.083 0.167 0.5 0.333 0.037 0.006 0.042 0.1 0.333 0.25 0.5

Table C.9. Per-class first tier for the shape-only dataset.

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like
Class size 115 33 92 128 26 4 6 55 53 64 148 154

3DZD 0.35 0.03 0.05 0.42 0.00 0.00 0.00 0.24 0.34 0.17 0.70 0.39
ProteinNet 0.26 0.03 0.16 0.28 0.04 0.00 0.00 0.00 0.06 0.05 0.35 0.31

APPFD 0.40 0.03 0.15 0.22 0.04 0.00 0.00 0.15 0.25 0.13 0.44 0.27
PWKSM 0.18 0.06 0.21 0.26 0.08 0.00 0.00 0.11 0.08 0.08 0.20 0.29
DGCNN 0.19 0.09 0.13 0.25 0.12 0.00 0.00 0.04 0.08 0.09 0.26 0.30

Table C.10. Per-class second tier for the shape-only dataset.

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like
Class size 115 33 92 128 26 4 6 55 53 64 148 154

3DZD 0.55 0.45 0.13 0.72 0.04 0.00 0.00 0.33 0.45 0.27 0.79 0.69
ProteinNet 0.55 0.09 0.43 0.51 0.08 0.00 0.00 0.02 0.15 0.13 0.68 0.60

APPFD 0.58 0.12 0.30 0.53 0.08 0.00 0.00 0.18 0.34 0.23 0.66 0.59
PWKSM 0.39 0.12 0.39 0.49 0.12 0.00 0.00 0.18 0.11 0.20 0.46 0.56
DGCNN 0.37 0.09 0.33 0.39 0.12 0.00 0.00 0.20 0.25 0.16 0.49 0.52
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Table D.11. Per-class nearest-neighbor for the shape+electrostatics dataset.

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like
Class size 115 33 92 128 26 4 6 55 53 64 148 154

3DZD 0 0 0 1 0 0 0 1 1 0 1 0

Table D.12. Reciprocal Rank for the shape+electrostatics dataset.

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like
Class size 115 33 92 128 26 4 6 55 53 64 148 154

3DZD 0.5 0.167 0.333 1 0.010 0.003 0.030 1 1 0.5 1 0.5

Table D.13. Per-class first-tier for the shape+electrostatics dataset.

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like
Class size 115 33 92 128 26 4 6 55 53 64 148 154

3DZD 0.50 0.12 0.14 0.20 0.00 0.00 0.00 0.36 0.28 0.23 0.58 0.19

Table D.14. Per-class second tier for the shape+electrostatics dataset.

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like
Class size 115 33 92 128 26 4 6 55 53 64 148 154

3DZD 0.68 0.36 0.38 0.55 0.00 0.00 0.00 0.51 0.36 0.36 0.74 0.74
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