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Regularity of weak KAM solutions and Mañé’s Conjecture

L. Rifford∗

Abstract

We provide a crash course in weak KAM theory and review recent results concerning
the existence and uniqueness of weak KAM solutions and their link with the so-called Mañé
conjecture.

1 Introduction

In the present paper, (M, g) will be a smooth connected compact Riemannian manifold without
boundary of dimension n ≥ 2, and H : T ∗M → R a Ck Tonelli Hamiltonian (with k ≥ 2),
that is, a Hamiltonian of class Ck satisfying the two following properties (‖ · ‖ denotes the dual
norm on T ∗M):

(H1) Superlinear growth: For every K ≥ 0, there is a finite constant C∗(K) such that

H(x, p) ≥ K‖p‖x + C∗(K) ∀ (x, p) ∈ T ∗M.

(H2) Uniform convexity: For every (x, p) ∈ T ∗M , the second derivative along the fibers
∂2H
∂p2 (x, p) is positive definite.

The Mañé critical value of H can be defined as follows.

Definition 1.1. We call critical value of H, denoted by c[H], the infimum of the values c ∈ R
for which there exists a function u : M → R of class C1 satisfying

H(x, du(x)) ≤ c ∀x ∈M.

Remark 1.2. We can check easily that c[H] satisfies the following inequalities

min
x∈M
{H(x, 0)} ≤ c[H] ≤ max

x∈M
{H(x, 0)} .

The study of solutions of the critical Hamilton-Jacobi equation,

H
(
x, du(x)

)
= c[H] ∀x ∈M, (1.1)

is the core of Fathi’s weak KAM theory developed in [9, 10, 11, 12, 13]. The aim of the
present paper is to recall briefly the construction of Fathi’s weak KAM solutions and to address
uniqueness and regularity issues for the critical Hamilton-Jacobi equation.
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2 Critical subsolutions

A priori, the infimum in Definition 1.1 is not necessarily attained. For this reason, we introduce
the notion of critical subsolutions. We recall that by Rademacher’s theorem, Lipschitz functions
are differentiable almost everywhere.

Definition 2.1. A function u : M → R is called a critical subsolution for H if it is Lipschitz
and satisfies

H
(
x, du(x)

)
≤ c[H] a.e. x ∈M. (2.1)

Let us denote by
(
C0(M ; R), ‖ · ‖∞

)
the Banach space of continuous functions onM equipped

with the supremum norm.

Proposition 2.2. The set SS[H] of critical subsolutions is a nonempty, compact and convex
subset of C0(M ; R).

Proof. Pick a sequence of C1 functions {uk} associated with a sequence of real numbers {ck}
converging to c[H] such that

H
(
x, duk(x)

)
≤ ck ∀x ∈M, ∀k.

Thanks to the superlinear growth hypothesis (H1), the sequence {uk} is uniformly Lipschitz.
Then by compactness, we may assume that it converges uniformly to some Lipschitz function
u : M → R. The fact that u is a critical subsolution follows easily from the following lemma
whose proof is left to the reader.

Lemma 2.3. Let {uk} be a sequence of C1 functions on M which converges uniformly to some
Lipschitz function u : M → R. Assume that u is differentiable at x ∈ M . Then there is a
sequence xk → x such that duk(xk)→ du(x).

Thus we proved that SS[H] is nonempty. By (H1), any critical subsolution is Lipschitz on
M (with universal Lipschitz constant). From the Arzela-Ascoli Theorem, the compactness of
SS[H] follows easily. Finally, the convexity of SS[H] is straightforward from the convexity of
H in the p variable (H2).

The Lagrangian L : TM → R associated with H by Legendre-Fenchel duality is defined by

L(x, v) := max
p∈T∗xM

{
〈p, v〉 −H(x, p)

}
.

Thanks to (H1)-(H2), it can be shown (see [4, 13]) that L is a Ck Tonelli Lagrangian, that is it
is Ck and satisfies the two following properties (‖ · ‖ denotes the norm on TM):

(L1) Superlinear growth: For every K ≥ 0, there is a finite constant C(K) such that

L(x, v) ≥ K‖v‖x + C(K) ∀ (x, v) ∈ TM.

(L2) Uniform convexity: For every (x, v) ∈ TM , ∂2L
∂v2 (x, v) is positive definite.

Note that the Fenchel inequality

〈p, v〉 ≤ L(x, v) +H(x, p) (2.2)

holds for any x ∈M and v ∈ TxM,p ∈ T ∗xM with equality if and only if (in local coordinates)

v =
∂H

∂p
(x, p)⇔ p =

∂L

∂v
(x, v). (2.3)

The Legendre-Fenchel duality allows us to characterize the critical subsolutions in a variational
way.
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Proposition 2.4. A function u : M → R is a critical subsolution (for H) if and only if

u
(
γ(b)

)
− u
(
γ(a)

)
≤
∫ b

a

L
(
γ(s), γ̇(s)

)
ds+ c[H] (b− a), (2.4)

for any Lipschitz curve γ : [a, b]→M .

Proof. Let u : M → R be a critical subsolution. If u is of class C1, then we can write for any
Lipschitz curve γ : [a, b]→M (remember (2.2)),

u
(
γ(b)

)
− u
(
γ(a)

)
=

∫ b

a

〈du
(
γ(s)

)
, γ̇(s)〉 ds

≤
∫ b

a

L
(
γ(s), γ̇(s)

)
ds+

∫ b

a

H
(
γ(s), du(γ(s))

)
ds

≤
∫ b

a

L
(
γ(s), γ̇(s)

)
dt+ c[H] (b− a).

If u is not C1, then by convolution we can approximate it by a smooth function uε : M → R
satisfying

H
(
x, du(x)

)
≤ c[H] + ε ∀x ∈M.

Then we can apply the previous argument to uε and let ε tend to 0.
Assume now that a function u : M → R satisfies (2.4) for any Lipschitz curve γ : [a, b]→M .

Let x, y ∈M be fixed. Denote by d the Riemannian distance associated with g on M ×M and
let α : [0, d(x, y)]→ M be a unit speed geodesic joining x to y in time d(x, y). By assumption
on u, one has

u(y)− u(x) ≤
∫ d(x,y)

0

L
(
α(s), α̇(s)

)
ds+ c[H]d(x, y).

Setting
S(1) := max

{
L(z, w) | (z, w) ∈ TM, ‖w‖z ≤ 1

}
,

we infer that
u(y)− u(x) ≤ (S(1) + c[H]) d(x, y) ∀x, y ∈M,

which shows that u is Lipschitz on M . Let x ∈ M be such that u is differentiable at x and
let (x(·), p(·)) : [0, ε]→ T ∗M be a local solution of the Hamiltonian system associated with H,
which reads in local coordinates,{

ẋ(t) = ∂H
∂p

(
x(t), p(t)

)
ṗ(t) = −∂H∂x

(
x(t), p(t)

)
,

such that (x(0), p(0)) = (x, du(x)). By assumption, we have for every t ∈ (0, ε],

u
(
x(t)

)
− u
(
x(0)

)
t

≤ 1
t

∫ t

0

L
(
x(s), ẋ(s)

)
ds+ c[H].

Since u is differentiable at x = x(0) and ẋ(0) satisfies (remember (2.3))

H
(
x, du(x)

)
= 〈du(x), ẋ(0)〉 − L

(
x, ẋ(0)

)
,

letting t tends to 0 yields H(x, du(x)) ≤ c[H].
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3 The Fathi weak KAM Theorem

Following [13], the Lax-Oleinik semigroup {Tt}t≥0 associated with L is defined as{
Tt
}
t≥0

: C0(M ; R) −→ C0(M ; R)

where for every t ≥ 0 and for any u ∈ C0(M ; R), Ttu = Tt(u) is given by

Ttu(x) := inf
{
u
(
γ(−t)

)
+
∫ 0

−t
L
(
γ(s), γ̇(s)

)
ds

}
∀x ∈M, (3.1)

where the infimum is taken among the Lipschitz curves γ : [−t, 0]→M such that γ(0) = x. If
for every t > 0, we define the function ht : M ×M → R by

ht(x, y) := inf
γ

{∫ t

0

L
(
γ(s), γ̇(s)

)
ds

}
∀x, y ∈M, (3.2)

where the infimum is taken on the set of Lipschitz curves γ : [0, t]→M which satisfy γ(0) = x
and γ(t) = y, then Ttu can also be written as (for t > 0)

Ttu(x) := inf
z∈M

{
u(z) + ht(z, x)

}
∀x ∈M. (3.3)

In Appendix A, we recall that, under the present hypotheses, the infimum in the definition of
ht is always attained and that each function ht is indeed Lipschitz on M ×M . This shows that
Tt is well-defined for all t ≥ 0 and that the infimum in (3.1) is always attained. By the way,
we note that by Proposition 2.2, if u : M → R is a critical subsolution then there holds for any
t > 0,

u(x)− u(z) ≤ ht(z, x) + c[H] t ∀x, z ∈M. (3.4)

In fact, {Tt}t≥0 enjoys the properties of a continuous nonexpansive semigroup.

Proposition 3.1. The following properties hold:

(i) T0 = Id and Tt+t′ = Tt ◦ Tt′ , for any t, t′ ≥ 0.

(ii) For every t ≥ 0, ‖Ttu− Ttv‖∞ ≤ ‖u− v‖∞ for any u, v ∈ C0(M ; R).

(iii) For every u ∈ C0(M ; R), the mapping t ∈ [0,∞) 7→ Ttu is continuous.

(iv) The set SS[H] is invariant with respect to {Tt}.

Proof. Let t, t′ > 0 and u ∈ C0(M ; R) be fixed. We have for every x ∈M ,

Tt+t′u(x) = inf
y∈M

{
u(y) + ht+t′(y, x)

}
= inf

y∈M

{
u(y) + inf

z∈M
{ht′(y, z) + ht(z, x)}

}
= inf

y,z∈M

{
u(y) + ht′(y, z) + ht(z, x)

}
= inf

z∈M

{
inf
y∈M
{u(y) + ht′(y, z)}+ ht(z, x)

}
= inf

z∈M

{
Tt′u(z) + ht(z, x)

}
= Tt [Tt′u] (x).

This proves (i). The proof of (ii) is easy. Let u, v ∈ C0(M ; R), x ∈ M and t > 0 be fixed.
There is z ∈ M such that Ttu(x) = u(z) + ht(z, x). Moreover we have necessarily Ttv(x) ≤
v(z) + ht(z, x). We deduce that

Ttv(x)− Ttu(x) ≤ v(z)− u(z) ≤ ‖v − u‖∞.
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Exchanging the roles of u and v yields the result. To prove (iii) we first assume that u : M → R
is K-Lipschitz on M . By (L1), there is C(K) ∈ R such that

L(x, v) ≥ K‖v‖x + C(K) ∀ (x, v) ∈ TM.

Then for every t > 0 and any Lipschitz curve γ : [−t, 0]→M , we have∫ 0

−t
L
(
γ(s), γ̇(s)

)
ds ≥ K

∫ 0

−t

∥∥γ̇(s)
∥∥
γ(s)

ds+ C(K)t ≥ Kd
(
γ(−t), γ(0)

)
+ C(K)t,

which implies

u
(
γ(−t)

)
+
∫ 0

−t
L
(
γ(s), γ̇(s)

)
ds ≥ u

(
γ(0)

)
+ C(K)t.

We deduce that Ttu ≥ u+ C(K)t. On the other hand, we have easily for any t > 0,

Ttu(x) ≤ u(x) + ht(x, x) ≤ tL(x, 0) ∀x ∈M.

We infer that Ttu→ u as t→ 0. Note that for any t, t′ ≥ 0, by (i)-(ii) above, one has

‖Tt′u− Ttu‖∞ ≤
∥∥T|t′−t|u− u∥∥∞ .

This shows that t ∈ [0,∞) 7→ Ttu is continuous. If u is merely continuous, then for every ε > 0,
there is a Lipschitz function v : M → R such that ‖v−u‖ ≤ ε. By the above argument together
with (ii), we deduce easily that ‖Ttu− u‖∞ ≤ 3ε for t ≥ 0 small enough. We deduce easily that
t ∈ [0,∞) 7→ Ttu is continuous.

It remains to prove (iv). We need to show that given u in SS[H], Ttu satisfies the char-
acterization given in Proposition 2.4 for any t > 0. Let t > 0 be fixed, we observe that it is
sufficient to prove (2.4) for any Lipschitz curve γ : [a, b]→M with b− a < t/2. Let γ be such
a curve. There is z ∈M such that

Ttu
(
γ(a)

)
= u(z) + ht

(
z, γ(a)

)
.

Then we have for any y ∈M ,

Ttu
(
γ(b)

)
− Ttu

(
γ(a)

)
≤ u(y) + ht

(
y, γ(b)

)
− u(z)− ht

(
z, γ(a)

)
≤ u(y)− u(z) + ht−(b−a)

(
y, γ(a)

)
+ hb−a

(
γ(a), γ(b)

)
− ht

(
z, γ(a)

)
.

Let α : [0, t] → M be a Lipschitz curve with α(0) = z, α(t) = γ(a) and ht(z, γ(a)) =∫ t
0
L
(
α(s), α̇(s)

)
ds. Applying the previous inequality with y = α(b− a) and using that

u(y)− u(z) ≤ hb−a(z, y) and ht
(
z, γ(a)

)
= hb−a(z, y) + ht−(b−a)

(
y, γ(a)

)
,

yields the result.

As shown by Fathi [13], the existence of weak KAM solutions can be obtained as a conse-
quence of a fixed point theorem for continuous semigroups acting on compact convex sets (see
Theorem B.1).

Theorem 3.2. There exists a critical subsolution u : M → R such that

Ttu = u− c[H] t ∀t ≥ 0. (3.5)

Such a function is called a weak KAM solution or a critical solution (for H).
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Proof. Let E be the normed space obtained as the quotient of C0(M ; R) by constant functions
equipped with the norm

‖[u]‖ = inf
a∈R
{u+ a} ∀[u] ∈ E.

Since Tt(u + a) = Ttu + a for any a ∈ R, the maps Tt pass to the quotient. Then the family
{Tt}t≥0 defines a continuous nonexpansive semigroup which preserves the compact set

K :=
{

[u] |u ∈ SS(H)
}
.

Thus by Theorem B.1, there is a family {ct}t≥0 of real numbers and u ∈ SS(H) such that

Ttu = u+ ct ∀t ≥ 0.

By Proposition 3.1 (i) and (iii), the mapping t 7→ ct satisfies the semigroup property and is
continuous. Then there is c ∈ R such that ct = tc for all t ≥ 0. We need to show that c = −c[H].
On the one hand, since u is a critical subsolution, remembering (3.4) we check easily that

Ttu ≥ u− c[H] t ∀t ≥ 0.

Which shows that c ≥ −c[H]. On the other hand, Ttu ≥ u + ct(∀t ≥ 0) implies that for any
Lipschitz curve γ : [a, b]→M , we have

u
(
γ(b)

)
− u
(
γ(a)

)
≤ hb−a

(
γ(a), γ(b)

)
− ct ≤

∫ b

a

L
(
γ(s), γ̇(s)

)
ds− ct.

Proceeding as in the proof of Proposition 2.4, this shows that H(x, du(x)) ≤ −c almost ev-
erywhere. Regularizing u by convolution, we deduce that for every ε > 0 there is a smooth
function uε : M → R such that H(x, duε(x)) ≤ −c + ε for all x ∈ M . By definition 1.1, this
shows that −c ≥ c[H]⇔ c ≤ −c[H].

Remark 3.3. The existence of weak KAM solutions can also be shown by proving that for any
subsolution u ∈ SS(H), the function Ttu+c[H] t converges uniformly as t tends to ∞ to a weak
KAM solution, see [13].

Remark 3.4. It can be shown easily that u : M → R is a weak KAM solution (for H) if and
only if it is a viscosity of the Hamilton-Jacobi equation (1.1). We refer the reader to [13, 24]
for further details on weak KAM solutions from the viscosity viewpoint.

Remark 3.5. Roughly speaking, in the classical KAM theory, weak KAM solutions are smooth
and the graphs of its differentials are indeed invariant tori, see [3].

The following result provides several characterizations of weak KAM solutions.

Proposition 3.6. Let u ∈ C0(M ; R), the following properties are equivalent:

(i) u is a weak KAM solution.

(ii) Ttu = u− c[H] t, for all t ≥ 0.

(iii) u ∈ SS(H) and for every x ∈ M , there exists a Lipschitz curve γx : (−∞, 0] → M with
γx(0) = x such that

u
(
γx(b)

)
− u
(
γx(a)

)
=
∫ b

a

L
(
γx(s), γ̇x(s)

)
ds+ c[H] (b− a) ∀a < b ≤ 0. (3.6)

(iv) u ∈ SS(H) and for every smooth function φ : M → R with φ ≤ u and all x ∈M ,

φ(x) = u(x) =⇒ H
(
x, dφ(x)

)
≥ c[H]. (3.7)
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Moreover, the curve appearing in (iii) is necessary of class C2 and solution to the Euler-
Lagrange equation.

Remark 3.7. Actually, assertion (iv) states that u is a viscosity solution of (1.1). It is also
equivalent to the following:

(iv)’ For every smooth function φ : M → R with φ ≤ u and all x ∈ M , φ(x) = u(x) ⇒
H
(
x, dφ(x)

)
= c[H].

Proof. (i) ⇒ (ii) is obvious. Let us show that (ii) ⇒ (iii). Let u ∈ C0(M ; R) satisfying (3.5)
be fixed. Given a Lipschitz curve γ : [a, b]→M we have

u
(
γ(b)

)
− c[H] (b− a) = Tb−au

(
γ(b)

)
≤ u

(
γ(a)

)
+
∫ b

a

L
(
γ(s), γ̇(s)

)
ds,

which by Proposition 2.4 shows that u is a critical subsolution. Let x ∈ M be fixed, let us
construct γx. Since the infimum in the definition of ht(x, y) is always attained, for every positive
integrer k, there is a curve γk : [−k, 0]→M with γ(0) = x such that

Tku(x) = u
(
γk(−k)

)
+ hk

(
γk(−k), x

)
= u

(
γk(−k)

)
+
∫ 0

−k
L
(
γk(s), γ̇k(s)

)
ds.

Since Tku(x) = u(x)− c[H] k and u ∈ SS(H), we deduce that

u
(
γk(b)

)
− u
(
γk(a)

)
=
∫ b

a

L
(
γk(s), γ̇k(s)

)
ds+ c[H] (b− a) ∀a < b ∈ [−k, 0].

By Theorem A.1, the curves γk are uniformly Lipschitz. Then we conclude easily by the Arzela-
Ascoli Theorem. (iii) ⇒ (i) is easy. Let us show that (iii) ⇔ (iv). Let φ : M → R be a smooth
function such that φ ≤ u and let x ∈M with u(x) = φ(x) be fixed. By (iii), there is a Lipschitz
curve γx : (−∞, 0]→M with γ(0) = x satisfying (3.6). Then

φ(x)− φ
(
γx(−t)

)
t

≥ 1
t

∫ 0

−t
L
(
γx(s), γ̇x(s)

)
ds+ c[H] ∀t > 0.

Taking the limit as t → 0 and using Legendre-Fenchel duality, yields H(x, dφ(x)) ≥ c[H].
This shows that (iii) ⇒ (iv). Assume now that (iv) holds and prove (iii) for some x ∈M . It is
sufficient to show how to construct a curve γx satisfying (3.6) on a small interval [−ε, 0]. Taking
a local chart around x if necessary, we may assume that we work in Rn. Let α ∈ (0, 1] and
N ∈ N∗ be fixed and uα : Rn → R be the function defined by

uα(x′) := inf
y∈Rn

{
u(y) +

1
2α2
|y − x′|2

}
∀x′ ∈ Rn.

Note that since u is Lipschitz, for any α ∈ (0, 1] small enough, for every x′ close to x the
infimum in the above formula is attained for some y close to x′. Let yα(x) ∈ Rn be such that

uα(x) = u
(
yα(x)

)
+

1
2α2

∣∣yα(x)− x
∣∣2

and set

pα(x) :=
x− yα(x)

α2
.

Note that by construction

u(y) ≥ u
(
yα(x)

)
+ 〈pα(x), y − yα(x)〉 − 1

2α2

∣∣y − yα(x)
∣∣2 ∀y ∈ Rn.
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This means that the right hand side in the above inequality is a smoooth support function from
below for u at yα(x). Then by (iv), we can pick vα(x) ∈ Rn such that

〈pα(x), vα(x)〉 − L
(
yα(x), vα(x)

)
= H

(
yα(x), pα(x)

)
≥ c[H].

Then setting x1 := x− 1
N vα(x) implies

uα(x1)− uα(x) ≤ u
(
yα(x)

)
+

1
2α2

∣∣yα(x)− x1

∣∣2 − u(yα(x)
)
− 1

2α2

∣∣yα(x)− x
∣∣2

≤ 〈pα(x), x1 − x〉+
1

2α2

∣∣x1 − x
∣∣2

≤ − 1
N
L
(
yα(x), vα(x)

)
− 1
N
c[H] +

1
2α2N2

∣∣vα(x)
∣∣2,

which can be written as

uα(x1) ≤ uα(x)− 1
N
L
(
yα(x), vα(x)

)
− 1
N
c[H] +

1
2α2N2

∣∣vα(x)
∣∣2.

Repeating this construction yields finite sequences{
x0 = x, x1, . . . , xN

}
,
{
yα(x0), . . . , yα(xN )

}
,
{
pα(x0), . . . , pα(xN )

}
,
{
vα(x0), . . . , vα(xN )

}
such that for all i = 1, . . . , N ,

uα(xi) ≤ uα(x)−
i−1∑
j=0

[
1
N
L
(
yα(xj), vα(xj)

)]
− i

N
c[H] +

i−1∑
j=0

[
1

2α2N2

∣∣vα(xi)
∣∣2] . (3.8)

Since u is Lipschitz, the pα(xi), vα(xi)’s are bounded and the paths xδ,N (·) : [−1, 0] → Rn
defined by

xδ,N (t) = xi − (t− i/N)vα(xi) ∀t ∈ (−i/N,−(i− 1)/N ], ∀i = 1, . . . , N,

are uniformly Lipschitz and satisfies xδ,N (−i/N) = xi for any i = 0, . . . , N . Then by (3.8),
letting δ ↓ 0 and N ↑ ∞, we infer that there is a Lipschitz curve x(·) : [−1, 0] → Rn with
x(0) = x and satisfying

u
(
x(−t)

)
≤ u(x)−

∫ 0

−t
L
(
x(s), ẋ(s)

)
ds− c[H] t ∀t ∈ [0, 1].

We conclude easily by the fact that u ∈ SS(H).

Remark 3.8. The proof of (ii) ⇒ (iii) shows that if some continuous function v : M → R
satisfies

Ttv = v − c t ∀t ≥ 0,

for some constant c ∈ R, then c = c[H] and v is a weak KAM solution. As a matter of fact,
by the above argument, v is Lipschitz and satisfies H(x, dv(x)) ≤ c for almost every x ∈ M .
Which means that c ≥ c[H]. Moreover, for every x ∈ M , there is a curve αx : (−∞, 0] → M
with αx(0) = x such that

v
(
αx(b)

)
− v
(
αx(a)

)
=
∫ b

a

L
(
αx(s), α̇x(s)

)
ds+ c (b− a) ∀a < b ≤ 0.

Taking a critical subsolution u yields for any t > 0,

u(x)− u
(
αx(−t)

)
≤
∫ 0

−t
L
(
αx(s), α̇x(s)

)
ds+ c[H] t = v(x)− v

(
αx(−t)

)
+ (c[H]− c) t.

Letting t tend to ∞ gives the result.
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Example 3.9 (Mechanical Lagrangians). Consider a Tonelli Hamiltonian H : T ∗M → R of
the form kinetic energy plus potential,

H(x, p) =
1
2
‖p‖2x + V (x) ∀(x, p) ∈ T ∗M,

where V : M → R is a function of class C2. We check easily that

c[H] = max
x∈M

{V (x)} .

As a matter of fact, one has H(x, 0) ≤ maxV which yields c[H] ≤ 0. In addition, if u : M → R
is a C1 function then for every x ∈ M with V (x) = maxV , one has H(x, du(x)) ≥ maxV ,
which shows that c[H] ≥ maxV . We can also observe that any constant function is a critical
subsolution for H.

Example 3.10 (Mañé’s Lagrangians). Let X be a vector field of class Ck (with k ≥ 2) on M .
The Mañé Lagrangian LX : TM → R associated with X is the Ck Tonelli Lagrangian defined
as

L(x, v) =
1
2
‖v −X(x)‖2x ∀(x, v) ∈ TM.

The Hamiltonian HX associated to LX by Legendre-Fenchel duality is given by

HX(x, p) =
1
2
‖p‖2x + 〈p,X(x)〉 ∀(x, p) ∈ T ∗M.

By Remark 1.2, c[H] = 0. In fact, constant functions are weak KAM solution.

4 The Peierls barrier

The Peierls barrier h : M ×M → R is defined by

h(x, y) := lim inf
t→+∞

{
ht(x, y) + c[H]t

}
∀x, y ∈M.

The following result is crucial.

Proposition 4.1. Let u : M → R be a weak KAM solution. For every x ∈M and every curve
γx : (−∞, 0]→M with γx(0) = x satisfying (3.6), any α-limit point z of γx, that is any

z ∈
⋂
t<0

γx
(
(−∞, t]

)
satisfies h(z, z) = 0.

Proof. Let z be an α-limit point of γx. There is a increasing sequence of times {tk} tending
to ∞ such that z = limk→∞ zk with zk := γx(−tk). Since h(z, z) ≥ 0 by (3.4), we need to
construct a sequence of Lipschitz curves γk : [0, Tk]→M such that

lim
k→∞

∫ Tk

0

L
(
γk(s), γ̇k(s)

)
ds+ c[H]Tk = 0.

For that we simply concatenate the restriction of γx to [−tk, 0] with some unit speed geodesic
joining z to zk. The continuity of u together with (3.6) yields the result.
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We can check easily that h satisfies for any x, y, z ∈M and any t > 0,

h(x, z) ≤ h(x, y) + ht(y, z) + c[H] t and h(x, z) ≤ ht(x, y) + c[H] t+ h(y, z). (4.1)

Then from the above proposition we deduce that h(x, y) is well-defined for all x, y ∈ M and
satisfies the triangle inequality

h(x, z) ≤ h(x, y) + h(y, z) ∀x, y, z ∈M. (4.2)

Remembering (3.4), we also notice that for every u ∈ SS(H), we have

u(y)− u(x) ≤ h(x, y) ∀x, y ∈M, (4.3)

which implies that

h(x, x), h(x, y) + h(y, x) ≥ 0 ∀x, y ∈M. (4.4)

The Peierls barrier can indeed be used to construct weak KAM solutions.

Proposition 4.2. For every x ∈M , the ”pointed” Peierls barrier hx : M → R defined by

hx(y) := h(x, y) ∀y ∈M.

is a weak KAM solution.

Proof. Let γ : [a, b]→M be a Lipschitz curve (with b− a > 0), by (4.1) we have

h
(
x, γ(b)

)
≤ h

(
x, γ(a)

)
+ hb−a

(
γ(a), γ(b)

)
+ c[H] (b− a)

≤ h
(
x, γ(a)

)
+
∫ b

a

L
(
γ(s), γ̇(s)

)
ds+ c[H] (b− a),

which shows by Proposition 2.4 that hx is a critical subsolution.

Lemma 4.3. For every y ∈M , there exists a Lipschitz curve γy : (−∞, 0]→M with γy(0) = y
satisfying

hx
(
γy(b)

)
− hx

(
γy(a)

)
=
∫ b

a

L
(
γy(s), γ̇y(s)

)
ds+ c[H](b− a) ∀a < b ≤ 0. (4.5)

Moreover, the curve γy is of class C2 and solution to the Euler-Lagrange equation.

Proof of Lemma 4.5. Let y ∈M be fixed. By definition of h(x, y), there is a sequence of times
{tk} tending to ∞ and a sequence of curves γk : [0, tk] → M with γk(0) = x, γk(tk) = y such
that

h(x, y) = lim
k→∞

htk(x, y) + c[H] tk = lim
k→∞

∫ tk

0

L
(
γk(s), γ̇k(s)

)
ds+ c[H] tk.

Foe each t > 0, one has for k large enough(with tk > t)

htk(x, y) = htk−t
(
x, γk(tk − t)

)
+ ht

(
γk(tk − t), y

)
= htk−t

(
x, γk(tk − t)

)
+
∫ tk

tk−t
L
(
γk(s), γ̇k(s)

)
ds.

By Theorem A.1, the curves γk are uniformly Lipschitz. Then by the Arzela-Ascoli Theorem,
taking a subsequence if necessary, we may assume that there is a Lipschitz curve γy : (−∞, 0]→
M with γy(0) = y such that

h(x, y) ≥ h
(
x, γy(−t)

)
+
∫ 0

−t
L
(
γy(s), γ̇y(s)

)
ds+ c[H]t ∀t ≥ 0.

We conclude easily by the fact that hx ∈ SS(H).

Proposition 3.6 concludes the proof.

10



5 The projected Aubry set and the Aubry set

Definition 5.1. We call projected Aubry set the nonempty compact subset of M defined by

A(H) :=
{
x ∈M |h(x, x) = 0

}
.

The fact that A(H) is nonempty follows from Proposition 4.1 while the compactness is a
consequence of the Lipschitz regularity of h (which is itself a consequence of Proposition A.3).
Proposition 4.1 shows indeed that A(H) plays the role of a boundary at infinity. As shown
below, the points of the projected Aubry set are the only points where all critical subsolutions
are differentiable.

Proposition 5.2. The following properties hold:

(i) For every x ∈ A(H), there is a C2 curve γx : R→ A(H) with γx(0) = x which is solution
to the Euler-Lagrange equation and such that

h
(
x, γx(t)

)
=
∫ t

0

L
(
γx(s), γ̇(s)

)
ds+ c[H] t = −h

(
γx(t), x

)
∀t ∈ R. (5.1)

(ii) For every x ∈ A(H), there is P (x) ∈ T ∗xM with H(x, P (x)) = c[H] such that any critical
subsolution u is differentiable at x and satisfies du(x) = P (x) = ∂L

∂v (x, γ̇x(0)).

(iii) For every x ∈ A(H) and every u ∈ SS(H), we have

u
(
γx(b)

)
− u
(
γx(a)

)
=
∫ b

a

L
(
γx(s), γ̇x(s)

)
ds+ c[H] (b− a) ∀a < b ∈ R. (5.2)

Moreover, any Lipschitz curve γ : [a, b] → M with 0 ∈ [a, b], γ(0) = x and u(γ(b)) −
u(γ(a)) =

∫ b
a
L(γ(s), γ̇(s)) ds+ c[H] (b− a) satisfies γ(t) = γx(t), for any t ∈ [a, b].

(iv) For every x /∈ A(H), there is a critical subsolution u which is smooth in an open neigh-
borhood Vx of x and such that H(x, du(x)) < c[H] for any x′ ∈ Vx.

Proof. Assertion (i) follows by the same arguments as the ones given in the proof of Lemma
4.5. Let us prove (ii) and fix a critical subsolution u. Then we have for any t ≥ 0

u
(
γx(t)

)
− u(x) ≤

∫ t

0

L
(
γx(s), γ̇x(s)

)
ds+ c[H] t

and u(x)− u
(
γx(t)

)
≤ h

(
γx(t), x

)
.

By (5.1) (summing both inequalities), we infer that

u
(
γx(t)

)
− u(x) =

∫ t

0

L
(
γx(s), γ̇x(s)

)
ds+ c[H] t ∀t ≥ 0, (5.3)

Repeating the same argument for negative times, we get

u(x)− u
(
γx(−t)

)
=
∫ 0

−t
L
(
γx(s), γ̇x(s)

)
ds+ c[H] t ∀t ≥ 0. (5.4)

Let us now show that we can put a C2 support function for the graph of u at x from above and
from below. Taking a local chart in a neighborhood of x, we may assume that there is ε > 0
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such that the restriction of γ to the interval [−ε, ε] is valued in Rn. For every x′ close to x, we
define a C2 curve αx′ : [0, ε]→M steering γx(−ε) to x′ by

αx′(s) = γx(−ε+ s) +
s

ε
(x′ − x) ∀s ∈ [0, ε].

By (5.4) and (2.4), we deduce that

u(x′) ≤ u(x) +
∫ ε

0

L
(
αx′(s), α̇x′(s)

)
ds−

∫ 0

−ε
L
(
γx(s), γ̇x(s)

)
ds.

Which shows that we can put from above a function of class C2 on the graph of u at x. Now
for every x′ close to x, we can define a C2 curve βx′ : [0, ε]→M steering x′ to γx(ε) by

βx′(s) =
ε− s
ε

(x′ − x) + γx(s) ∀s ∈ [0, ε].

By (5.3) and (2.4), we deduce that we can put from below a function of class C2 on the graph
of u at x. Thus u is differentiable at x. The restriction of γx to the interval [0, ε] minimizes the
quantity

u
(
γ(0)

)
+
∫ ε

0

L
(
γ(s), γ̇(s)

)
ds

among the Lipschitz curves γ : [0, ε] → M such that γ(ε) = γx(ε). Since u is differentiable at
x = γx(0), by Proposition A.4, we deduce that

du(x) =
∂L

∂v

(
x, γ̇x(0)

)
=: P (x).

This concludes the proof of assertion (ii). Assertion (iii) is an easy consequence of (5.3)-(5.4)
and Cauchy-Lipschitz’s theorem. Let us now prove (iv). Fix x /∈ A(H) and define the ”pointed”
Mañé potential v : M → R by

v(y) := inf
t>0

{
ht(x, y) + c[H] t

}
∀y ∈M.

The function v is well-defined (v ≤ hx and one has (3.4)) and satisfies

v(z)− v(y) ≤ ht(y, z) + c[H] t ∀t > 0.

Then proceeding as in the proof of Proposition 4.2, we deduce that v ∈ SS(H). Let y 6= x
be fixed. Either there is t̄ such that v(y) = ht̄(x, y) + c[H] t̄ or we have v(y) = h(x, y). In
both cases, proceeding as in the proof of Lemma 4.5, we can show that there is εy > 0 and a
Lipschitz curve γy : (−εy, 0]→M with γy(0) = y such that

v
(
γy(b)

)
− v
(
γy(a)

)
=
∫ b

a

L
(
γy(s), γ̇y(s)

)
ds+ c[H](b− a) ∀a < b ∈

(
−εy, 0

]
.

By the argument given in the proof of Proposition 3.6 (iii) ⇒ (iv), we deduce that for every
smooth function φ : M → R with φ ≤ v and all y ∈M \ {x},

φ(y) = v(y) =⇒ H
(
y, dφ(y)

)
≥ c[H].

We claim that the above property cannot be satisfied for y = x. If not, from Proposition 3.6
this means that v is a weak KAM solution. Then there is a Lipschitz curve γx : (−∞, 0]→M
with γ(0) = x satisfying (3.6). We check easily that v(x) = 0. Then we get

−v
(
γx(−t)

)
=
∫ 0

−t
L
(
γx(s), γ̇x(s)

)
ds+ c[H] t ∀t ≥ 0.
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Fix t > 0 and ε > 0 small. By definition of v(γx(−t)) there is tε > 0 and a Lipschitz curve
γε : [0, tε]→M with γε(0) = x, γε(tε) = γx(−t) such that∫ tε

0

L
(
γε(s), γ̇ε(s)

)
ds+ c[H] tε ≤ v

(
γx(−t)

)
+ ε.

Then the concatenation of γε with γx restricted to [−t, 0] yields

htε+t(x, x) + c[H] (tε + t) ≤ ε.

Thus letting t tend to ∞ and ε tend to zero implies h(x, x) = 0, which gives a contradiction.
So we deduce the existence of a smooth function φ : M → R with φ ≤ v and such that

φ(x) = v(x) and H
(
x, dφ(x)

)
< c[H].

Changing φ is necessary we may assume that there are ε > 0 and an open neighborhood Ω of
x such that the following properties are satisfied:

φ(y) ≥ v(y)− ε∀y ∈ Ω,
φ(y) = v(y)− ε∀y ∈ ∂Ω
φ(y) < v(y)− ε∀y ∈M \ Ω
H(y, dφ(y)) < c[H]∀y ∈ Ω.

Then we define u : M → R as

u(y) := max
{
v(y), φ(y) + ε

}
∀y ∈M.

By construction, u satisfies the properties of assertion (iv).

Definition 5.3. We call Aubry set the subset of T ∗M defined by

Ã(H) := {(x, P (x)) ∈ T ∗M |x ∈ A(H)} .

The following result is due to Mather [20, 21].

Theorem 5.4. The set Ã(H) is a nonempty compact subset of T ∗M which is invariant under
the Hamiltonian flow. Moreover it is a Lipschitz graph over A(H).

Proof. Let u ∈ SS(H) be fixed. By Proposition 5.2 (ii), u is differentiable at each point x of
A(H) and satisfies du(x) = P (x). In fact, in the proof we saw that for each x ∈ A(H), we can
put a C2 support function for the graph of u at x from above and from below. The Lipschitz
regularity of the mapping x ∈ A(H) 7→ P (x) is a easy consequence of the following lemma
taken from [13] and whose proof is given in Section C.

Lemma 5.5. Let B be a open unit ball in Rn, f : B → R be a continuous function, K > 0 and
E ⊂ B be such that for every x ∈ E, there is px ∈ (Rn)∗ veryfing

|f(y)− f(x)− 〈px, y − x〉| ≤ K|y − x|2 ∀y ∈ B.

Then u is differentiable on E, du(x) = px ∀x ∈ E, and the mapping

x ∈ E with |x| ≤ 1
3
7−→ du(x)

is 6K-Lipschitz.

The remaining part follows from Proposition 5.2 (i)-(ii) and Remark A.2
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Example 5.6 (Mechanical Lagrangians). Consider an mechanical Hamiltonian H : T ∗M → R
of the form given in Example 3.9. The Aubry set consists in a set of equilibria:

Ã(H) =
{

(x, 0) |V (x) = maxV
}
.

Example 5.7 (Mañé’s Lagrangians). Let X be a vector field of class Ck (with k ≥ 2) on M
and HX : T ∗M → R be the Hamiltonian associated to the Mañé Lagrangian LX : TM → R
given in Example 3.10. it can be shown that the projected Aubry set of HX contains the set of
recurrent points of the flow of X. The Aubry set is given by

Ã(H) =
{

(x, 0) |x ∈ A(H)
}
.

Its orbits are orbits of X lifted in T ∗M , that is have the form (x(·), p(·))) with ẋ(·) = X(x(·))
and p(·) = 0.

Let u ∈ SS(H) be fixed. By Proposition 5.2, the set of critical subsolutions which coincide
with u on A(H) is convex, compact, and is invariant with respect to the critical Lax-Oleinik
semigroup. Then the same proof as for Theorem 3.2 gives.

Proposition 5.8. For every u ∈ SS(H), there exists a weak KAM solution v such that v = u
on A(H).

We mention that there is a comparison theory for weak KAM solutions. Fathi proves in [13]
that if two weak KAM solutions can be compared on the projected Aubry set, then they can
be compared globally.

6 The uniqueness issue

Of course if a given function u is a weak KAM solution for H, then for every constant a ∈ R
the function u + a is weak KAM solution. We shall say that (1.1) has a unique solution if for
every pair u, v of weak KAM solutions , the function u− v is constant.

Theorem 6.1. Let H : T ∗M → R be a Ck Tonelli Hamiltonian with k ≥ 2 such that (1.1) has
a unique solution. Then A(H) is connected.

Proof. We argue by contradiction and assume that A(H) is not connected. From Proposition
5.8, it is sufficient to construct two critical subsolutions u, v : M → such that the restriction of
v − u to A(H) is not constant. Since A(H) is not connected, there are two disjoint compact
sets A1,A2 ⊂ A(H) such that A1 ∪ A2 = A(H). Let Ω1,Ω2 ⊂ M be two disjoint open sets
containing respectively A1 and A2, by Proposition 5.2 (iv), for every x ∈M \ (Ω1∪Ω2) there is
a critical subsolution ux : M → R which is smooth in an open neighborhood Vx and such that
H(x, dux(x′)) < c[H] for any x′ ∈ Vx. Note that taking Vx smaller if necessary we may assume
that Vx ∩ A(H) = ∅. By compactness, there are x1, . . . , xN in M \ (Ω1 ∪ Ω2) such that

M \ (Ω1 ∪ Ω2) ⊂
⋃

i=1,...,N

Vxi .

By (H2), the function u : M → R defined by

u(x) :=
ux1(x) + · · ·+ uxN (x)

N
∀x ∈M,

is a critical subsolution. In addition, by construction there is ε > 0 such that

H
(
x, du(x)

)
≤ c[H]− ε a.e. x ∈M \ (Ω1 ∪ Ω2).
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Then by regularizing u in a neighborhood of M \ (Ω1 ∪ Ω2), we can assume that u is a critical
subsolution which is smooth in an open neighborhood V of M \ (Ω1 ∪ Ω2) and satisfies

H
(
x, du(x)

)
≤ c[H]− ε ∀x ∈M \ (Ω1 ∪ Ω2).

By Proposition 5.8, there is a critical solution ũ which coincides with u on A(H). For every
x ∈M \ (Ω1 ∪ Ω2) and every γx given by Proposition 3.6 (iii), we have

ũ(x)− ũ
(
γx(−t)

)
=
∫ 0

−t
L
(
γx(s), γ̇x(s)

)
ds+ c[H] t ∀t ≥ 0

and

u(x)− u
(
γx(−t)

)
≤
∫ 0

−t
L
(
γx(s), γ̇x(s)

)
ds+ (c[H]− ε) t ∀t ≥ 0 such that γx

(
[−t, 0]

)
⊂ V.

Since u ∈ SS(H) and (u − ũ)
(
γx(−t)

)
tends to zero as t tends to ∞ (by Proposition 4.1), we

infer that u < ũ on M \ (Ω1 ∪ Ω2). Let α > 0 be such that u + α ≤ ũ on M \ (Ω1 ∪ Ω2), the
function v : M → R defined by

v(x) =
{
ũ(x) if x ∈ Ω1,
max{ũ(x), u(x) + α/2} otherwise,

is a critical subsolution such that the the restriction of v − u to A(H) is not constant.

Remark 6.2. In the above proof, we constructed a critical subsolution which is strict on a
compact subset of M \ A(H). In fact, as shown by Bernard [2] (thanks to a seminal result by
Fathi and Siconolfi [15]), there is a critical subsolution u of class C1,1 such that H(x, du(x)) <
c[H] on M \A(H). In particular, the infimum in the definition of c[H] is attained for a function
of class C1,1. We refer the reader to [24] fur further details.

Thanks to a Sard-type result proven in [14], the converse result holds in low dimension.

Theorem 6.3. Let H : T ∗M → R be a Ck Tonelli Hamiltonian with k ≥ 2 and k ≥ 4 if
dim M ≥ 3. Assume that A(H) is connected. Then (1.1) has a unique solution.

Proof. Let u, v : M → R be two weak KAM solutions. As shown in [14], under the present
assumptions, the function (u− v)|A(H) satisfies Sard’s Theorem, that is (u− v)(A(H)) has zero
Lebesgue measure. Since A(H) is connected, its image has to be an interval. Consequently, it
is a singleton. Furthermore, thanks to a comparison theorem by Fathi [13, Theorem 8.5.5], if
two weak KAM solutions coincide on A(H) then they coincide on all M .

Example 6.4 (Mechanical Lagrangians). In [22] Mather provides examples of potentials V :
M → R of class Ck such that the projected Aubry set of the Hamiltonian given in Example 3.9
is connected but without uniqueness. No smooth or analytic counterexamples to Theorem 6.3
are known.

Example 6.5 (Mañé’s Lagrangians). In [14], we show that (at least in low dimension) the
uniqueness property for Mañé Lagrangians is related to chain-recurrent properties of the flow
of X.

Following Mañé [19], given a Tonelli Hamiltonian H : T ∗M → R of class Ck (with k ≥ 2)
and a potential V : M → R of class Ck (with k ≥ 2), we define the Hamiltonian HV : T ∗M → R
by

HV (x, p) := H(x, p) + V (x) ∀ (x, p) ∈ T ∗M.

Denote by Ck(M) the set of Ck potentials on M equipped with the Ck topology. Generically
on the potential, we have uniqueness. The following result is due to Mañé [19].

Theorem 6.6. Let H : T ∗M → R be a Ck Tonelli Hamiltonian (with k ≥ 2). There is a
residual subset (i.e., a countable intersection of open and dense subsets) G in Ck(M) such that
for every V ∈ G, the critical Hamilton-Jacobi associated with HV has a unique solution.
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7 Regularity of weak KAM solutions

The following is proven in [23]. We refer to the reader to [4, 23, 24] for the definition of
semiconcave functions.

Theorem 7.1. Let u : M → R be a weak KAM solution. Then u is semiconcave on M and
C1,1
loc on an open dense subset O of M .

Since weak KAM solutions u are Lipschitz, the limiting differential of u at x defined by

du∗(x) =
{

lim du(xk) |xk → x, u diff at xk
}
,

is always a nonempty compact subset of T ∗xM . In [23], we show that there is a one-to-one
correspondence between the set of limiting differentials at x and the set of curves γx : (−∞, 0]→
M with γx(0) = x and such that

u
(
γx(b)

)
− u
(
γx(a)

)
=
∫ b

a

L
(
γx(s), γ̇x(s)

)
ds+ c[H] (b− a) ∀a < b ≤ 0.

In fact (by the same arguments as in the proof of Proposition 5.2 (i)), u can be shown to be
C1 at every γx(−t) with t > 0. Since γx(−t) tends to the projected Aubry set as t tends to ∞
(by Proposition 4.1), regularity properties for weak KAM solutions in a neighborhood of A(H)
imply more regularity for u globally (in the spirit of classical results for Dirichlet-type problems
[5, 18, 23]). Some properties on the behavior of the Hamiltonian flow in a neighborhood of ˜A(H)
may also bring regularity properties. This is the purpose of the following result by Bernard [1].

Theorem 7.2. Let H be an Hamiltonian whose the Aubry set is an hyperbolic periodic orbit.
Then there is a unique weak KAM solution. Moreover it is Ck in a neighborhood of A(H).

We refer the reader to [1] for the proof which is based on the fact (thanks to Proposition
4.1) every limiting subdifferential has to be in the unstable manifold of the periodic orbit.

8 The Mañé conjecture

The Mañé conjecture in Ck topology (with k ≥ 2) can be stated as follows.

Conjecture 8.1 (Mañé’s Conjecture). For every Tonelli Hamiltonian H : T ∗M → R of class
Ck (with k ≥ 2), there is a residual subset (i.e., a countable intersection of open and dense
subsets) G of Ck(M) such that, for every V ∈ G, the Aubry set Ã(HV ) of the Hamiltonian HV

is either an equilibrium point or a periodic orbit.

A natural way to attack the Mañé Conjecture in any dimension would be to prove first a
density result, then a stability result. Namely, given an Hamiltonian of class Ck satisfying (H1)
and (H2), first one could show that the set of potentials V ∈ Ck(M) such that Ã(HV ) is either
a hyperbolic equilibrium point or a hyperbolic periodic orbit is dense, and then prove that the
latter property is open in Ck topology. The stability part is indeed contained in results obtained
by Contreras and Iturriaga in [8], so we can consider that the Mañé Conjecture reduces to the
density part.

Conjecture 8.2 (Mañé’s density Conjecture). For every Tonelli Hamiltonian H : T ∗M → R
of class Ck (with k ≥ 2) there exists a dense set D in Ck(M) such that, for every V ∈ D, the
Aubry set of HV is either an equilibrium point or a periodic orbit.
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In a series of papers in collaboration with Figalli [16, 17], we made progress toward a proof
of the Mañé Conjecture in C2 topology. Our approach is based on a combination of techniques
coming from finite dimensional control theory and Hamilton-Jacobi theory, together with some
of the ideas which were used to prove C1-closing lemmas for dynamical systems. The following
result is a weak form of some of the results that we obtained in [16, 17].

Theorem 8.3. Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck with k ≥ 4, and fix
ε > 0. Assume that there is a critical subsolution which is of class Ck+1. Then there exists a
potential V : M → R of class Ck−1, with ‖V ‖C2 < ε, such that c[HV ] = c[H] and the Aubry
set of HV is either an equilibrium point or a periodic orbit.

This result together with stability results by Contreras and Iturriaga [8] shows that we
can more or less consider that the Mañé Conjecture for Hamiltonians of class at least C4 is
equivalent to the:

Conjecture 8.4 (Mañé regularity Conjecture). For every Tonelli Hamiltonian H : T ∗M → R
of class Ck, with k ≥ 4, there is a set D ⊂ C4(M) which is dense in C2(M) (with respect to
the C2 topology) such that the following holds: For every V ∈ D, the Hamiltonian HV admits
a critical subsolution of class C5.

A Reminders in calculus of variations

Let L : TM → R be a Ck Tonelli Lagrangian (with k ≥ 2), that is a Lagrangian of class Ck

satisfying the two following properties:

(L1) Superlinear growth: For every K ≥ 0, there is a finite constant C(K) such that

L(x, v) ≥ K‖v‖x + C(K) ∀ (x, v) ∈ TM.

(L2) Uniform convexity: For every (x, v) ∈ TM , the second derivative along the fibers ∂2L
∂v2 (x, v)

is positive definite.

The purpose of the present section is to recall basic facts on minimizing problems associated
with Tonelli Lagrangians. Given t > 0 we study the minimal action problem in time t, that is
we study the function ht : M ×M → R defined by

ht(x, y) := inf
γ

{∫ t

0

L
(
γ(s), γ̇(s)

)
ds

}
∀x, y ∈M, (A.1)

where the infimum is taken on the set of Lipschitz curves γ : [0, t]→M which satisfy γ(0) = x
and γ(t) = y.

Theorem A.1. For any x, y ∈M and t > 0, there exists a Lipschitz curve γ : [0, t]→M with
γ(0) = x and γ(t) = y such that

ht(x, y) =
∫ t

0

L
(
γ(s), γ̇(s)

)
ds. (A.2)

The curve γ is indeed of class C2 and satisfies the Euler-Lagrange equation

d

ds

[
∂L

∂v
(γ(s), γ̇(s))

]
=
∂L

∂x
(γ(s), γ̇(s)) ∀s ∈ [0, t]. (A.3)

Moreover, there is a continuous increasing function θ : (0,∞) → (0,∞) depending only on L
such that ∥∥γ̇(s)

∥∥
γ(s)
≤ θ(1/t) ∀s ∈ [0, t]. (A.4)
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Remark A.2. If H : T ∗M → R denotes the Ck Tonelli Hamiltonian associated with L by
Legendre duality, then for any curve γ : [0, t] → M satisfying the Euler-Lagrange equation
(A.3), the curve

(
x(·), p(·)

)
: [0, t]→ T ∗M defined by(

x(s), p(s)
)

:=
(
γ(s),

∂L

∂v

(
γ(s), γ̇(s)

))
∀s ∈ [0, t],

is a trajectory of the Hamiltonian system associated with H.

Proof. Let x, y ∈M and t > 0 be fixed. Set

h̃t(x, y) := inf
{∫ t

0

L
(
γ(s), γ̇(s)

)
ds | γ ∈ AC([0, t],M), γ(0) = x, γ(t) = y

}
,

where AC([0, t],M) signifies the class of absolutely continuous functions mapping [0, t] to M .
Tonelli’s celebrated theorem asserts that under the present hypotheses, the infimum in the
above formula is attained, namely there is an absolutely continuous curve γ : [0, t] → M with
γ(0) = x and γ(t) = y such that

h̃t(x, y) =
∫ t

0

L
(
γ(s), γ̇(s)

)
ds.

Since the Lagrangian is autonomous (it does not depend on time), it can be shown that γ is
indeed Lipschitz, see [6]. In particular, this shows that h̃t(x, y) = ht(x, y). Then the duBois-
Reymond Theorem asserts that γ satisfies an integral Euler equation. From the latter equation
and the uniform convexity of L in the fibers, it can be shown that γ has indeed the same
regularity as L. We refer the reader to the textbook [7] for the proofs of these facts. In
conclusion, we infer that the infimum in (A.1) is attained by a curve γ which is at least C2 and
satisfies the Euler-Lagrange equation (A.3). It remains to show the existence of a continuous
increasing function satisfying (A.4).

Denote by d the Riemannian distance associated with g on M ×M . Let α : [0, d(x, y)]→M
be a unit speed geodesic joining x to y in time d(x, y). There holds

ht(x, y) ≤
∫ t

0

L (α(sd(x, y)/t), (d(x, y)/t)α̇(sd(x, y)/t)) ds.

Set for any R > 0,

S(R) := max
{
L(z, w) | (z, w) ∈ TM, ‖w‖z ≤ R

}
.

Then one has

ht(x, y) ≤ tS
(
d(x, y)/t

)
≤ tS

(
diam(M)/t

)
. (A.5)

Let C(1) ∈ R be the constant given by (L1), that is such that L(x, v) ≥ ‖v‖x + C(1) for any
(x, v) ∈ TM . From (A.2) and (A.5), we infer that there is s̄ ∈ [0, t] such that∥∥γ̇(s̄)

∥∥
γ(s̄
≤ S

(
diam(M)/t

)
− C(1). (A.6)

By Remark A.2, the curve
(
x(·), p(·)

)
: [0, t]→ T ∗M defined by(

x(s), p(s)
)

:=
(
γ(s),

∂L

∂v

(
γ(s), γ̇(s)

))
∀s ∈ [0, t],

is a trajectory of the Hamiltonian system associated with H. Then since H is constant along(
x(·), p(·)

)
, by (A.6) we infer that for all s ∈ [0, t],

H
(
x(s), p(s)

)
= H

(
x(s̄), p(s̄)

)
≤ S∗

(
S1

(
S
(
diam(M)/t

)
− C(1)

))
,
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where for any R > 0, S∗(R) and S1(R) are given by

S∗(R) := max
{
H(z, p) | (z, p) ∈ T ∗M, ‖p‖z ≤ R

}
,

and

S1(R) := max
{∥∥∥∥∂L∂v (z, w)

∥∥∥∥
z

| (z, w) ∈ TM, ‖w‖z ≤ R
}
.

By superlinear growth of H, there is C∗(1) ∈ R such that H(x, p) ≥ ‖p‖x + C∗(1) for any
(x, p) ∈ T ∗M . Then we get

‖p(s)‖γ(s) ≤ S∗
(
S1

(
S
(
diam(M)/t

)
− C(1)

))
− C∗(1) ∀s ∈ [0, t].

Since γ̇(s) = ∂H
∂p

(
x(s), p(s)

)
for all s ∈ [0, t], setting

S∗1 (R) := max
{∥∥∥∥∂H∂p (z, p)

∥∥∥∥
z

| (z, p) ∈ T ∗M, ‖p‖z ≤ R
}

yields
‖γ̇(s)‖γ(s) ≤ S

∗
1

(
S∗
(
S1

(
S
(
diam(M)/t

)
− C(1)

))
− C∗(1)

)
∀s ∈ [0, t].

We leave the reader to construct the continuous increasing function θ satisfying (A.4).

Proposition A.3. For every t̄ > 0, there is Kt > 0 such that the functions ht are Kt-Lipschitz
on M ×M for all t ≥ t̄.
Proof. This is a consequence of (A.4). Let x, y ∈M and t ≥ t̄ be fixed. By Theorem A.1, there
is a C2 curve γ : [0, t]→M with γ(0) = x, γ(t) = y satisfying (A.2)-(A.4). Taking a local chart
in a neighborhood of y, we may assume that there is a universal ε > 0 such that the restriction
of γ to the interval [t− ε, t] is valued in Rn. For every y′ close to y, define αy′ : [0, t]→M by

αy′(s) = γ(s) +
ψ(t− s)

ε
(y′ − y) ∀s ∈ [0, t],

where ψ : R→ [0, 1] is a smooth function such that ψ(s) = 0 for s ≥ ε and ψ(0) = 1. The curve
αy′ is a C2 curve steering x to y′ in time t. Hence

ht(x, y′) ≤
∫ t

0

L
(
αy′(s), α̇y′(s)

)
ds

≤ ht(x, y) +
∫ t

0

L
(
αy′(s), α̇y′(s)

)
ds−

∫ t

0

L
(
γ(s), γ̇(s)

)
ds.

The function

y′ 7−→
∫ t

0

L
(
αy′(s), α̇y′(s)

)
ds−

∫ t

0

L
(
γ(s), γ̇(s)

)
ds

is of class C2, it vanishes at y′ = y and by (A.4) its derivative at y′ = y is bounded by a
constant depending only on t̄. This proves the result.

Finally we recall the following result which follows easily from Theorem A.1.

Proposition A.4. Let ϕ : M → R be a Lipschitz function and y ∈ M and t > 0 be fixed.
Letγ : [0, t]→M be a Lipschitz curve with γ(t) = y which minimizes the quantity

ϕ
(
α(0)

)
+
∫ t

0

L
(
α(s), α̇(s)

)
ds

among all Lipschitz curves α : [0, t] → M with α(t) = y. Assume that ϕ is differentiable at
γ(0). Then γ is of class C2, satisfies the Euler-Lagrange equation, and verifies the transversality
condition

dϕ
(
γ(0)

)
=
∂L

∂v

(
γ(0), γ̇(0)

)
.
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B A fixed point theorem for nonexpansive semigroups

The proof of the following result is sketched in [13]. For sake of completeness we provide its
proof.

Theorem B.1. Let K be a nonempty compact convex set in a normed space (E, ‖ · ‖E). Let
{ϕt}t≥0 be a family of mappings ϕt : K → K satisfying the following properties:

(i) ∀t, t′ ≥ 0, ϕt+t′ = ϕt ◦ ϕt′ (semigroup property).

(ii) ∀t ≥ 0, ‖ϕt(e)− ϕt(e′)‖E ≤ ‖e− e′‖E (nonexpansivity).

(iii) For every e ∈ E, the mapping t ∈ [0,∞) 7→ ϕt(e) is continuous.

Then there is e ∈ E such that ϕt(e) = e for all t ≥ 0.

Proof. First we show that each ϕt has a fixed point. Let t > 0 be fixed, fix ē ∈ K and define
for every positive integer k the function ϕkt : K → K by

ϕkt (e) =
1
k
ϕt(ē) +

(
1− 1

k

)
ϕkt (e) ∀e ∈ K.

Note that ϕkt is well-defined by convexity of K. By (ii), ϕkt is a (1 − 1/k) contraction. Then
by Banach’s fixed point theorem, each ϕkt has a fixed point ekt . By compactness, taking a
subsequence if necessary, {ekt } tends as k tends to ∞ to a fixed point of ϕt. Denote by Fix(ϕt)
the set of e ∈ K such that ϕt(e) = e. The set Fix(ϕt) is a nonempty compact subset of K.
Let us show that there is a nonexpansive retraction from K to Fix(ϕt). Denote by K̃t the set
of mapping r : K → K which are nonexpansive and such that r(e) = e for any e ∈ Fix(ϕt).
Note that ϕt belongs to K̃t. Since K is convex, the set K̃t is a compact convex subset of the set
of continuous mapping from K to K equipped with the supremum norm. Define the mapping
Gt : K̃t → K̃t by

Gt(r) = ϕt ◦ r ∀r ∈ K̃t.

Using (ii) we check easily that Gt is a nonexpansive mapping. Thus by the above argument,
there is rt ∈ K̃t such that Gt(rt) = ϕt ◦ rt = rt. This means that rt : K → K is nonexpansive
and satisfies

rt(e) ∈ Fix(ϕt) ∀e ∈ K and rt(e) = e ∀e ∈ Fix(ϕt).

Let us now show that for any t, t′ > 0, the mapping ϕt, ϕt′ share a common fixed point. By (ii)
and the nonexpansiveness of rt, the mapping

e ∈ K 7−→
(
rt ◦ ϕt′

)
(e) ∈ K

is nonexpansive. Again, by the above argument there is e ∈ K such that(
rt ◦ ϕt′

)
(e) = rt

(
ϕt′(e)

)
= e.

Since e belongs to the image of rt, it belongs to Fix(ϕt). By (i), ϕt ◦ ϕt′ = ϕt+t′ = ϕt′ ◦ ϕt.
Thus ϕt′(e) also belongs to Fix(ϕt). Then we get

e = rt
(
ϕt′(e)

)
= ϕt′(e),

which shows that e is a common fixed point of ϕt and ϕt′ . Denote by Fix(ϕt, ϕt′) the set of
e ∈ K such that ϕt(e) = ϕt′(e) = e. Considering the set of mappings r ∈ K̃t satisfying r(e) = e
for any e ∈ Fix(ϕt, ϕt′) and the mapping r 7→ rt ◦ ϕt′ ◦ r and arguing as above, we show
easily the existence of a nonexpansive contraction from K to Fix(ϕt, ϕt′). Then repeating the
previous arguments, we show that for every finite set t1, . . . , tN of positive times, the mappings
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ϕt1 , . . . , ϕtN have a common fixed point. Let us now consider a countable family of positive
times {tl}l∈N which is dense in [0,∞). For every l ∈ N, there is el ∈ K such that ϕti(el) = el for
every i ∈ {0, . . . , l}. By compactness of K, taking a subsequence if necessary we may assume
that el converges to some e ∈ E as l tends to ∞. It remains to show that ϕt(e) = e for all
t ≥ 0. Let t > 0 be fixed, there is a sequence of positive times {tlk} converging to t as k tends
to ∞. For every k and every integer l > tlk , we have

‖ϕt(e)− e‖E ≤ ‖ϕt(e)− el‖E + ‖el − e‖E
≤

∥∥∥ϕt(e)− ϕtlk (el)
∥∥∥
E

+ ‖el − e‖E

≤
∥∥∥ϕt(e)− ϕtlk (e)

∥∥∥
E

+
∥∥∥ϕtlk (e)− ϕtlk (el)

∥∥∥
E

+ ‖el − e‖E

≤
∥∥∥ϕt(e)− ϕtlk (e)

∥∥∥
E

+ 2 ‖el − e‖E .

We conclude easily by (iii).

C Proof of Lemma 5.5

The differentiability of f on E is easy. Let x, x′ ∈ E with |x− x′| ≤ 1/3 and px 6= px′ be fixed,
set h := |x−x′|

|px−px′ |
(px′ − px). Then both x+ h and x′ + h belong to B and we have

f(x+ h)− f(x)− 〈px, h〉 ≤
∣∣f(x+ h)− f(x)− 〈px, h〉

∣∣ ≤ K|h|2 = K|x− x′|2,

f(x)− f(x′)− 〈px′ , x− x′〉 ≤
∣∣f(x)− f(x′)− 〈px′ , x− x′〉

∣∣ ≤ K|x− x′|2,
and

f(x′)− f(x+ h) + 〈px′ , x+ h− x′〉 ≤
∣∣f(x+ h)− f(x′)− 〈px′ , x+ h− x′〉

∣∣
≤ K|x+ h− x′|2 ≤ K

(
|x− x′|+ |h|

)2 = 4K|x− x′|2.

Summing the above inequalities yields∣∣px′ − px∣∣ |x′ − x| = 〈px′ − px, h〉 ≤ 6K|x− x′|2.
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