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Abstract

Accurate characterization and simulation of electromagnetic propagation can be obtained

by ray-tracing methods, which are based on a high frequency approximation to the Maxwell

equations and describe the propagating field as a set of propagating rays, reflecting, diffract-

ing and scattering over environment elements. However, this approach has been usually

too computationally costly to be used in large and dynamic scenarios, but this situation is

changing thanks the increasing availability of efficient ray-tracing libraries for graphical pro-

cessing units. In this paper we present Opal, an electromagnetic propagation simulation tool

implemented with ray-tracing on graphical processing units, which is part of the Veneris

framework. Opal can be used as a stand-alone ray-tracing simulator, but its main strength

lies in its integration with the game engine, which allows to generate customized 3D environ-

ments quickly and intuitively. We describe its most relevant features and provide implemen-

tation details, highlighting the different simulation types it supports and its extension

possibilites. We provide application examples and validate the simulation on demanding

scenarios, such as tunnels, where we compare the results with theoretical solutions and fur-

ther discuss the tradeoffs between the simulation types and its performance.

Introduction

Accurate characterization and simulation of electromagnetic (EM) propagation has been a key

ingredient of electrical engineering and research for the last decades [1]. Within the available

methods [1], ray-tracing (RT) methods provide very high precision, usually at the cost of

demanding computational power and a strong dependence on the quality of the tri-dimen-

sional (3D) model of the environment [2]. RT methods are based on a high frequency approxi-

mation (optical ray) to the Maxwell equations and describe the propagating field as a set of

propagating rays, reflecting, diffracting and scattering over environment elements. As a result,

this approach has been usually too computationally costly to be used in large and, especially,
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dynamic scenarios [3], and so networks simulators usually only provide stochastic or simpli-

fied hybrid methods [3].

But RT is becoming increasingly more important for the evaluation of wireless systems: its

necessity is already recognized for current cellular systems (5G) [4], but especially for next gen-

eration cellular networks [5], which incorporate the use of visible light communications and

techniques such as adaptive beamforming and spectrum management and other advanced

transmission mechanisms, whose performance is not captured by just computing signal-to-

noise ratio but require a multidimensional assessment of the channel. RT can provide it and,

in fact, the behaviour of high frequency signals matches better the ray-optics approximation

and increases the influence of multipath contributions from environmental elements. Simulta-

neously, the computational power of graphics processing units (GPU) has been leveraged to

simulate propagation [2, 6] at a much more reasonable computational cost. However, RT still

requires as a previous step the capability to build 3D models of the scenario [2, 3] but current

simulators do not usually provide it. And despite the availability of open real-world map data

[7], tools to convert it to 3D scenes suitable for propagation simulation are scarce.

To address those shortcomings, in a previous paper [8] we introduced Veneris, an open

source framework made of a traffic simulator, implemented on top of the Unity game engine

[9], a ray-tracing GPU based propagation simulator, called Opal, and a set of modules which

enable bidirectional coupling with the widely used OMNET++ network simulator [10]. With

Veneris we leveraged game engines to provide simulators with a physics engine and capabili-

ties for general-purpose 3D representation which allows to seamlessly bring 3D models. Since

then, we have extended Opal with the capability to use multiple methods of propagation simu-

lation, curved environment elements, and the rendering of the propagation paths. Opal can be

used as a stand-alone RT simulator, but its main strength lies in its integration with the game

engine, which allows to generate customized 3D environments quickly and intuitively, usually

from OpenStreetMap (OSM) data [7], but also by taking advantage of the programmability of

the game engine.

Despite the remarkable number of works that use RT techniques and the steady introduc-

tion of new methods [11], there is an evident lack of available open source tools and libraries.

Most of the research software is not released or is only commercially licensed. Several open

source simulators that do not use RT are available, such as SPLAT! (https://www.qsl.net/

kd2bd/splat.html) and Radio Mobile (http://www.ve2dbe.com/), which are radio frequency

signal propagation simulators which includes terrain losses. Many of the related open source

tools use Matlab (https://www.mathworks.com) as computation engine, which requires a

license. For instance, NYUSIM (https://wireless.engineering.nyu.edu/nyusim-5g-and-6g/)

provides custom channel models for 5G and 6G simulation and SimRIS (https://corelab.ku.

edu.tr/tools/simris/) supports reconfigurable intelligent surfaces. Regarding currently available

open source tools with support for RT we can only find RadioPropa (https://github.com/nu-

radio/RadioPropa) for a specific application, propagation in inhomogeneous media, and a

general-purpose wireless simulator, PyLayers (https://pylayers.github.io/pylayers/), which pro-

vides some functionality similar to Opal, but lacks other, such as environment generation

tools. In fact, to the best of our knowledge, integrated tools with 3D environment generation

and propagation simulation are only commercially available. For instance, among the proprie-

tary commercial tools that include at least a similar set of features, including moving elements

and antenna radiation patterns, we can only find Altair Feko (https://www.altair.com/feko-

applications/) or Siradel solutions (https://www.siradel.com/solutions/software/). Opal, as an

open source, MIT-licensed and extendable framework may alleviate this gap. It is available for

Linux and Windows operating systems at http://pcacribia.upct.es/veneris or from its public

repository http://gitlab.com/esteban.egea/opal.
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In this paper we describe its implementation and discuss its main features and current limi-

tations. First, we provide a brief review of the Veneris framework. Then, we describe the main

features of Opal and relevant implementation details. Afterwards, we provide application and

validation examples which illustrate its capabilities as well as its main limitations and trade-

offs. We conclude with a brief discussion of related works and future work.

Background

Opal is part of the Veneris framework. Although in this work we focus on its particular fea-

tures, we first provide a brief overview of the overall framework to provide context. Parts of

the description are taken from [8] where additional details can be found. Veneris is made of a

set of tools that provide different functionality and can interact with each other. The main

components, shown in Fig 1, are:

• Veneris simulator. A set of Unity [9] components that provide a realistic microscopic road

network simulation in an interactive 3D environment. The components have been grouped

in functional modules. Builder components are used to generate the scenario elements:

roads, intersections, traffic lights or buildings. Vehicle components include a model of the

dynamics of the vehicle and components which model the behavior of the vehicles on roads,

intersections and the interaction with other vehicles. Communication components imple-

ment the communication with simulation modules. Managers handle different aspects of the

simulation globally.

• Opal. The main focus of this paper, it is a ray-launching based, deterministic radio-fre-

quency propagation simulator, implemented in C++ with NVIDIA OptiX [12], a library and

application framework for high performance ray tracing on the GPU.

• Veneris OMNET++ modules. A set of OMNET++ and INET [10] modules which enable

bidirectional coupling between the communication network and the traffic simulation.

Fig 1. Veneris main components. Opal can be used as a standalone application, as a plugin with Veneris or loaded with OMNET++.

https://doi.org/10.1371/journal.pone.0260060.g001
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These tools can be used independently or combined in different ways to perform different

types of simulations. The main combinations are:

• Traffic simulation: a scenario from real-world map data is built and run with Veneris to

obtain traffic-related metrics.

• Hybrid network-traffic simulation with RT-based propagation: the traffic simulation is com-

bined with a network simulation with any protocol stack from OMNET++. Opal computes

propagation by RT but any other propagation model from OMNET++ can be used instead.

• Network simulation with ray-launching based propagation: a OMNET++ simulation is run

with RT-based propagation computed by Opal.

• Electromagnetic characterization: a 3D environment, tailor-made or generated from map

data, is built with Veneris and a propagation simulation is launched with Opal.

The usual workflow and simulation types is depicted schematically in Fig 2. In this paper

we will discuss mainly using Opal for EM characterization, which can be run as a standalone

command line application or from the Unity editor or executable. In the first case, Opal is typi-

cally used as a library, through a custom C++ program which incorporates calls to Opal func-

tions to load meshes and launch the NVIDIA OptiX kernels which actually perform the RT. In

Fig 2. Workflow and types of simulations with Veneris and Opal. First, the scenario is built from real-world map data. Then, three

alternatives are available: (1) to carry out the electromagnetic characterization of the scenario, just with Opal; (2) to run a

unidirectional hybrid simulation, where the traffic simulation output is stored and then fed to the OMNET++ modules; (3) to run a

bidirectional simulation, where traffic and network simulation are run simultaneously and interact with each other.

https://doi.org/10.1371/journal.pone.0260060.g002
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the second case, a compiled library is used as a Plugin for Unity programs, via the interface

provided by Opal.

Opal

Implementation

Opal uses the shooting and bouncing (SBR) method [2]: electromagnetic waves are simulated

by rays launched from the transmitter, either with a given angular separation or with other

methods as we will see. These rays are propagated along their trajectory until they hit an obsta-

cle where they are reflected, diffracted, transmitted or scattered. Subsequent rays are traced

again. The contributions of the different rays that hit a reception sphere around the receiver

are added to compute the electric field.

Opal has been implemented in C++ and uses NVIDIA OptiX [12], a general-purpose GPU

ray tracing engine for rendering. The programming model of OptiX involves a host-based

(CPU) API used to define data structures for ray tracing and a device-based (GPU) CUDA

API, used to generate rays, intersect them with surfaces and process those intersections. The

engine calls a set of user-provided programs, the generation, closest-hit, any-hit, intersection
and miss programs, when the corresponding events occur during the ray traversal. Therefore,

the user of the OptiX API has to implement those programs, which are provided as CUDA

files. When the GPU has dedicated RT cores, the triangle intersection is computed by the hard-

ware which reduces remarkably the computation time. With OptiX a scene is represented as a

graph that controls the traversals of rays through the scene [12]. Nodes are made of geometric

objects, transforms and other data objects, such as acceleration structures, based on bounding

volume hierarchies (BVH) [2], that speed up the traversal and intersections on the graphs.

A defining feature of Opal is that works with both static and moving 3D scene objects, rep-

resented as triangle meshes. Objects, transmitters and receivers can be dynamically added and

removed from the scene and subsequent ray launches take into account those changes. The

structure of the scene created by Opal, shown in Fig 3, reflects this capability. All the static

objects in the scene, such as buildings, share an acceleration structure below the root node and

Fig 3. Opal scene graph. There are three groups in the graph: buildings or other static interactive environment elements, vehicles or

any other moving interactive elements and receivers, which can be moved but since are made of spheres, do not need transformation

matrices.

https://doi.org/10.1371/journal.pone.0260060.g003
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are assigned an intersection program, which computes ray-triangle (mesh) intersection, and

one or more materials and a closest hit program. The receivers, represented as spheres, are

attached just below the root node and also share an acceleration structure. When they move,

their sphere coordinates are updated. Finally, the dynamical geometrical objects, such as mov-

ing vehicles, which may be made of a hierarchy of meshes, are assigned each one a transform

node, updated when the object moves, and their own acceleration structure. Every mesh

added to the scene has its own electrical properties, as defined by recommendation ITU

P2040 (https://www.itu.int/rec/R-REC-P.2040/en), which are taken into account in the

computations.

There are two main components in Opal: the OpalSceneManager and OpalSimula-
tion classes. The former glues together the rest of components: is responsible for loading

meshes in the device and creating the scene graph, holds receiver and transmitter managers,

applies configuration options, provides results and holds the simulation classes. The latter is

the base class for the different methods of simulation implemented. A new simulation is cre-

ated by deriving from this base class. Let us remark that a simulation can be developed to

implement a certain propagation mechanism, such as reflections, diffractions or scattering; or

it can provide alternative simulation methods for the same kind of propagation mechanism.

For instance, as explained below, reflections can be simulated with the basic or the ray density

normalization methods. Opal is designed to handle multiple types of simulation whose execu-

tion will be called sequentially by OpalSceneManager. This allows us to combine or dis-

able independent propagation mechanisms at will. As an example, we can add to a scene a n-

order reflection simulation (the order refers to the maximum number of reflections allowed by

the simulation; by n-order we mean that no particular limit has been imposed and, for

instance, simulations with up to 60 reflections per ray can be seamlessly done) plus a single-

order diffraction simulation. OpalSceneManager will execute all the simulations and com-

bine the results. It can be executed again with diffraction disabled to examine the differences

and so on. Of course, not all the simulation types can be run independently: a n-order reflec-

tion-diffraction simulation would require a specific simulation class, depending on the imple-

mentation. Simulations also include the set of CUDA files with the required OptiX programs

such as ray generation, closest-hit, miss and so on. In general, the user program associated to

the closest hit for meshes performs the operations required when a ray hits the geometry, such

as computing the reflected ray, the reflection and/or diffraction coefficient so on. The closest

hit program for receivers usually filter duplicates, depending on the type of simulation, and

adds the ray contributions to the electric field. In this sense, let us remark, that in our imple-

mentation most of the required computations are done directly on the GPU when possible,

including for instance, duplicate ray filtering, which is done using the Thrust library provided

by CUDA [13]. Other approaches, such as [6], trace the rays and record the interactions and

then post-process the logged trace to compute the field. While this procedure has its own

advantages, it requires a huge amount of GPU memory, unlike ours, which also remarkably

speeds up the simulations. Finally the generation program is responsible for creating the rays

to be traced. In SBR methods, the full 3D unit sphere is discretized by some method and a ray

per point is created. The number of rays generated per solid angle, that is, rays per stereorad

(rays/sr), is the ray density of the simulation. Opal provides several methods described below.

As propagation mechanisms, Opal currently implements n-order reflections for flat, curved

or combined flat-curved scenario elements and single-order diffraction as well as two alterna-

tive methods. They have been implemented with the following types of simulation:

• Basic reflection (BR): A simulation of n-order reflection only for flat surfaces, where (1) both

transmitter and receiver have the same polarization and (2) it is either purely vertical or
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purely horizontal. It is only marginally faster than full polarization simulations. Class

BasicFlatMeshReflectionSimulation.

• Linear polarization reflection (LPR): A simulation of n-order reflection only for flat surfaces

where arbitrary linear polarization is used and computed. That is, transmitters and receivers

can have arbitrary linear polarization and they can be different. Both this method and the

previous one require duplicate-ray filtering. Class

LPFlatMeshReflectionSimulation.

• Ray Density Normalization (RDN): A simulation of n-order reflection for scenes with both

curved and flat surfaces that uses the ray density normalization method [14]. RDN is a

modified SBR method that launches a large number of rays that are uniformly distributed

on space. All the rays that hit on the receiver sphere are added and normalized in order to

get the correct field contribution. Let us note that this normalization is equivalent to a

weighted average of the hit rays and so the result is approximation, though a very precise

one usually. There are slighlty different ways to compute the normalization, called field and

power trace [14], both of them implemented. With this method, thus, it is not necessary to

filter out hits to get a single contribution for a given propagation path. This feature makes

this method specially useful for simulation of reflections on curved surfaces, unlike the pre-

vious methods, which require some mechanism to decide how the rays are filtered with

curved surfaces. If necessary, detailed field information can be stored on the GPU buffers

but in the default mode the field contributions are added directly to the output buffer,

which does not require memory reservation for hits on the GPU. This latter feature

together with the avoidance of filtering allows Opal to launch simulations with an

extremely high density of rays, such as 1010 rays/sr at the cost of longer simulation time.

Class RayDensityNormalizationSimulation.

• Single diffraction (SD). Single-order diffraction is computed using Unified Theory of Diffrac-

tion (UTD) [1] for all the diffracting edges in the scene. Let us notice how this is a different

propagation mechanism, and so this simulation can be combined with any of the previous

reflection simulations. On the contrary, the previous simulation types are alternative meth-

ods for simulating the same propagation mechanism, reflections, so one of them has to be

selected for the simulation. Class SingleDiffraction.

In addition, we provide two experimental classes for curved surfaces that require duplicate-

ray filtering and angle-discrimination but they are not reliable enough yet. In general scenarios

with flat elements, all the methods provide similar results. For scenes with curved and flat sur-

faces RDN must be used. In scenarios with a high number of contributions from reflections,

such as tunnels, and at long distances, RDN usually provides more accurate results, but, since

it is an approximate method, in canonical scenarios such as a straight diffraction edge, it pro-

vides less precision. Let us remark that, even though RDN does not require duplicate filtering,

the results do depend on the reception sphere radius. That is, all the above methods have a

dependence on the reception sphere radius, which is a general problem of SBR methods, and

so it is usually necessary to experiment with the radius parameter when evaluating scenarios.

We exemplify these trade-offs in the Results section.

Finally, as output, by default Opal computes the induced voltage at the receiver antenna or,

alternatively, the components of the received field at the receiver point. But with very little

effort additional metrics can be computed, such as, Direction-of-Departure (DoD), Direction-

of-Arrival (DoA), signal delays and so on, as required by the application.
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Additional features

To finish the implementation description, we summarize some other capabilities of Opal in

the following paragraphs.

• Multiple transmitters and receivers. Opal can simulate in parallel multiple transmitters and

receivers, with a notable performance gain compared to an equivalent sequential simulation.

This feature is specially useful for electromagnetic characterization. A canonical example is

the computation of cellular coverage in urban environments: hundreds of receiver points

and several base stations can be simulated in a single run.

• Multichannel. Different frequencies can be simulated simultaneously. In the previous exam-

ple, multiple transmitters using different frequencies can be simulated in parallel in a single

run.

• Duplicate ray filtering. Multiple counting of received rays is a major problem of the ray-

launching approach [15]. Removal of duplicates usually requires setting a receiver sphere

radius dependent on the ray unfolded distance and keeping a log of the ray paths to track the

sequence of hits and filter them in a post-processing phase, none of which is efficient in a

parallel processing framework. We use a novel approach: each ray stores in a single integer

the sequence of environment elements it hits, as a combined hash of the element face identifi-

ers. Each time an element face is hit, the combined hash is updated. Since this hash is

guaranteed to be unique for different sequences of faces, including permutations, it is used

to remove all the rays following the same sequence except for the closest one to the receiver.

This way, to filter duplicates it is only necessary to store just a single integer per ray instead

of a list of face sequences. The filtering is done as follows: All hits on a receiver are kept in

GPU memory and, after tracing, they are sorted by transmitter identifier (id), receiver id,

hash and distance of hit ray to receiver, in this order. Duplicates are removed by considering

equal all hits with the same transmitter and receiver id and hash, so that only the closest hits

to the receiver with different hashes are kept. The operation is done directly on the GPU

applying first the sort and then the unique functions of the Thrust library [13]. Notice

that since all hits have still to be stored on GPU memory, a relatively scarce resource, simula-
tions that require filtering are usually memory-bounded, which places a limit on the density

of rays that can be traced. On the contrary, RDN does not have this limit and can use very

high densities.

• Moving objects. By leveraging a ray tracing engine designed for high performance in interac-

tive environments, transceivers and other objects can be added dynamically to the scene

without performance degradation. Similarly, by updating their transform, complex mesh

hierarchies are moved efficiently in the simulation.

• Ray generation. There is a great deal of flexibility for ray generation. First, the user can

directly create a buffer with particular ray directions. Otherwise, rays can be generated using

two different modes, equispaced angular sampling (AS), where rays are separated by a con-

stant azimuth and elevation angle; or random uniform AS where rays are generated ran-

domly with a uniform distribution on a unit sphere solid angle. In addition, the generation

range can be set to the desired values, as for instance, to isotropic (full sphere) which is the

usual mode for most simulations when fast computation is necessary. But it can also be sec-
torized, where rays are distributed only on a certain solid angle for a given launch. It is used

to increase the accuracy of the results, by scanning the scenario at consecutive steps (sectors)

with a high ray density, like moving a beam of rays. The results for each sector are stored

and merged at the end of the simulation. Finally, rays can be generated on CPU or on GPU
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directly at launch. The generation of rays at launch is much faster: as an example, when sec-

torized simulations are used, the simulation time is reduced 2 to 4 times. If rays have to be

generated just once, there is no performance gain, but CPU generation requires using a

buffer of rays, which means that for very high densities, that is, a very large number of rays

per launch, a relevant fraction of the available GPU memory is used only to store ray

directions.

• Antenna patterns. User can provide files with discretized antenna radiation patterns and

Opal will apply the corresponding gain per ray according to the DoD at transmission and

the DoA at reception. Gains can be selectively used with transmitters and receivers and

applied independently at tranmission and reception.

Results

In this section we describe and discuss some application examples of Opal. We first discuss the

generation of scenarios and then four validation experiments.

Scenario generation

Scenarios for EM characterization can be created with the automated generation tool of Vene-

ris or by directly designing and/or programming the required elements. In the first case, Vene-

ris can be used to generate traffic networks (roads and intersection), vehicle routes and the

environment from SUMO files [8]. For EM, the network and vehicles need not be generated

and only the environment is used, which is generated directly from OSM data. In fact, Veneris

provides a web-based scenario generation tool (http://pcacribia.upct.es/veneris/scenario) with

which the user just has to select the area of interest on the map and the scenario is generated

for download. It can be even be tested directly on the browser as shown in Fig 4. Opal actually

leverages SUMO to generate the element outlines and then downloads additional metadata

from OSM, before elevating the elements and adding the required data structures for simula-

tion: EM properties and diffraction edges among others. Let us note that this procedure is the

minimum general way to construct automatically generated scenarios, but it depends on the

quality of the OSM data, that can vary widely depending on the geographical area. Although

for many purposes, such as vehicular simulation, the quality is enough, for more accurate sim-

ulations, it is usually necessary to enhance the base scenario. Therefore, additional data pipe-

lines can be created. As an example, for our research, we have processed very accurate building

data for the city of Cartagena, acquired from the Spanish Land Registry and we have also

added terrain elevation data from the LiDAR database from the Spanish Instituto Geografico

Nacional. A screenshot of the generated scenario is shown in Fig 5. The details depend on the

particular spatial data source used, that should be processed and adapted to Veneris format.

In the second case, a custom scenario can be designed and built using the capabilities of the

Unity engine. In addition to the basic 3D elements available, procedural generation can be

implemented using the full power of the C# language provided by Unity, as well as its support

for extending the Unity Editor with custom scripts. As an example, in Fig 6 we show the

Anvers tunnel, where we have reproduced a real, slightly curved, underground road tunnel

close to the city of Anvers. The tunnel curvature and dimensions can be accurately recreated

with a C# script which can be added for future generation as a custom menu item in the Editor.

In summary, these examples show the flexibility of Opal for scenario generation that can be

achieved by combining both the provided scenario generation tool as well as the programma-

bility capabilities of the Unity engine.
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Fig 4. Web-based scenario generation. With a web interface the user selects an area from OSM and generates the

scenario. The files can be downloaded but it can also be run directly on the browser, as shown in the figure, to check

the results. Part of the Figure shows a map from OpenStreetMap: ©OpenStreetMap contributors.

https://doi.org/10.1371/journal.pone.0260060.g004

Fig 5. Cartagena scenario. To increase the simulation accuracy the Cartagena city scenario has been enhanced with terrain elevation data and

high accuracy building data from public spatial information sources. Snapshot taken from the Opal tool.

https://doi.org/10.1371/journal.pone.0260060.g005
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Validation examples

In [8] we already validated Opal with, among others, a street-crossing and a city-wide simula-

tion. In this work we provide new validation examples on scenarios that make use of the

recently introduced features, such as curved surfaces and diffraction. The tunnel scenarios that

we discuss next are actually more difficult to simulate than the outdoor urban simulation of

[8] because of the influence of reflections on them. In fact, to obtain accurate results it is neces-

sary to use a much higher ray density and raise the maximum number of reflections.

Rectangular tunnel. As another scenario example, we discuss results for propagation on

tunnels. Tunnels provide a demanding application scenario because the high number of reflec-

tions that effectively contribute to the received EM field [16]. To validate our results we have

simulated a rectangular tunnel, for which approximate analytical results exist [16]. Simulations

were done by placing all the receivers at the cross section, that is, the EM field is computed in

parallel for 255 receivers, either with a single launch for isotropic generation (actually, only the

forward hemisphere has been traced, since backward rays outside the tunnel do not contrib-

ute) or in multiple sequential launches with sectorized generation, each angular sector spans

10-degree in elevation by 10-degree in azimuth. In the latter case, the ray density is kept con-

stant in all launches by setting the number of rays accordingly to the solid angle spanned by

each sector. The analytical image-based [2] multi-modal solution has been computed with

Matlab and plotted in Fig 7a together with the results computed by Opal with different simula-

tion types: RDN and LPR. As can be seen, both simulation types match very closely the analyti-

cal results except at some particular positions, which highlights the limitations and differences

between the methods. First, all of them depend on the sphere radius, which has to be set by the

user and, unfortunately, there are no clear guidelines as to how select it for tunnels. In fact, for

LPR, by examining the trace of the simulations it can be checked that the deviations at some

positions are mainly due to extra rays hitting on the sphere which do not correspond to the

theoretical images. On the contrary, for RDN, deviations result from not launching with ray

density enough to properly average the contributions. However, past a certain radius, results

degrade because in the average are included contributions with excessive angular dispersion.

Therefore, keeping the sphere radius while increasing the ray density by using sectorized ray

generation improves the accuracy, as shown in the figure. In fact, the advantage of RDN for

Fig 6. Anvers tunnel scenario. The tunnel has been procedurally generated and the Unity Editor menu has been extended to generate the

scenario. Snapshot taken from the Opal tool.

https://doi.org/10.1371/journal.pone.0260060.g006
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Fig 7. Rectangular tunnel. Simulation of received electric field at cross sections at z = 100 m and z = 900 m of a

rectangular tunnel with dimensions 8.5m x 5m x 1000m, EM properties �r = 5 and σ = 0.01 S/m. The origin of coordinates

is at the center of the rectangle and beginning of tunnel. Transmitter is placed at [-3.85,1,0] and both transmitter and

receivers use vertical polarization with frequency 900 MHz. Maximum number of reflections is 20. Results show electric

field computed with RDN and LPR simulations with different reception sphere radius (r) and either half isotropic (ISO) or

sectorized (SEC) ray generation with different ray densities (rd). (a) Electric field for cross section at z = 100 m. (b)

Electric field for cross section at z = 900 m.

https://doi.org/10.1371/journal.pone.0260060.g007
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this kind of simulation is that the achievable ray density is not limited by the available GPU

memory.

At short and medium distances LPR can achieve a similar accuracy with much less ray den-

sity. But, at long distances, as shown in Fig 7b its performance degrades since the contributions

kept by filtering are very sensitive to the sphere radius; and large radius cannot be used with

high ray densities because of the GPU memory limitation. In that case, RDN is a better choice.

As a summary, although both types of simulation methods provide very similar results in a

wide number of scenario, RDN is usually more reliable when a large number of reflections are

relevant and long distances are involved.

Regarding performance, it generally depends on the number of rays used per launch. Our

simulations have been run on a server equipped with a Intel i9820 CPU, 32 GB RAM and 2

NVIDIA RTX 2080 Ti GPUs. In the single launch tests (half-isotropic) the computation time

takes around 1 s, but this duration includes all the initial overhead required to create the accel-

eration other GPU context data. Looking at the multiple launch tests (sectorized), the duration

for RDN with a constant density of 109 rays/sr is 57.5 s, and since 324 sectors are computed, it

means every launch takes on the order of 10−1 s. For LPR with a density of 4 � 107 rays/sr it

takes 3.6 s, which results in duration per launch on the order of 10−2 s.

Circular tunnel. The simulation of propagation with curved surfaces brings the following

practical problems: (1) there are caustics, which are points where the divergence of rays [1]

goes to infinity and means that the geometrical optic approximation is no longer valid at that

point; and (2) conventional SBR methods need to filter multiple rays but there is no way to dis-

tinguish between different surfaces or scenario elements. Opal supports simulating propaga-

tion on curved surfaces with RDN, which overcomes the above problems. But still it is usually

hard to obtain accurate results in some scenarios. As an example, we have simulated a circular

tunnel (cylinder), for which an approximate analytical solution also exits [17]. We have placed

100 receivers separated 1 m along the longitudinal section of the tunnel and launch a sector-

ized simulation again with a constant density of 109 rays/sr. The results are shown in Fig 8,

which is to be compared with Fig 13 of [17]. This is a particularly hard scenario because of the

multiple divergence and convergence of rays due to curvature and Opal is able to approxi-

mately reproduce them only with a very high number of reflections and ray density and a large

reception radius even at short distances. At long distances, it is very difficult to obtain accurate

results for these scenarios and it is necessary to resort to other types of simulation, usually

based on physical optics, not implemented yet in Opal.

The performance, despite the increased complexity of the computations needed for curved

surfaces, is only slightly worse and the above simulation required only 389 s to run, that is,

1.20 s per launch.

Edge diffraction. In the examples so far, RDN seems to be superior to more conventional

methods. But this is not always the case. In the last example we show a canonical problem:

reflection and diffraction on a perfect conductor straight edge [1]. In the scenario, 270 receiv-

ers are placed around a square angle edge (n = 1.5) and an isotropic launch is executed. The

results are shown in Fig 9. In this case, LPR obtains more accurate results because, even though

the configured sphere radius make receivers capture additional contributions from direct rays,

the filtering algorithm only keeps the hit closest to the receiver, whereas RDN does not and the

ray density is not high enough to compensate for the deviations in the average.

Urban scenario. In the previous sections we validated our results again approximate (but

very precise) analytical solutions. In this last section we validate against measurements done in

a urban scenario. For this task, we have employed a set of measurements for the GSM band

done by the authors more than ten years ago in the city of Cartagena. The measurement setup

is described in detail in [18]. To reproduce the setup in Opal, we generated the corresponding

PLOS ONE Opal: Ray-tracing propagation simulator for electromagnetic characterization

PLOS ONE | https://doi.org/10.1371/journal.pone.0260060 November 17, 2021 13 / 19

https://doi.org/10.1371/journal.pone.0260060


area of the city of Cartagena (Spain) which includes 1067 buildings and 15082 diffraction

edges, and placed 898 receivers as well as the base station antenna. We simulated up to 10

reflections with RDN plus single diffraction, using an isotropic launch with a ray density of

7.95 � 106 rays/sr and sphere radius of 0.1. To account for position errors, we have replicated

the simulation 10 times, displacing slighty the receivers by adding a random value uniformly

distributed between 0 and 0.5 m to each dimension, and averaged the results.

The results depicted in Fig 10(a) show good agreement between measurements and simula-

tions, in spite of significant changes in the map due to recent constructions in the area, not

present during the measurement campaign. Moreover, the average simulation time per repli-

cation is only 1.82 s with a standar deviation of 0.04 s, which also illustrates that urban simula-

tions are less demanding in terms of required ray density and computational power than

tunnel simulations. Finally, in Fig 10(b) we provide a snapshot from a heatmap generated

from the received EM field strength to highlight the visualization capabilities of Opal.

Fig 8. Circular tunnel. Received electric field for a circular tunnel of radius 2 m and length 1500 m and EM properties �r = 12 and σ = 0.02 S/m. Origin

of coordinates is at center of circle at the beginning of tunnel. Transmitter is placed at [1.8, 0,0] m and transmits with vertical polarization at 1GHz.

Sectorized ray generation (SEC): each sector spanning 10 degree of elevation by 10 degree of azimuth until the complete forward hemisphere is

simulated. Maximum number of reflections is 40. Figure is to be compared with Fig 13 from [17].

https://doi.org/10.1371/journal.pone.0260060.g008
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Fig 9. Straight edge diffraction. Magnitude of the total (direct, reflected, diffracted) received electric field at receiver points around a straight perfect

conductor edge (square angle between faces, n = 1.5). Receivers are placed on a full circumference of radius s = 20 m around the edge at 1 degree steps.

A transmitter at f = 1.8 GHz with vertical polarization is placed at an angle of 45 degrees from the edge closest face and s0 ¼ 20
ffiffi
ð

p
2Þm from the edge.

(a) Total received field. (b) Geometry of the scenario.

https://doi.org/10.1371/journal.pone.0260060.g009
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Fig 10. Comparison of measurements at 1.8 GHz and simulation in the city of Cartagena. The generated scenario includes 1067 buildings and 15082

diffraction edges. 898 receivers were simulated simutaneously. Each simulation point show the average of 10 replications. (a) Urban measurements. (b)

Snapshot of a heatmap of the received EM field.

https://doi.org/10.1371/journal.pone.0260060.g010
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Discussion

Ray launching methods for propagation simulation go back several decades, but recent

advances including the use of GPU are discussed in [2]. Even though they are more accurate

that most of other techniques, their computational cost and difficult implementation due to

lack of availability of efficient ray tracing libraries has been traditionally a barrier for their use.

For this reason, a number of recent algorithms that improve the SBR basic mechanism by

identifying optimal launch areas, such as ETRT [19] and MRLMA [20]. There are also hybrid

models, such as GEMV2 [3], where a simplified geometrical representation of the objects, just

the outlines of buildings, is used together with stochastic methods. The model is very specific,

aimed at vehicular network simulations, but the results reproduce real propagation accurately

at a reasonable cost. Our approach is more general. The most similar work to Opal is found in

[6], where authors also use NVIDIA OptiX to perform the ray tracing, but their implementa-

tion is quite different as they log the ray traces and post-process the results to perform the EM

computations. In addition, unlike Opal, the code is not freely available.

Propagation simulation by ray launching has usually been used for EM characterization of

static environments, where the transmitter is kept fixed at a few positions [2], mainly because

of a lack of tools for proper representation of dynamical 3D environments and low perfor-

mance of the tracing process. On the contrary, ray tracing engines such as OptiX have been

primarily designed to obtain high performance and quality rendering for interactive video

games and, as such, they are optimized for real-time changing scenes. By leveraging them,

Opal allows to dynamically add transceivers and other objects and can actually bring real-time

changes to propagation simulators with acceptable accuracy and performance. Only authors of

[6] evaluate the performance of ray launching with moving vehicles, and, to the best of our

knowledge, Opal is the only, non-commercial, open source framework with this feature.

In the examples discussed in this paper we have highlighted some of the limitations of the

current methods. To cope with them, Opal has been designed to facilitate its extension, in par-

ticular, with additional propagation effects and new simulation methods. Simulation of diffuse

scattering is a propagation effect intended to be added in next releases. But there are also new

promising methods such as [11], which uses bi-directional RT to collect information about

wavefronts incident on an interaction surface. This method is suitable for GPU computation,

so it can be seamlessly integrated in Opal, and avoids incorrect ray contributions due to the

sphere radius, one of the major problems of SBR methods.

Conclusion

In this paper we presented and described Opal, an EM propagation simulation tool imple-

mented with ray-tracing on GPU, which is part of the Veneris network-traffic simulation

framework. We have described its most relevant features and provided implementation details,

especially of the simulation architecture which supports its extensions with new methods and

additional propagation mechanisms, while highlighting the current limitations of the imple-

mented methods. We have provided application examples, first to illustrate the flexibility that

offers for automated scenario generation; and then to validate the simulation on demanding

scenarios, comparing the results with analytical solutions, with further discussions on the

trade-offs between approaches and its performance.

We believe Opal will become a valuable tool for general EM characterization as well as

vehicular network research. As a standalone tool or as part of the broader Veneris framework,

Opal provides a set of features rarely matched by any other similar open source tool that we

know of. As discussed previously, the number of methods and proposals for propagation simu-

lation is very large, but very rarely those tools are made freely available. Opal may help with
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this situation since it has been designed to be extended with new methods. Special care has

also been taken to make it helpful for the user without knowledge of the internals, thanks to

the intuitive interface of the Unity engine as well as features such as the web scenario genera-

tion tool. The goal is that it may be also useful as a purely academic tool, where students can

graphically experiment with propagation effects.
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