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On the time for a runner to get lonely

The Lonely Runner Conjecture asserts that if n runners with distinct constant speeds run on the unit circle R/Z starting from 0 at time 0, then each runner will at some time t > 0 be lonely in the sense that she/he will be separated by a distance at least 1/n from all the others at time t. In investigating the size of t, we show that an upper bound for t in terms of a certain number of rounds (which, in the case where the lonely runner is static, corresponds to the number of rounds of the slowest non-static runner) is equivalent to a covering problem in dimension n -2. We formulate a conjecture regarding this covering problem and prove it to be true for n = 3, 4, 5, 6. We also show that the so-called gap of loneliness in one round, where we have m + 1 runners including one static runner, is bounded from below by 1/(2m -1) for all integer m ≥ 2.

Introduction

The Lonely Runner Conjecture, which was stated for the first time in this form by Bienia et al. in [START_REF] Bienia | Flows, View obstruction and Lonely Runner[END_REF], formulates in terms of runners running on the circular track R/Z a conjecture introduced originally by Wills [START_REF] Wills | Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen[END_REF] in the context of diophantine approximation and by Cusick [START_REF] Cusick | View-obstruction problems[END_REF] in obstruction theory ({x} denotes the fractional part of x, that is, {x} = x -x ):

Lonely Runner Conjecture. For every integer n ≥ 2, if x 1 , . . . , x n : [0, ∞) → R/Z are n runners with different constant speeds v 1 , . . . , v n ∈ R starting from 0 at time 0, that is such that x i (t) = {tv i } for all t ≥ 0, then for each runner there is a time where she/he is at distance at least 1/n from the others, which in other words means that for every i ∈ {1, . . . , n}, there is t > 0 such that

|x j (t) -x i (t)| ∈ 1 n , 1 - 1 n ∀j = i.
One can observe that for any v, v ∈ R, any t > 0 and any δ ∈ (0, 1/2], one has that |{tv} -{tv }| belongs to [δ, 1 -δ] if and only if {t|v -v|} belongs to [δ, 1 -δ]. This shows that the Lonely Runner Conjecture holds true for n ≥ 2 if and only if for every w 1 , . . . , w n-1 > 0 there is t > 0 such that {tw i } belongs to [1/n, 1 -1/n] for all i = 1, . . . , n -1. For every δ ∈ (0, 1/2], we define the set K(δ) ⊂ (0, ∞) by (we denote by N = {0, 1, 2, . . .} the set of non-negative integers and by N * = N \ {0} the set of positive integers)

K(δ) := k∈N K k (δ) with K k (δ) := k + [δ, 1 -δ] ∀k ∈ N,
and denote its m-th power (with m ∈ N * ) by

K m (δ) = k∈N m K m k (δ) with K m k (δ) := k + [δ, 1 -δ] m ∀k = (k 1 , . . . , k m ) ∈ N m . 1 
Then, given m ∈ N * and m real numbers w 1 , . . . , w m > 0, {tw 1 }, . . . , {tw m } belong to [1/(m + 1), 1 -1/(m + 1)] for some t > 0 if and only if the ray {t(w 1 , . . . , w m ) | t > 0} intersects the set K m (1/(m + 1)). Thus, we infer that the Lonely Runner Conjecture is equivalent to the following conjecture in obstruction theory (see Figure 1):

Lonely Runner Conjecture -Obstruction Form. Let m ≥ 1 be an integer, then for any real numbers w 1 , . . . , w m > 0, there exists t > 0 such that:

t (w 1 , . . . , w m ) ∈ K m (1/(m + 1)). The above conjecture is obvious for m = 1. For m ≥ 2, by symmetry and dilation the conjecture holds true if and only if for any w 1 , . . . , w m > 0 with 1 = w 1 ≤ w 2 , . . . , w m , there is λ > 0 such that λ = λw 1 ∈ K(1/(m + 1)) and λ (w 2 , . . . , w m ) ∈ K m-1 (1/(m + 1)), which means that each coordinate of (w 2 , . . . , w m ) ∈ [1, ∞) m-1 can be written as the quotient of an element of K m-1 (1/(m + 1)) with the same element of K(1/(m + 1)). For every integer d ≥ 1, given two sets A ⊂ R d and B ⊂ (0, ∞), we use the notation A/B to denote the subset of R d given by

A/B := a b = a 1 b , . . . , a d b | a = (a 1 , . . . , a d ) ∈ A, b ∈ B .
If B is a singleton, that is, of the form {b}, then we also write A/b for A/{b}. Furthermore, from now on, for every integer d ≥ 1, we set

δ d := 1 d + 2
.

The above discussion shows that the Lonely Runner Conjecture is equivalent to the following conjecture:

Lonely Runner Conjecture -Covering Form. For every integer d ≥ 1, there holds In other words, this form of the Lonely Runner Conjecture states that for every integer d ≥ 1, the set [1, ∞) d can be covered by the union of the sets K d k (δ d ) /K (δ d ) with k ∈ N d , each of which is the countable union of convex polytopes (see Figure 2 and Section 2). As we will see, this last formulation of the conjecture is convenient to address the problem of the time required for a runner to get lonely.

[1, ∞) d ⊂ K d (δ d ) /K (δ d ) .
The Lonely Runner Conjecture is known to be true for n runners with n ≤ 7 (the integer n refers here to the first statement of the conjecture given in this paper). As seen above, the case n = 2 is trivial. The case of three runners, also very simple, was proved by Wills [START_REF] Wills | Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen[END_REF] in 1967. Several proofs in the context of diophantine approximation, by Betke and Wills [START_REF] Betke | Untere Schranken für zwei diophantische Approximations-Funktionen[END_REF] and Cusick [START_REF] Cusick | View-obstruction problems in n-dimensional geometry[END_REF], respectively in 1972 and 1974, established the conjecture for n = 4. The case n = 5 was first settled with a computer-assisted proof by Cusick and Pomerance [START_REF] Cusick | View obstruction problems, III[END_REF] in 1984 and later demonstrated with a simpler proof by Biena et al. [START_REF] Bienia | Flows, View obstruction and Lonely Runner[END_REF] in 1998. The case n = 6 was proved with a long and complicated proof by Bohmann, Holzman and Kleitman [START_REF] Bohman | Six lonely runners[END_REF] in 2001, which was later simplified by Renault [START_REF] Renault | View obstruction: a shorter proof for 6 lonely runners[END_REF] in 2004. Finally, the conjecture for seven runners was established by Barajas and Serra [START_REF] Barajas | The lonely runner with seven runners[END_REF] in 2008 and it remains open for all integers n ≥ 8. Several other problems related to the Lonely Runner Conjecture have also been profusely studied such as the gap of loneliness [START_REF] Perarnau | Correlation among runners and some results on the lonely runner conjecture[END_REF][START_REF] Chen | View-obstruction problems in n-dimensional Euclidean space and a generalization of them[END_REF][START_REF] Chen | The view-obstruction problems for n-dimensional cubes[END_REF][START_REF] Tao | Some remarks on the lonely runner conjecture[END_REF] or the validity of the conjecture under various hypotheses on the velocities [START_REF] Pandey | A note on the lonely runner conjecture[END_REF][START_REF] Ruzsa | Distance graphs with finite chromatic number[END_REF][START_REF] Barajas | On the chromatic number of circulant graphs[END_REF][START_REF] Dubickas | The lonely runner problem for many runners[END_REF][START_REF] Tao | Some remarks on the lonely runner conjecture[END_REF]. However, to our knowledge the question of the size of the time required for a runner to get lonely has surprisingly not been really adressed before, this is the purpose of the present paper. The square [START_REF] Barajas | The lonely runner with seven runners[END_REF][START_REF] Bohman | Six lonely runners[END_REF] 2 can be covered by the unions of the sets K 2 (k,l) (δ 2 )/K 0 (δ 2 ) with (k, l) ∈ {0, 1, 2} 2 The starting point of the present paper is the result of computer simulations. As shown in Figure 3 (for d = 2 and a not too large parameter C), we can check easily for d = 2 and d = 3 (the integer d refers here to the Lonely Runner Conjecture in covering form) that large sets of the form [1, C] d can indeed be covered by the union of the sets K d k (δ d )/K 0 (δ d ) for k ∈ N d . This observation suggests that one can maybe expect a strong Lonely Runner Conjecture in covering form where the denominator could be taken to be a finite union of N sets K k (δ d ) of the form

K 0,N -1 (δ d ) := N -1 k=0 K k (δ d ),
for some integer N ∈ N * ( 0, N -1 stands for N ∩ [0, N -1]). Moreover, as suggested by the title of the paper, this type of result would provide an upper bound on the time required for a runner to get lonely. As a matter of fact, assume that for some integer d ≥ 1, there exists an integer

N ≥ 1 such that [1, ∞) d ⊂ K d (δ d ) /K 0,N -1 (δ d ) .
Then, setting m = d + 1, for any w 1 , . . . , w m > 0 with w 1 ≤ w 2 , . . . , w m , we have

w 2 w 1 , • • • , w m w 1 ∈ [1, ∞) d ⊂ K d (δ d ) /K 0,N -1 (δ d ) , so there is λ ∈ K 0,N -1 (δ d ) such that λ w 1 w 1 = λ ∈ K 0,N -1 (δ d ) and λ w 1 (w 2 , . . . , w m ) = λ w 2 w 1 , . . . , w m w 1 ∈ K d (δ d )
which implies that t := λ w 1 ∈ [0, N/w 1 ] satisfies t (w 1 , . . . , w m ) ∈ K d+1 (δ d ) = K m (1/(m + 1)).

On the other hand, if we know that for every w 1 , . . . , w m > 0 (with m = d + 1), there is t ∈ [0, N/w 1 ] such that t (w 1 , . . . , w m ) ∈ K m (1/(m + 1)), then for every tuple (z 1 , . . . , z d ) ∈ [1, ∞) d , there is t ∈ [0, N ] such that

t (1, z 1 , . . . , z d ) ∈ K m (1/(m + 1)) = K d+1 (δ d ) which gives (z 1 , . . . , z d ) ∈ K d (δ d ) /K 0,N -1 (δ d ) , because t ∈ [0, N ] ∩ K(δ d ) = K 0,N -1 (δ d ).
Therefore, we investigate in the present paper the following conjecture:

Strong Lonely Runner Conjecture. For every integer d ≥ 1, there is an integer N ≥ 1 such that the following equivalent properties hold:

(Covering from) [1, ∞) d ⊂ K d (δ d ) /K 0,N -1 (δ d ).
(Obstruction form) For any w 1 , . . . , w d+1 > 0, there exists t ≥ 0 such that t ≤ N min{w 1 , . . . , w d+1 } and t (w 1 , . . . , w d+1 ) ∈ K d+1 (δ d ).

(Runner form) If x 1 , . . . , x n : [0, ∞) → R/Z are n = d + 2 runners with different constant speeds v 1 , . . . , v n ∈ R starting from 0 at time 0, then for each i ∈ {1, . . . , n}, there exists t ≥ 0

such that t ≤ N min {|v i -v j | | j ∈ {1, . . . , n} \ {i}} and |x j (t) -x i (t)| ∈ 1 n , 1 - 1 n ∀j ∈ {1, . . . , n} \ {i}.
It is clear that if the above conjecture is satisfied for some N ∈ N * , then there is a minimal integer for which it is satisfied. This remark justifies the following definition:

Definition 1. For every integer d ≥ 1, we denote by N d the least integer N ≥ 1 such that [1, ∞) d ⊂ K d (δ d ) /K 0,N -1 (δ d ) ,
with the convention that N = ∞ if the set of N ∈ N * satisfying the above inclusion is empty and

[1, ∞) d ⊂ K d (δ d ) /K (δ d ) ,
and with the convention that N = -∞ if the latter inclusion is not satisfied.

In other words, for every d ∈ N * , N d is the minimal number of rounds N such that if there are d + 1 runners with positive speeds and one static runner (so we have d + 2 runners), starting all from 0 at time 0 on the circular track R/Z, then there is a moment within the first N rounds of the slowest non-static runner such that the static runner is at distance at least 1/(d + 2) from the others. To summarize the status of the Lonely Runner Conjecture in terms of N d , it is currently known that N d = ∞ for d = 1, 2, 3, 4, 5 and N 1 = 1 (see e.g. [3, Section 6.]). Our first result is the following:

Theorem 1. We have N 1 = N 2 = N 3 = 1.
This result seemingly provides an answer in low dimension to the Question 9 raised by Beck, Hosten and Schymura in [START_REF] Beck | Lonely runner polyhedra[END_REF]. The proofs for the cases d = 1, 2 are easy and the one for d = 3, rather tedious, proceeds in two steps. We first show that the covering property [1, ∞) 3 ⊂ K 3 (δ 3 ) /K 0 (δ 3 ) is satisfied at infinity, that is, outside of a certain compact set, and then we check by hand that it holds also on that compact set. Let us explain the idea of the asymptotic part. The covering property at infinity is in fact equivalent to showing that for every (z

1 , z 2 , z 3 ) ∈ [1, ∞) 3 with 1 < z 1 < z 2 < z 3 and z 1 large enough, we cannot have (see Proposition 3) 1 5 , 4 5 = K 0 (δ 3 ) ⊂ 3 i=1 B(δ 3 )/z i ,
where each B(δ 3 )/z i for i = 1, 2, 3 is defined as

B(δ 3 )/z i := k∈N B - k /z i , B + k /z i with B - k := 5k -1 5 , B + k := 5k + 1 5 ∀k ∈ N.
We can show that if the above inclusion is satisfied with z 1 large, then K 0 (δ 3 ) contains many sets, called z 1 -kwais, of the form K k /z 1 (with k ∈ N) each of which is covered by the union

B(δ 3 )/z 2 ∪ B(δ 3 )/z 3 . B k /z 1 B k+1 /z 1 B k+2 /z 1 B k+3 /z 1 1/5 4/5 B l /z 2 B l+1 /z 2 B l+2 /z 2 B m /z 3 B m+1 /z 3 B m+2 /z 3 Figure 4: We have (B - l+j+1 /z 2 -B - k+j+1 /z 1 ) -(B - l+j /z 2 -B - k+j /z 1 ) = 1/z 2 -1/z 1 < 0 and (B - m+j+1 /z 3 -B - k+j+1 /z 1 ) -(B - m+j /z 3 -B - k+j /z 1 ) = 1/z 3 -1/z 1 < 0 for j = 1, 2
, which means that B - l+j /z 2 and B - m+j /z 3 are shifted to the left (with respect to B - k+j /z 1 ) when j increases Then, we can show that each z 1 -kwai has to be covered by B(δ 3 )/z 2 ∪ B(δ 3 )/z 3 in the same manner (see Lemma 1) and obtain a contradiction, provided that z 1 is sufficiently large, from the fact that, since z 3 > z 2 > z 1 , the sets B l+j /z 2 and B m+j /z 3 are shifted to the left along consecutive z 1 -kwais (see Figure 4). In fact, as we shall see, the argument of the first step that we have just described amounts to checking that some convex polytopes have empty interior and the second step consists in verifying that a given family of convex polytopes covers a compact subset of R d , two properties that can be checked automatically by a computer. Since the combinatorics of the d = 4 case are not too involved, our method also allows us to give a computer-assisted proof of the following result:

Theorem 2. We have N 4 = 2.
This theorem says that the inclusion [1, ∞) 4 ⊂ K 4 (δ 4 ) /K 0,1 (δ 4 ) holds true while the inclusion [1, ∞) 4 ⊂ K 4 (δ 4 ) /K 0 (δ 4 ) does not. The first inclusion follows principally from computer checks while the second one is a consequence of the fact that (see Section 4.3)

13(1 -1 ) 5 , 3211(1 -2 ) 935 , 247(1 -3 ) 55 , 61009(1 -4 ) 10285 / ∈ K 4 (δ 4 ) /K 0 (δ 4 ),
for every 1 , 2 , 3 , 4 > 0 satisfying 1 < 3 < 2 < 4 < 32/3211. If we come back to the initial statement of the Lonely Runner Conjecture, the latter property implies for example that if we consider six runners x 1 , . . . , x 6 : [0, ∞) → R/Z starting from 0 at time 0 with speeds v 1 , . . . , v 6 given by

v 1 = 0, v 2 = 5 • 11 2 • 17 = 10285, v 3 = 11 2 • 13 • 17 -1 = 26740, v 4 = 11 • 13 2 • 19 -2 = 35319, v 5 = 11 • 13 • 17 • 19 -2 = 46187, v 6 = 13 2 • 19 2 -4 = 61005,
then the static runner x 1 is never separated by a distance at least 1/6 from the others during the first round of x 2 but it is the case at least once during x 2 's second round, for instance at t = 5/(4v 2 ). Our method does not extend easily to higher dimension, so we do not know for example if N 5 < ∞ (N 5 = ∞ has been proved by Barajas and Serra [START_REF] Barajas | The lonely runner with seven runners[END_REF]). We can just mention that we checked N 5 ≥ 2.

Our third result is concerned with the gap of loneliless that we mentioned above. According to [START_REF] Perarnau | Correlation among runners and some results on the lonely runner conjecture[END_REF], for every integer m ≥ 2, the gap of loneliness δ m is defined as the supremum of δ ∈ (0, 1/2] such that for every w 1 , . . . , w m > 0 there exists t > 0 such that t(w 1 , . . . , w m ) ∈ K m (δ). Following the discussion we had before the statement of the Strong Lonely Runner Conjecture, this definition is equivalent to saying that

δ m := sup δ ∈ (0, 1/2] | [1, ∞) m-1 ⊂ K m-1 (δ) /K(δ) .
Let us introduce the following definition: Definition 2. For every integer d ≥ 1 and every N ∈ N * ∪ {∞}, we denote by ∆ N d , called gap of loneliness in N rounds, the supremum of all real numbers δ ∈ (0, 1/2] such that

[1, ∞) d ⊂ K d (δ) /K 0,N -1 (δ) .
We note that if N in the above definition is finite then the supremum is actually a maximum and we check easily that we have for every integer d ≥ 1,

∆ N d+1 ≤ ∆ N d ∀N ∈ N * ∪ {∞} and ∆ N d ≤ ∆ N +1 d ≤ ∆ ∞ d = δ d+1 ∀N ∈ N * . Our Theorem 1 yields ∆ 1 d = δ d+1 = 1/(d + 2) for d = 1, 2, 3, Theorem 2 implies ∆ 1 4 < 1/6 = δ 4 and ∆ 2 4 = δ 4
, and the result by Barajas and Serra [START_REF] Barajas | The lonely runner with seven runners[END_REF] gives ∆ ∞ 5 = δ 5 . Moreover, as it is well-known the Dirichlet approximation Theorem [START_REF] Cassels | An Introduction to Diophantine Approximation[END_REF] implies that

∆ ∞ d ≤ 1 d + 2 ∀d ∈ N * .
In the spirit of [START_REF] Chen | View-obstruction problems in n-dimensional Euclidean space and a generalization of them[END_REF][START_REF] Chen | The view-obstruction problems for n-dimensional cubes[END_REF][START_REF] Perarnau | Correlation among runners and some results on the lonely runner conjecture[END_REF], we are able to give a lower bound of the form, 1/(2(d+1))+c/(d+1) 2 with c > 0, for all d ∈ N * . For every δ ∈ (0, 1/2] and every z ≥ 1, we call K 0 (δ)-measure of z the nonnegative real number M δ 0 (z) defined by (L 1 denotes the Lebesgue measure in R)

M δ 0 (z) := L 1 (B(δ)/z ∩ K 0 (δ)) .
We can check easily (see Section 5) that

M δ 0 (z) ≤ 2δ(1 -2δ) 1 -δ < 2δ ∀z ≥ 1, ∀δ ∈ (0, 1/3].
This result implies that if for some d ∈ N * and δ ∈ (0, 1/3], we have

[1, ∞) d K d (δ) /K 0 (δ) , then any (z 1 , . . . , z d ) ∈ [1, ∞) d (see Proposition 3) such that K 0 (δ) ⊂ ∪ d i=1 B(δ)/z i satisfies 1 -2δ = L 1 (K 0 (δ)) = L 1 ∪ d i=1 (B(δ)/z i ∩ K 0 (δ)) ≤ d i=1 M δ 0 (z i ) ≤ 2δ(1 -2δ)d 1 -δ ,
which implies that δ ≥ 1/(2d + 1). In conclusion, the gap of loneliness in one round satisfies the following inequalities:

Proposition 1. For every integer d ≥ 1, we have

1 2d + 1 ≤ ∆ 1 d ≤ 1 d + 2 .
This result implies that for every integer m ≥ 2, we have

δ m = ∆ ∞ m-1 ≥ 1 2m -1 .
This bound is very far from the lower bound obtained by Tao in [START_REF] Tao | Some remarks on the lonely runner conjecture[END_REF]. In fact, the reader familiar with the Lonely Runner Conjecture has probably observed that we do not restrict our attention to integral speeds. As a matter of fact, it can be shown that the conjecture holds true if and only if it is satisfied for rational speeds (see [START_REF] Bohman | Six lonely runners[END_REF]). This fact allows Tao to work with integral speeds and to show, thanks to a fine study of the size of unions of the so-called Bohr sets, that there is an absolute constant c > 0 (see [START_REF] Tao | Some remarks on the lonely runner conjecture[END_REF]Theorem 1.2]) such that

δ m ≥ 1 2m + c log m m 2 (log(log m)) 2 ,
for all sufficiently large m. We do not know if ∆ 

if [1, ∞) d ∩ Q d ⊂ K d (δ d ) /K 0,N -1 (δ d ) ,
we don't know either if Tao's method can be applied (we tried without success) to improve the results presented in this paper.

The paper is organized as follows: Several definitions and a preliminary result are introduced in Section 2, the proofs of Theorems 1 and 2 are given respectively in Sections 3 and 4, and Section 5 deals with the upper bound on K 0 (δ)-measures.

Preliminary results

We introduce several definitions and state in Proposition 3 the characterization of the covering property that will be our main tool in the proofs of Theorems 1 and 2.

Feathers, bridges, kwais and beams

Given d ∈ N * , N ∈ N * ∪ {∞}, and δ ∈ (0, 1/2), we introduce several definitions. Definition 3.

(i) We call (d, δ)-feather, or simply feather, any set of the form

F d k,l (δ) := K d k (δ)/K l (δ), with k = (k 1 , . . . , k d ) ∈ N d and l ∈ N.
(ii) For every real number z ≥ 1, we call z-bridge any set of the form

B k (δ)/z := B - k (δ)/z, B + k (δ)/z = k -δ z , k + δ z ,
with k ∈ N and we denote its length (which does not depend on k) by b δ (z) = 2δ/z.

(iii) For every real number z ≥ 1, we call z-kwai any set of the form

K k (δ)/z := K - k (δ)/z, K + k (δ)/z = k + δ z , k + 1 -δ z ,
with k ∈ N and we denote its length (which does not depend on k) by k δ (z) = (1 -2δ)/z.

(iv) For every (z 1 , . . . , z d ) ∈ [1, ∞) d , we call z-beam the set

P d δ,N (z 1 , . . . , z d ) := l∈ 0,N -1 P d δ,l (z 1 , . . . , z d ) ⊂ R d ,
where each P d δ,l (z 1 , . . . , z d ) (with l ∈ 0, N -1 ) is the set of (λ 1 , . . . , λ d ) ∈ R d verifying

(l + δ)z i + δ -1 ≤ λ i ≤ (l + 1 -δ)z i -δ ∀i = 1, . . . , d and λ j z i -λ i z j ≥ (δ -1)z i + δz j ∀i, j = 1, . . . , d with i = j.
We recall that a convex polytope is a convex compact set with a finite number of extreme points, or equivalently a compact set given by the intersection of a finite number of half-spaces. We refer for example the reader to Ziegler's monograph [START_REF] Ziegler | Lectures on Polytopes[END_REF] for more details on convex polytopes. 

k i + δ l + 1 -δ ≤ z i ≤ k i + 1 -δ l + δ ∀i = 1, . . . , d (1) 
with the convex (positive) cone C d k (δ) given by

C d k (δ) := (0, ∞) • K d k (δ), which correspond to the set of (z 1 , . . . , z d ) ∈ (0, ∞) d satisfying z i k i + δ - z j k j + 1 -δ ≥ 0 ∀i, j = 1, . . . , d with i = j, (2) 
and in addition the lower face of of F d k,l (δ) defined as

∂ -F d k,l (δ) = z ∈ F d k,l (δ) | tz / ∈ F d k,l (δ) ∀t ∈ [0, 1) verifies ∂ -F d k,l (δ) = F d k,l (δ) ∩ d i=1 z ∈ R d | z i = k i + δ d l + 1 -δ d .
(ii) For every z ∈ [1, ∞) and every k ∈ N, we have

K 0 (δ) \ (B k (δ)/z) = ∅.
(iii) If δ ≤ 1/4, then for every z ∈ [(2 -δ)/(1 -δ), ∞), the set K 0 (δ) \ (B(δ)/z) contains a z-kwai, that is, a closed interval of length (1 -2δ)/z, and for every z ∈ [1, (2 -δ)/(1 -δ)) the set K 0 (δ) \ (B(δ)/z) contains at least one closed interval of length ≥ (1 -δ)/z -δ.

(iv) For every (z 1 , . . . , z d ) ∈ [1, ∞) d and every l ∈ 0, N -1 , P d δ,l (z 1 , . . . , z d ) is a convex polytope.

We now state the result whose assertion (ii) will be the main tool in the proofs of Theorems 1 and 2. Proposition 3. For every (z 1 , . . . , z d ) ∈ [1, ∞) d , the following properties are equivalent:

(i) (z 1 , . . . , z d ) ∈ K d (δ)/K 0,N -1 (δ) = ∪ k∈N d ∪ l∈ 0,N -1 F d k,l (δ). (ii) K 0,N -1 (δ) ∩ ∩ d i=1 K(δ)/z i = K 0,N -1 (δ) \ ∪ d i=1 B(δ)/z i = ∅. (iii) P d δ,N (z 1 , . . . , z d ) ∩ N d = ∅. Proof of Proposition 3. Let (z 1 , . . . , z d ) ∈ [1, ∞) d be fixed. If (z 1 , . . . , z d ) ∈ K d (δ)/K 0,N -1 (δ),
then there are an integer l ∈ [0, N -1] and λ ∈ K l (δ) such that λz i ∈ K(δ) for all i = 1, . . . , d, which implies that

λ ∈ K l (δ) ∩ ∩ d i=1 K(δ)/z i = K l (δ) \ ∪ d i=1 B(δ)/z i . So we have (i)⇒(ii). If the set K 0,N -1 (δ) ∩ ∩ d i=1 K(δ)/z i is not empty, then there are λ ∈ R, l ∈ 0, N -1 and k 1 , . . . , k d ∈ N such that λ ∈ K l (δ) and λ ∈ K ki (δ)/z i ∀i = 1, . . . , d, which, by setting k := (k 1 , . . . , k d ), implies that (z 1 , . . . , z d ) ∈ K k (δ)/K l (δ) = F d k,l (δ).
By Proposition 2 (i), we infer that the inequalities (1)-( 2) are satisfied, then we have

(l + δ)z i + δ -1 ≤ k i ≤ (l + 1 -δ)z i -δ ∀i = 1, . . . , d (3) 
and

k j z i -z i x j ≥ (δ -1)z i + δz j ∀i, j = 1, . . . , d with i = j, (4) 
which shows that P d δ,N (z 1 , . . . , z d )∩N d = ∅. Thus, we have (ii)⇒(iii). Finally to prove (iii)⇒(i), we note that if (iii) holds then there are k = (k 1 , . . . , k d ) ∈ N d and l ∈ 0, N -1 such that the above inequalities (3)-(4) hold. Then the equivalent inequalities (1)-(2) hold, which means that (z 1 , . . . , z d ) belongs to the feather F d k,l (δ) and in other words that it is in the set K d (δ)/K 0,N -1 (δ).

Remark 1. Our approach is reminiscent to those of Chen [START_REF] Chen | On a conjecture about diophantine approximations[END_REF][START_REF] Chen | On a conjecture in Diophantine approximations[END_REF][START_REF] Chen | On a conjecture in Diophantine approximations[END_REF][START_REF] Chen | On a conjecture in Diophantine approximations[END_REF][START_REF] Chen | View-obstruction problems in n-dimensional Euclidean space and a generalization of them[END_REF] (see for example [9, Lemma 1 p. 182]) and Beck, Hosten and Schymura [START_REF] Beck | Lonely runner polyhedra[END_REF] (see for example Proposition 1 p. 3) who work in dimension d + 1 and with integral speeds (see also [START_REF] Henze | On the covering radius of lattice zonotopes and its relation to view-obstructions and the lonely runner conjecture Aequat[END_REF]).

Remark 2. Characterization (iii) allows to see the conjecture as a problem of geometry of numbers à la Minkowski (see [START_REF] Cassels | An Introduction to Diophantine Approximation[END_REF]), it won't be used in this paper.

K 0 -coverings, chains and 1-subchains

Let d ∈ N * and N ∈ N * ∪ {∞} be fixed. Proposition 3 shows that a way to prove that the covering property

[1, ∞) d ⊂ K d (δ d ) /K 0,N -1 (δ d ) is satisfied is to demonstrate that for every (z 1 , . . . , z d ) ∈ [1, ∞) d , the set K 0,N -1 (δ d ) \ ∪ d i=1 B(δ d )/z i = K 0,N -1 (δ d ) ∩ ∩ d i=1 K(δ d )/z i
is not empty. Our proof of the covering property at infinity will follow from the study of that set, so from now on, in order to simplify the notations, we write

B, K, b(z), k(z) instead of B(δ d ), K(δ d ), b δ d (z), k δ d (z), and if (z 1 , . . . , z d ) ∈ [1, ∞) d is fixed then we set b i := b δ d (z i ) and k i := k δ d (z i ).
Definition 4. We say that a tuple

(z 1 , . . . , z d ) ∈ [1, ∞) d is strictly well-ordered if 1 < z 1 < z 2 • • • < z d
and we say that it is a K 0 -covering, if it is strictly well-ordered and satisfies

K 0 ⊂ d i=1 B/z i .
By Proposition 2 (ii), the set K 0 cannot be covered by only one of the B/z i (with i ∈ {1, . . . , d}), this observation justifies the following definition:

Definition 5. We call chain associated with a K 0 -covering (z 1 , . . . , z d ) ∈ [1, ∞) d , that we denote by (i 1 • • • i |k 1 • • • k ),
any pair of ordered families of indices i 1 , . . . , i ∈ {1, . . . , d} and of positive integers k 1 , . . . , k with an integer ≥ 2 satisfying

δ d ∈ B k1 /z i1 , 1 -δ d ∈ B k /z i and B + kj /z ij ∈ B kj+1 /z ij+1 ∀j = 1, . . . , -1. ( 5 
)
and

B + kj /z ij < B - kj+2 /z ij+2 < B + kj+1 /z ij+1 ∀j = 1, . . . , -2, ( 6 
)
provided ≥ 3.
Note that by definition a chain (i

1 • • • i |k 1 • • • k ) is minimal in the sense that K 0 is not covered if we remove one of the B kj /z ij , that is, K 0 j∈{1,..., }\{ j} B kj /z ij ∀ j ∈ {1, . . . , }.
The proofs of Theorems 1 and 2 are based on the following result. We denote by

S d the closed convex set of tuples (z 1 , . . . , z d ) such that 1 ≤ z 1 ≤ . . . ≤ z d . Proposition 4. If the covering property O ∩ S d ⊂ K d /K 0 does not hold for an open set O ⊂ (0, ∞) d , then there exist a K 0 -covering (z 1 , . . . , z d ) ∈ O along with a chain (i 1 • • • i |k 1 • • • k ). Proof of Proposition 4. Let O ⊂ (0, ∞) d be an open set such that O ∩ S d K d /K 0 . The set (O ∩ S d ) \ (K d /K 0 ) is a non-empty open set of S d , so there is a tuple (z 1 , . . . , z d ) ∈ O such that z 1 < . . . < z d and (z 1 , . . . , z d ) / ∈ K d /K 0 .
By Proposition 3, we infer that

K 0 ⊂ d i=1 B(δ)/z i , so that (z 1 , . . . , z d ) is a K 0 -covering. Then, there is a finite set F ⊂ N * × {1, . . . , d} such that K 0 ⊂ (k,i)∈F B(δ)/z i and K 0 (k,i)∈{1,..., }\{( k, ī)} B k /z i ∀( k, ī) ∈ F.
We get a chain by ordering the set of B - k /z i for (k, i) ∈ F. The following result provides a few obstructions on chains associated with K 0 -coverings.

Proposition 5. Let (i 1 • • • i |k 1 • • • k ) be a chain associated with a K 0 -covering (z 1 , . . . , z d ),
then the following properties hold:

(i) For every j = 1, . . . , -1, i j = i j+1 . (ii) If d ≥ 2, then l ≥ 3 and if i j = i j+2 for some j ∈ {1, . . . , -2} then i j+1 < i j . Proof of Proposition 5. Let us consider (i 1 • • • i |k 1 • • • k ) a chain associated with a K 0 -covering (z 1 , . . . , z d ).
To prove (i) suppose for contradiction that there is some j ∈ {1, . . . , -1} such that i j = i j+1 . If = 2, then we have K 0 ⊂ B/z ij which is prohibited by Proposition 2 (ii). Otherwise, we have ≥ 3 and ( 6). Therefore, we have

B - kj+1 /z ij = B - kj+1 /z ij+1 < B + kj /z ij and B + kj /z ij < B + kj+1 /z ij+1 = B + kj+1 /z ij which imply respectively k j+1 ≤ k j and k j < k j+1 , a contradiction.
To prove (ii), assume that i j = i j+2 for some j ∈ {1, . . . , -2} (with ≥ 3), then by ( 6) we have

B - kj+1 /z ij+1 < B + kj /z ij < B - kj+2 /z ij < B + kj+1 /z kj+1 , which means that the length of B kj+1 /z ij+1 , which is equal to b ij+1 = 2δ d /z ij+1 , is strictly larger than k ij := (1 -2δ d )/z ij . If d ≥ 2, this implies that z ij+1 < z ij , that is, i j+1 < i j (because (z 1 , . . . , z d ) is strictly well-ordered).
In the sequel, we often denote chains by (i

1 • • • i ) instead of (i 1 • • • i |k 1 • • • k ).
We also use the word subchain, that we denote by [i j • • • i j+r ] to avoid any confusion, to speak of consecutive subsequences of chains. Moreover, we make use of the following definition.

Definition 6. Given a K 0 -covering (z 1 , . . . , z d ) associated with a chain (i 1 • • • i |k 1 • • • k ), we call 1-subchain of length L ∈ N * any sequence of indices of the form [i 1 • • • i r |k 1 • • • k r ],
with r an integer ≥ 3, satisfying the following properties:

(i) i 1 = i r = 1 and k r -k 1 = L. (ii) B + k 1 /z 1 , B - k r /z 1 ∈ K 0 . (iii) B + k 1 /z 1 ∈ B k 2 /z i 2 and B - k r /z 1 ∈ B k r-1 /z i r-1 . (iv) For every k ∈ N ∩ (k 1 , k r ), there is s ∈ {2, r -1} such that (i s , k s ) = (1, k). (v) [i 2 . . . i r-1 |k 2 . . . k r-1 ] is a subchain of (i 1 • • • i |k 1 • • • k ). Moreover, we say that a K 0 -covering (z 1 , . . . , z d ) is 1-nice if for every pair k, k ∈ N * such that k > k and B + k /z 1 , B - k /z 1 ∈ K 0 , any chain (i 1 • • • i |k 1 • • • k ) associated with (z 1 , . . . , z d ) admits a subchain (i j • • • i j |k j • • • k j ) with j < j in {1, . . . , } such that [1i j • • • i j 1| kk j • • • k j k] is a 1-subchain of length k -k.
In fact, the above definition is justified by the fact that we may have a K 0 -covering (z 1 , . . . , z d ) associated with a chain (i

1 • • • i |k 1 • • • k ) such that we may have a pair k, k ∈ N * satisfying k > k and B + k /z 1 , B - k /z 1 ∈ K 0 , but where no j ∈ {1, . . . , } verifies (i j , k j ) = (1, k) or (i j , k j ) = (1, k) (see Figure 6). 1/5 4/5 B k1 /z 2 B k3 /z 2 B k2 /z 3 B + k /z 1 B - k /z 1 Figure 6: The points B + k /z 1 and B - k /z 1 belong to K 0 but do not appear in the chain (k 1 k 2 k 3 |232) associated with the K 0 -covering (z 1 , z 2 , z 3 ) Remark 3. In other words, a K 0 -covering (z 1 , . . . , z d ) is 1-nice if when we consider k, k ∈ N * satisfying k > k and B + k /z 1 , B - k /z 1 ∈ K 0 , all instances of B k /z 1 for k ∈ N ∩ ( k, k
) appears in any chain associated with (z 1 , . . . , z d ). Therefore, to show that a K 0 -covering (z 1 , . . . , z d ) is 1-nice it is sufficient to prove that an interval of the form

I = K - k /z 1 , K + k+1 /z 1 ⊂ K 0 of length 2k 1 + b 1 (7) 
can not be covered by the union of B i /z i for i = 2, . . . , d. In particular, to his aim we can apply the properties given in Proposition 5.

Proof of Theorem 1

For each case d = 1, 2, 3, we suppose for contradiction that [1,

∞) d K d /K 0 and consider, thanks to Proposition 4, a K 0 -covering (z 1 , . . . , z d ) associated with a chain (i 1 • • • i |k 1 • • • k ) with ≥ 2.

Case d = 1

We have δ 1 = 1/3 and

K 0 = [1/3, 2/3]. If K 0 ⊂ B/z for some z > 1, then by Proposition 5 (i) there is k ∈ N such that K 0 ⊂ B k /z, which contradicts Proposition 2 (ii).

Case d = 2

We have δ 2 = 1/4, K 0 = [1/4, 3/4] and b(z) = k(z) = 1/(2z) for all z ≥ 1. We know by Proposition 5 (ii) that ≥ 3. If = 3, then the chain has to be [212|k j k j+1 k j+2 ] (by Proposition 5 (ii)). But we observe that if 1/4 belongs to B k /z for some z > 1 and k ∈ N * , then we have B - 1 /z = 3/(4z) ≤ B - k /z < 1/4 which implies that z > 3 and

B + k+1 /z = B - k /z + b(z) + 1 z < 1 4 + 1 2z + 1 z = 1 4 + 3 2z < 1 4 + 1 2 = 3 4 .
This shows that if 1/4 belongs to B kj /z 2 then B + kj +1 /z 2 ∈ K 0 and as a consequence k j+2 -k j ≥ 2. Then, we have

1 2z 1 = b 1 > B - kj +2 /z 2 -B + kj /z 2 ≥ 2 z 2 -b 2 = 3 2z 2 ,
which yields z 2 > 3z 1 and

3 4z 1 = B - 1 /z 1 ≤ B - k2 /z 1 < 1 4 + b 2 < 1 4 + 1 6z 1 .
This means that z 2 > 3z 1 > 7 which gives 2b 2 + b 1 < 1/7 + 3/14 = 5/14 < 1/2, a contradiction (to the fact that [212|k j k j+1 k j+2 ] is a chain). In conclusion, the chain

(i j • • • i j+r |k j • • • k j+r )
associated with the K 0 -covering (z 1 , z 2 ) has length ≥ 4 and so has the form (i

1 i 2 i 1 i 2 • • • ), but
this contradicts Proposition 5 (ii). Therefore there is no K 0 -covering.

Case d = 3

We have δ 3 = 1/5, K 0 = [1/5, 4/5] and b(z) = 2/(5z), k(z) = 3/(5z) for all z ≥ 1. Recall that, arguing by contradiction, we consider a K 0 -covering (z 1 , z 2 , z 3 ) associated with a chain -

(i 1 • • • i |k 1 • • • k ) with ≥ 2.
[1231231|k j • • • k j+6 ] with k j+6 = k j+3 + 1 = k j + 2 and k j+4 = k j+1 + 1, -[1321321|k j • • • k j+6 ] with k j+6 = k j+3 + 1 = k j + 2 and k j+4 = k j+1 + 1, -[132313231|k j • • • k j+8 ] with k j+8 = k j+4 +1 = k j +2, k j+3 = k j+1 +1 and k j+6 = k j+2 +1. B kj /z 1 B kj+3 /z 1 B kj+6 /z 1 B kj+1 /z 2 B kj+2 /z 3 B kj+4 /z 2 B kj+5 /z 3 Figure 7: A 1-subchain of the form [1231231|k j • • • k j+6 ] with k j+6 = k j+3 + 1 = k j + 2 and k j+4 = k j+1 + 1 B kj /z 1 B kj+3 /z 1 B kj+6 /z 1 B kj+1 /z 3 B kj+2 /z 2 B kj+4 /z 3 B kj+5 /z 2 Figure 8: A 1-subchain of the form [1321321|k j • • • k j+6 ] with k j+6 = k j+3 + 1 = k j + 2 and k j+4 = k j+1 + 1 B kj /z 1 B kj+3 /z 1 B kj+6 /z 1 B kj+2 /z 3 B kj+1 /z 2 B kj+2 /z 3 B kj+4 /z 2 B kj+5 /z 3 B kj+5 /z 3 Figure 9: A 1-subchain of the form [132313231|k j • • • k j+8 ] with k j+8 = k j+4 + 1 = k j + 2, k j+3 = k j+1 + 1 and k j+6 = k j+2 + 1
Proof of Lemma [13231321] cannot occur, for each case we assume that it is the case and infer a contradiction:

-[1231321|k j • • • k j+6 ]: We have k j+6 = k j+3 + 1 = k j + 2. The subchain [313|k j+2 k j+3 k j+4 ] gives z 3 > 3z 1 /2 (because 2/(5z 1 ) = b 1 > k 3 = 3/(5z 3 )). Moreover, the inequalities B - kj+1 /z 2 < B + kj /z 1 < B + kj+3 /z 1 < B - kj+5 /z 2 yield k j+5 ≥ k j+1 + 2, because otherwise we have k j+5 = k j+1 + 1 which implies 1/z 2 = B - kj+5 /z 2 -B - kj+1 /z 2 > B + kj+3 /z 1 -B + kj /z 1 = 1/z 1 , a contradiction. Thus, we have 8 5z 2 = 2 z 2 -b 2 ≤ B - kj+5 /z 2 -B + kj+1 /z 2 < b 1 + 2b 3 < b 1 + 8 15z 1 = 14 15z 1 , which gives z 2 > 12z 1 /7, then b 2 + b 3 < 7/(30z 1 ) + 4/(15z 1 ) = 1/(2z 1 ) < k 1 , a contradiction. -[12313231|k j • • • k j+7 ]:
The proof is the same as for the previous case, it it left to the reader.

-

[1321231|k j • • • k j+6 ]: The subchain [212] gives z 3 > z 2 > 3z 1 /2, which implies b 2 + b 3 < 8/(15z 1 ) < 3/(5z 1 ) = k 1 , a contradiction. -[13213231|k j • • • k j+7 ]: The subchain [323] gives z 3 > 3z 2 /2 > 3z 1 /2. Let us show that k j+4 ≥ k j+1 + 2. Otherwise, we have k j+4 = k j+1 + 1 and we know that B - kj+1 /z 3 < B + kj /z 1 < B + kj+3 /z 1 < B + kj+4 /z 3 . Then, we have 1 z 1 = B + kj+3 /z 1 -B + kj /z 1 < B + kj+4 /z 3 -B - kj+1 /z 3 = 1 z 3 + b 3 = 7 5z 3 , which contradicts z 3 > 3z 1 /2. Thus the subchain [3213|k j+1 • • • k j+4 ] gives 4 5z 1 = 2b 1 > b 1 + b 2 > B - kj+4 /z 3 -B + kj+1 /z 3 ≥ 2 z 3 -b 3 = 8 5z 3 , which implies z 3 > 2z 1 and then b 2 + b 3 < b 1 + b 1 /2 < k 1 , a contradiction. -[13231231|k j • • • k j+7 ]. The subchain [323] gives z 3 > 3z 2 /2 > 3z 1 /2. Let us show that k j+6 ≥ k j+3 + 2. Otherwise, we have k j+6 = k j+3 + 1 and we know that B - kj+3 /z 3 < B - kj+4 /z 1 < B - kj+7 /z 1 < B + kj+6 /z 3 . Then, we have 1 z 1 = B - kj+7 /z 1 -B - kj+4 /z 1 < B + kj+6 /z 3 -B - kj+3 /z 3 = 1 z 3 + b 3 = 7 5z 3 , which contradicts z 3 > 3z 1 /2. Thus the subchain [3123|k j+3 • • • k j+6 ] gives 4 5z 1 = 2b 1 > b 1 + b 2 > B - kj+6 /z 3 -B + kj+3 /z 3 ≥ 2 z 3 -b 3 = 8 5z 3 , which implies z 3 > 2z 1 and then b 2 + b 3 < b 1 + b 1 /2 < k 1 , a contradiction. -[13231321|k j • • • k j+7 ]: The subchain [323] gives z 3 > 3z 2 /2 > 3z 1 /2. Moreover, the inequali- ties B + kj+2 /z 2 < B - kj+4 /z 1 < B - kj+7 /z 1 < B + kj+6 /z 2 yield k j+6 ≥ k j+2 + 2, because otherwise we have k j+6 = k j+2 + 1 which implies 1/z 2 = B + kj+6 /z 2 -B + kj+2 /z 2 > B - kj+7 /z 1 -B - kj+4 /z 1 = 1/z 1 , a contradiction. Then, we have 8 5z 2 = 2 z 2 -b 2 ≤ B - kj+6 /z 2 -B + kj+2 /z 2 < b 1 + 2b 3 < 2 5z 1 + 8 15z 2 , which implies z 2 > 8z 1 /3 and b 2 + b 3 < 3/(20z 1 ) + 4/(15z 1 ) = 5/(12z 1 ) < k 1 , a contradiction.
We have shown that the only admissible 1-subchains of length 2 are [1231231|k

j • • • k j+6 ], [1321321|k j • • • k j+6 ] and [132313231|k j • • • k j+8 ], it remains to check what can be k j . . . , k j+r (r = 6 or 8) in each case: -[1231231|k j • • • k j+6 ]: If k j+4 ≥ k j+1 + 2, then 2b 1 > b 3 + b 1 > 2/z 2 -b 2 , which gives z 2 > 2z 1 and so b 3 + b 2 < 2b 2 < 2/(5z 1 ) < k 1 , a contradiction. -[1321321|k j • • • k j+6 ]: If k j+4 ≥ k j+1 + 2, then 2b 1 > b 2 + b 1 > 2/z 3 -b 3 , which gives z 3 > 2z 1 and so b 3 + b 2 < b 3 + b 1 < 3/(5z 1 ) < k 1 , a contradiction. -[132313231|k j • • • k j+8 ]: If k j+3 ≥ k j+1 + 2, then b 2 > 2/z 3 -b 3 which gives z 3 > 4z 2 and so 2b 3 + b 2 < 3/(5z 2 ) = k 1 , a contradiction. If k j+6 ≥ k j+2 + 2, then, since the subchain [323] gives z 3 > 3z 2 /2, the subchain [23132] gives 2/z 2 -b 2 < b 1 + 2b 3 < b 1 + 4/(15z 2 ) which implies that z 2 > 10z 1 /3 and so b 2 + 2b 3 < 3/(25z 1 ) + 4/(25z 1 ) = 7/(25z 1 ) < k 1 , a contradiction.
Define the two integers a, b ≥ 1 by (note that z 1 > 1)

a = z 1 -1 5 and b = 4z 1 + 1 5 .
By construction, a is the least integer k such that 

B + k /z 1 ≥ δ 3 = 1/5 and b is the largest integer k such that B - k /z 1 ≤ 1 -δ 3 = 4/5. Lemma 2. If z 1 ≥ 7/2,
K a /z 1 , K a+1 /z 1 , • • • , K b-1 /z 1 .
Thanks to Lemma 1 we know that all consecutive 1-kwais above are covered by unions of 2bridges and 3-bridges in the same manner. It means that there are ī ∈ {2, 3} and j ∈ {1, } such that -[i j i j+1 i j+2 ] = [231]: We have

K + a /z 1 ∈ B kj /zī
B - a /z 1 = 5a -1 5z 1 < B - kj /z 2 = 5k j -1 5z 2 < B + a /z 1 = 5a + 1 5z 1 < B + kj /z 2 = 5k j + 1 5z 2 ,
which gives, since z 2 > z 1 , k j ≥ a + 1 and as a consequence

z 2 > 5k j -1 5a + 1 z 1 ≥ 5a + 4 5a + 1 z 1 ≥ (1 + κ)z 1 with κ := 3 5a + 1 .
Define the sequence {u k } k∈N by

u k := B + kj +k /z 2 -B + a+k /z 1 = B + kj /z 2 -B + a /z 1 + k 1 z 2 - 1 z 1 ∀k ∈ N.
By construction, we have (because u 0 < b 2 and u 0 + b 3 > k 1 )

u 0 = B + kj /z 2 -B + a /z 1 ∈ (1/(5z 2 ), 2/(5z 2 )) and u k+1 -u k = 1 z 2 - 1 z 1 < 0 ∀k ∈ N.
Therefore, {u k } k∈N is decreasing and there is k ∈ N * such that

u k < 1 5z 2 and k ≤ 1/(5z 2 ) 1/z 1 -1/z 2 ≤ 1 5κ = a 3 + 1 15 .
If all the 1-kwais from K a /z 1 to K a+k /z 1 are contained in K 0 , then by Lemma 1, we infer that the 1-kwai K a+k /z 1 satisfies

K a+k /z 1 ⊂ B kj +k /z 2 ∪ B k j+1+3k /z 3 with B + kj +k /z 2 < K - a+k /z 1 + 1 5z 2
which is impossible. The above argument applies provided K a+k /z 1 ⊂ K 0 with 1 ≤ k ≤ a/3+1/15 which is satisfied if a+ a/3+1/15 +1 ≤ b (note that 4a/5+4/25 ≥ a/3+1/15 ).

-[i j i j+1 i j+2 ] = [321]: We proof is exactly the same as before by replacing 2 by 3, it is left to the reader.

-[i j i j+1 i j+2 i j+3 ] = [3231]: The subchain [323] yields z 3 > 3z 2 /2, so we have

B + a /z 1 = 5a + 1 5z 1 < B - kj+1 /z 2 = 5k j+1 -1 5z 2 < B + a /z 1 + 2 5z 3 < B + a /z 1 + 4 15z 2
which gives, since z 2 > z 1 , k j+1 ≥ a + 1 and z 2 ≥ (1 + κ)z 1 with κ := 5/(15a + 3). Then the sequence {u k } k∈N defined by

u k := B - kj+1+k /z 2 -B + a+k /z 1 = B - kj+1 /z 2 -B + a /z 1 + k 1 z 2 - 1 z 1 ∀k ∈ N, verifies u 0 ∈]0, 4/(15z 2 )] and u k+1 -u k = 1 z 2 - 1 z 1 < 0 ∀k ∈ N.
Consequently, there is k ∈ N * such that

u k < 0 and k ≤ 4/(15z 2 ) 1/z 1 -1/z 2 ≤ 4 15κ = 4a 5 + 4 25 .
If all the 1-kwais from K a /z 1 to K a+k /z 1 are contained in K 0 , then by Lemma 1, we infer that the 1-kwai K a+k /z 1 satisfies

K a+k /z 1 ⊂ B k j+3k /z 3 ∪ B kj+1+k /z 2 ∪ B k j+2+3k /z 3 with B - kj+1+k /z 2 > K - a+k /z 1 = B + a+k /z 1 which contradicts u k < 0. The above argument applies provided K a+k /z 1 ⊂ K 0 with 1 ≤ k ≤ 4a/5 + 4/25 which is satisfied if a + 4a/5 + 4/25 + 1 ≤ b.
In conclusion, we have proved that whatever the starting 1-subchain of length 1, we always obtain a contradiction if b-a ≥ 4a/5+4/25 +1. This shows that b-a < 4a/5+4/25 +1.

Lemma 3. z 1 ≥ 7/2 ⇒ b -a ≥ 4a/5 + 4/25 + 1.
Proof of Lemma 3. Let z 1 ≥ 7/2 be fixed. If z 1 ≥ 6, then there are q ∈ N with q ≥ 1 and r ∈ [0, 5) such that z 1 = 1 + 5q + r. Then we have In conclusion, Lemmas 2 and 3 show that the K 0 -covering (z 1 , z 2 , z 3 ) satisfies z 1 < 7/2. Let us now prove that no K 0 -covering satisfies this property. If z 1 < 7/2, then we have

a = z 1 -1 5 = q + r 5 = q + r 5 , b = 4z 1 + 1 5 = 4q + 1 + 4r 5 = 4q + 1 + 4r 
B + 1 /z 1 > B - 1 /z 1 = 4 5z 1 > 8 35 > 1 5 and B - 3 /z 1 = 14 5z 1 > 4 5 
, so that we may have K 1 /z 1 ⊂ K 0 or K 1 /z 1 K 0 . We treat the two cases separately:

Case 1: K 1 /z 1 ⊂ K 0 .
The 1-kwai K 1 /z 1 can be covered by the following subchains: [START_REF]The Sage Developers[END_REF], [32], or [323], we treat each case separately.

Case 1.1: K 1 /z 1 is covered by [START_REF]The Sage Developers[END_REF].

Then there are k j , k j+1 ∈ N * such that

B - kj /z 2 = 5k j -1 5z 2 < B + 1 /z 1 = 6 5z 1 < B - kj+1 /z 3 = 5k j+1 -1 5z 3 < B + kj /z 2 = 5k j + 1 5z 2 < B - 2 /z 1 = 9 5z 1 < B + kj+1 /z 3 = 5k j+1 + 1 5z 3 .
Then we have (5k j +1) > 6z 2 /z 1 which gives k j ≥ 2 and as a consequence z 2 /z 1 > (5k j -1)/6 ≥ 3/2. But we have 4

5z 2 > b 2 + b 3 = 2 5z 2 + 2 5z 3 > k 1 = 3 5z 1 ,
so that z 2 /z 1 < 4/3. We obtain a contradiction because 3/2 > 4/3.

Case 1.2: K 1 /z 1 is covered by [32].

Then there are k j , k j+1 ∈ N * such that

B - kj /z 3 = 5k j -1 5z 3 < B + 1 /z 1 = 6 5z 1 < B - kj+1 /z 2 = 5k j+1 -1 5z 2 < B + kj /z 3 = 5k j + 1 5z 3 < B - 2 /z 1 = 9 5z 1 < B + kj+1 /z 2 = 5k j+1 + 1 5z 2 .
Then,

5k j + 1 > 6z 3 /z 1 > 6 gives k j ≥ 2, 5k j+1 + 1 > 9z 2 /z 1 > 9 gives k j+1 ≥ 2 and 5k j + 1 > (5k j+1 -1)z 3 /z 2 > 5k j+1 -1 gives k j+1 ≤ k j . But we have 2 5z 1 + 2 5z 3 > 2 5z 2 + 2 5z 3 = b 2 + b 3 > k 1 = 3 5z 1 , which implies z 3 /z 1 < 2. If k j ≥ 3, we have z 3 /z 1 > (5k j -1)/6 ≥ 7/3 > 2, a contradiction.
Thus, we have k j = k j+1 = 2 and

9 z 3 < 6 z 1 < 9 z 2 < 11 z 3 < 9 z 1 < 11 z 2 .
So we have on the one hand z 3 /z 1 > 9/6 = 3/2 and on the other hand

z 3 /z 1 = (z 3 /z 2 )•(z 2 /z 1 ) < 11 2 /9 2 < 3/2, a contradiction. Case 1.3: K 1 /z 1 is covered by [323].
Then there are k j , k j+1 , k j+2 ∈ N * such that

B - kj /z 3 = 5k j -1 5z 3 < B + 1 /z 1 = 6 5z 1 < B - kj+1 /z 2 = 5k j+1 -1 5z 2 < B + kj /z 3 = 5k j + 1 5z 3 < B - kj+2 /z 3 = 5k j+2 -1 5z 3 < B + kj+1 /z 2 = 5k j+1 + 1 5z 2 < B - 2 /z 1 = 9 5z 1 < B + kj+2 /z 3 = 5k j+2 + 1 5z 3 . Then, 5k j + 1 > (5k j+1 -1)z 3 /z 1 > 5k j+1 -1 gives k j ≥ k j+1 and 5k j+1 -1 > 6z 2 /z 1 > 6 gives k j+1 ≥ 2. If k j ≥ 5, then z 3 /z 1 > (5k j -1)/6 ≥ 4, a contradiction (because b 2 + 2b 3 < 2/(5z 1 ) + 1/(5z 3 ) < k 1 ). So we have k j ∈ {2, 3, 4}. But we have 5k j+2 -1 5k j+1 + 1 < z 3 z 2 < 5k j + 1 5k j+1 -1 .
So the admissible pairs for (k j , k j+1 , k j+2 ) are (3, 2, 4) and (4, 2, 5). In the first case, B - kj /z 3 < B + 1 /z 1 and B - 2 /z 1 < B + kj+2 /z 3 give respectively z 3 /z 1 > 7/3 and z 3 /z 1 < 7/3, a contradiction. In the second case, the same inequalities imply 19/6 < 7/3 < 26/9, a contradiction again.

Case 2: K 1 /z 1 K 0 . Since B - 1 /z 1 > 1 5
, the assumption means that B - 2 /z 1 = 9/(5z 1 ) > 4/5, which gives z 1 < 9/4. By Proposition 5, the chain associated to the K 0 -covering (z 1 , z 2 , z 3 ) has to be in the following list: [START_REF] Renault | View obstruction: a shorter proof for 6 lonely runners[END_REF], ( 212), ( 2123), ( 2132), ( 21323), (31), (312), (3123), (3132), (31323), ( 231), ( 2312), (23123), ( 23132), ( 231323), (321), (3212), (32123), (32132), (321323), (3231), (32312), (323123), (323132), (3231323). We need to distinguish several cases. The inequality (5k 2 -1)/(5z 2 ) = B - k2 /z 2 < 1/5 + b 3 < 3/10 gives z 2 > 2(5k 2 -1)/3. If k 2 ≥ 2, then we have z 3 > z 2 > 6 which implies b 3 + b 2 < 2/15 < 7/45, a contradiction (remember that 4/(5z 1 ) -1/5 > 7/45). Hence we have k 2 = 1 and z 2 > 8/3. We also have 6/(5z 2 ) = B + k2 /z 2 > B - 1 /z 1 = 4/(5z 1 ) which gives z 2 /z 1 < 3/2 and z 1 > 2z 2 /3 > 16/9. So there is no subchain of the form [212] (which implies z 2 /z 1 > 3/2) and our chain has to be (3213|k ), so that we have

1 k 2 k 3 k 4 ), (32132|k 1 k 2 • • • k 5 ) or (321323|k 1 k 2 • • • k 6 ). If it is (3213|k 1 k 2 k 3 k 4 ), then we have 4/5 -6/(5z 1 ) = 4/5 -B + 1 /z 1 < b 3 < 1/10, which gives z 1 < 12/7 < 16/9, a contradiction. If the chain is (32132|k 1 k 2 • • • k 5 ) or (321323|k 1 k 2 • • • k 6 ), then we have 5k 1 -1 5z 3 < 1 5 < 4 5z 2 < 5k 1 + 1 5z 3 < 4 5z 1 < 6 5z 2 < 5k 4 -1 5z 3 < 6 5z 1 < 5k 5 -1 5z 2 < 5k 4 + 1 5z 3 < 4 
4 z 3 < 1 < 4 z 2 < 6 z 3 < 4 z 1 < 6 z 2 < 14 z 3 < 6 z 1 < 9 z 2 < 16 z 3 < 4.
Therefore, we have z 3 /z 2 < 3/2, z 2 /z 1 > 2/3, so that z 3 /z 1 < 9/4. But we also have 

z 3 /z 1 > 7/3,
) = B - k2 /z 2 < 1/5 + b 3 < 3/10 gives z 2 > 2(5k 2 -1)/3. If k 2 ≥ 2,
then we have z 2 > 6 and z 3 > 9 which implies 2b 3 + b 2 < 2/15 < 7/45, a contradiction (remember that 4/(5z 1 ) -1/5 > 7/45). Hence we have k 2 = 1 and z 2 > 8/3. We also have 6/(5z 2 ) = B + k2 /z 2 > B - 1 /z 1 = 4/(5z 1 ) which gives z 2 /z 1 < 3/2 and z 1 > 2z 2 /3 > 16/9. So there is no subchain of the form [212] (which implies z 2 /z 1 > 3/2) and our chain has to be (32313|k

1 • • • k 5 ), (323132|k 1 • • • k 6 ) or (3231323|k 1 • • • k 7 ). If it is (32313|k 1 • • • k ( ),
then we have 4/5 -6/(5z 1 ) = 4/5 -B + 1 /z 1 < b 3 < 1/10, which gives z 1 < 12/7 < 16/9, a contradiction. If the chain is (323132|k 

1 • • • k 6 ) or (3231323|k 1 • • • k 7 ), then we have 5k 1 -1 5z 3 < 1 5 < 4 5z 2 < 5k 1 + 1 5z 3 < 5k 3 -1 5z 3 < 6 5z 2 < 4 5z 1 < 5k 3 + 1 5z 3 < 5k 5 -1 5z 3 < 6 5z 1 < 5k 6 -1 5z 2 < 5k 5 + 1 5z 3 < 4 

Proof of Theorem 2

We have

δ 4 = 1/6, K 0 = [1/6, 5/6], K 1 = [7/6, 11/6], K 0,1 = K 0 ∪ K 1 , b(z) = 2/(6z) = 1/(3z), k(z) = 4/(6z) = 2/(3z) for all z ≥ 1 and we need to show that [1, ∞) 4 ⊂ K 4 (δ 4 ) /K 0,1 and [1, ∞) 4 K 4 (δ 4 ) /K 0 .
We note that by symmetry, the first inclusion is equivalent to

S 4 ⊂ K 4 (δ 4 ) /K 0,1 ,
where we recall that S 4 stands for the closed convex set of tuples (z 1 , z 2 , z 3 , z 4 ) such that 1 ≤ z 1 ≤ z 2 ≤ z 3 ≤ z 4 . Our proof is divided in three parts as follows:

-In Section 4.1, we show that there is a compact set P ⊂ S 4 such that

S 4 \ P ⊂ K 4 (δ 4 ) /K 0 .
As in the proof of Theorem 1 for d = 3, the result follows from particular dynamical properties satisfied by 1-subchains of length 1. However, unlike the d = 3 case, the dynamics of 1-subchains of length 1 is not trivial, so we perform its study will help of a computer.

-In Section 4.2, we check that the required covering property is satisfied over P , that is,

P ⊂ K 4 (δ 4 ) /K 0,1 .
In fact, we explain how to check covering properties over compact sets with computer-assisted proofs and apply the method to our set P .

-In Section 4.3, we verify that [1, ∞) 4 K 4 (δ 4 ) /K 0 .

To do this, we simply check by hand that some points of [1, ∞) 4 given by a formula are not covered by K 4 (δ 4 ) /K 0 .

Proof of the covering property at infinity

Introduction. The aim of Section 4.1 is to prove the following result: Proposition 6. We have S 4 \ P ⊂ K 4 (δ 4 ) /K 0 , where P ⊂ S 4 is the compact set consisting of the points (z 1 , z 2 , z 3 , z 4 ) ∈ S 4 satisfying

5z 1 ≤ 47, 2z 2 ≤ 5z 1 , z 2 z 3 + z 1 z 3 ≤ 8z 1 z 2 , z 3 z 4 + z 2 z 4 ≤ 10z 2 z 3 .
Our strategy to prove Proposition 6 is to show by Proposition 4 that any K 0 -covering has to be in P . So, let us consider a K 0 -covering (z 1 , z 2 , z 3 , z 4 ) associated with a chain (i

1 • • • i |k 1 • • • k ) with ≥ 2.
First of all, we note that the property N 3 = 1 given by Theorem 1 allows to prove the following result: Lemma 4. We have

10 z 4 > 1 z 2 + 1 z 3 and 8 z 3 > 1 z 1 + 1 z 2 . ( 8 
)
Proof of Lemma 4. Since N 3 = 1, we know that (z 1 , z 2 , z 3 ) is not a covering of K 0 (δ 3 ) = K 0 (1/5) = [1/5, 4/5]. So, by Proposition 3, the set

S := K 0 (1/5) ∩ K(1/5)/z 1 ∩ K(1/5)/z 2 ∩ K(1/5)/z 3 is not empty. Let λ ∈ S be fixed. Since S ⊂ K 0 (1/6) ∩ K(1/6)/z 1 ∩ K(1/6)/z 2 ∩ K(1/6)/z 3
and (z 1 , z 2 , z 3 , z 4 ) is assumed to be a K 0 (1/6)-covering, λ belongs to some B kj (1/6)/z 4 . We distinguish several cases:

Case 1: j = 1.

Then we have

B - k1 (1/6)/z 4 < 1 6 < 1 5 ≤ λ < B + k1 (1/6)/z 4
and, since λ ∈ K 0 (1/5) \ B k2 (1/5),

B - k1 (1/6)/z 4 < λ < B - k2 (1/5)/z i2 < B - k2 (1/6)/z i2 < B + k1 (1/6)/z 4 with i 2 ∈ {1, 2, 3}.
We infer that

1 3z 4 = b 4 = B + k1 (1/6)/z 4 -B - k1 (1/6)/z 4 = B + k1 (1/6)/z 4 -λ + λ -B - k1 (1/6)/z 4 > 1 5 - 1 6 
1 z i2 + 1 5 - 1 6 ≥ 1 30 1 + 1 z 3 .
Case 2: j = .

The proof follows the same line as Case 1, it is left to the reader.

Case 3: j / ∈ {1, }. Then we have

B - kj-1 (1/6)/z ij-1 < B - kj (1/6)/z 4 < B + kj-1 (1/6)/z ij-1 < B + kj-1 (1/5)/z ij-1 ≤ λ and λ ≤ B - kj+1 (1/5)/z ij+1 < B - kj+1 (1/6)/z ij+1 < B + kj (1/6
)/z 4 , with i j-1 , i j+1 ∈ {1, 2, 3} and i j-1 = i j+1 (see Proposition 5). We infer that

1 3z 4 = b 4 = B + k1 (1/6)/z 4 -B - k1 (1/6)/z 4 = B + k1 (1/6)/z 4 -λ + λ -B - k1 (1/6)/z 4 > 1 5 - 1 6 
1 z ij+1 + 1 5 - 1 6 
1 z ij-1 ≥ 1 30 1 z 2 + 1 z 3 , because i j-1 , i j+1 ∈ {1, 2, 3} and i j-1 = i j+1 .
To prove the second inequality of ( 8), we note that since (z

1 , z 2 ) is not a covering of K 0 (δ 2 ) = K 0 (1/4) = [1/4, 3/4], the set K 0 (1/6) \ (K 0 (1/4) ∩ K(1/4)/z 1 ∩ K(1/4)/z 2 ) contains a closed interval of length at least (1/4 -1/6)(1/z 1 + 1/z 2 ) = 1/12(1/z 1 + 1/z 2 )
. Such an interval cannot be covered by unions of 3-bridges and 4-bridges We need now to study the dynamics of 1-subchains of length 1, that is, to understand how they can succeed to each other. A way to do this is to relax the notion of chain by allowing translations to the bridges.

if 2b 3 ≤ 1/12(1/z 1 + 1/z 2 ), that is, if 8/z 3 ≤ 1/z 1 + 1/z 2 . Now we observe that the K 0 -covering (z 1 , z 2 , z 3 , z 4 ) is 1-nice.

Admissible weak chains. Given a tuple (ρ

2 , ρ 3 , ρ 4 ) ∈ R 3 such that 0 < ρ 4 < ρ 3 < ρ 2 < 1 (9)
and a positive integer L, we call weak L-chain any family denoted as

i 0 1 • • • i 0 0 • • • i L-1 1 • • • i L-1 L-1 |s 0 1 • • • s 0 0 • • • s L-1 1 • • • s L-1 L-1 (10) 
which satisfies the following properties:

(P1) For every r = 0, . . . , L -1, r ∈ N * and r ≥ 3.

(P2) For every r = 0, . . . , L -1 and every j = 1, . . . , r , i r j ∈ {2, 3, 4} and s r j ∈ N.

(P3) For every j ∈ {1, • • • , 0 } such that i k = i j for all k ∈ 1, j -1 , we have s j = 0.

(P4) There is (h 2 , h 3 , h 4 ) ∈ R 3 such that we have for all r = 0, . . . , L -1,

r + 2δ 4 ∈ h i r 1 + ρ i r 1 C s r 1 , (r + 1) ∈ h i r r + ρ i r r C s r r , h i r j + ρ i r j C + s r j ∈ h i r j+1 + ρ i r j+1 C s r j+1 ∀j = 1, . . . , r , and 
h i r j + ρ i r j C + s r j < h i r j+2 + ρ i r j+2 C - s r j+2 < h i r j+1 + ρ i r j+1 C + s r j+1 ∀j = 1, . . . , r -2,
where for every s ∈ N, C s , C - s , C + s are defined by

C s = C - s , C + s = (s, s + 2δ 4 ) .
The sets ρ i C s (h i ) play exactly the same role as the i-bridges, their length is given by 2δ 4 ρ i = ρ i /3 and two consecutive such sets are separated by an interval of length ρ i (1 -2δ 4 ) = 2ρ i /3 (which plays the role of a i-kwai). Then, given a tuple a tuple (ρ 2 , ρ 3 , ρ 4 ) ∈ R 4 satisfying ( 9) and a weak chain as in [START_REF] Chen | On a conjecture in Diophantine approximations[END_REF], we set for every r = 0, . . . , L -1 and every i ∈ {2, 3, 4},

m r (i) := min s r j | j ∈ {1, . . . , r } s.t. i j = i and M r (i) := max s r j | j ∈ {1, . . . , r } s.t. i j = i .
We note that since the covering property

[r + 2δ 4 , r + 1] ⊂ r j=1 h i r j + ρ r ij C s r j
is satisfied for every r = 1, . . . , L -1, the same arguments as in the proof of Proposition 5 show that for each r = 1, . . . , L -1, the set of i r j with j ∈ {1, . . . , r } is equal to {2, 3, 4}, so that the min and maximum above are taken over non-empty sets. Moreover, if L ≥ 2, then for every r = 0, . . . , L -2 and every i ∈ {2, 3, 4}, we call i-jump from r to r + 1 the quantity

J r (i) := m r+1 (i) -M r (i).
The following result explains how 1-subchains are connected with weak chains. 

K a /z 1 , K a+1 /z 1 , • • • , K b-1 /z 1 ⊂ K 0 , then the tuple (ρ 2 , ρ 3 , ρ 4 ) ∈ R 3 defined by ρ i := z 1 z i ∀i = 2, 3, 4
admits a weak L-chain of the form [START_REF] Chen | On a conjecture in Diophantine approximations[END_REF] such that

1i 0 1 • • • i 0 0 1 • • • 1i L-1 1 • • • i L-1 L-1 1 s 0 s0 1 • • • s0 0 s 1 • • • sL-1 sL-1 1 • • • sL-1 L-1 s L , ( 11 
)
where s 0 , . . . , s L and s0 1 , . . . , s0 0 , . . . , sL-1 

- a /z 1 < B + kj /z i ∀i ∈ {2, 3, 4},
is a 1-subchain associated with (z 1 , z 2 , z 3 , z 4 ) of length L. Moreover, we have

5ρ 2 > 2, 10ρ 4 > ρ 2 + ρ 3 , 8ρ 3 > 1 + ρ 2 , ( 12 
) m r (2) = M r (2), M r (3) -m r (3) ≤ 4, M r (4) -m r (4) ≤ 11 ∀r = 0, . . . , L -1 ( 13 
)
and

J r (2) ≤ 4, J r (3) ≤ 9, J r (4) ≤ 29 ∀r = 0, . . . , L -2. ( 14 
)
Proof of Lemma 5. Since (z 1 , z 2 , z 3 , z 4 ) is 1-nice (see Definition 6 and Remark 3) and

K - a /z 1 = B + a /z 1 , K + b-1 /z 1 = B - b /z 1 ∈ K 0 , it admits a 1-subchain of length L = b -a of the form [1i j • • • i j 1|ak j • • • k j b] ,
with j < j in {1, . . . , }. Then, we define the tuple (h 1 , h 2 , h 3 ) ∈ R 3 by

h i := z 1 z i B - kj (i) -a + δ 4 .
Properties (i)-(v) along with the fact that 1-kwais can only be covered by subchains of length at least 3 (we mean here with at least three indices i s ) imply that the chain defined by ( 16) is a weak L-chain.

To prove that 5ρ 2 > 2 we note that the interval I = [2δ 4 = 1/3, 1] is covered by an union of sets of the form h i + ρ i C s with i ∈ {2, 3, 4} and s ∈ N that we call now weak i-bridges and whose lengths are given by c i := 2ρ i δ 4 = ρ i /3. As we said above, indices of weak chains satisfy the same properties as indices of classical chains (see Proposition 5). As a consequence, I can be covered by weak subchains of the same form as the ones given in L, in other words it can be covered by one of the following weak suchains: 234 , 243 , 2434 , 324 , 3234 , 3243 , 32434 , 423 , 4234 , 4243 , 42434 , 342 , 3423 , 34234 , 3424 , 34243 , 342434 , 432 , 4323 , 43234 , 4324 , 43243 , 432434 , 4342 , 43423 , 434234 , 43424 , 434243 , 4342434 . In any case, it can be covered from left to right by an interval I 3,4 given by an union of 3 and 4-weak bridges, a weak 2-bridge I 2 and another interval I 3,4 given by an union of 3 and 4-weak bridges. Then we have

|I| = 2 3 < |I 3,4 | + |I 2 | + I 3,4 with |I 2 | < ρ 2 3 and |I 3,4 | , I 3,4 < 2ρ 3 3 < 2ρ 2 3 .
We infer that 5ρ 2 > 2. The two other inequalities of (12) follow from ( 8) and the formulas of the ρ i 's. The equality m r (2) = M r (2) for all r = 0, . . . , L -1 is a consequence of the fact that 2 appears only once in each interval of the form [r + 2δ 4 , r + 1]. To prove the other inequalities, we note that (12) implies ρ 3 > 7/40 and ρ 4 > 23/400. Then, fix r ∈ {0, . . . , L -1} and set m i := m r (i), M i := M i (r) for i = 3, 4. We have for every i = 3, 4,

r + 2δ 4 = r + 1 3 < h i + C + mi < h i + C - Mi < r + 1 which gives ρ i M i -m i - 1 3 = C - Mi -C + mi < 2 3 , so that M i -m i ≤ 2 3ρ i + 1 3 .
We infer the two remaining inequalities of ( 13) by using that ρ 3 > 7/40 and ρ 4 > 23/400. To prove ( 14), we fix r in {0, . . . , N -2}, set M i := M r (i) and m i := m r+1 (i) for i = 2, 3, 4 and note that we have

r + 2δ 4 = r + 1 3 < h i + C + Mi < h i + C - m i < r + 2.
We infer that

ρ i m i -M i - 1 3 = C - m i -C + Mi < 5 3 ,
which gives

m i -M i ≤ 5 3ρ i + 1 3 ∀i = 2, 3, 4.
We conclude by the inequalities ρ 2 > 2/5, ρ 3 > 7/40 and ρ 4 > 23/400.

From now on, we say that a weak L-chain is admissible if it satisfies the properties ( 12)-( 14). The following lemma provides the exhaustive list of all weak 1-chains. As explained below, its proof consists only in checking if some convex polytopes in R 6 have non-empty interior. Lemma 6. The list of admissible weak 1-chains is given by (if a is an integer, then ā stands for a + 1):

1 234|000 2 243|000 3 324|000 4 342|000 5 423|000 6 432|000 7 2434|0001 8 3234|0010 9 3243|0001 10-12 4234|000a a ∈ {1, 2, 3} 13-14 4243|00a0 a ∈ {1, 2} 15 4323|0001 16 3423|0001 17-19 4324|000a a ∈ {1, 2, 3} 20-21 3424|000a a ∈ {1, 2} 22 4342|0010 23 32434|00011 24 42434|00102 25-27 34234|0001a a ∈ {1, 2, 3} 28-29 34243|000a1 a ∈ {1, 2} 30-32 43234|0001a a ∈ {2, 3, 4} 33-35 43243|000a1 a ∈ {1, 2, 3} 36 43423|00101 37 43424|00102 38 342434|000213 39-40 432434|000a1ā a ∈ {2, 3} 41-42 434234|00101a a ∈ {3, 4} 43 434243|001031 44 4342434|0010314
Proof of Lemma 6. We verify the result with a Sage program [START_REF]The Sage Developers[END_REF]. Let us explain how to do it for example with the 1-chain 2434|000a where a ∈ N * is an unknown parameter. We need to check what are the admissible chains of the form 2434|000a , where we know thanks to [START_REF] Chen | The view-obstruction problems for n-dimensional cubes[END_REF], that the parameter a can be taken in the range 1, 3 . The corresponding set of inequalities is given by

h 2 < 1 3 < h 4 < h 2 + ρ 2 3 < h 3 < h 4 + ρ 4 3 < h 4 + aρ 4 < h 3 + ρ 3 3 < 1 < h 4 + aρ 4 + ρ 4 3 ,
or equivalently by the system of inequalities with integer coefficients

                       0 < 1 -3h 2 0 < -1 + 3h 4 0 < ρ 2 + 3h 2 -3h 4 0 < -ρ 2 -3h 2 + 3h 3 0 < ρ 4 -3h 3 + 3h 4 0 < ρ 3 -3aρ 4 + 3h 3 -3h 4 0 < 3 -ρ 3 -3h 3 0 < -3 + (3a + 1)ρ 4 + 3h 4 .
Thus, the admissible chains are those chains for which the interior of the corresponding convex polytope is empty. This verification can be made easily with Sage.

Then, the following lemma provides the exhaustive list of all weak 2-chains. Its proof consists again in checking the non-emptyness of convex (open) polytopes with Sage [START_REF]The Sage Developers[END_REF] (note that ( 14) is useful to restrict the set of parameters to consider for jumps).

Lemma 7. The list of admissible weak 2-chains is given by (if a is an integer, then ā stands for a + 1): We observe that the index 2 appears always twice in the admissible weak 2-chains and that the second occurence of 2 is always associated with a jump equal to 1. This property allows us to restrict now our attention to weak 2-chains associated with tuples (h 1 , h 2 , h 3 ) ∈ R 3 satisfying the additional constraints

1-5 234 234|000 11a a ∈ 1,
} 200-202 34234 34243|0001a 2b1c3 (a, b, c) ∈ {(1, 2 a, b, c) ∈ {(1, 2, 3), (2, 4, 6), (3, 6, 9) 
} 203-205 34234 43243|0001a b21c3 (a, b, c) ∈ {(1, 2 , 3), (2, 4, 5), (3, 6, 8) 
h 2 > 1 3 + ρ 2 3 . (15) 
The following result can be checked easily with Sage [START_REF]The Sage Developers[END_REF].

Lemma 8. The list of admissible weak 2-chains which can be extended into admissible weak 6-chains and which satisfy the additional constraint ( 15) is given by (if a is an integer, then ā stands for a + 1): We found 438 admissible weak 3-chains of length 3, but we do not need all of them. We only need those starting from the weak 2-chains listed in Lemma 8. Given two weak 2-chains

C 1 = i 0 1 • • • i 0 0 i 1 1 • • • i 1 1 |s 0 1 • • • s 0 0 s 1 1 • • • s 1 1 and C 2 = ĩ0 1 • • • ĩ0 ˜ 0 ĩ1 1 • • • ĩ1 ˜ 1 |s 0 1 • • • s0 ˜ 0 s1 1 • • • s1 ˜ 1 ,
we say that C 1 is transfered to C 2 and we write

i 0 1 • • • i 0 0 i 1 1 • • • i 1 1 |s 0 1 • • • s 0 0 s 1 1 • • • s 1 1 -→ ĩ0 1 • • • ĩ0 ˜ 0 ĩ1 1 • • • ĩ1 ˜ 1 |s 0 1 • • • s0 ˜ 0 s1 1 • • • s1 ˜ 1
if we have (the function m 1 is associated with the weak 2-chain C 1 )

1 = ˜ 0 , i 1 j = ĩ0 j , s0 j = s 1 j -m 1 (i j ) ∀j = 1, . . . , 1
and if the weak 3-chain given by

i 0 1 • • • i 0 0 i 1 1 • • • i 1 1 ĩ1 1 • • • ĩ1 ˜ 1 |s 0 1 • • • s 0 0 s 1 1 • • • s 1 1 s 2 1 • • • s 2 2 ,
where 2 , s 

C -→ C 1 -→ • • • -→ C n -→ C .
The following lemma can be checked with Sage [START_REF]The Sage Developers[END_REF] by verifying the admissibility of all weak 3-chains reachable from the weak 2-chains listed in Lemma 8.

Lemma 9. The list of all transfers from weak 2-chains reachable from the weak 2-chains from 1 to 45 in Lemma 8 is given in the order in which they appear by (if a is an integer, then ā stands for a + 1): By construction, a is the least integer k such that K 

1-5 342 342|000 1a1 → 342 342|000 1a1 a = 1, 2,
- k /z 1 = B + k /z 1 ≥ δ 4 = 1/6 and b is the largest integer k such that K + k-1 /z 1 = B - k /z 1 ≤ 1 -δ 4 =
-a consecutive 1-kwais K a /z 1 , K a+1 /z 1 , • • • , K b-1 /z 1 .
By Lemma 5, the tuple (ρ 2 , ρ 3 , ρ 4 ) ∈ R 3 defined by ρ i := z 1 /z i for i = 2, 3, 4 admits a weak L-chain of the form [START_REF] Chen | On a conjecture in Diophantine approximations[END_REF] 

such that 1i 0 1 • • • i 0 0 1 • • • 1i L-1 1 • • • i L-1 L-1 1 s 0 s0 1 • • • s0 0 s 1 • • • sL-1 sL-1 1 • • • sL-1 L-1 s L (16) 
is a 1-subchain associated with (z 1 , z 2 , z 3 , z 4 ) of length L (we use the notations of Lemma 5). Recall that j(2) is given by j

(2) = min j ∈ {1, . . . , } | i j = i and K - a /z 1 < B + kj /z i and set B2 := B - kj (2) /z 2 . We distinguish two cases: Case 1: B2 ≤ B + a /z 1 + b 2 . We have B - a /z 1 = 6a -1 6z 1 < B2 = B - kj (2) /z 2 = 6kj (2) -1 6z 2 < B + a /z 1 + b 2 = 6a + 1 6z 1 + 1 3z 2 ,
which gives, since z 2 > z 1 , kj (2) ≥ a + 1 and as a consequence

z 2 > 6kj (2) -3 6a + 1 z 1 ≥ 6a + 3 6a + 1 z 1 = (1 + κ)z 1 with κ := 2 6a + 1 .
Define the sequence {u k } k∈N by

u k := B + kj (2) +k /z 2 -B + a+k /z 1 = B + kj (2) /z 2 -B + a /z 1 + k 1 z 2 - 1 z 1 ∀k ∈ N.
By construction, we have (because B2 < B + a /z 1 + b 2 with b 2 = 1/(3z 2 ))

u 0 = B + kj (2) /z 2 -B + a /z 1 = B2 + b 2 -B + a /z 1 ∈ (0, 2/(3z 2 )) and u k+1 -u k = 1 z 2 - 1 z 1 < 0 ∀k ∈ N.
Therefore, {u k } k∈N is decreasing and there is k ∈ N * such that

u k < 0 and k ≤ 2/(3z 2 ) 1/z 1 -1/z 2 ≤ 2 3κ = 2a + 1 3 = 2a + 1.
By Lemma 7, all 2-jumps of weak 2-chains are equal to 1, so our Lemma 5 guarantees that the same result holds for the 1-subchain [START_REF] Cusick | View obstruction problems, III[END_REF]. As a consequence, if all the 1-kwais from K a /z 1 to K a+k /z 1 are contained in K 0 , then we infer that the 1-kwai K a+k /z 1 satisfies

K a+k /z 1 ⊂ B kj (2)+k /z 2 ∪ B/z 3 ∪ B/z 4 with B + kj (2)+k /z 2 < B + a+k /z 1 = K - a+k /z 1 ,
which is impossible. The above argument applies provided

K a+k /z 1 ⊂ K 0 with 1 ≤ k ≤ 2a + 1 which is satisfied if b -a ≥ 2a + 2.
So we obtain a contradiction.

Case 2: B2 > B + a /z 1 + b 2 . This assumption implies that the weak L-chain associated with ( 16) by Lemma 5 satisfies the constraints [START_REF] Cusick | View-obstruction problems in n-dimensional geometry[END_REF]. Thus, the weak 2-chain associated with the subchain [1i 0

1 • • • i 0 0 1i 1 1 • • • i 1 1 1
] is one of the weak 2-chains from 1 to 47 listed in Lemma 8. Let us now distinguish two subcases: Subcase 2.1: The weak 2-chain associated with the subchain [1i 0 Lemma 9 shows that the graph of all transfers between the above weak 2-chains, where we draw an arrow from a weak 2-chain C to a weak 2-chain C if C can be transfered to C , is invariant (see Figure 10).

1 • • • i 0 0 1i 1 1 • • • i 1 1 1] is not
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Figure 10: The graph of transfers between all weak 2-chains listed in the above table with in yellow the starting weak 2-chains from 1 to 45 of Lemma 8 and in red the weak 2-chains whose 3-jump is equal to 2 Moreover, Lemma 10 shows that the weak 2-chains U , V , X do not belong to a weak chain of length at least 6. Since L = b -a ≥ 6, we infer that all 3-jumps along the subchain ( 16) are equal to 1. Consequently, since all weak 2-chains of Lemma 8 have the index 3 in first and second position, we have B3

:= B - kj (3) /z 3 < B + a /z 1 + b 3 .
Therefore, we can repeat the proof of Case 2 by replacing z 2 by z 3 to get a contradiction.

Subcase 2.2: The weak 2-chain associated with the subchain [1i 0

1 • • • i 0 0 1i 1 1 • • • i 1 1 1
] is one of the weak 2-chains 46 or 47 of Lemma 8. Thanks to Lemma 11, we know that b 3 ≤ 3b 2 /5. Moreover, since the corresponding weak 2-chains start with 34234 or 43243, we have

B + a /z 1 = 6a + 1 6z 1 < B - kj (2) /z 2 = 6kj (2) -1 6z 2 < B + kj (2) /z 2 = 6kj (2) + 1 6z 2 < B - a+1 /z 1 = 6a + 5 6z 1 .
Thus, we have kj (2) ≥ a + 1 and as a consequence

z 2 > 6kj (2) + 1 6a + 5 z 1 ≥ 6a + 7 6a + 5 z 1 = (1 + κ)z 1 with κ := 2 6a + 5 .
Define the sequence {u k } k∈N by

u k := B - a+k+1 /z 1 -B + kj (2) +k /z 2 = B - a+1 /z 1 -B + kj (2) /z 2 + k 1 z 1 - 1 z 2 ∀k ∈ N.
By construction, we have u 0 > 0 and u k+1 -

u k = 1/z 1 -1/z 2 > 0 for all k ∈ N. Therefore, {u k } k∈N is increasing and there is k ∈ N * such that u k ≥ 2 5z 2 and k ≤ 2/(5z 2 ) 1/z 1 -1/z 2 ≤ 2 5κ = 6a 5 + 1 = 6a 5 + 1. If the kwai K a+k /z 1 is contained in K 0 , that is if a + k ≤ b -1, then the inequality u k ≥ 2/(5z 2 )
implies, because b 3 ≤ 3b 2 /5, that the interval from B + kj (2) +k /z 2 to B - a+k+1 /z 1 has length at least 2/(5z 2 ) ≥ 2b 3 . But such an interval cannot be covered by an union of z 3 -bridges and z 4 -bridges, so we get a contradiction to the fact that (z 1 , z 2 , z 3 , z 4 ) is a K 0 -covering. This argument works provided b -a ≥ 6a 5 + 2 which is satisfied because we assumed that b -a ≥ 2a + 2.

Lemma 13. z 1 ≥ 47/5 ⇒ b -a ≥ 2a + 2.
Proof of Lemma 13. Let z 1 ≥ 13 then there are q ∈ N with q ≥ 2 and r ∈ [0, 6) such that z 1 = 1 + 6q + r. Then we have 

a = z 1 -1 6 = q + r 6 = q + r 6 

Checking the covering property over compact sets

The aim of this section is to provide a method for checking a covering property of the form

[1, ∞) d ⊂ K d (δ d ) /K 0,N -1 (δ d ) (17) 
with a computer program if we already know that the property is satisfied outside of a compact set and to apply it to conclude the proof of Theorem 2. So, before checking our covering property in dimension 4, we fix d ∈ N * and N ∈ N * and prove the validity of the method in dimension d. Our strategy consists in showing that the covering property can be verified by checking it on finitely many points. Let P ⊂ R d be a compact set such that [1, ∞) d \ P ⊂ K d (δ d )/K 0,N -1 (δ d ), [START_REF] Henze | On the covering radius of lattice zonotopes and its relation to view-obstructions and the lonely runner conjecture Aequat[END_REF] if the covering property does not hold globally, that is, if Then, since by [START_REF] Henze | On the covering radius of lattice zonotopes and its relation to view-obstructions and the lonely runner conjecture Aequat[END_REF] we know that tz / ∈ O for t > 0 large enough, the supremum t z of t > 0 such that tz ∈ O is well-defined and we have (see Figure 11)

t z z ∈ Ō ∩     k∈N d ,l∈ 0,N -1 ∂ -F d k,l (δ d )   \   k∈N d ,l∈ 0,N -1 F d k,l (δ d ) >     , (19) 
where for each k ∈ N d and l ∈ 0, N -1 , ∂ - As a consequence, if we show that for every k ∈ N d , every l ∈ 0, N -1 and every i = 1, . . . , d, the hyperplan

H k,l i := z ∈ R d | z i = k i + δ d l + 1 -δ d satisfies H k,l i ∩ Ō ⊂ k ∈N d ,l ∈ 0,N -1 H k,l i ∩ F d k ,l (δ d ) > ,
then we can infer that ( 17) is satisfied. For every k ∈ N d , l ∈ 0, N -1 , i = 1, . . . , d, and every k ∈ N d , l ∈ 0, N -1 , the trace of F d k ,l (δ d ) on H k,l i , given by H k,l i ∩ F d k ,l (δ d ), is a feather of and by letting t tend to 1 (note that E is compact and the set of k such that E ∩ K(δ d )/(tz) = ∅ is finite), we obtain λ ∈ E and k ∈ N such that λ ∈ K + k (δ d )/z, which contradicts ( 22) (E ∩ K > (δ d )/z = ∅ if c = 1).

Let us now prove that (ii)⇒ (i). The set O of (z 1 , . . . , z c ) ∈ [1, ∞) c such that

K ∩ (∩ c i=1 K(δ d )/z i ) = ∅
is open in [1, ∞) c , symmetric and contained in Q (by [START_REF] Perarnau | Correlation among runners and some results on the lonely runner conjecture[END_REF]). Therefore, since the set

Γ := k + δ d l + δ d • e + f + | k, l ∈ N, e + , f + ∈ K + ⊂ (0, ∞)
is countable, there is z = (z 1 , . . . , zc ) ∈ O such that zi zj / ∈ Γ ∀i, j ∈ {1, . . . , c} such that i = j. By [START_REF] Perarnau | Correlation among runners and some results on the lonely runner conjecture[END_REF], t is well-defined, ẑ ∈ Q and the compact set

A := K ∩ (∩ c i=1 K(δ d )/ẑ i )
is a non-empty disjoint union of closed intervals. We claim that there is i ∈ {1, . . . , c} such that

A = A + ⊂ K -(δ d )/ẑ i .
As a matter of fact, if λ in A does not belong to K -/ẑ i for all i = 1, . . . , c, then for all i ∈ {1, . . . , c} and all t < 1 sufficiently close to 1 we have tλ ∈ K/ẑ i , which is equivalent to λ ∈ ∩ c i=1 K(δ d )/(tẑ i ) ∀t < 1 sufficiently close to 1.

But this property contradicts the fact that tẑ ∈ O for all t < 1 sufficiently close to 1. Therefore, we have shown that for every λ ∈ A, there is i = i(λ) ∈ {1, . . . , c} such that λ ∈ K -(δ d )/ẑ i . This shows that the compact set A is a finite set satisfying

A = A + ⊂ ∪ c i=1 K -(δ d )/ẑ i .
But if there are e + , f + ∈ A = A + and i = j in {1, . . . , c} such that e + ∈ K -(δ d )/ẑ i and f + ∈ K -(δ d )/ẑ j , then there are k i , k j ∈ N such that ẑi = k i + δ d e + and ẑj = k j + δ d f + , which implies that zi /z j = ẑi /ẑ j and contradicts [START_REF]The Sage Developers[END_REF]. In conclusion, the claim is proved and we note that by symmetry (O and Q are symmetric) we can assume without loss of generality that i = 1. We claim now that A = A + ⊂ K + . As a matter of fact, suppose for contradiction that there is λ ∈ A = A + such that λ / ∈ K + . Then, we have 

λ
Let us distinghish the cases k 1 = 0 and k 1 = 1.

Case 1: k 1 = 0. The lower bound in [START_REF] Wills | Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen[END_REF] with (i, j) = (1, 2) gives, since (1 -2 )/(1 -1 ) ∈ (0, 1), 6k 2 + 1 ≤ 5z 2 /z 1 < 1235/187 < 7, so we have k 2 = 0. Then, since (1 -3 )/(1 -2 ) ∈ (0, 91/85) (it is equivalent to 6 -91 2 + 85 3 > 0 which is verified because 2 < 32/3211 < 6/91), the lower bound in [START_REF] Wills | Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen[END_REF] with (i, j) = (2, 3) gives 6k 3 + 1 ≤ 5z 3 /z 2 < 85(1 -3 )/(13(1 -2 ) < 7, so that k 3 = 0. Thus, since (1 -4 )/(1 -3 ) ∈ (0, 1), the lower bound in [START_REF] Wills | Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen[END_REF] with (i, j) = (3, 4) gives 6k 4 + 1 ≤ 5z 4 /z 3 < 1235/187 < 7, so that k 4 = 0, which contradicts k 4 ∈ {1, 2, 3, 4}.

Case 2: k 1 = 1. On the one hand, since (1 -3 )/(1 -1 ) ∈ (0, 1), the lower bound in [START_REF] Wills | Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen[END_REF] with (i, j) = (1, 3) gives 6k 3 + 1 ≤ 11z 3 /z 1 < 19, so that k 3 ≤ 2. On the other hand, the upper bound in ( 25) with (i, j) = (1, 3) gives 6k 3 + 5 ≥ 7z 25) with (i, j) = (3, 4) gives 6k 3 + 1 ≤ (6k 4 + 5)z 3 /z 4 < 13 (because 3179(1 -3 )/(247(1 -4 )) < 13 is equivalent to 32 + 3179 3 -3211 4 > 0 which is satisfied because 4 < 32/3211), that is, k 3 ≤ 1, a contradiction. If k 2 = 2, then, since (1 -3 )/(1 -2 ) > 1, the upper bound in [START_REF] Wills | Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen[END_REF] with (i, j) = (2, 3) gives 17/13 < z 3 /z 2 ≤ (6k 3 + 5)/(6k 2 + 1) = 17/13, a contradiction.

5 Upper bound on the K 0 (δ)-measures

The purpose of this section is to give a proof of the upper bound that we gave in the introduction on the K 0 (δ)-measures defined by M δ 0 (z) := L 1 (B(δ)/z ∩ K 0 (δ)) ∀z ≥ 1, ∀δ ∈ (0, 1/2].

Figure 1 :

 1 Figure 1: The Lonely Runner Conjecture in obstruction form asserts that every blue ray starting from the origin must intersect one of the red sets K m k (1/(m + 1)) (with k ∈ N m )

Figure 2 :

 2 Figure 2: The set K 2 (2,1) /K(δ 2 )

Figure 3 :

 3 Figure 3: The square [1, 6] 2 can be covered by the unions of the sets K 2 (k,l) (δ 2 )/K 0 (δ 2 ) with (k, l) ∈ {0, 1, 2} 2

Figure 5 :Proposition 2 .

 52 Figure 5: The (2, δ 2 )-feather K 2 (2,1) (δ 2 )/K 0 (δ 2 ) is the intersection of the rectangle [3, 11]×[5/3, 7] with the positive cone bounded by the two lines of equations 7x 1 -9x 2 = 0 and 11x 2 -5x 1 = 0

  then we have b -a < 4a/5 + 4/25 + 1. Proof of Lemma 2. We suppose for contradiction that z 1 ≥ 7/2 and b -a ≥ 4a/5 + 4/25 + 1. Then we have a ≥ (7/2 -1)/5 = 1, b ≥ (4 • 7/2 + 1)/5 = 3, b -a ≥ 4/5 + 4/25 + 1 = 2 and the set K 0 contains the b -a consecutive 1-kwais

  and we have, either ī = 2 and [i j i j+1 i j+2 ] = [231], or ī = 3 and [i j i j+1 i j+2 ] = [321], or ī = 3 and [i j • • • i j+3 ] = [3231]. Let us treat each case separately.

  Then we have b -a ≥ 3q which is ≥ 4q/5 + 4/25 since q ≥ 1. If z 1 < 6, then we have a = 1 hence b -a ≥ 4a/5 + 4/25 + 1 is equivalent to b ≥ 3, that is, z 1 ≥ 7/2.

Case 2 . 1 :

 21 The chain has the form (2 • • • ). Then 1/5 ∈ B/z 2 and there is k ∈ N * such that 1/5 ∈ [B - k /z 2 , B + k /z 2 ] = [(5k -1)/(5z 2 ), (5k + 1)/(5z 2 )], which shows that z 3 > z 2 > 4 and gives b 3 < b 2 < 1/10. The interval [1/5, B - 1 /z 1 ] = [1/5, 4/(5z 1 )] can be covered either by a z 2 -bridge or by the union of a z 2 -bridge and a z 3bridge, so we have 4/(5z 1 ) -1/5 < b 2 + b 3 < 1/5, which gives z 1 > 2 and as a consequence 4/5 -B + 1 /z 1 > 1/5. Thus the interval [B + 1 /z 1 , 4/5] has to be covered by a subchain [323]. So we have z 3 > 3z 2 /2 > 6 and b 3 < 1/15 which implies that 4/(5z 1 ) = B - 1 /z 1 < 1/5+b 2 +b 3 < 11/30, that is, z 1 > 24/11. Then the interval [B + 1 /z 1 , 4/5] has length 4/5 -B + 1 /z 1 > 1/4 and cannot be covered by a subchain [323] (because b 2 + 2b 3 < 7/30 < 1/4), a contradiction. Case 2.2: The chain has the form (3 • • • ). Then 1/5 ∈ B/z 3 and as in the previous case, we infer that z 3 > 4 and b 3 < 1/10. Since 4/(5z 1 ) -1/5 > 7/45 > b 3 , the interval [1/5, B - 1 /z 1 ] can be covered either by a subchain [32] or by a subchain [323] and so we can leave out the cases (31), (312), (3123), (3132), (31323). Let us now distinguish two cases. Case 2.2.1: The chain has the form (321 • • • ).

  As a matter of fact, a set I of the form (7) necessarily contains a 2-kwai which has to be covered by the union of 3-bridges and 4-bridges. But, by Proposition 5, the subchain corresponding to the covering of the 2-kwai has to be [2342], [2342] or [24342]. In the first two cases we have b 3 + b 4 = 1/(3z 3 ) + 1/(3z 4 ) < 2/(3z 2 ) = k 2 which makes the covering property impossible and in the third case the subchain [434] yields b 3 > k 4 ⇔ z 4 > 2z 3 which implies b 3 + 2b 4 < k 2 and makes again the covering property impossible. In conclusion, all instances of 1-bridges have to appear in any subchain connecting two 1-bridges. Moreover, by Proposition 5, any 1-subchain of length 1 has to be in the set L = {[12341], [12431], [124341], [13241], [132341], [132431], [1324341], [14231], [142341], [142431], [1424341], [13421], [134231], [1342341], [134241], [1342431], [13424341], [14321], [143231], [1432341], [143241], [1432431], [14324341], [143421], [1434231], [14342341], [1434241], [14342431], [143424341]} .

Lemma 5 .

 5 If there are a, b ∈ N such that L := b -a ≥ 2 and

1 ,

 1 . . . , sL-1 L-1 are defined by s r := a + r and sr j := kj (ij ) + s r j ∀r = 0, . . . , L -1, ∀j ∈ {1, . . . , r }, with j(i) := min j ∈ {1, . . . , } | i j = i and K

5 / 6 .Lemma 12 .

 5612 We aim to show the following result: If z 1 ≥ 47/5, then we have b -a < 2a + 2. Proof of Lemma 12. We suppose for contradiction that z 1 ≥ 47/5 and L := b -a ≥ 2a + 2. Then we have a ≥ 21/15 = 2, b ≥ 8, b -a ≥ 2a + 2 ≥ 6 and the set K 0 contains the b

6 + 2 =

 62 and b -a ≥ 4q ≥ 2q + 4 ≥ 2q + 2 r 2a + 2, because q ≥ 2. If z 1 ∈ (7, 13), then we have a = 1 + r/6 = 2, b = 6 + 5r/6 , so that b -a = 4 + 5r/6 ≥ 6 = 2a + 2 if and only if 5r/6 ≥ 2, which is equivalent to r ≥ 12/5 and implies that z 1 ≥ 7 + 12/5 = 47/5 verifies b -a ≥ 2a + 2.

[ 1 ,

 1 ∞) d K d (δ d )/K 0,N -1 (δ d ),then the open set (note that the family of feathers{F d k,l (δ d ) = K d k (δ d )/K l (δ d )} k∈N d ,l∈ 0,N -1 is locally finite), O := (1, ∞) d \ K d (δ d )/K 0,N -1 (δ d )contains a point z = (z 1 , . . . , z d ).

  F d k,l (δ d ) denotes the lower face of F d k,l (δ d ) given by (see Proposition 2)∂ -F d k,l (δ d ) = z ∈ F d k,l (δ d ) | tz / ∈ F d k,l (δ d ) ∀t ∈ [0, 1) = F d k,l (δ d ) ∩ d i=1 z ∈ R d | z i = k i + δ d l + 1 -δ d and [F d k,l (δ d )] > denotes its complement in F d k,l (δ d ), that is, F d k,l (δ d ) > := F d k,l (δ d ) \ ∂ -F d k,l (δ d ).

Figure 11 :

 11 Figure 11: If [1, ∞) d K d (δ d )/K 0,N -1 (δ d )does not hold, then there is a point of the form t z z satisfying[START_REF] Pandey | A note on the lonely runner conjecture[END_REF] such that tz / ∈ K d (δ d )/K 0,N -1 (δ d ) for all t ∈ [1, t z )

  Set t := sup t ≥ 1 | tz ∈ O and ẑ := tz.

  [START_REF] Beck | Lonely runner polyhedra[END_REF] gives z 2 > 36/11 and b 2 < 11/90, so that 4/(5z 1 ) -1/5 < b 3 + b 2 yields z 1 > 24/11 and then the interval [B + 1 /z 1 , 4/5] has length 4/5 -6/(5z 1 ) > 1/4 and cannot be filled with the union of a z 2 -bridge and two z 3 -bridges (b 2 + 2b 3 < 19/90). In conclusion, we have k 1 = 1. We now claim that k 4 = 3. Since z 2 < 3z 1 /2 < 27/8, we have ≥ 3. If k 4 = 4, then we have z 3 /z 2 > 19/4 which implies z 3 > 19z 2 /4 > 171/16 > 9 and as before we obtain a contradiction. In conclusion, our chain has to be (32132|11132) or (321323|11132k 6

	32 27	<	z 3 z 2	<	5k 4 + 1 9
	which implies k 4				

5 , which gives z 2 > (5k 5 -1)/4 with k 5 ≥ k 2 + 1 ≥ 2. Note that we have necessarily k 5 = 2 because otherwise we would have z 2 > 7/2 > (3/2) • (9/4) > 3z 1 /2, a contradiction. If k 1 ≥ 2, then 1/5 ∈ B k1 /z 3 implies z 3 > 9 and b 3 < 2/45, then 4/(5z 2 ) = B - k2 /z 2 < 1/5 + b

  this is a contradiction because 7/3 > 9/4.

Case 2.2.2: The chain has the form (3231 • • • ). The subchain

[323] 

gives z 3 > 3z 2 /2. The inequality (5k 2 -1)/(5z 2

  5 ,which gives z 2 > (5k 6 -1)/4 with k 6 ≥ k 2 + 1 ≥ 2. Note that we have necessarily k 6 = 2 because otherwise we would havez 2 > 7/2 > (3/2) • (9/4) > 3z 1 /2, a contradiction. If k 3 ≥ 3, then z 3 > 7z 2 /3 which implies 4/(5z 2 ) = B - k2 /z 2 < 1/5 + b 3 < 1/5 + 6/(35z 2) which gives z 2 > 34/7 > 27/8, a contradiction. So we have k 1 = 1 and k 3 = 2. Therefore, we have

	4 z 3	< 1 <	4 z 2	<	6 z 3	<	9 z 3	<	6 z 2	<	4 z 1	<	11 z 3	,

which gives both z 3 /z 2 > 3/2 and z 3 /z 2 < 3/2, a contradiction.

  2 1 , . . . , s 2 2 ∈ N are defined by is admissible. Moreover, we say that a weak 2-chain C is reachable from another weak 2-chain C if there is a finite sequence of weak 2-chains C 1 , . . . , C n such that

2 := ˜ 1 and s 2 j = m 1 (i j ) + s1 j ∀j = 1, . . . , 2 ,

  End of the proof. Define the two integers a, b ≥ 1 by (note that z 1 > 1)

		432 432|000 111		→ 432 324|000 112	
	27-28 29	432 432|000 211 432 432|000 311 a =	→ 432 324|000 11a → 432 324|000 115 z 1 -1 6 and b = 5z 1 + 1 6	.	a = 3, 4
	30-31	432 432|000 411		→ 432 324|000 11a		a = 6, 7
	32	432 432|000 511		→ 432 324|000 118	
	33	432 432|000 111		→ 432 342|000 121	
	34-35	432 432|000 211		→ 432 342|000 1a1		a = 2, 3
	36	432 432|000 311		→ 432 342|000 141	
	37-38	432 432|000 411		→ 432 342|000 1a1		a = 5, 6
	39	432 432|000 511		→ 432 342|000 161	
	40-44	432 432|000 a11		→ 432 432|000 a11		a = 1, 2, 3, 4, 5
	45-46	432 432|000 a11		→ 432 4324|000 a11b		(a, b) ∈ {(1, 2), (2, 3)}
	47	432 432|000 311		→ 432 4324|000 3115	
	48-49	432 432|000 a11		→ 432 4324|000 a11b		(a, b) ∈ {(4, 7), (5, 8)}
	50-51	432 432|000 a11		→ 432 3424|000 1b1 b		(a, b) ∈ {(2, 3), (3, 4)}
	52	432 432|000 411		→ 432 3424|000 1516	
	53-54	432 432|000 a11		→ 432 4342|000 a1b1		(a, b) ∈ {(2, 3), (3, 4)}
	55	432 432|000 411		→ 432 4342|000 4151	
	56	432 432|000 311		→ 432 43424|000 31415
	57	432 4324|000 1112		→ 4324 324|0001 112	
	58	432 4324|000 2113		→ 4324 324|0001 113	
	59	432 4324|000 3115		→ 4324 324|0002 115	
	60	432 4324|000 4117		→ 4324 324|0003 117	
	61	432 4324|000 5118		→ 4324 324|0003 118	
	62	432 4324|000 3115		→ 4324 4324|0002 3115
	63	432 4324|000 3115		→ 4324 3424|0002 1415
	64	432 4324|000 3115		→ 4324 43424|0002 31415
	65	432 3424|000 1415		→ 3424 3424|0001 1314
	66-67	432 4342|000 a1ā1		→ 4342 342|0010 1b1		(a, b) ∈ {(2, 3), (3, 4)}
	68	432 4342|000 4151		→ 4342 342|0010 151	
	69-70	432 4342|000 a1ā1		→ 4342 3424|0010 1b1 b		(a, b) ∈ {(2, 3), (3, 4)}
	71	432 4342|000 4151		→ 4342 3424|0010 1516
	72	432 4342|000 3141		→ 4342 4342|0010 3141
	73	432 4342|000 3141		→ 4342 43424|0010 31415
	74	432 43424|000 31415		→ 43424 3424|00102 1415	3, 4, 5
	6 75-76	342 342|000 111 4324 324|0001 11a		→ 342 423|000 112 → 324 324|000 11b		(a, b) ∈ {(2, 1), (3, 2)}
	7 77	342 342|000 111 4324 324|0002 115		→ 342 3423|000 1112 → 324 324|000 113	
	8-10 78-79	342 342|000 1a1 4324 324|0003 11a		→ 342 3424|000 1a1ā → 324 324|000 11b		a = 2, 3, 4 (a, b) ∈ {(7, 4), (8, 5)}
	11 80	342 342|000 151 4324 324|0002 115		→ 342 3424|000 1517 → 324 3424|000 1213	
	12 81	342 3424|000 1314 4324 4324|0002 3115		→ 3424 3424|0001 1314 → 4324 324|0002 115
	13 82	432 324|000 112 4324 4324|0002 3115		→ 324 243|000 112 → 4324 4324|0002 3115
	14-15 83	432 324|000 11a 4324 4324|0002 3115		→ 324 324|000 11b → 4324 3424|0002 1415	(a, b) ∈ {(2, 1), (3, 2)}
	16 84	432 324|000 11a 4324 4324|0002 3115		→ 324 324|000 11b → 4324 43424|0002 31415	(a, b) ∈ {(5, 3)}
	17-18 85	432 324|000 11a 4324 3424|0002 1415		→ 324 324|000 11b → 3424 3424|0001 1314	(a, b) ∈ {(7, 4), (8, 5)}
	19 86	432 324|000 115 4324 43424|0002 31415	→ 324 3424|000 1213 → 43424 3424|00102 1415
	20-21 87	432 342|000 1a1 3424 3424|0001 1314		→ 342 342|000 1b1 → 3424 3424|0001 1314	(a, b) ∈ {(3, 2), (4, 3)}
	22 23-24 88-89	432 342|000 151 432 342|000 1a1 4342 342|0010 1a1		→ 342 342|000 141 → 342 3424|000 1b1 b → 342 342|000 1b1		(a, b) ∈ {(3, 2), (4, 3)} (a, b) ∈ {(3, 2), (4, 3)}
	25	432 342|000 151		→ 342 3424|000 1415	
				31	

  one of the weak 2-chains 46 or 47 of Lemma 8. Let us label all the weak 2-chains reachable from one of the weak 2-chains 1 to 45 Lemma 8 of as follows:

	A	342 342|000 1a1	a = 1, 2, 3, 4, 5
	B	342 3424|000 1314	
	C	432 324|000 11a	a = 2, 3, 5, 7, 8
	D	432 342|000 1a1	a = 3, 4, 5
	E	432 432|000 a11	a = 1, 2, 3, 4, 5
	F	432 4324|000 a11b	(a, b) = (1, 2), (2, 3), (3, 5), (4, 7), (5, 8)
	G	432 3424|000 1415	
	H	432 4342|000 a1ā1	a = 2, 3, 4
	I	432 43424|000 31415	
	J	4324 324|000a 11b	(a, b) = (1, 2), (1, 3), (2, 5), (3, 7), (3, 8)
	K	4324 4324|0002 3115	
	L	4324 3424|0002 1415	
	M	4324 43424|0002 31415	
	N	3424 3424|0001 1314	
	O	4342 342|0010 1a1	a = 3, 4, 5
	P	4342 3424|0010 1415	
	Q	4342 3424|0010 1a1ā	a = 3, 5
	R	4342 4342|0010 3141	
	S	4342 43424|0010 31415	
	T	43424 3424|00102 1415	
	U	342 423|000 112	
	V	342 3423|000 1112	
	W	342 3424|0001 1a1b	(a, b) = (2, 3), (4, 5), (5, 7)
	X	324 243|000 112	
	Y	324 324|000 11a	a = 1, 2, 3, 4, 5
	Z	324 3424|000 1213	
	Γ	432 324|000 11a	a = 4, 6
	∆	432 342|000 1a1	a = 2, 6
	Θ	432 3424|000 1a1ā	a = 2, 3, 5
	Λ	423 234|000 112	
	Ξ	243 243|000 111	
	Π	234 234|000 11a	a = 1, 2
	Σ	243 234|000 112	

  which, since 1 , 2 , 3 , 4 > 0 and 4 ∈ (0, 32/3211) ⊂ (9584/61009), implies thatk 1 ∈ {0, 1}, k 2 ∈ {0, 1, 2}, k 3 ∈ {0,1, 2, 3} and k 4 ∈ {1, 2, 3, 4}.

	t	∈ K and	λ t	∈ ∩ c i=1 K(δ

d )/(tẑ i ) ∀t < 1 sufficiently close to 1.

But this property contradicts the fact that tẑ ∈ O for all t < 1 sufficiently close to 1. In conclusion, we have

A = A + ⊂ K -(δ d )/ẑ 1 ∩ K + ,

  3 /z 1 > 11 because 133(1 -3 )/(11(1 -1 )) > 11 is equivalent to 12 + 121 1 -133 3 > 0 which is satisfied because 3 < 32/3211 < 12/133. Therefore, we havek 3 = 2. Recall that k 2 ∈ {0, 1, 2}. The upper bound in (25) with (i, j) = (1, 2) gives 6k 2 + 5 ≥ 7z 2 /z 1 > 5 (because 1729(1 -2 )/(187(1 -1 )) > 5 is equivalent to 794 + 935 1 -1729 2 > 0 which is satisfied because 2 < 32/3211 < 794/1729), so that k 2 ≥ 1. If k 2 = 1, then, since (1-4 )/(1-2 ) ∈ (0,[START_REF] Barajas | The lonely runner with seven runners[END_REF], the lower bound in[START_REF] Wills | Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen[END_REF] with (i, j) = (2, 4) gives 6k 4 +1 ≤ 11z 4 /z 2 < 19, so that k 4 ≤ 2. As a consequence, if k 2 = 1, then the upper bound in (

 

We notice that almost all weak 2-chains appearing in the table of Lemma 9 have a 3-jump equal to 1. As a matter of fact, in the above table, only the chains in the set A := 342 423|000 112 342 3423|000 1112 , 324 243|000 112 , have a a 3-jump strictly larger than 1. The following lemma will allow us to rule out the chains of A in our final reasoning, it can be checked with Sage [START_REF]The Sage Developers[END_REF].

Lemma 10. There are no admissible weak 6-chains which contain one of the weak 2-chains of A as a subchain.

Finally the following lemma easily checkable with Sage will be useful to treat the case of chains starting with subchains corresponding to the weak 2-chains 46 and 47 of Lemma 8. Lemma 11. If there is an admissible weak 6-chain starting with the weak 2-chains 46 or 47 of Lemma 8, then we have ρ 3 ≤ 3ρ 2 /5.

We are now ready to finalize the proof of the covering property at infinity. dimension d -1 in H k,l i . So we can repeat this argument and show that it is sufficient to verify the covering property over a finite set in order to check that it holds over a given compact set. Since it is more convenient, we express below this idea in term of kwais.

We need to introduce some notations. First we recall that S d stands for the closed convex set of tuples (z 1 , . . . ,

Then, we denote by S d the set of permutations of the set {1, . . . , d} and given a compact set P ⊂ S d , we define the set

and we say that P is symmetric if P = S d (P ). Moreover, we denote by I the set of disjoint unions of finitely many closed intervals in R and if A ∈ I is the disjoint union of intervals [a l , b l ] ⊂ R with l = 1, . . . , L, then we define the sets A -, A + and A > by

with the convention that (a l , b l ] = ∅ if a l = b l . Then, we denote by Clos(A) the closure of a subset A of R. We recall the a rooted tree is a graph which is a tree in which a special node is singled out, we call this node root or 0-child. Then, if T is a rooted tree with root T 0 , we call l-child with l ∈ N any node which is at distance l from T 0 (see Figure 12).

T 0

Figure 12: A rooted tree with the root or 0-child in yellow, the 1-children in blue and 2-children in red

In the following result, we deal with a rooted tree T with root T 0 whose nodes belong to R × I. Given a d-child (z, K), we define its R-ancestry as

where z 1 , . . . , z d-1 ∈ R d are associated with K 1 , . . . , K d-1 ∈ I in such a way that each (z i , K i ) is a i-child (with i = 1, . . . , d -1) and the edges from T 0 to (z, K) passing through the nodes (z 1 , K 1 ), . . . , (z d-1 , K d-1 ) connect T 0 to (z, K). Proposition 7. Let d, N ∈ N * and C > 1 be fixed and let P ⊂ S d be a compact set such that

Let T be the rooted tree whose root in R × I is given by

and such that the set of children of a i-child (z, K) with i ∈ {0, . . . , d -1} is given by the set of all (z , K ) ∈ R × I such that

Then, the following properties are equivalent:

Proof of Proposition 7. We start with the following lemma.

Then the following properties are equivalent:

then for every (z 2 , . . . , z c ) ∈ (1, C] c-1 and every z ∈ (1, C], we have

If c = 1, then for every z ∈ (1, C], we have

Proof of Lemma 14. To prove that (i) ⇒ (ii), assume that (i) is satisfied and fix a tuple

(where we take E := K if c = 1). Thus, for every t ∈ (1 -, 1), there are λ t ∈ E and k t ∈ N such that

As a consequence, if

then we have

which implies that

Let us now distinguish the case c ≥ 2 and

In the two cases, we obtain a contradiction to assumption (ii).

The equivalence of (i) and (ii) follows from Proposition 3. Let us prove (ii) ⇔ (iii) by induction over d ∈ N * . In fact, we need to prove more than this, we show by induction over d ∈ N * , that if we have C > 1, K 0 a given element of I, P ⊂ S d a compact set such that

and T the rooted tree with nodes in R × I, a root given by T 0 := (1, K 0 ) and such that the set of children of a i-child (z, K) with i ∈ {0, . . . , d -1} is given by the set of all (z , K

then the two following properties are equivalent:

(v) For every d-child (z, K) of T such that Anc R (z, K) ∈ S d (P ), we have K = ∅.

The result for d = 1 follows from Lemma 14 and the formula K 1 := Clos (K ∩ K > (δ d )/z 1 ) for any 1-child. We now assume that the equivalence (iv) ⇔ (v) has been proven for some d ∈ N * and prove it for d + 1. So, we assume that there are C > 1, K 0 ∈ I, P ⊂ S d+1 ∩ [1, C] d+1 a compact set and T a rooted tree satisfying the required assumption and we set

By construction, Q is symmetric and the assumption of Lemma 14 is satisfied with K = K 0 . As a consequence, the above property (iv) is equivalent to the following one: For every (z 2 , . . . , z c )

, then by setting

we have (as a matter of fact, the proof of (i) ⇒ (ii) in Lemma 14 shows that the required intersection is non-empty for any point outside of the compact set)

By the induction hypothesis, for every

the latter property is equivalent to a property of the form (v) for a tree with root K 1 , which shows exactly that our equivalence holds for d + 1.

Applying the above method to the compact set P ⊂ S 4 consisting of the points (z 1 , z 2 , z 3 , z 4 ) ∈ S 4 satisfying

we could establish by running a computer program in C++ that the two following covering properties hold:

[1, ∞)

Using a MacBook Pro with a processor of 2,6GHz, the time required to generate and check all the points provided by Proposition 7 took about 9 hours. Our method to check the covering property over compact set is rather naive, there are probably more sophisticated methods from linear programming doing the job much faster.

4.3 Non-covering property of K 4 (δ 4 )/K 0 (δ 4 )

To show that [1, ∞) 4 is not covered by K 4 (δ 4 )/K 0 (δ 4 ), we are going to prove that for every

does not belong to K 4 (δ 4 )/K 0 (δ 4 ). If z = z ∈ K 4 (δ 4 )/K 0 (δ 4 ), then there is k = (k 1 , k 2 , k 3 , k 4 ) ∈ N 4 such that z ∈ F 4 k,0 (δ 4 ). Then, by Proposition 2 (i), this means that we have

and

We note that 3211 935 = 13 

And we also note that (24) yields We prove the following result (see Figure 13): Proposition 8. For every δ ∈ (0, 1/3], we have

Moreover, for every

Proof of Proposition 8. Let δ ∈ (0, 1/2) be fixed, for every z ≥ 1, we define a δ (z), b δ (z) ∈ N by

We fix z > 1, we set ā := a δ (z) ≥ 1, b := b δ (z) ≥ 1 and we distinguish several cases:

We distinguish two subcases:

Thus, since the function r ≥ 0 → r/(r + δ) is increasing, we obtain

, so Case 1.1 applies to z and gives

If however, we have z

Again we distinguish two cases:

Case 2.1: 1 -δ ∈ Bb(δ)/z. In this case, we have b -δ

The function 

So, we obtain

The proof is complete.

A Proof of Proposition 2

which means that (z 1 , . . . , z d ) ∈ C d k (δ), and, since 0

To prove the reverse inclusion, we consider the convex set

whose boundary, denoted by ∂E, is given by

and we define the sets L d k (δ) and U d k (δ), respectively the lower and upper faces of K d k (δ), by

We have the following result:

Lemma 15. For every z ∈ (0, ∞) d , there is a unique α = α(z) > 0 such that αz ∈ ∂E. Moreover the function R : (0, ∞) d → ∂E, defined by R(z) := α(z)z for all z ∈ (0, ∞) d , is continuous and satisfies

Proof of Lemma 15. For every z ∈ (0, ∞) d , the existence of α > 0 such that αz ∈ ∂E follows from the fact that 0 / ∈ E and αz ∈ Int(E) for α > 0 sufficiently large. If for some z = (z 1 , . . . , z d ) ∈ (0, ∞) d , there are α, α > 0 such that αz, α z ∈ ∂E, then there are i, i ∈ {1, . . . , d} such that αz i = k i + δ and α z i = k i + δ. But we have α z i ≥ k i + δ = αz i (because α z ∈ ∂E) and αz i ≥ k i + δ = αz i (because αz ∈ ∂E). We infer that α = α , which proves the uniqueness. The function R is locally bounded and its graph is closed (in (0, ∞) d × ∂E), so an easy argument of compactness proves that R is continuous. Since

Define the set F of (z 1 , . . . , z d ) ∈ (0, ∞) d such that z i ≤ k i + 1 -δ for all i = 1, . . . , d and denote its boundary by ∂F . Then by repeating the above proof, we can prove that for every z ∈ (0, ∞) d there is a unique β > 0 such that βz ∈ ∂F and show that the function S : (0, ∞) d → ∂F , defined by S(z) 

If α ≤ ᾱ, we infer that ᾱ ∈ [l + δ, l + 1 -δ] = K l (δ) and z = ȳ/ᾱ with ȳ ∈ K k (δ), which shows that z ∈ F d k,l (δ). If α > ᾱ, then the set [ ᾱ, α] ∩ [l + δ, l + 1 -δ] is non-empty so there are λ ∈ K l (δ) and s ∈ [0, 1] such that λ = sᾱ + (1 -s)α. Then, by convexity of K k (δ), we have

which shows that z belongs to F d k,l (δ) too. In conclusion, we have

whose boundary satisfies

First, we observe that C d k (δ) ⊂ S. As a matter of fact, for every z ∈ C d k (δ) there are, by (27), α > 0 and y ∈ K d k (δ) such that αz = y. Hence we have

which yields for every i, j ∈ {1, . . . , d} with i = j,

which means that z ∈ S.

. This shows that if z ∈ ∂C d k (δ), then there is j ∈ {1, . . . , d} such that z j = k j + 1 -δ. If R(z) j = k j + 1 -δ for some j ∈ {1, . . . , d}, then the segment I := [R(z), R(z) + se j ] with s ∈ [0, 1] (where e j denotes the j-th vector of the canonical basis of R d ) satisfies I ⊂ ∂E and I ∩ L d k (δ) = {R(z)}. This shows that R(z) ∈ ∂C d k (δ) and in turn that z ∈ ∂C d k (δ).

Let us show that the boundary of

, then by Lemma 16, there is j ∈ {1, . . .} such that R(z) j = k j + 1 -δ. Thus, since R(z) ∈ L d k (δ), there is also i ∈ {1, . . . , d} such that R(z) i = k i + δ. We infer easily that R(z) is in ∂S and so z too. In conclusion, C d k (δ) ⊂ S and (0, ∞) d ∩ ∂C d k (δ) ⊂ (0, ∞) d ∩ ∂S, so the two sets are equal.

To prove (ii), we suppose for contradiction that K 0 ⊂ B k /z for some z ≥ 1 and k ∈ N. Then we have B - k /z = (k -δ)/z < δ < 1 -δ < (k + δ)/z = B + k /z, which implies that 2δ/z > 1 -2δ, a contradiction because z ≥ 1 and δ ∈ (0, 1/2).

To prove (iii), we assume that δ ≤ 1/4 and consider some z ∈ [1, +∞). We set To prove (iv), we note that for every (z 1 , . . . , z d ) ∈ [1, ∞) d and every l ∈ 0, N -1 , the set P d δ,l (z 1 , . . . , z d ) is compact and given by a finite set of affine inequalities, so it is a a convex polytope.