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A quantitative version of Tao's result on the Toeplitz Square Peg Problem

Building on a result by Tao, we show that a certain type of simple closed curve in the plane given by the union of the graphs of two 1-Lipschitz functions inscribes a square whose sidelength is bounded from below by a universal constant times the maximum of the difference of the two functions.

Introduction

A subset Γ of the plane R 2 is said to inscribe a square if it contains the four vertices of a square with positive sidelength. The Square Peg Problem raised by Toeplitz [START_REF] Toeplitz | Über einige aufgaben der Analysis situs[END_REF] in 1911 can be stated as follows (we recall that a (continuous) curve γ : [0, 1] → R 2 is called closed if γ(0) = γ(1) and simple if the function t ∈ [0, 1) → γ(t) is injective):

Square Peg Problem. Let γ : [0, 1] → R 2 be a simple closed continuous curve. Does γ([0, 1]) necessarily inscribe a square? The answer to the Square Peg Problem is known to be "Yes" for curves with enough regularity (e.g. convex, piecewise analytic or locally monotone curves) but remains open in its full generality (in the case of merely continuous simple closed curves). For further details, we refer for example the interested reader to the survey by Matschke [START_REF] Matschke | A survey on the square peg problem[END_REF]. The absence of positive result in the continuous case is due, in particular, to the lack of positive lower bound for the sidelengths of squares inscribed in smooth simple closed curves (or any curve in a set which is dense, in some sense, in the set of continuous simple closed curves). As a matter of fact, if we could show for instance that smooth simple closed curves always inscribe a square whose sidelength is bounded from below by some quantity depending continuously on the curve (such as for example the area enclosed by the curve or its diameter) then it would allow us to prove, by a simple argument of approximation, that any (continuous) simple closed curve inscribes a square. The aim of the present paper is precisely to show that we can bound from below the sidelength of squares inscribed in the type of sets investigated by Tao in [START_REF] Tao | An integration approach to the Toeplitz square peg problem[END_REF].

Another way to state the Square Peg Problem is to see it as a problem of intersection of a set with its set of opposite square corners. We say that a triple (O, P, R) in (R 2 ) 3 is a square corner if the three points O, P, R are distinct and if Now, given a subset Γ of the plane, we define its set of opposite square corners, denoted by SOSC(Γ), as the set of opposite corners of all square corners in Γ, that is

R = Rot
SOSC(Γ) := Q(O, P, R) | (O, P, Q) ∈ SC ∩ Γ 3 .
If Γ = γ([0, 1]) with γ : [0, 1] → R 2 a simple closed curve, then this set can also be written as (see Figure 3) 57]) allows to show that for a generic smooth simple closed curve, the set of (t, u, v) ∈ S 1 such that (γ(t), γ(u), γ(v)) ∈ SC is a compact smooth submanifold of dimension 1 of (S 1 ) 3 and that the set of opposite square corners of the curve is the image of that set by a smooth immersion.

SOSC(Γ) := t,u,v∈[0,1) Q(γ(t), γ(u), γ(v)) ∈ R 2 | u = t and γ(v) = Rot π/2 γ(t) (γ(u)) . γ(t) γ(u) γ(v) Q(γ(t), γ(u), γ(v)) Rot π/2 γ(t) (Γ)
2 For example, we can show that if we consider the ellipse Γ of Figure 4 and replace for > 0 small the (short) piece of Γ joining

A := (1 -, 2 √ 2 -2 ) to B := (1 -, 2 √ 2 + 2
) by a (simple non-closed) curve from A to B contained in the ball centered at (1, 0) with radius 10 √ and with a non-empty set of opposite square corners, then this small deformation generates a new connected component of SOSC(Γ) for small enough.

an odd number of squares, one is inclined to think that the intersection of a set with its set of opposite square corners generically contains exactly a finite number of points which is an odd multiple of 4. This conclusion follows from existing results which are based on purely topological methods that do not rely on the set of opposite square corners, and as we said before, this type of approach does not allow, a priori, any estimation on the sidelength of the squares in terms of the "geometry" of the curve. This is not the case of the method proposed in [START_REF] Tao | An integration approach to the Toeplitz square peg problem[END_REF], where Tao proves a conservation lemma (see Lemma 2.1) that allows to resolve the Square Peg Problem whenever the set of opposite square corners has a peculiar form. Before proceeding further, we mention that similar constructions of sets of opposite vertices have been used by Matschke in [START_REF] Matschke | Quadrilaterals inscribed in convex curves[END_REF] to deal with the problem of quadrilaterals inscribed in convex curves. As in our paper, his results are based on a conservation lemma (see Lemma 2.1) by Karasev [START_REF] Karasev | On two conjectures of Makeev. Translated from Zap[END_REF] and Tao [START_REF] Tao | An integration approach to the Toeplitz square peg problem[END_REF] and considerations in terms of area of some sets related to the set of opposite vertices. We refer the reader to [START_REF] Matschke | Quadrilaterals inscribed in convex curves[END_REF] for further details.

In [START_REF] Tao | An integration approach to the Toeplitz square peg problem[END_REF], Tao considers simple closed curves given by the union of the graphs of two functions with "small" Lipschitz constants. Given an interval I = [T 0 , T 1 ], two functions f, g :

I → R such that f (T 0 ) = g(T 0 ), f (T 1 ) = g(T 1 ) and f (t) < g(t) ∀t ∈ (T 0 , T 1 )
and setting

Γ := Γ f ∪ Γ g with Γ f := Graph f (I), Γ g := Graph g (I),
he shows, roughly speaking3 , that, if f and g are (1 -)-Lipschitz for some > 0, then the set SOSC(Γ) is the union of the four sets (see Figure 6)

S 1 = Q(O, P, R) | (O, P, Q) ∈ SC ∩ Γ f × Γ f × Γ g , S 2 = Q(O, P, R) | (O, P, Q) ∈ SC ∩ Γ f × Γ g × Γ f , S 3 = Q(O, P, R) | (O, P, Q) ∈ SC ∩ Γ g × Γ g × Γ f , S 4 = Q(O, P, R) | (O, P, Q) ∈ SC ∩ Γ g × Γ f × Γ g ,
Figure 6: The set SOSC(Γ), with Γ the set in blue, is the union of the four non-blue simple curves and moreover each of those sets is a Lipschitz simple curve joining the point P 0 := (T 0 , f (T 0 )) = (T 0 , g(T 0 )) to the point P 1 := (T 1 , f (T 1 )) = (T 1 , g(T 1 )). Then, Tao applies a conservation lemma (see Lemma 2.1) to show that the (signed) area enclosed by Γ g and S 1 has to be zero. Which implies that the two curves Γ g \ {P 0 , P 1 } and S 1 must intersect and so proves4 the existence of a square inscribed in Γ. The idea of this present paper is simply to show that a "quantification" of Tao's approach allows to obtain the following result: Theorem 1.1. There is a universal constant C > 0 such that the following property holds: Let I = [T 0 , T 1 ] be interval and f, g : I → R be 1-Lipschitz functions such that f (T 0 ) = g(T 0 ), f (T 1 ) = g(T 1 ) and f (t) < g(t) for all t ∈ (T 0 , T 1 ), then the set

Graph f (I) ∪ Graph g (I)
inscribes a square of sidelength at least

C • max t∈I g(t) -f (t) .
The proof of Theorem 1.1 is sketched in the next section and given with full detail in Section 3. It provides a constant C equal to 0.018 which seems very far from being sharp since computer simulations 5 suggest that the optimal constant of Theorem 1.1 is probably 0.5. Although moderately interesting, Theorem 1.1 shows at least that Tao's approach might provide an efficient method to quantify the size of squares inscribed in simple closed curves in term of the geometry of the curve and thus might be certainly useful to settle the Square Peg Problem in the general case. But the road is long, there are a number of issues. As an example, the second part of the proof of Theorem 1.1 relies heavily on the 1-Lipschitzness assumption on the functions (see next section), can we weaken this assumption? More precisely, does a variant of Theorem 1.1 (where max{g -f } can be replaced by another quantity depending on f and g) holds true if we assume that f ang g are smooth (or by approximation only continuous), but not necessarily 1-Lipschitz, and that the set SOSC(Γ) contains a simple Lipschitz curve connecting (T 0 , f (T 0 )) = (T 0 , g(T 0 )) to (T 1 , f (T 1 )) = (T 1 , g(T 1 ))?

The paper is organized as follows: The main idea of the proof of Theorem 1.1 is explained in Section 2, its complete proof is given in Section 3, and technical lemmas are stated and proved in Section 4.

Acknowledgements. The author is indebted to B. Matschke and T. Tao for bringing several references to his attention.

A rough idea of the proof of Theorem 1.1

The proof of Theorem 1.1 is based on two observations. The first one, due to Karasev [START_REF] Karasev | On two conjectures of Makeev. Translated from Zap[END_REF] and Tao [START_REF] Tao | An integration approach to the Toeplitz square peg problem[END_REF], is a result showing that some quantity is conserved along a quadruple of curves which traverse squares (see Figure 7). We refer the reader to [START_REF] Tao | An integration approach to the Toeplitz square peg problem[END_REF] for its proof and more details on the meaning of the integrals involved.

γ 1 γ 2 γ 3 γ 4 Figure 7: For every t, (γ 1 (t)γ 2 (t)γ 3 (t)γ 4 (t)) is a square Lemma 2.1. Let γ 1 , γ 2 , γ 3 , γ 4 : [t 0 , t 1 ] → R 2 be rectifiables curves and x, y, a, b : [t 0 , t 1 ] → R be continuous functions such that γ 1 (t) = (x(t), y(t)) γ 2 (t) = (x(t) + a(t), y(t) + b(t)) γ 3 (t) = (x(t) + a(t) -b(t), y(t) + a(t) + b(t)) γ 4 (t) = (x(t) -b(t), y(t) + a(t)) ∀t ∈ [t 0 , t 1 ].
(2.1)

Then we have the identity

γ 1 y dx - γ 2 y dx + γ 3 y dx - γ 4 y dx = a(t 1 ) 2 -b(t 1 ) 2 2 - a(t 0 ) 2 -b(t 0 ) 2 2 . (2.2)
The above result will be used to show that if our simple closed curve (made of the union of the graphs of two 1-Lipschitz functions) does inscribe only squares with small sidelength then some area enclosed by a piece of graph of g together with a piece of the set of opposite square corners has to be small. The second observation is the following type of result which gives a lower bound for some integral if the union of the graphs of two 1-Lipschitz functions inscribes a certain type of square, its proof is given in Figure 8.

Lemma 2.2. Let f, g : [T 0 , T 1 ] → R be 1-Lipschitz functions such that f (T 0 ) = g(T 0 ), f (T 1 ) = g(T 1
) and f (t) < g(t) for all t ∈ (T 0 , T 1 ) and t, a, b ∈ R be such that

T 0 ≤ t, t + a, t -b, t + a -b ≤ T 1 , a > 0 (2.3)
and

f (t + a) = f (t) + b g(t + a -b) = f (t) + a + b g(t -b) = f (t) + a.
(2.4)

Then we have t+a-b t-b g(s) ds - t+a t f (s) ds ≥ a 2 + b 2 2 .
(2.5)

t t + a f (t) f (t) + b f (t) + a f (t) + a + b graph of g(• -b) graph of f Figure 8: t+a-b t-b g(s) ds - t+a t f (s) ds = t+a t g(s -b) -f (s)
ds is larger or equal to the sum of the blue area and the red area given respectively by a 2 /2 and b 2 /2

Then the proof of Theorem 1.1 is divided in two parts: First part: We note that it is sufficient to prove the result for fonctions which are (1 -)-Lipschitz for some > 0 small. Then, we fix > 0 and two (1 -)-Lipschitz functions f and g as in the assumption of Theorem 1.1, we extend them to the whole real line and consider the set of (possibly degenerate) opposite square corners of the form

Q t = P f t + R g t -O f t , where t ∈ R, O f t = (t, f (t)), P f t ∈ Γ f , R g t ∈ Γ g and R g
t is the image of P f t by the rotation of angle π/2 with center O f t . As shown by Tao [START_REF] Tao | An integration approach to the Toeplitz square peg problem[END_REF], the function t ∈ R → Q t is Lipschitz and injective, so its image is a simple rectifiable curve joining (T 0 , f (T 0 )) to (T 1 , f (T 1 )), and by construction, the curve t ∈ R → Q t comes along with three Lipschitz curves

t ∈ R → O f t ∈ Γ f , t ∈ R → P f t ∈ Γ f and t ∈ R → R g t ∈ Γ g such that (O f t P f t Q t R g t
) is always a square (see Lemma 3.1). Therefore, any intersection of (Q t ) t∈R with Γ g gives rise to a (possibly degenerate) inscribed square. Furthermore, if we consider two consecutive intersections of (Q t ) t∈R with Γ g , say at times t 0 < t 1 in [T 0 , T 1 ] then Tao's conservation lemma can be used to bound from above the (non-signed) area enclosed by the simple closed curve made of the concatenation of Q [t 0 ,t 1 ] and the piece Γ g joining Q t 0 to Q t 1 in terms of the sizelengths of the corresponding squares at t 0 and t 1 (see Lemma 3.7). This result allows to show that the smaller are the squares at t 0 and t 1 the smaller is the area and the closer to Γ g has to be the curve t ∈ R → Q t (see Lemma 3.9).

Second part: From the first part, we need to figure out what happens when the curve t ∈ R → Q t is close to Γ g in some sense and to see how to get a contradiction if the squares at times t 0 and t 1 are too small. To do this let us imagine, for sake of simplicity, that Q t is so close to Γ g that it belongs indeed to Γ g for all t ∈ [t 0 , t 1 ] and that the sidelength of the squares at t 0 , t 1 is equal to 0. Then in this case, Tao's Lemma 2.1 allows to show that we have (compare Lemma 3.8)

t+at-bt t-bt g(s) ds - t+at t f (s) ds = a 2 t -b 2 t 2 t ∈ [t 0 , t 1 ],
where we suppose that O f t , P f t , Q t and R g t satisfy

O f t = (t, f (t)) P f t = (t + a t , f (t + a t )) = (t + a t , f (t) + b t ) Q t = (t + a t -b t , f (t + a t -b t )) = (t + a t -b t , f (t) + a t + b t ) R g t = (t -b t , g(t -b t )) = (t -b t , f (t) + a t ) ∀t ∈ [t 0 , t 1 ].
Furthermore, Lemma 2.2 implies that we also have

t+at-bt t-bt g(s) ds - t+at t f (s) ds ≥ a 2 t + b 2 t 2 t ∈ [t 0 , t 1 ].
Then, we conclude that b t = 0 for all t ∈ [t 0 , t 1 ] and as a consequence that

g(t) = f (t) + a t , g(t + a t ) = f (t) + a t and t+at t g(s) -f (s) ds = a 2 t 2 ,
for all t ∈ [t 0 , t 1 ]. This type of property prevents the function g -f to admit a maximum at some T ∈ (t 0 , t 1 ) such that T ∈ (t, t + a t ) ∈ [t 0 , t 1 ] for some t ∈ [t 0 , t 1 ], and yields a contradiction.

The proof of Theorem 1.1 consists in quantifying all the above arguments to make the sketch of proof correct.

Proof of Theorem 1.1

It is sufficient to prove the result for functions f and g which are (1 -)-Lipschitz for some > 0. As a matter of fact, if Theorem 1.1 holds true in this case, then given f, g : I → R we can define for every > 0 small f , g : I → R by f := (1 -)f and g := (1 -)g, apply the result and pass to the limit as ↓ 0 to obtain the required inscribed square as the limit of a sequence of squares whose sidelengths are bounded from below by C • max t∈I {g (t) -f (t)} which tends to C • max t∈I {g(t) -f (t)}. So from now on, we assume that we are given two functions f, g : I → R which are (1 -)-Lipschitz for some > 0 and set

M := max t∈I g(t) -f (t) > 0.
Moreover, as in [START_REF] Tao | An integration approach to the Toeplitz square peg problem[END_REF], we extend f and g to the whole real line R by setting

f (t) = g(t) = f (T 0 ) = g(T 0 ) ∀t ≤ T 0 and f (t) = g(t) = f (T 1 ) = g(T 1 ) ∀t ≥ T 1 ,
and denote respectively the graphs of f and g over R by Γ f and Γ g . Then, for every t ∈ R, we set O f t = (t, f (t)) and denote by Rot f t : R 2 → R 2 the rotation of angle π/2 with center O f t .

Lemma 3.1. The following properties hold:

(i) For every t ∈ R, the set Rot f t Γ f ∩ Γ g is a singleton equal to {R g t } with R g t = Rot f t (P f t ) ∈ Γ g and P f t = (u t , f (u t )) ∈ Γ f , where u t ∈ [t + (g(t) -f (t))/2, +∞) is the unique solution u ∈ R of the equation g(t + f (t) -f (u)) -f (t) -u + t = 0. (ii) If t / ∈ (T 0 , T 1 ), then Rot f t Γ f ∩ Γ g = {O f t } = {(t, g(t)}. (iii) The functions t ∈ R → P f t , t ∈ R → R f t and Q : R → R 2 defined by Q(t) = Q t := P f t + R g t -O f t ∀t ∈ R are Lipschitz.
(iv) The Lipschitz functions a, b : R → R defined by a t := u t -t and b t := f (u t ) -f (t) for all t ∈ R satisfy

P f t = (t + a t , f (t) + b t ) = (t + a t , f (t + a t )) Q t = (t + a t -b t , f (t) + a t + b t ) R g t = (t -b t , f (t) + a t ) = (t -b t , g(t -b t )) , and 
a t ≥ g(t) -f (t) 2 , |b t | ≤ a t for all t ∈ R. (v) The function t ∈ R → Q t is injective. Remark 3.2. The triple (O f t , P f t , R g t )
is not always in SC (the set of square corners), it is the case if and only if

O f t = P f t ⇔ u t = 0 ⇔ t ∈ (T 0 , T 1 )
. Moreover, we do not have necessarily Q t ∈ SOSC(Graph f (I) ∪ Graph g (I)) for all t ∈ (T 0 , T 1 ) because we might have that P f t ∈ Γ f \ Graph f (I) (remember that Γ f denotes the graph of f over R) for some t in (T 0 , T 1 ). 

Γ f ∩ Γ g , Rot g t (Γ g ) ∩ Γ f and Rot g,- t (Γ g ) ∩ Γ f are singletons and the corresponding mappings t ∈ R → Q 2 t , t ∈ R → Q 3 t and t ∈ R → Q 4 t
are Lipschitz and injective. Moreover, we can check easily that

SOSC(Graph f (I) ∪ Graph g (I)) ⊂ t∈[T 0 ,T 1 ] Q t , Q 2 t , Q 3 t , Q 4 t .
Remark 3.4. Lemma 3.1 requires f and g to be (1 -)-Lipschitz for some > 0. If f and g are only 1-Lipschitz then one can show that for every t ∈ R, the set Rot f t Γ f ∩Γ g is either a singleton or a segment of slope ±1.

Proof of Lemma 3.1. Let t ∈ R be fixed. The continuous function ϕ t : [t, +∞) → R defined by ϕ t (u) := g(t + f (t) -f (u)) -f (t) -u + t ∀u ∈ R, satisfies lim u→+∞ ϕ t (u) = -∞
and, by 1-lipschitzness of f and g (they are indeed (1 -)-Lipschitz) and the nonnegativity of g -f , we have

ϕ t t + g(t) -f (t) 2 = g t + f (t) -f t + g(t) -f (t) 2 - f (t) 2 - g(t) 2 ≥ g(t) -f (t) -f t + g(t) -f (t) 2 - f (t) 2 - g(t) 2 ≥ g(t) - g(t) -f (t) 2 - f (t) 2 - g(t) 2 = 0.
Hence there is u ≥ t + g(t)-f (t) 2 such that ϕ t (u) = 0, that is, such that

Rot f t (u, f (u)) = (t, f (t)) + (f (t) -f (u), u -t) = (t + f (t) -f (u), f (t) + u -t) ∈ Γ g .
This u is unique because if there is another u ∈ R verifying ϕ t (u ) = 0, then we have ( by (1 -)-lipschitzness of f and g)

|u -u| = g(t + f (t) -f (u )) -g(t + f (t) -f (u)) ≤ (1 -) f (u ) -f (u) ≤ (1 -) 2 |u -u|,
which shows that u = u. Thus the proof of (i) is complete. We notice that if t / ∈ (T 0 , T 1 ), then ϕ t (t) = g(t) -f (t) = 0, which shows that u = t, that is R g t = P f t = O f t , corresponds to the unique point in Rot f t Γ f ∩ Γ g and proves (ii). For every t, t in R, we have

|u t -u t | = g (t + f (t) -f (u t )) -f (t) + t -g t + f (t ) -f (u t ) + f (t ) -t ≤ g (t + f (t) -f (u t )) -g t + f (t ) -f (u t ) + f (t ) -f (t) + t -t ≤ (1 -) (t + f (t) -f (u t )) -t + f (t ) -f (u t ) + (1 -) t -t + t -t ≤ (t + f (t) -f (u t )) -t + f (t ) -f (u t ) + 2 t -t ≤ |f (u t ) -f (u t )| + f (t ) -f (t) + 3 t -t ≤ (1 -) |u t -u t | + (1 -) t -t + 3 t -t ≤ (1 -) |u t -u t | + 4 t -t ,
which implies that |u t -u t | ≤ (4/ )|t -t|. This shows that the function t ∈ R → u t is Lipschitz and as a consequence that the functions defined in (iii) are Lipschitz. The first part of (iv) is a straightforward consequence of the definitions of P f t , R g t , Q t and a t , b t . Concerning the second part, a t ≥ (g(t) -f (t))/2 follows from u t ≥ t + (g(t) -f (t))/2 and |b t | ≤ a t follows from the 1-lipschitzness of f (because f (t + a t ) = f (t) + b t ). To prove (v) we suppose for contradiction that there are

t = t ∈ R such that Q t = Q t . Then, the point Q = Q t = Q t belongs to the two squares (O f t P f t QR g t ) and (O f t P f t QR g t ), which shows that P f t = P f t , R g t = R g t (otherwise O f t = O f t which is impossible because t = t ) and that R g t (resp. R g t )
is the image of P f t (resp. of P f t ) by the rotation of angle -π/2 about Q. Therefore, the lines D = (P f t P f t ) and D = (R g t R g t ) are welldefined (they pass through different points) and D is the image of D by the rotation of angle -π/2 about Q. But since P f t and P f t belong to Γ f and f is (1 -)-Lipschitz the angle between D and the horizontal is strictly less than π/4 and consequently the angle of D , its image by the rotation of angle -π/2 about Q, with the vertical is strictly less than π/4. This is a contradiction because R g t and R g t belong to Γ g and g is (1 -)-Lipschitz.

By construction, for every t ∈ R, the points O f t , P f t , Q t and R g t form a square, and in addition the points O f t and P f t always belong to Γ f and R g t always belongs to Γ g . So, we can apply Lemma 2.1 and write some integrals in terms of integrals of f and g. Lemma 3.5. For every t < t ∈ R, t+at t f (s) ds-

t +a t t f (s) ds+ Q([t,t ]) y dx- t -b t t-bt g(s) ds = a 2 t -b 2 t 2 - a 2 t -b 2 t 2 .
Proof of Lemma 3.5. Applying Tao's Lemma 2.1 with γ 1 , γ 2 , γ 3 , γ 4 : [t, t ] → R 2 defined by (see Lemma 3.1)

γ 1 (s) = O f s = (s, f (s)) γ 2 (s) = P f s = (s + a s , f (s) + b s ) = (s + a s , f (s + a s )) γ 3 (s) = Q s = (s + a s -b s , f (s) + a s + b s ) γ 4 (s) = R g s = (s -b s , f (s) + a s ) = (s -b s , g(s -b s )) , ∀s ∈ [t, t ],
we obtain Let T ∈ (T 0 , T 1 ) such that (g -f )(T ) = M be fixed and ρ ∈ (0, 1/8) a constant to be chosen later. We define t 0 , t 1 ∈ [T 0 , T 1 ] by

γ 1 y dx - γ 2 y dx + γ 3 y dx - γ 4 y dx = a 2 t -b 2 t 2 - a 2 t -b 2 t 2 . ( 3 
t 0 = max t ∈ [T 0 , T ] | Q t ∈ Γ g and a t ≤ ρM and t 1 = min t ∈ [T, T 1 ] | Q t ∈ Γ g and a t ≤ ρM ,
which are well-defined because a T 0 = 0 and a T 1 = 0 by Lemma 3.1 (iv). Then we set

τ 0 := t 0 + a t 0 -b t 0 and τ 1 := t 1 + a t 1 -b t 1
and note that by construction, the following result holds: Lemma 3.6. We have

t 0 ≤ τ 0 < T < T + 3M 8 < t 1 ≤ τ 1 (3.2)
and

Q t 0 = (τ 0 , g(τ 0 )) , Q t 1 = (τ 1 , g(τ 1 )) and Q t / ∈ Γ g ∀t ∈ (t 0 , t 1 ). (3.3)
Furthermore, if we denote by Ω ⊂ R 2 the bounded open set enclosed by the curve

γ : [0, t 1 -t 0 + τ 1 -τ 0 ] -→ R 2
given by the concatenation of C := Q([t 0 , t 1 ]) with the reversal of Graph g ([τ 0 , τ 1 ]) (which is a simple closed curve thanks to the previous property), then there is σ ∈ {-1, 1} such that the following property holds: For every τ ∈ (τ 0 , τ 1 ), there are λ τ > 0 and t τ ∈ (t 0 , t 1 ) such that

(τ, g(τ ) + σ λ) = Q tτ ∈ C and (τ, g(τ ) + σ s) ∈ Ω ∀s ∈ (0, λ τ ). (3.4)
Moreover, if σ = 1 then the curve γ is clockwise oriented and if σ = -1 it is anticlockwise oriented.

Proof. By construction and the fact that both a t 0 -b t 0 , a t 1 -b t 1 are nonnegative (see Lemma 3.1 (iv)), we already know that t 0 ≤ T ≤ t 1 , t 0 ≤ τ 0 and t 1 ≤ τ 1 . Since Q t 0 ∈ Γ g , we have, by Lemma 3.1 (iv),

g(τ 0 ) = g (t 0 + a t 0 -b t 0 ) = f (t 0 ) + a t 0 + b t 0 = f (t 0 + a t 0 ) + a t 0 ,
which gives (by 1-lipschitzness of f )

|g(τ 0 ) -f (τ 0 )| ≤ |g(τ 0 ) -f (t 0 + a t 0 )| + |f (t 0 + a t 0 ) -f (τ 0 )| ≤ 2a t 0 ≤ 2ρM. (3.5)
Consequently, if τ 0 ≥ T , then we have (remember that

|b t 0 | ≤ a t 0 ) 0 ≤ τ 0 -T ≤ τ 0 -t 0 = a t 0 -b t 0 ≤ 2a t 0 ≤ 2ρM, which implies (by 2-lipschitzness of g -f ) (g(τ 0 ) -f (τ 0 )) ≥ (g(T ) -f (T )) -2 |τ 0 -T | ≥ M -4ρM = (1 -4ρ) M, which contradicts (3.5) since ρ < 1/8. Furthermore, since g(t 1 -b 1 ) = f (t 1 ) + a t 1 and |b t 1 | ≤ a t 1 , we have (by 1-lipschitzness of f and g) M -2(t 1 -T ) = g(T ) -f (T ) -2(t 1 -T ) ≤ g(t 1 ) -f (t 1 ) ≤ |g(t 1 ) -g(t 1 -b t 1 )| + |g(t 1 -b t 1 ) -f (t 1 )| ≤ 2a t 1 ≤ 2ρM
which implies that t 1 -T ≥ M (1 -2ρ)/2 > 3M/8 since ρ ∈ (0, 1/8). So, the proof of (3.2) is complete. The property (3.3) is a direct consequence of the construction of t 0 and t 1 . Let us now prove the second part of the statement. The concatenation of

C := Q([t 0 , t 1 ]) with the reversal of Graph g ([τ 0 , τ 1 ]) is the curve γ : [0, t 1 -t 0 + τ 1 -τ 0 ] -→ R 2 defined by γ(s) := Q t 0 +s if s ∈ [0, t 1 -t 0 ] (τ 1 -(s -t 1 + t 0 ), g (τ 1 -(s -t 1 + t 0 ))) if s ∈ [t 1 -t 0 , t 1 -t 0 + τ 1 -τ 0 ], for all s ∈ [0, t 1 -t 0 + τ 1 -τ 0 ].
We check easily that γ is Lipschitz and closed as the concatenation of two Lipschitz curves with the same endpoints (we have, by (3.3),

γ(0) = Q t 0 = (τ 0 , g(τ 0 )) and γ(t 1 -t 0 ) = Q t 1 = (τ 1 , g(τ 1 ))) and that it is simple because t ∈ R → Q t is injective and Q t / ∈ Γ g for all t ∈ [t 0 , t 1 ] (by (3.3)).
Then, by the Jordan curve Theorem, the image of γ, I := γ([0, t 1 -t 0 + τ 1 -τ 0 ]), divides the plane R 2 into two connected components Ω and O where Ω is the bounded open set enclosed by γ and O is the complement of Ω. For every τ ∈ (τ 0 , τ 1 ), the point (τ, g(τ )) belongs to the image of γ but not to γ([0, t 1 -t 0 ]). So, since g is 1-Lipschitz there is h τ > 0 such that the vertical segment centered at (τ, g(τ )) of length 2h τ intersects I only at (τ, g(τ )) (note that the vertical line through (τ, g(τ )) intersects I at (τ, g(τ )) and at at least another point of C either at h . By connectedness of Ω and O (and the fact that they are separated by I), we can show that there is σ ∈ {-1, +1} such that for every τ ∈ (τ 0 , τ 1 ), (τ, g(τ )) + σ(0, h τ ) belongs to Ω and we can check that γ is clockwise oriented if σ = 1 and anticlockwise oriented if σ = -1. If for every τ ∈ (τ 0 , τ 1 ), we define λ τ > 0 by

λ τ := min h > 0 | (τ, g(τ )) + σ(0, h) / ∈ Ω ,
then, since Ω is bounded λ τ is well-defined, since λ τ ≥ h τ λ τ is positive, and by construction (τ, g(τ )) + σ(0, s) ∈ Ω for s ∈ (0, λ τ ) and (τ, g(τ )) + σ(0, λ τ ) ∈ Ω \ Γ g = C so that there is a unique t τ ∈ [t 0 , t 1 ] (by Lemma 3.1 (v)) such that (τ, g(τ )) + σ(0, λ τ ) = Q tτ . This completes the proof of the Lemma.

By Lemma 3.6, we know that for every τ ∈ (τ 0 , τ 1 ) the concatenation of the curve C τ := Q([t 0 , t τ ]) with the vertical segment joining Q tτ to (τ, g(τ )) and the reversal of Graph g ([τ 0 , τ ]) is a simple closed curve, we denote by Ω τ the open set enclosed by that curve and we set The following result follows from Stoke's formula, Lemma 3.5 and Lemma 4.1 whose proof can be found in Section 4. Lemma 3.7. We have

A τ = Q([t 0 ,tτ ]) y dx - τ τ 0 g(s) ds. graph of g curve C τ 0 τ τ 1 Q tτ Ω τ
L 2 (Ω τ ) = |A τ | ≤ L 2 (Ω) ≤ ρ 2 M 2 ∀τ ∈ (τ 0 , τ 1 ). (3.6) Furthermore, if σ = 1, then we have 0 ≤ A τ ≤ A τ 1 for all τ ∈ [τ 0 , τ 1 ] and if σ = -1, then we have A τ 1 ≤ A τ ≤ 0 for all τ ∈ [τ 0 , τ 1 ].
Proof of Lemma 3.7. By Lemma 3.6 and Stoke's formula, we have (see [START_REF] Tao | An integration approach to the Toeplitz square peg problem[END_REF]Lemma 3.4])

L 2 (Ω) = σ Q([t 0 ,t 1 ]) y dx - τ 1 τ 0 g(s) ds = σA τ 1 (3.7)
and since for every τ ∈ (τ 0 , τ 1 ) the concatenation of C τ with the vertical segment joining Q tτ to (τ, g(τ )) and the reversal of Graph g ([τ 0 , τ ]) is a simple closed curve with the same orientation of γ, we also have

L 2 (Ω τ ) = σA τ ∀τ ∈ (τ 0 , τ 1 ). (3.8)
By construction, Ω τ is contained in Ω for all τ ∈ (τ 0 , τ 1 ), so we have L 2 (Ω τ ) = |A τ | ≤ L 2 (Ω) for every τ ∈ (τ 0 , τ 1 ) and the second part of the lemma follows easily from (3.7)-(3.8). It remains to show that L 2 (Ω) ≤ ρ 2 M 2 . We note that by Lemma 3.5, we have

Q([t 0 ,t 1 ])
y dx -

t 1 +at 1 -bt 1 t 0 +at 0 -bt 0 g(s) ds = Q([t 0 ,t 1 ]) y dx - t 1 -bt 1 t 0 -bt 0 g(s) ds - t 0 -bt 0 t 0 +at 0 -bt 0 g(s) ds - t 1 +at 1 -bt 1 t 1 -bt 1 g(s) ds = a 2 t 1 -b 2 t 1 2 - a 2 t 0 -b 2 t 0 2 - t 0 +at 0 t 0 f (s) ds + t 1 +at 1 t 1 f (s) ds - t 0 -bt 0 t 0 +at 0 -bt 0 g(s) ds - t 1 +at 1 -bt 1 t 1 -bt 1 g(s) ds = a 2 t 1 -b 2 t 1 2 - a 2 t 0 -b 2 t 0 2 + t 0 +at 0 -bt 0 t 0 -bt 0 g(s) ds - t 0 +at 0 t 0 f (s) ds - t 1 +at 1 -bt 1 t 1 -bt 1 g(s) ds - t 1 +at 1 t 1 f (s) ds .
But Lemma 4.1 gives

a 2 t i + b 2 t i 2 ≤ t i +at i -bt i t i -bt i g(s) ds - t i +at i t i f (s) ds ≤ 3a 2 t i -b 2 t i 2 ∀i = 0, 1.
Then, we conclude that

-ρ 2 M 2 ≤ -a 2 t 1 ≤ -a 2 t 1 + b 2 t 0 ≤ Q([t 0 ,t 1 ]) y dx - τ 1 τ 0 g(s) ds ≤ a 2 t 0 -b 2 t 1 ≤ a 2 t 0 ≤ ρ 2 M 2 ,
which completes the proof of the lemma. 

= τ tτ -bt τ g(s) ds + a 2 tτ -b 2 tτ 2 - a 2 t 0 -b 2 t 0 2 - t 0 +at 0 t 0 f (s) ds - Q([t 0 ,tτ ]) y dx + tτ -bt τ t 0 -bt 0 g(s) ds = a 2 tτ -b 2 tτ 2 - a 2 t 0 -b 2 t 0 2 + τ 0 t 0 -bt 0 g(s) ds - t 0 +at 0 t 0 f (s) ds -A τ ≤ a 2 tτ -b 2 tτ 2 - a 2 t 0 -b 2 t 0 2 + τ 0 t 0 -bt 0 g(s) ds - t 0 +at 0 t 0 f (s) ds,
which can be bounded from above, by (4.4) of Lemma 4.1 with δ = 0, by

a 2 tτ -b 2 tτ 2 - a 2 t 0 -b 2 t 0 2 + 3a 2 t 0 -b 2 t 0 2 = a 2 tτ -b 2 tτ 2 + a 2 t 0 ≤ a 2 tτ -b 2 tτ 2 + ρ 2 M 2 .
If σ = -1, then Lemma 3.5 with t = t τ and t = t 1 gives τ tτ -bt τ g(s) ds -

tτ +at τ tτ f (s) ds = a 2 tτ -b 2 tτ 2 - a 2 t 1 -b 2 t 1 2 - t 1 +at 1 t 1 f (s) ds + Q([tτ ,t 1 ]) y dx - t 1 -bt 1 τ g(s) ds
where we have

Q([tτ ,t 1 ]) y dx - t 1 -bt 1 τ g(s) ds = Q([t 0 ,t 1 ]) y dx - Q([t 0 ,tτ ]) y dx - τ 0 τ g(s) ds - τ 1 τ 0 g(s) ds - t 1 -bt 1 τ 1 g(s) ds = A τ 1 -A τ + τ 1 t 1 -bt 1 g(s) ds.
Therefore, since A τ 1 ≤ A τ ≤ 0 (by Lemma 3.7), we infer that

τ tτ -bt τ g(s) ds - tτ +at τ tτ f (s) ds ≤ a 2 tτ -b 2 tτ 2 - a 2 t 1 -b 2 t 1 2 - t 1 +at 1 t 1 f (s) ds + τ 1 t 1 -bt 1 g(s) ds,
which can be bounded from above, by (4.4) of Lemma 4.1 with δ = 0, by

a 2 tτ -b 2 tτ 2 - a 2 t 1 -b 2 t 1 2 + 3a 2 t 1 -b 2 t 1 2 = a 2 tτ -b 2 tτ 2 + a 2 t 1 ≤ a 2 tτ -b 2 tτ 2 + ρ 2 M 2 .
Now, in order to apply Lemma 4.2, we need to show that τ -a < T . Let us do it. By Lemma 3.1 (iv), we have

τ = t + a -b f (t + a) = f (t) + b g(t + a -b) = f (t) + a + b -σλ g(t -b) = f (t) + a, (3.12) 
which can be used to show that (by using the 1-lipschitzness of f ) 

0 < a = g(t + a -b) -f (t + a) + σλ ≤ g(τ ) -f (τ ) + |f (t + a -b) -f (t + a)| + σλ ≤ M + |b| + λ. ( 3 
a 2 + b 2 2 - σλ(a + b) 2 + λ 2 4 ≤ E ≤ a 2 -b 2 2 + ν 2 ,
which gives by (3.10) and (3.13) By 1-lipschitzness of f and g together with (3.12), we infer that

b 2 ≤ ν 2 - λ 2 4 + σλ(a + b) 2 ≤ ν 2 - λ 2 4 + λ(a + |b|) 2 ≤ ν 2 - λ 2 4 + λM 2 + λ 2 2 + λ|b| ≤ ν 2 + µ 2 4 + µM 2 + µ|b|. ( 3 
a = g(t + a -b) -f (t + a) + σλ = g(τ ) -f (τ ) + f (t + a -b) -f (t + a) + σλ ≥ M -2(τ -T ) -|b| -µ, (3.16) 
We need now to bound from below the remaining terms of the right-hand side of (3.18). We have by 1-lipschitzness of f and g and the above inequalities

|δ 1 | ≤ λ + |f (t + a) -f (t + a -b)| ≤ µ + |b| ≤ M 2Bρ 2 + ρD , |δ 2 | ≤ |f (t) -f (t -b)| ≤ |b| ≤ M ρD, 0 ≤ u ≤ M 4 1 + 1 B , and 
|a -M | = |g(t + a -b) -f (t + a) + σλ -g(T ) + f (T )| ≤ |g(t + a -b) -g(T )| + |f (T ) -f (t + a)| + λ ≤ |τ -T | + |T -τ -b| + µ ≤ 2|τ -T | + |b| + µ ≤ M 2 1 + 1 B + ρM D + 2Bρ 2 M. So we infer that (a -M )(δ 1 + 3δ 2 ) 4 + δ 2 1 + δ 2 2 8 + u(δ 1 -δ 2 ) 2 + M δ 2 2 ≥ - |a -M | (δ 1 | + 3|δ 2 |) 4 - u (|δ 1 | + |δ 2 |) 2 - M |δ 2 | 2 ≥ - M 2 4 1 2 1 + 1 B + ρD + 2Bρ 2 2Bρ 2 + 4ρD - M 2 8 1 + 1 B 2Bρ 2 + 2ρD - M 2 2 ρD. (3.20)
Finally, we note that E can be written as

E = t+a-b t-b g(s) -f (s) ds + t t-b f (s) ds - t+a t+a-b f (s) ds = τ τ -a h(s) ds + t t-b f (s) ds - t+a t+a-b f (s) ds,
where by 1-lipschitness of f we have 

Estimates

We gather here the technical lemmas used in the proof of Theorem 1.1. 

Figure 1 :

 1 Figure 1: A square in red inscribed in the blue curve

:Figure 2 :

 2 Figure 2: The point R is the image of P by the rotation of angle π/2 about O and Q is the opposite corner to O in the square (OP QR)

Figure 3 :

 3 Figure 3: The set SOSC(Γ) is the union over t ∈ [0, 1) of opposite corners of the form Q(γ(t), γ(u), γ(v)) where γ(u), γ(v) are such that (γ(t), γ(u), γ(v)) is a square corner

Figure 4 :

 4 Figure 4: In red a discretization of SOSC(Γ) with Γ the ellipse of equation 4x 2 + y 2 = 4

Figure 5 :

 5 Figure 5: In red a discretization of SOSC(Γ) where Γ is the blue set

Figure 9 :

 9 Figure 9: The set Ω τ is contained in Ω, the set enclosed by the concatenation of C with Graph g ([τ 0 , τ 1 ])

Lemma 3 . 8 . 2 tτ -b 2 tτ 2 + ρ 2 M 2 .

 38222 We have for every τ ∈ [τ 0 , τ 1 ] τ tτ -bt τ g(s) ds -tτ +at τ tτ f (s) ds ≤ a Proof of Lemma 3.8. Let τ ∈ [τ 0 , τ 1 ] be fixed. If σ = 1, then Lemma 3.5 with t = t 0 and t = t τ , the definition of A τ and A τ ≥ 0 (by Lemma 3.7) give τ tτ -bt τ g(s) ds -tτ +at τ tτ f (s) ds

  .13) Then, by (3.11) and (4.3) of Lemma 4.1 with δ = -σλ, we have

  .14) The roots of the quadratic polynomial b 2 -µb -ν 2 -µ 2 /4 -µM/2 (in the b variable) are given by µ -2µ 2 + 2µM + 4ν 2 2 and µ + 2µ 2 + 2µM + 4ν 2 2 so the inequality (3.14) implies that |b| ≤ µ + 2µ 2 + 2µM + 4ν 2 2 = ρM D with D = D(ρ, B) := Bρ + 2B 2 ρ 2 + B + 1. (3.15)

f

  (s) -f (s + a) ds ≥ -|b|a, and we infer that E satisfies E ≥ τ τ -a h(t) dt -|b|a, (3.21) where the term τ τ -a h(t) dt can be bounded from below thanks to (3.18), (3.19) and (3.20).

Lemma 4 . 1 . 1 .c φ 1 2 s2 -c 2 =

 411122 Let f, g : R → R be 1-Lipschitz functions and t, a, b, δ ∈ R such that a > 0, |b| ≤ a, (4.1)andf (t + a) = f (t) + b, g(t -b) = f (t) + a, g(t + a -b) = f (t) + a + b + δ. We first note that if h : R → R is a 1-Lipschitz function then we have for every c, d ∈ R with c ≤ d, of fact, given c, d ∈ R with c ≤ d, we can define the functions φ 1 , φ 2 : [c, d] → R by φ 1 (s) = h(c) -(s -c) and φ 2 (s) = h(d) + (s -d),for all s ∈ R and notice that since h is 1-Lipschitz and h(c) = φ 1 (c), h(d) = φ 2 (d), we have h(s) ≥ h(c) -|s -c| = φ 1 (s) and h(s) ≥ g(d) -|s -d| = φ 2 (s) ∀s ∈ [c, d].Since φ 1 and φ 2 are affine with different slopes, there is a unique s ∈ R such thatφ 1 (s) = φ 2 (s), it is given by s = 1 2 h(c) -h(d) + c + d . Since s -c = (h(c) -h(d) -c + d)/2 and d -s = (h(d) -h(c) -c + d)/2 ≥ 0by 1-Lipschitzness of h, we have φ 1 ≥ φ 2 on [c, s] and φ 2 ≥ φ 1 on [s, d]. Then, we have d c h(s) ds ≥ s c φ 1 (s) ds + d s φ 2 (s) ds, where s(s) ds = (s -c) (h(c) + c) -1 c) -h(d) -c + d)h(c) -1 8 (h(c) -h(d) -c + d) 2 and d s φ 2 (s) ds = (d -s)(h(d) -d) d) -h(c) -c + d)h(d) -1 8 (h(d) -h(c) -c + d) 2 ,which gives (4.5). We can apply (4.5) to h = g on the interval [t -b, t + a -b] andh = -f on [t, t + a]. We obtain t + a -b) -g(t -b)) 2 + a 2 (g(t + a -b) + g(t -b)) -(t + a) + f (t)) 2 + a 2 (-f (t + a) -f (t)) -(t) -b) -a 24and implies(4.3). We can also apply (4.5) to h = -g on the interval [t -b, t + a -b] and h = f on [t, t + a] to get (t + a -b) + g(t -b))

  Remark 3.3. If we denote for every t ∈ R, by Rot f,- t : R 2 → R 2 the rotation of angle -π/2 with center O f t , by Rot g t : R 2 → R 2 the rotation of angle π/2 with center O g R 2 → R 2 the rotation of angle -π/2 with center O g t , then Lemma 3.1 implies by symmetry (we can exchange the roles of f anf g and/or reverse time) that for every t ∈ R, the sets Rot f,- t

	and by Rot g,-	t

t :

  .1) Since γ 1 , γ 2 and γ 4 are graphs, we have (see[START_REF] Tao | An integration approach to the Toeplitz square peg problem[END_REF] Example 3.3]) 

				t			t +a t				t -b t
			y dx =	f (s) ds,	y dx =		f (s) ds,	y dx =		g(s) ds.
			γ 1	t	γ 2		t+at		γ 4		t-bt
	Then (3.1) gives								
	t	t	f (s) ds -	t +a t t+at	f (s) ds +	Q([t,t ])	y dx -	t -b t t-bt	g(s) ds =	a 2 t -b 2 t 2	-	a 2 t -b 2 t 2
	and we conclude by the equality						
				t	t+at	t +a t				
				f (s) ds =	f (s) ds +					
			t		t							

t+at f (s) ds + t t +a t f (s) ds.

The result on SOSC(Γ) that we are stating here is not rigorously correct, we refer the reader to Tao's paper[START_REF] Tao | An integration approach to the Toeplitz square peg problem[END_REF] or to Lemma 3.1 and Remarks 3.2, 3.3 for a better understanding of the situation.

As we said, we sketch here a simplified version of Tao's proof, we refer the reader to[START_REF] Tao | An integration approach to the Toeplitz square peg problem[END_REF] for the complete proof.

We wrote a computer program in Python to generate at random pairs (f, g) of piecewise affine functions (over a dyadic partition of [0, 1]) as in Theorem 1.1 and compute the corresponding inscribed squares. We have not found any inscribed square with sidelength < 0.5 • maxt∈I {g(t) -f (t)}. By the way, we leave the reader to check the optimal constant has to be ≤ 0.5.

For every µ > 0, we set

The Lebesgue measure of this set is controlled by the area of Ω, we have: Lemma 3.9. For every µ > 0, L 1 (Λ µ ) ≤ L 2 (Ω)/µ.

Proof of Lemma 3.9. By Fubini's Theorem, we have

where V τ denotes the vertical line of abscissa τ . If τ ∈ [τ 0 , τ 1 ] is such that λ τ ≥ µ, then by (3.4) of Lemma 3.6, the 1-dimensional set Ω ∩ V τ contains at least a vertical segment of length µ, so that H 1 (Ω ∩ V τ ) ≥ µ. As a consequence, we have that

which proves the result.

We are now ready to conclude the proof of Theorem 1.1. We consider a constant B ≥ 2 to be fixed later and set ν := ρM and µ := 2Bρ 2 M.

Since

and

there exists by Lemma 3.7 (L 2 (Ω) ≤ ν 2 ) and Lemma 3.9 The contradiction will come from two inconsistent bounds for E, one from above given by Lemma 3.8 and one from below that will follow from Lemma 4.2. On the one hand, Lemma 3.8 gives

which yields (by (3.9))

In conclusion, we have proved that if

then we have τ -a < T < τ and Lemma 4.2 can be applied to the 2-Lipschitz function h := g -f . Assuming that (3.17) holds, we obtain

where (remember (3.12))

So, by setting u := τ -T , we have

By construction, we have u ∈ [M/4(1 -1/B), M/4(1 + 1/B)] (see (3.9)) and, by (3.13) and (3.16),

In conclusion, we have proved that if (3.17) is satisfied, then, by (3.11), (3.21) and the related inequalities, we have

where (remembering that

and D = Bρ + 2B 2 ρ 2 + B + 1. We obtain a contradiction if the pair ρ, B ∈ (0,

Since we have for every B > 3, Then we have

Proof of Lemma 4.2. Since the function h/2 is 1-Lipschitz, we can apply the lower bound (4.5) obtained at the beginning of the proof of Lemma 4.1. We obtain that for every c, d ∈ R, with c ≤ d, we have

We infer that

which gives (4.7).

Lemma 4.3. Let M, δ > 0 and B > 1 be fixed. Then for any a, u ∈ R such that

we have

Proof of Lemma 4.3. Let Φ : R 2 → R be the function defined by

The gradient of Φ is given by

So, if it vanishes at (a, u), we have Φ(a, u) = M 2 /4 and (a, u) is necessarily a local maximum of φ. As a consequence, the minimum of Φ on the closed set

is attained on the boundary. We check easily that the vector (1, -2) is never orthogonal to the fours faces of the boundary. This shows that the minimum of Φ on F has to be attained at one of the four corners of F whose images by Φ are given by

for = ±1. We note that since B > 1, we have 4(1 -1/B 2 ) > 3 -2/B -1/B 2 , so the minimum of the four values above is attained for (a, u) = (M (1 + δ), M (1 -1/B)/4), so we obtain that Φ(a, u) ≥

which proves the result.