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Abstract
This work focuses on the design of a 2D numerical scheme for the M1 model on conical meshes.

This model is nonlinear and approximates the firsts moments of the radiative transfert equation using an
entropic closure. Besides, this model admits a diffusion limit as the cross section increases. It is important
for the numerical scheme to be consistent with this limit, that is to say, it has to be asymptotic preserving
or AP. Such a scheme already exists on polygonal meshes and our work consisted in adapting it to conical
meshes. After having introduced conical meshes, we explain the construction of the scheme. It is based
on an analogy between the M1 model and the Euler gas dynamic system. We also present a second
order reconstruction procedure and we apply it on both polygonal and conical meshes. Moreover, we
prove that the scheme converges toward a limit scheme in the diffusion limit. In the last section, some
numerical test cases are given so as to compare the polygonal and conical schemes. The limit scheme is
studied and we observed numerically that it is consistent with the diffusion equation. Eventually, the
limit scheme is compared to a limit scheme coming from another moment model for the radiative transfer
equation (namely, the P1 model).
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1 Introduction
In this article, we focus on the following system, called M1 system:

∂tE + 1
ε
div F = 0,

∂tF + 1
ε
div P = − σ

ε2 F,
(1)

where ε is a positive coefficient, σ > 0 is the opacity. The time variable is denoted by t ≥ 0 and the space
variable is x ∈ R2. The unknowns of system (1) are the radiative energy E(t,x) and the radiative flux
F(t,x) ∈ R2. The pressure tensor P (t,x) ∈ R2×2 depends on E and F and writes :

P = E

2

(
(1− χ(f)) I2 + (3χ(f)− 1) f ⊗ f

‖f‖2

)
, χ(f) = 3 + 4‖f‖2

5 + 2
√

4− 3‖f‖2
, (2)

where f = F/E is the dimensionless flux, I2 is the identity matrix of size 2 and χ(f) is called the Eddington
factor. Furthermore the model satisfies E(t,x) > 0, ‖f(t,x)‖ ≤ 1 and as ε goes to 0, the radiative flux F
vanishes and E converges toward the solution of the diffusion equation :

∂tẼ − div
(

1
3σ∇Ẽ

)
= 0. (3)

This can be seen using a standard Hilbert expansion in powers of ε. A rigorous proof is given in the 1D case
in [1]. It is important for a numerical scheme that discretises system (1) to be consistent with this diffusion
limit. Such a scheme is called asymptotic preserving (AP ).

Figure 1: Definition of an AP scheme.

Figure 1 illustrates this property. The discretisation parameter is denoted by h, ε is the physical parameter
aimed at vanishing and which reflects the convergence of the model P ε toward the limit model P 0. A scheme
P εh consistant with P ε is said to be asymptotic preserving is the scheme P 0

h computed in the limit ε→ 0 is
consistent with the limit model P 0.

Originally, the M1 model was derived and studied in [2]. We refer to [3, 4] (see also [5]) for its mathematical
properties, and to [6, 7] for related modelling considerations. As we already mentioned, the M1 model is
based on the radiative transfer equation. Taking the two first moments of this equation with respect to
the velocity, we find system (1), where the matrix P is a priori not known. Then, assuming that I is the
minimum entropy distribution with first moments equal to E and F, allows for an explicit expression of I,
hence of P , as functions of E and F , namely (2). In [2], numerical tests were given in dimension 1, with
an HLL-type scheme. Such a discretization is in general not asymptotic preserving [8]. In [9], an AP finite
volume scheme was proposed for this model, in dimension 1, using an upwind discretization, together with
ideas of [10]. In [5, 11, 12], modifications of HLL-type fluxes were proposed to derive an AP scheme in
dimension 2 on cartesian grids. A discontinuous Garlerkin approach satisfying positivity and flux limitation
in dimension 1 was also considered in [13]. In [14, 15] (see also [16]), an AP scheme on deformed meshes in
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dimension 2 was proposed, based on nodal Riemann solvers [17, 18] and the method of Jin and Levermore [8].
This method is our starting point for deriving an asymptotic preserving scheme on conical meshes.
Some recent works have also focused on higher order AP schemes for the M1 model, as for instance [19],
with a Discontinuous Galerkin approach.
The method of entropy minimum closure has also been extended, first in the radiation setting, by including
more moments (this gives the so-called MN model). Note however that only N = 1 allows for an explicit
expression of the closure. In all other cases, the closure must be performed through a numerical method,
inducing an additional numerical cost and loss of accuracy. For these aspects, we refer to [20, 21] and
the references therein. The case of rarefied gas (in which the underlying kinetic equation is the linearized
Boltzmann equation instead of –here– the radiative transfer equation) was considered in [22], and the case
of electronic M1 model was studied in [23, 24, 25].
The M1 model (1), together with its generalizations MN , are known to exhibit unphysical shocks. This
is why a modified version of the MN models have been proposed in [26], with a discontinuous Galerkin
discretization.

The paper is organised as follows. In section 2, we define conical meshes and give some useful properties.
Once the model is reformulated (section 3), the design of the numerical scheme is described (section 4). Some
properties are given and a second order recontruction procedure is proposed. Section 5 is devoted to the
theoretical analysis of the scheme : we prove that the energy remains positive under a CFL condition. We
also give a rigorous proof of the AP property of the scheme (we mention here that the previous proofs were
formal and used a standard Hilbert expansion). Eventually, some numerical tests are presented in section
6. The present scheme is compared to the polygonal scheme and its properties (positivity, convergence) are
illustrated by numerical simulations.

In order to make the algebra clearer, vectors are denoted in bold in the rest of the paper.

2 Conical meshes
In this section, we define conical meshes. We follow the presentation of [27] [28]. Important geometrical
properties are presented and a quadrature formula is given in order to compute the integral of a smooth
function on a conical cell.

2.1 Rational quadratic Bezier curve
A rational quadratic Bezier curve is a curve {Mω(q), q ∈ [0, 1]} such that :

Mω(q) = (1− q)2M0 + 2ωq(1− q)M1 + q2M2

(1− q)2 + 2ωq(1− q) + q2 , (4)

where M0 and M2 are the extremities, M1 is the control point and ω ≥ 0 a scalar weight. The curve is said
to be :

• degenerate if ω = 0,

• elliptic if ω ∈ ]0, 1[,

• parabolic if ω = 1,

• hyperbolic if ω > 1.

In the first case (ω = 0), the curve is equal to the segment [M0,M2]. Note that the control point M1
almost never belongs to the curve (except in some very particular cases). This is the main drawback of this
parametrisation. This is why we prefer to parametrise the curve in a different way, using a point that lies
on the curve. The point is named the shoulder point and is defined by :

S = Mω(0.5) = 1
2(Q0 + Q2), Q0 = 1

1 + ω
(ωM1 + M0), Q2 = 1

1 + ω
(ωM1 + M2).
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Figure 2: Rational quadratic Bezier curve.
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Figure 4: Polygonal (left) and conical (right) meshes.

2.2 Computing the area of a conical cell
Let Ωj be a conical cell which center is denoted by xj . The area of Ωj can be computed using the following
formula :

|Ωj | =
∫

Ωj

dx = 1
2

∫
∂Ωj

〈x(s)− xj ,N(x(s))〉ds, (5)

where N(x(s)) is the unit normal vector to the edge at the curvilinear coordinate s ∈ ∂Ωj and ds is the
surface measure on ∂Ωj . In order to clarify the algebra, we define the following notation :

• (xr)r the coordinates of the vertices of the cell j,

• (M1,r+1/2)r+1/2 the coordinates of the control points of the cell j,

• (xr+1/2)r+1/2 the coordinates of the shoulder points of the cell j,

•
∑
r g

r
j : sum over all the vertices of the cell j of the quantity g (grj being the evaluation of the function

g on the vertex r in cell j),

•
∑
r+1/2 g

r+1/2
j : sum over all the shoulder points of the cell j of the quantity g,

•
∑

dof g
dof
j =

∑
r g

r
j +

∑
r+1/2 g

r+1/2
j : sum over all the degrees of freedom (dof) of the cell j of the

quantity g,

• Ndof =
∑
i 1 : number of cells that contains the given degree of freedom dof ,

•
∑
i g

dof
i : sum, for a given degree of freedom, over all the cells that contains this degree of freedom,
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•
∑
i∈Vj

gi : sum, for a given cell j, over the neighboring cells (those which share a dof with j, note that
j ∈ Vj),

•
∑
j∗ gj : sum over all the cells of the mesh,

•
∑

dof∗ g
dof : sum over all the degrees of freedom (nodes and shoulder points) of the mesh.

The integral (5) can be computed exactly using the coordinates of the vertices (xr)r and the control points
(M1,r+1/2)r+1/2 (cf [28]) :

|Ωj | =
1
2
∑
r

〈
Cr
j ,xr − xj

〉
+ 1

2
∑

r+1/2, control points

〈
Cr+1/2
j ,M1,r+1/2 − xj

〉
, (6)

it can also be expressed in terms of (xr)r and (xr+1/2)r+1/2 (cf [28]) :

|Ωj | =
1
2
∑
r

〈
C̃r
j ,xr − xj

〉
+ 1

2
∑

r+1/2, shoulder points

〈
C̃r+1/2
j ,xr+1/2 − xj

〉
= 1

2
∑
dof

〈
C̃dof
j ,xdof − xj

〉
. (7)

The coefficients Cr
j , Cr+1/2

j , C̃r
j and C̃r+1/2

j depend on the geometry of the cell and are given by :

Cr
j = 1

2
(
(1− f(ωr−1/2))Nr−1,r + (1− f(ωr+1/2))Nr,r+1 + f(ωr−1/2)Nr−1/2,r + f(ωr+1/2)Nr,r+1/2

)
,

Cr+1/2
j =

f(ωr+1/2)
2 (Nr,r+1/2 + Nr+1/2,r+1),

C̃r
j = 1

2
(
(1− h(ωr−1/2))Ñr−1,r + (1− h(ωr+1/2))Ñr,r+1 + h(ωr−1/2)Ñr−1/2,r + h(ωr+1/2)Ñr,r+1/2

)
, (8)

and :

C̃r+1/2
j =

h(ωr+1/2)
2 (Ñr,r+1/2 + Ñr+1/2,r+1),

with :

h(ω) = f(ω)1 + ω

ω
, f(ω) =



2ω
1− ω2

(
1√

1− ω2
arctan

(√
1− ω
1 + ω

)
− ω

2

)
if ω ∈ [0, 1[,

2
3 if ω = 1,

ω

ω2 − 1

(
ω + 1√

ω2 − 1
log
(
ω −

√
ω2 − 1

))
if ω > 1.

(9)
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Figure 5: Normal vector from a degree of freedom defined on boundary cell Ωj . Two types : endpoints Mr

denoted by C̃r
j or shoulder point denoted by C̃r+1/2

j

Figure 2.2 displays the curves of functions f and h (9).

Figure 6: functions f and h.

The following properties are satisfied :

• for any cell j : ∑
dof

C̃dof
j = 0,

• for any inner degree of freedom dof : ∑
i

C̃dof
i = 0. (10)

As a conclusion, for any given scalar valued function g and any vector valued function g, we approximate :
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
∫

Ωj

∇g =
∫
∂Ωj

gN ≈
∑
dof

gdof
j C̃dof

j ,∫
Ωj

div g =
∫
∂Ωj

〈g,N〉 ≈
∑
dof

〈
gdof
j , C̃dof

j

〉
,

(11)

where gdof
j and gdof

j are the values of the functions g and g at the degree of freedom dof in the cell j.
Formulas (11) are equalities if g and g are affine functions.

3 Reformulation of the model
Using the ideas from [29] and [16], system (1) can be written under the form of the gas dynamic system.
This system writes : 

∂tρ+ 1
ε
div(ρu) = 0,

∂t(ρu) + 1
ε
div(ρu⊗ u) + 1

ε
∇q = 0,

∂t(ρe) + 1
ε
div(ρeu) + 1

ε
div(qu) = 0,

∂t(ρs) + 1
ε
div(ρsu) ≥ 0,

(12)

where the density ρ, the velocity u, the massic energy e and the massic entropy s are the unknowns of the
system. The pressure q is a function of e and u.

In order to relate the M1 model (1) (2) to system (12), we define :

q := 1− χ(f)
2 E, u := 3χ(f)− 1

2‖f‖2 f = 2
3− χ(f) f , k := 3− χ(f)

2 E.

The following relations hold :

(E + q)u = F, F = ku, P = qI2 + F⊗ u.

Eventually system (1) can be written in the following form :
∂tE + 1

ε
div(Eu) + 1

ε
div(qu) = 0,

∂tF + 1
ε
div(F⊗ u) + 1

ε
∇q = − σ

ε2 F.
(13)

The structure of system (13) is quite similar to the one of system (12), for which numerical methods exist
(see [30] and [17]). We use similar ideas to define a numerical solution for system (13). The major differences
are that the velocity u and the pressure q depend on the unknowns E and F and that there is no density ρ.

4 Numerical method
In this section we introduce the numerical scheme : it is an adaptation of the method of [16] to conical
meshes. We give here the details of its construction. We want it to satisfy the following properties :

• positivity of the radiative energy : E > 0,

• limitation of the flux : ‖f‖ ≤ 1,
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• asymptotic preserving : the scheme obtained when ε vanishes is consistant with the limit diffusion
equation (3).

Our numerical scheme is based on the reformulation of the M1 model that is described in section 3. System
(13) is integrated over cell Ωj . We denote by Ej and Fj the averages of E and F over cell Ωj , thus leading
to : 

|Ωj | ∂tEj + 1
ε

∫
∂Ωj

E〈u,N〉+ 1
ε

∫
∂Ωj

q〈u,N〉 = 0,

|Ωj | ∂tFj + 1
ε

∫
∂Ωj

〈u,N〉F + 1
ε

∫
∂Ωj

q N = − σ
ε2

∫
Ωj

F.
(14)

First, we adapt the Gosse and Toscani method [31] to the M1 model and we use the ideas from [16]. The
source term is discretised using the node values :∫

Ωj

F ≈
∑
dof

βdof
j Fdof =

∑
dof

βdof
j kdof udof, (15)

since F = ku. The matrix βdof
j is given by :

βdof
j = C̃dof

j ⊗ (xdof − xj). (16)

The advection terms (div(Eu) and div(F⊗ u)) are discretised using an upwind scheme (94) :

∫
Ωj

div(Eu) =
∫
∂Ωj

E 〈u,N〉 ≈
∑
R+

j

〈
udof, C̃dof

j

〉
Ej +

∑
R−

j

〈
udof, C̃dof

j

〉
Ek(dof),

∫
Ωj

div(F⊗ u) =
∫
∂Ωj

〈u,N〉F ≈
∑
R+

j

〈
udof, C̃dof

j

〉
Fj +

∑
R−

j

〈
udof, C̃dof

j

〉
Fk(dof),

with :

R+
j = {dof,

〈
udof, C̃dof

j

〉
> 0}, R−j = {dof,

〈
udof, C̃dof

j

〉
< 0}.

The remaining integrals in (14) are approximated using formula (11) :
∫
∂Ωj

q〈u,N〉 ≈
∑
dof

qdof
j

〈
udof, C̃dof

j

〉
,∫

∂Ωj

q N ≈
∑
dof

qdof
j C̃dof

j .

In the end, the scheme associated to (14) writes :



|Ωj | ∂tEj + 1
ε

∑
R+

j

〈
udof, C̃dof

j

〉
Ej +

∑
R−

j

〈
udof, C̃dof

j

〉
Ek(dof)

+ 1
ε

∑
dof

qdof
j

〈
udof, C̃dof

j

〉
= 0,

|Ωj | ∂tFj + 1
ε

∑
R+

j

〈
udof, C̃dof

j

〉
Fj +

∑
R−

j

〈
udof, C̃dof

j

〉
Fk(dof)

+ 1
ε

∑
dof

qdof
j C̃dof

j = − σ
ε2

∑
dof

βdof
j kdof udof.

(17)
Note that scheme (17) is similar to the JLb scheme from [27]. The computation of udof and qdof

j is described
below. Coefficient kdof is given by :
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kdof = 1
Ndof

∑
i

ki, ki = 3− χ(fi)
2 Ei, (18)

where Ndof is the number of cells that contains the degree of freedom (Ndof = 2 for a shoulder point that is
not on the boundary).

Now we apply the ideas used in [29] for developing a 1D solver. We impose the following relation between
the pressures and the velocities at the degree of freedom and at the center of the cell :

qdof
j + rdof

j

〈
udof, ñdof

j

〉
= qj + rdof

j

〈
uj , ñdof

j

〉
(19)

where :

ñdof
j = 1

‖C̃dof
j ‖

C̃dof
j , qj = 1− χ(fj)

2 Ej , uj = 2
3− χ(fj)

fj . (20)

Several definitions of rdof
j are possible :

rdof
j = rj = 4√

3
Ej

3 + ‖uj‖2
, or : rdof

j = rdof = 1
Ndof

∑
i

ri. (21)

Equation (19) is equivalent to :

qdof
j C̃dof

j = qjC̃dof
j + rdof

j αdof
j (uj − udof),

with :

αdof
j = C̃dof

j ⊗ ñdof
j . (22)

The flux is modified using the Jin-Levermore [8] method. The equilibrium state obtained by setting to 0 the
time derivatives and the transport terms is given by ∇q = −(σk/ε)u. It is then added to the fluxes :[

qdof
j + 〈(∇q)dof ,xj − xdof〉

]
C̃dof
j = qjC̃dof

j + rdof
j αdof

j (uj − udof),
which can be written :[

qdof
j − σ

ε
kdof〈udof ,xj − xdof〉

]
C̃dof
j = qjC̃dof

j + rdof
j αdof

j (uj − udof).

Thus we define, using definition (16) :

Gdof
j := qjC̃dof

j + rdof
j αdof

j (uj − udof)−
σ

ε
βdof
j kdof udof. (23)

The scheme eventually writes :



|Ωj | ∂tEj + 1
ε

∑
R+

j

〈
udof, C̃dof

j

〉
Ej +

∑
R−

j

〈
udof, C̃dof

j

〉
Ek(dof)

+ 1
ε

∑
dof

〈
udof,Gdof

j

〉
= 0,

|Ωj | ∂tFj + 1
ε

∑
R+

j

〈
udof, C̃dof

j

〉
Fj +

∑
R−

j

〈
udof, C̃dof

j

〉
Fk(dof)

+ 1
ε

∑
dof

Gdof
j = − σ

ε2

∑
dof

βdof
j kdof udof.

(24)
The second line of system (24) can be simplified using (23) :

1
ε

∑
dof

Gdof
j + σ

ε2

∑
dof

βdof
j kdof udof = 1

ε

∑
dof

qjC̃dof
j︸ ︷︷ ︸

=0

+1
ε

∑
dof

rdof
j αdof

j (Mdofuj − udof) (25)
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+1
ε

(∑
dof

rdof
j αdof

j −
∑
dof

rdof
j αdof

j Mdof

)
uj ,

where Mr is defined by :

Mr =
(∑

i

rriα
r
i + σ

ε
krβ

r
i

)−1(∑
i

rriα
r
i

)
, (26)

and Mr+1/2 is defined below, see (39).
The semi-discrete system writes :

|Ωj |∂tEj + 1
ε

∑
R+

j

〈
udof, C̃dof

j

〉
Ej +

∑
R−

j

〈
udof, C̃dof

j

〉
Ek(dof)

+ 1
ε

∑
dof

〈
udof,Gdof

j

〉
= 0,

|Ωj |∂tFj + 1
ε

∑
R+

j

〈
udof, C̃dof

j

〉
Fj +

∑
R−

j

〈
udof, C̃dof

j

〉
Fk(dof)

+ 1
ε

∑
dof

Gdof ∗
j

= −1
ε

1
kj

(∑
dof

rdof
j αdof

j (I −Mdof)
)

Fj ,

(27)

with :

Gdof ∗
j = rdof

j αdof
j (Mdofuj − udof). (28)

We impose, for every inner degree of freedom dof :∑
i

Gr
i =

∑
i

Gr+1/2
i = 0. (29)

Equation (29) ensures the conservativity of the scheme. It allows also to compute udof for some given (qi)i,
(ri)i and (ui)i. Using definition (23), it writes :(∑

i

rdof
i αdof

i + σ

ε
kdofβ

dof
i

)
udof =

∑
i

qiC̃dof
i + rdof

i αdof
i ui. (30)

We have, for any inner node r :(∑
i

rriα
r
i + σ

ε
krβ

r
i

)
ur =

∑
i

qiC̃r
i + rriα

r
iui. (31)

The proof of the invertibility of the matrix
∑
i riα

r
i + σ

ε krβ
r
i is given below. However, for an inner shoulder

point, the matrix is not invertible. Denoting by i the unique cell different from j that contains the shoulder
point r + 1/2, we have :

C̃r+1/2
j + C̃r+1/2

i = 0,

and the matrix of equation (30) simplifies into :

r
r+1/2
i α

r+1/2
i + r

r+1/2
j α

r+1/2
j + σ

ε
kr+1/2(βr+1/2

i + β
r+1/2
j ) = C̃r+1/2

j ⊗Dr+1/2, (32)

with :

Dr+1/2 = (rr+1/2
j + r

r+1/2
i )ñr+1/2

j + σ

ε
kr+1/2(xi − xj). (33)

Therefore, the matrix of (32) has rank 1. The right hand side of (30) can be written under the form
br+1/2C̃r+1/2

j , with :

12



br+1/2 = qj − qi +
〈

ñr+1/2
j , r

r+1/2
j uj + r

r+1/2
i ui

〉
. (34)

Using ideas from [27], ur+1/2 is computed using the following formulas :

〈ur+1/2,Dr+1/2〉 = br+1/2, 〈ur+1/2, (Dr+1/2)⊥〉 = 1
2
〈
ur + ur+1, (Dr+1/2)⊥

〉
, (35)

where, for any ξ ∈ R2 :

ξ =
(
ξ1
ξ2

)
, ξ⊥ =

(
−ξ2
ξ1

)
, (ξ ξ⊥) =

(
ξ1 −ξ2
ξ2 ξ1

)
. (36)

The linear system solved by ur+1/2 can be written under the form :(
Ar+1/2 + σ

ε
Br+1/2

)
ur+1/2 = yr+1/2,

with :

Ar+1/2 = (rr+1/2
j + r

r+1/2
i )

(
ñr+1/2
j

(
ñr+1/2
j

)⊥)T
, Br+1/2 = kr+1/2

(
xi − xj (xi − xj)⊥

)T
,

(37)

yr+1/2 =
(

br+1/2
1
2 〈ur + ur+1,D⊥r+1/2〉

)
, (38)

thus allowing us to define Mr+1/2 by :

Mr+1/2 =
(
Ar+1/2 + σ

ε
Br+1/2

)−1
Ar+1/2. (39)

Remark 1. As noted in [27] and [28], if the mesh is conical degenerate (all the weights ω are set to 0), the
scheme under study is not equal to the classical polygonal scheme. Indeed, the contribution of the shoulder
points is nonzero and the two schemes may produce quite different results. This remark is highlighted by the
test cases below. Indeed, a parasite mode is observed with the classical polygonal node solver, but it is no
longer present with the conical degenerate scheme.

Remark 2. The definition of Mdof in (26) and (39) is arbitrary. Indeed, equation (25) is satisfied for any
choice of the matrix Mdof. However, as mentioned in [32], this particular choice (26) allows to recover the
Gosse-Toscani scheme [31] in the 1D case.

4.1 Partially implicit time discretisation
Only the source term in (27) is chosen implicit. The obtained scheme is thus easy to implement and its
stability condition is not too restrictive.



|Ωj |
En+1
j − Enj

∆t + 1
ε

∑
R+

j

〈
undof, C̃dof

j

〉
Enj +

∑
R−

j

〈
undof, C̃dof

j

〉
Enk(dof)

+ 1
ε

∑
dof

〈
undof,

(
Gdof
j

)n〉 = 0,

|Ωj |
Fn+1
j − Fnj

∆t + 1
ε

∑
R+

j

〈
undof, C̃dof

j

〉
Fnj +

∑
R−

j

〈
undof, C̃dof

j

〉
Fnk(dof)

+ 1
ε

∑
dof

(
Gdof ∗
j

)n
= −1

ε

(∑
dof

(
rdof
j

)n
αdof
j (I −Mn

dof)
)

1
knj

Fn+1
j .

(40)
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The polygonal scheme depends only on the values located at the nodes of the mesh (cf [16]) :



|Ωj |
En+1
j − Enj

∆t + 1
ε

 ∑
r,ljr〈un

r ,njr〉>0

ljr 〈unr ,njr〉Enj +
∑

r,ljr〈un
r ,njr〉<0

ljr 〈unr ,njr〉Enk(r) +
∑
r

〈
unr ,

(
Gr
j

)n〉 = 0,

|Ωj |
Fn+1
j − Fnj

∆t + 1
ε

 ∑
r,ljr〈un

r ,njr〉>0

ljr 〈unr ,njr〉Fnj +
∑

r,ljr〈un
r ,njr〉<0

ljr 〈unr ,njr〉Fnk(r) +
∑
r

(
Gr ∗
j

)n
= −1

ε

(∑
r

(
rrj
)n
α̂rj(Id −Mn

r )
)

1
knj

Fn+1
j ,

(41)
with :

njr = 1
2ljr

(
yr+1 − yr−1
xr−1 − xr+1

)
, ljr = 1

2 ||xr+1 − xr−1||, α̂rj = ljrnjr ⊗ njr.

4.2 Second order reconstruction
In this section, we explain how to modify the scheme (40) so as to make it second order in space while
ensuring that the reconstructed values of the energy are positive and that the reconstructed flux is limited.
To this aim, we adapt the ideas of [28]. Only the advection terms are modified (that is to say div(Eu) and
div(F⊗ u)). Writing them as functions of E and f , system (13) becomes :

∂tE + 1
ε
div(Eu) + 1

ε
div(qu) = 0,

∂t(Ef) + 1
ε
div(Ef ⊗ u) + 1

ε
∇q = − σ

ε2Ef .

For the sake of clarity, we will consider the following linear transport equations :{
∂tE + div(Ea) = 0,
∂t(Ef) + div(Ef ⊗ a) = 0,

where the velocity a is given. A first order scheme (such as the upwind scheme (94)) approximates the
solution with some piecewise constant function. Here the approximation is built using piecewise affine
functions : {

P 1
j (x, E) = Ej + 〈(∇E)j ,x− xj〉,
P 1
j (x,F) = Fj + (∇F)j · (x− xj).

The exponent 1 means that the polynomial has degree 1. Then the gradient of E is limited so as to have :
P 1
j (x, E) ≥ 0, thus we write :

P 1
j (x, E) = Ej + 〈(∇̃E)j ,x− xj〉 = Ej + αj,E〈(∇E)j ,x− xj〉,

where αj,E is the limiter (see [33]). Therefore we have P 1(x, E) ≥ 0. Moreover, using the Leibniz formula,
one can write :

P 1
j (x,F) = Fj + (∇F)j · (x− xj) = Ejfj + Ej(∇f)j · (x− xj) + 〈∇Ej ,x− xj〉fj .

The dimensionless flux f is thus approximated by :

R1
j (x, f) = P 1(x,F)

P 1(x, E) = fj + Ej
P 1(x, E) (∇f)j · (x− xj),

the letter R reminds that f is approximated by some rational fraction. The jacobian of f is then limited so
as to have

∥∥R1
j (x, f)

∥∥ ≤ 1 :
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R1
j (x, f) = fj + Ej

P 1(x, E)αj,f (∇f)j · (x− xj),

where αj,f may be a matrix or scalar limiter (its computation is based on convex hulls, cf [34]). Finally, F
is approximated by :

P 1
j (x,F) = P 1

j (x, E)R1
j (x, f).

Therefore, values of the unknowns at the degrees of freedom can be computed :

Edof
j = P 1

j (xdof, E), Fdof
j = P 1

j (xdof,F).

These values are then used instead of the cell-centered values :

|Ωj |∂tEj +
∑
R+

j

〈adof, C̃dof
j 〉Edof

j +
∑
R−

j

〈adof, C̃dof
j 〉Ek(dof) = 0,

with :

Ek(dof) = 1∑
I+

dof
〈adof, C̃dof

i 〉

∑
I+

dof

〈adof, C̃dof
i 〉Edof

i ,

and the same values are computed for F.

Remark 3. Another method would consist in directly limiting the jacobian of F so as to verify
∥∥P 1

j (x,F)
∥∥ ≤

P 1
j (x, E). However the first method gives much better results in practice. Indeed, the limiter of the vector

quantity (F or f) is based on the computation of the convex hulls of the values in the neighboring cells.
Therefore it is easier to ensure ‖f‖ ≤ 1 (since the bound is constant) than ‖F‖ ≤ E (since the value of E in
one cell does not necessarily lie in the convex hull of the values of the neighboring cells).

4.3 Diffusion limit scheme
In this section we describe the limit scheme, that is to say the scheme that is obtained as ε goes to 0 in (40).
It reads as :

|Ωj |
En+1
j − Enj

∆t +

∑
R+

j

〈
undof, C̃dof

j

〉
Enj +

∑
R−

j

〈
undof, C̃dof

j

〉
Enk(dof)

+
∑
dof

〈
Enj
3 C̃dof

j −
4σ
3 Endofβ

dof
j undof,undof

〉
= 0,

(42)
with Endof =

∑
iE

n
i /Ndof and :

(∑
i

βri

)
unr = 1

4σEnr

∑
i

Eni C̃r
i ,


〈unr+1/2, (xi − xj)〉 =

Enj − Eni
4σEnr+1/2

,

〈unr+1/2, (xi − xj)⊥〉 = 1
2 〈u

n
r + unr+1, (xi − xj)⊥〉.

It is an extension to conical meshes of the limit scheme of [16] :

|Ωj |
En+1
j − Enj

∆t +
∑

r,ljr〈un
r ,njr〉>0

ljr〈unr ,njr〉Enj +
∑

r,ljr〈un
r ,njr〉<0

ljr〈unr ,njr〉Enk(r)

+
Enj
3
∑
r

ljr〈unr ,njr〉 −
4σ
3
∑
r

Enr 〈βrjunr ,unr 〉 = 0,

βr unr = 1
4σEnr

∑
i

Eni lirnir.

(43)
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In addition, it is proved in [16] that the scheme (43) is consistent with the diffusion equation (3). In the
next section, we give a rigorous proof of the convergence of the scheme (40) toward the limit scheme (42)
as ε vanishes. In the previous works (such as [16]) this AP property was formally proved using a standard
Hilbert expansion.

5 Theoretical study of the scheme
5.1 Notation
We denote by J the number of cells of the mesh. The numerical solution at iteration n is denoted by
En,ε = (En,εj )j<J and Fn,ε = (Fn,εj )j<J . The scheme (40) can be written as :(

En+1,ε,Fn+1,ε) = z(ε, En,ε,Fn,ε),

where z : ]0, 1]×D→ RJ ×
(
R2)J is a function defined by :

(
E(1),F(1)

)
= z(ε, E,F) = (z1(ε, E,F), z2(ε, E,F)), D = {(E,F) ∈ RJ×

(
R2)J , ∀j < J, Ej > 0, ‖Fj‖ ≤ Ej}

and :

E
(1)
j = [z1(ε, E,F)]j = Ej −

∆t
|Ωj |


∑
R+

j

1
ε
〈udof, C̃dof

j 〉Ej +
∑
R−

j

1
ε
〈udof, C̃dof

j 〉Ek(dof)

︸ ︷︷ ︸
advection terms

+1
ε

∑
dof
〈udof,Gdof

j 〉

 ,
(44)

ÃjF(1)
j = Ãj [z2(ε, E,F]j = Yj , (45)

with :

Yj = Fj −
∆t
|Ωj |


∑
R+

j

1
ε
〈udof, C̃dof

j 〉Fj +
∑
R−

j

1
ε
〈udof, C̃dof

j 〉Fk(dof)

︸ ︷︷ ︸
advection terms

+1
ε

∑
dof

Gdof ∗
j

 , (46)

and :

Ãj = I + ∆t
ε|Ωj |kj

∑
dof

rdof
j αdof

j (I −Mdof). (47)

Moreover, equation (30) writes :(
Adof + σ

ε
Bdof

)
udof = ydof,

1
ε

udof = (εAdof + σBdof)−1 ydof, (48)

with, for a given vertex r :

Ar =
∑
i

rriα
r
i , Br = krβr, βr =

∑
i

βri , yr =
∑
i

qiC̃r
i + rriα

r
iui, (49)

and for a given shoulder point r + 1/2 :
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Ar+1/2 = (rr+1/2
j + r

r+1/2
i )

(
ñr+1/2
j

(
ñr+1/2
j

)⊥)T
, Br+1/2 = kr+1/2

(
xi − xj (xi − xj)⊥

)T
,

yr+1/2 =
(

br+1/2
1
2 〈ur + ur+1,D⊥r+1/2〉

)
,

where βri , αri , qi, rdof
i , ui, kdof, br+1/2 and Dr+1/2 are respectively defined in (16), (22), (20), (18), (34) and

(33).

The coefficients udof, Gdof
j , Gdof ∗

j and Mdof depend on ε, E and F. For a given (E,F) ∈ D, we de-
note by Emin and Emax the extrema of E.

Eventually, we assume periodic boundary conditions are imposed.

Lemma 5.1. Let (E,F) ∈ D and σ ≥ 0 and ε > 0, then the following properties are satisfied :∑
j∗

∑
dof

〈
udof,Gdof

j

〉
=
∑
dof∗

∑
i

〈
udof,Gdof

i

〉
= 0.

Besides, the advection part of the scheme being conservative (cf section 8.1), the scheme is conservative :∑
j∗
|Ωj |E(1)

j =
∑
j∗
|Ωj |Ej .

Here we choose : rdof
j = rdof and thus, for any vertex r :

Ar = rrαr, αr =
∑
i

αri .

This choice allows us to prove the following results.

Lemma 5.2. There exists a universal positive constant denoted by C5.2 such that, for any (E,F) ∈ D and
any ε > 0, the following inequalities hold true :

Ej − C5.2
∆t

σh2 + εh

∑
i∈Vj

Ei ≤ E(1)
j ≤ Ej + C5.2

∆t
σh2 + εh

∑
i∈Vj

Ei,

Remark 4. A sufficient condition condition for ensuring the positivity of the energy therfore write :

∆t < 1
C5.2

(σh2 + εh) min
j

{
Ej∑
i∈Vj

Ei

}
.

Lemma 5.3. There exists a universal positive constant denoted by C5.3 such that, for any (E,F) ∈ D and
any ε > 0, the following inequality holds true :

‖Yj‖ ≤ Ej + C5.3
∆t

σh2 + εh

∑
i∈Vj

Ei

The following lemma proves that the scheme is well defined.

Lemma 5.4. There exists a constant C5.4 > 0 such that, for any ε > 0, σ ≥ 0 and (E,F) ∈ D, if ∆t
satisfies :

∆t < C5.4 ε
σh+ ε

σ
min
j

{
Ej∑
i∈Vj

Ei

}
,

then the matrix Ãj in (47) is invertible.
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The following lemma is more interesting since it proves the invertibility of the matrix in the diffusion regime
(ε� 1) for a given timestep ∆t.

Lemma 5.5. There exists a universal positive constant C5.5 such that, for any (E,F) ∈ D, any σ ≥ 0 and
for ε > 0 such that :

εC5.5
h

∆t

1 + ∆t
σh2 + εh

1
Ej

∑
i∈Vj

Ei

 < 1,

the matrix Ãj in (45) is invertible and the following inequalities hold true :

∥∥∥F(1)
j

∥∥∥ ≤ C5.5
εh

∆t

Ej + ∆t
σh2 + εh

∑
i∈Vj

Ei

 ,
∥∥∥f (1)
j

∥∥∥ ≤ C5.5
εh

∆t
Ej + ∆t

σh2+εh
∑
i∈Vj

Ei

Ej − ∆t
σh2+εh

∑
i∈Vj

Ei
.

Lemma 5.6. For δ ≥ 0 we define :

Dδ = {(E,F) ∈ RJ ×
(
R2)J , ∀j < J, Ej > δ, ‖Fj‖ ≤ Ej}.

For any δ > 0, there exists εδmin > 0 such that z is continuous on [0, εδmin[×Dδ.

Theorem 5.7. Let N ∈ N be the number of iterations and (En,ε,Fn,ε)n<N ∈ DN be the solution to (40)
for a given ε > 0. Assume that, for ε > 0 small enough :

∃δ > 0, ∀n < N, (En,ε,Fn,ε) ∈ Dδ, (50)

and that the initial conditions is of the form :

E0,ε = E(t = 0) (independent of ε), F0,ε = 0.

We define the limit scheme (En,0)n<N by :

∀n < N, En+1,0 = z1(0, En,ε,0).

Then, for any n < N :

Fn,ε −−−→
ε→0

0, En,ε −−−→
ε→0

En,0

and (En,0)n<N is the solution to (42).

Remark 5. We do not know a priori if assumption (50) is satisfied in general. However, if we assume that :

∀n < N, ∆t ≤ 1
2C

2
5.2(σh2 + εh)E

n
min

Enmax
, (51)

and that C5.2 is chosen large enough so as to ensure :
∑
i∈Vj

Ei ≤ C5.2Emax for any cell j and any E,
then (50) holds true. Note however that this assumption is very restrictive (see below). Indeed, according to
lemma 5.2, if (51) is true then :

∀j < J, ∀n < N,
1
2E

n
min ≤ En+1

j ≤ 3
2E

n
max.

Since the scheme is conservative and the energy is positive, there exists a constant C4 > 0 such that :
Enmax ≤ C4 for all n. Therefore :

Enmin
Enmax

≥ 2−nC−1
4

E0
min

E0
max

.

So a way to ensure (51) is to impose :
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∆t ≤ C̃4(σh2 + εh)E
0
min

E0
max

2−N , C̃4 = C2
5.2

2C4
(52)

Reminding that the timestep ∆t, the number of iterations N and the final time T are such that : T = ∆tN
then (52) reads as :

∆t2 T
∆t ≤ C̃4(σh2 + εh)E

0
min

E0
max

.

The left-hand side is minimal in ∆t for ∆t = T ln(2) and thus :

T ≤ 2−
1

ln(2)
1

ln(2) C̃4︸ ︷︷ ︸
:=C′4

(σh2 + εh)E
0
min

E0
max

.

In other words, for a given h > 0, we can only reach a time T ≤ C ′4(σh2 + εh)E0
min/E

0
max.

5.2 Assumptions on the mesh
First we need some assumptions on the regularity of the mesh. We denote by h the characteristic length
of the mesh (h = ∆x for a cartesian mesh). We assume that there exists a numerical constant C1 > 0
independent of h such that, for any cell j, any dof , any node r and any shoulder point r + 1/2 :

|Ωj | ≤ C1h
2,

1
|Ωj |

≤ C1

h2 , Ndof ≤ C1, Card(Vj) ≤ C1, (53)

‖C̃dof
j ‖ ≤ C1h, ‖αdof

j ‖ ≤ C1h, ‖βdof
j ‖ ≤ C1h

2, (54)

and :

‖β−1
r ‖ ≤

C1

h2 ,

∥∥∥∥(xi − xj (xi − xj)⊥
)−1

∥∥∥∥ ≤ C1

h
. (55)

Therefore we have :

∥∥β−1
r C̃r

j

∥∥ ≤ C2
1
h
,

∥∥β−1
r αrj

∥∥ ≤ C2
1
h
, (56)

Without loss of generality, we assume that C1 is large enough and simplify :∥∥β−1
r C̃r

j

∥∥ ≤ C1

h
,

∥∥β−1
r αrj

∥∥ ≤ C1

h
, (57)

We also assume that βr is positive definite for any vertex r and :

∀ξ ∈ R2, 〈ξ, βrξ〉 ≥
1
C1
h2‖ξ‖2, 〈ξ, αrξ〉 ≥

1
C1
h‖ξ‖2, (58)

and for any shoulder point r + 1/2 :

∀λ ≥ 0,
∥∥∥ñr+1/2

j + λ(xi − xj)
∥∥∥ ≥ 1

C1
(1 + λh), (59)

where j and i are the indices of the cells that contain the shoulder point r + 1/2.
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5.3 Proof of lemma 5.2
5.3.1 First step

Using 1/3 ≤ χ(fj) ≤ 1 and the definitions (18) and (20), it can be proved that there exists a constant C̃1 > 0
independent of (ε, E,F) such that, for any cell j and any dof :

qj ≤ C̃1Ej , ‖uj‖ ≤ C̃1, rj ≤ C̃1Ej , kj ≤ C̃1Ej , kdof ≤ C̃1
∑
i

Ei, (60)

and :

qj ≤ C̃1kj ,
1
C̃1
kj ≤ rj ≤ C̃1kj ,

1
C̃1
kdof ≤ rdof ≤ C̃1kdof. (61)

Without loss of generality, we assume C̃1 = C1.

5.3.2 Second step

In this part we prove an estimate on udof of the form :

‖udof‖ ≤ C62
ε

σh+ ε
, (62)

for some universal constant C62 > 0. To this aim, we show an estimate of the form :

‖(εAdof + σBdof)−1‖ ≤ C63

hmdof(ε+ σh)
1∑
iEi

, (63)

for some universal constant C63 > 0, with mdof = 1 if dof is a vertex, 0 if it is a shoulder point. Here
∑
iEi

stands for the sum of all the cells containing the degree of freedom dof . The proof uses the facts that the
matrices Adof and Bdof satisfy :

‖Adof‖ ≤ C3
1h

mdof
∑
i

Ei, ‖Bdof‖ ≤ C3
1h

mdof+1
∑
i

Ei. (64)

First case : the vertices

We define :

Ãr = 1
h
∑
iEi

Ar, B̃r = 1
h2∑

iEi
Br,

then :

1
h(σh+ ε)

∑
iEi

(εAr + σBr) = ε

σh+ ε
Ãr + σh

σh+ ε
B̃r, (65)

and, due to (58) and (61):

〈x, Ãrx〉 ≥
1
C2

1
‖x‖2, 〈x, B̃rx〉 ≥

1
C2

1
‖x‖2,

Therefore (65) writes as a convex combination of Ãr and B̃r and we have, for any node r :

∀λ ∈ [0, 1],
(
λÃr + (1− λ)B̃r

)
∈
{
M | ‖M‖ ≤ C3

1 , min
‖x‖=1

〈x,Mx〉 ≥ 1
C2

1

}
:=M,

SinceM is a compact subset of the set of invertible matrices and since the mapping that gives the inverse
of a matrix is a continuous mapping, there exists a constant CM > 0 such that :

∀λ ∈ [0, 1], ∀r, ‖(λÃr + (1− λ)B̃r)−1‖ ≤ CM,
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which proves (63) in the case of vertices.

Second case : the shoulder points

One has :

εAr+1/2 + σBr+1/2 = ε
(

Dr+1/2 D⊥r+1/2

)
.

Since
(

Dr+1/2 D⊥r+1/2

)
/‖Dr+1/2‖ is a rotation matrix, it is invertible and there exists a universal constant

C2 > 0 such that :

‖Dr+1/2‖
∥∥∥∥(Dr+1/2 D⊥r+1/2

)−1
∥∥∥∥ ≤ C2,

and using (59) one can write :

‖Dr+1/2‖ =
∥∥∥rr+1/2ñr+1/2

j + kr+1/2
σ

ε
(xi − xj)

∥∥∥ ≥ rr+1/2
1
C1

(
1 +

kr+1/2

rr+1/2

σ

ε
h

)
,

and thus :

‖Dr+1/2‖ ≥
1
C2

1

∑
i

Ei

(
1 + σh

ε

)
,

∥∥∥(εAr+1/2 + σBr+1/2
)−1
∥∥∥ ≤ C2

1C2
1

σh+ ε

1∑
iEi

.

Therefore (63) is proved. Moreover, on can easily check that : ‖yr‖ ≤ C2
1h
∑
iEi. Therefore, using equation

(48), we have :

1
ε
‖ur‖ ≤

CMC
2
1

ε+ σh
,

and using the definition of yr+1/2 (38), one eventually has :

‖yr+1/2‖ ≤ C2
1
∑
i

Ei,
1
ε
‖ur+1/2‖ ≤

C4
1C2

ε+ σh
.

5.3.3 Conclusion of the proof

The fluxes are defined by :

Gdof
j := qjC̃dof

j + rdofα
dof
j uj − rdofα

dof
j udof −

σ

ε
βdof
j kdof udof,

therefore, according to (60), (54) and (62), there exists a constant C66 > 0 such that :

∥∥Gdof
j

∥∥ ≤ C66

Ejh+
∑
i∈Vj

Eih+
∑
i∈Vj

Eih
ε

σh+ ε
+ σ

ε
h2
∑
i∈Vj

Ei
ε

σh+ ε

 ≤ C66h
∑
i∈Vj

Ei, (66)

hence, thanks to (62) :

1
ε

∣∣〈udof,Gdof
j 〉
∣∣ ≤ C62C66

h

σh+ ε

∑
i∈Vj

Ei.

The advection terms in (44) can also be bounded from above by C ′h
∑
i∈Vj

Ei/(σh+ ε), for some universal
constant C ′ > 0, thus the right hand side of (44) can be bounded from above by :

Ej + C5.2
h

σh+ ε

∑
i∈Vj

Ei
∆t
h2 ,
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thus leading to :

Ej − C5.2
∆t

σh2 + εh

∑
i∈Vj

Ei ≤ E(1)
j ≤ Ej + C5.2

∆t
σh2 + εh

∑
i∈Vj

Ei, (67)

and a sufficient condition for keeping the energy positive writes :

∆t < 1
C5.2

(σh2 + εh) min
j

{
Ej∑
i∈Vj

Ei

}
. (68)

5.3.4 Continuity of udof/ε

The previous computation shows that the mapping ]0,+∞[×D 3 (ε, E,F) → udof/ε admits a continuous
extension on [0,+∞[×D.

5.4 Proof of lemma 5.3
Let (E,F) ∈ D. Using the definition of Mdof (26) (39), one can write :

1
ε
Mdof = (εAdof + σBdof)−1

Adof. (69)

According to (63) and (64), there exists a constant C70 > 0 such that :

‖Mdof‖ ≤ C70
ε

σh+ ε
. (70)

In addition, using the definition of Gdof ∗
j (28), one can prove the existence of a constant C71 > 0 such that :∥∥Gdof ∗

j

∥∥ ≤ C71
εh

σh+ ε

∑
i∈Vj

Ei. (71)

The advection terms in (45) are also bounded from above by C ′h
∑
i∈Vj

Ei/(σh + ε), thus the right hand
side of (45) Yj satisfies :

‖Yj‖ ≤ Ej + C5.3
∆t

σh2 + εh

∑
i∈Vj

Ei.

5.5 Proof of lemma 5.4
According to equation (47), we can write Ãj as :

Ãj = I + ∆tA′j , A′j = 1
ε|Ωj |kj

∑
dof

rdofα
dof
j (I −Mdof), (72)

In addition, one has :

I −Mdof = σ (εAdof + σBdof)−1
Bdof.

According to (63) and (64), there exists a constant C73 > 0 such that :

‖I −Mdof‖ ≤ C73
σh

σh+ ε
. (73)

and therefore there exists a constant C74 > 0 such that :

‖A′j‖ ≤ C74
1
ε

σ

σh+ ε

∑
i∈Vj

Ei

Ej
, (74)

thus if :
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∆tC74

ε

σ

σh+ ε

∑
i∈Vj

Ei

Ej
< 1, (75)

then Ãj is invertible.

Moreover, under the condition (75), one can prove the following inequalities :∥∥Ã−1
j

∥∥ ≤ 1
1− C74

∆t
ε

σ
σh+ε

1
Ej

∑
i∈Vj

Ei
,

∥∥∥F(1)
j

∥∥∥ ≤ 1
1− C74

∆t
ε

σ
σh+ε

1
Ej

∑
i∈Vj

Ei

Ej + C5.3
∆t

σh2 + εh

∑
i∈Vj

Ei

 ,

and :

∥∥∥f (1)
j

∥∥∥ ≤ 1
1− C74

∆t
ε

σ
σh+ε

1
Ej

∑
i∈Vj

Ei

Ej + C5.3∆t
∑
i∈Vj

Ei
1

σh2+εh

Ej − C5.3∆t
∑
i∈Vj

Ei
1

σh2+εh

5.6 Proof of lemma 5.5
First we prove that the matrix Ãj of (45) is invertible if ε is small enough, for a given ∆t. We can write it
as :

Ãj = 1
ε

(Aj + εHj) , Aj = ∆t
|Ωj |kj

∑
dof

rdofα
dof
j , Hj = I − ∆t

|Ωj |kj

∑
dof

rdofα
dof
j

Mdof

ε
. (76)

For (E,F) ∈ D, note that :

C2
1

∑
i∈Vj

Ei

Ej
≥ rdof

kj
≥ 1
C2

1
.

Moreover, the matrix Aj is symmetric positive definite and :

∀ξ ∈ R2, 〈ξ, Ajξ〉 ≥
1
C2

1

∆t
h2

〈
ξ,

(∑
dof

αdof
j

)
ξ

〉
≥ 1
C3

1

∆t
h
‖ξ‖2,

and thus Aj is invertible and there exists a universal constant C77 such that :

‖A−1
j ‖ ≤ C77 max

λ∈Sp(Aj)

1
λ
≤ C77C

3
1
h

∆t . (77)

Moreover, one can write :

Ãj = 1
ε

(Aj + εHj) = 1
ε
Aj
(
I + εA−1

j Hj

)
, (78)

and Hj satisfies :

‖Hj‖ ≤ C79

1 + ∆t
σh2 + εh

1
Ej

∑
i∈Vj

Ei

 . (79)

Therefore, if :

ε C80
h

∆t

1 + ∆t
σh2 + εh

1
Ej

∑
i∈Vj

Ei

 < 1, C80 = C79C77C
3
1 , (80)
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then
(
I + εA−1

j Hj

)
is invertible and so is Ãj (using equation (78)). In addition one can write :

(
I + εA−1

j Hj

)−1 =
+∞∑
l=0

(−ε)l
(
A−1
j Hj

)l
,

and if :

εC79C77C
3
1
h

∆t

1 + ∆t
σh2 + εh

1
Ej

∑
i∈Vj

Ei

 ≤ 1
2 , then :

∥∥∥(I + εA−1
j Hj

)−1
∥∥∥ ≤ +∞∑

l=0
2−l = 2.

Eventually : ∥∥Ã−1
j

∥∥ ≤ 2C77C
3
1
εh

∆t ,

and using lemma 5.3, we have :

∥∥∥F(1)
j

∥∥∥ ≤ C81
εh

∆t

Ej + ∆t
σh2 + εh

∑
i∈Vj

Ei

 , (81)

The dimensionless flux f (1)
j = F(1)

j /E
(1)
j can therefore be bounded by :

∥∥∥f (1)
j

∥∥∥ ≤ C81
εh

∆t
Ej + ∆t

∑
i∈Vj

Ei
1

σh2+εh

Ej − C5.2∆t
∑
i∈Vj

Ei
1

σh2+εh
,

which is smaller than 1 if ε is small enough.

5.7 Proof of lemma 5.6
Since the scheme is conservative and the energy is positive (by assumption), there exists a constant C5.6 > 0
such that, for any cell j :∑

i∈Vj

Ei ≤ C5.6
‖E0‖L1

h2 , with :
∥∥E0∥∥

L1 =
∑
j∗
|Ωj |

∣∣E0
j

∣∣ =
∑
j∗
|Ωj |E0

j . (82)

hence :

1
Ej

∑
i∈Vj

Ei ≤ C5.6
‖E0‖L1

δh2 .

Define :

εδmin := ∆t
C80h

(
1 + ∆t

σh2 + εh
C5.6
‖E‖L1

δh2

)−1
.

Equations (69) and (76) show that Mdof/ε and Ã−1
j admit continuous extensions on [0, εδmin[×Dδ. The other

coefficients (qj , uj etc) are also continuous with respect to (E,F), thus z is continuous on [0, εδmin[×Dδ.

5.8 Proof of theorem 5.7
Let (En,ε,Fn,ε)n≤N be a numerical solution (N being the number of iterations) that is to say :

∀n < N, (En+1,ε,Fn+1,ε) = z(ε, En,ε,Fn,ε),

which can be writen :
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∀n < N,

{
En+1,ε = z1(ε, En,ε,Fn,ε)
Fn+1,ε = z2(ε, En,ε,Fn,ε).

According to (82, one has, for all n < N and j < J and ε > 0 :

En,εj ≤ C5.6
‖E0‖L1

h2 ,

and according to lemma (5.4), there exists a constant C5.7 depending on the mesh, on δ and σ such that :

∀n < N, ∀j < J,
∥∥Fn,εj

∥∥ ≤ C5.7ε,

leading to : (Fn,ε)n≤N −−−→
ε→0

0.

The diffusion limit (En,0)n≤N is defined by :

∀n < N, En+1,0 = z1(0, En,ε,0). (83)

Then, since z and z1 are continuous :

E1,ε = z1(ε, E(t = 0),0) −−−→
ε→0

z1(0, E(t = 0),0) (84)

Thus, by induction :

En,ε −−−→
ε→0

En,0. (85)

Indeed, if En,ε −−−→
ε→0

En,0 then :

En+1,ε = z1(ε, En,ε︸︷︷︸
→En,0

,Fn,ε︸︷︷︸
→0

) −−−→
ε→0

z1(0, En,0,0) = En+1,0.

As a conclusion, property (85) is true for any n ≤ N .

In addition, by assumption , there exists a constant δ > 0 such that :

∀ε ∈]0, εδmin[,∀n ≤ N, ∀j < J, En,εj ≥ δ.

Thus :

∀n ≤ N, ∀j < J, En,0j ≥ δ.

Therefore En,0 does not vanish and :

qn,εj −−−→
ε→0

En,0j

3 , kn,εdof −−−→ε→0

4En,0dof
3 = kn,0dof , un,εj −−−→

ε→0
0, yn,εr −−−→

ε→0

1
3
∑
i

En,0i C̃r
i = yn,0r

yn,εr+1/2 −−−→ε→0

(
(En,0j − En,0i )/3

σkn,0r+1/2〈u
n,0
r + un,0r+1, (xi − xj)⊥〉/2

)
= yn,0r+1/2,

1
ε

un,εdof −−−→ε→0
(Bn,0dof )

−1yn,0dof = un,0dof ,

which writes, for a given node r :

σkn,0r βrun,0r = 1
3
∑
i

En,0i C̃r
i ,

and for a given shoulder point r + 1/2 :
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
〈un,0r+1/2, (xi − xj)〉 =

En,0j − En,0i

3σkn,0r+1/2
,

〈un,0r+1/2, (xi − xj)⊥〉 = 1
2 〈u

n,0
r + un,0r+1, (xi − xj)⊥〉.

As a conclusion, (En,0)n≤N is solution to (42).

5.9 Invertibility of the matrix βr

In this section, we give some suffisant conditions to ensure that the matrix βr =
∑
i β

r
i , with βrj = C̃r

j ⊗
(xr − xj), is invertible. In [16], this result is proved, under some conditions on the mesh, for the polygonal
scheme. Here we prove this result for a conical degenerate mesh (ω = 0) and thus the result still holds true
for ω small enough since the determinant is a continuous mapping. For ω = 0 the coefficient C̃r

j writes,
according to equation (8) :

C̃r
j = 1

2

(
(1− π

2 )Ñr−1,r + (1− π

2 )Ñr,r+1 + π

2 Ñr−1/2,r + π

2 Ñr,r+1/2

)
where Ñr−1,r is the normal vector to [xr,xr+1] and Ñr,r+1/2 is the normal vector to [xr,xr+1/2]. Since the
shoulder point is given by Sr+1/2 = (Mr + Mr+1)/2 then :

Ñr−1/2,r = 1
2Ñr−1,r, Ñr,r+1/2 = 1

2Ñr,r+1

and :

C̃r
j = 1

2

(
1− π

4

) (
Ñr−1,r + Ñr,r+1

)
=
(

1− π

4

) 1
2(xr+1 − xr−1)⊥ =

(
1− π

4

)
Cr
j︸︷︷︸

polygonal

thus βr = (1− π/4)βpolygonal
r is invertible.

6 Numerical results
This section is dedicated to several numerical test cases. First we show some examples for which the conical
scheme (40) gives much better results than the polygonal one. We also describe two particular regimes of the
M1 model for which exact solutions can be computed : the streaming regime (section 6.2) and the diffusion
regime (section 6.3). These examples allow to compute the convergence rate of the scheme.
In some test cases, the radiative energy can be 0, then we define f as :

f =


F
E

if E > 0,

0 else.
When no other precision is given, the timestep is chosen as : ∆t = (∆x)2/10, with ∆x = 1/Nx, Nx being
the number of cells in abscissa. The number of cells in the y direction is denoted by Ny.

For the 1D test cases (the solution does not depend on y) (sections 6.2.1, 6.2.3 and 6.3.1), the solutions
are computed using the conical degenerate (ω = 0) scheme only. We observed very few differences with the
polygonal scheme.

In practice, conical meshes are computed in the following ways :

• for cartesian, Kershaw type (21) and Voronoi type (16) meshes, a control point is added to each edge
at a distance worth 20% of its length,

• for a radial mesh (18), a control point is added to each edge and the weights ω of the edges are chosen
so the edges are circles center at (0.5, 0.5) (cf [27]).
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6.1 Propagation of a Dirac mass
The initial data is a Dirac mass for E (86) on a cell j located at the center of the domain and we compare
the polygonal and conical schemes on several meshes.

E(0, x, y) =


1
|Ωj |

if (x, y) ∈ Ωj ,

0 else,
F(t = 0) = 0. (86)

This model is close to the streaming regime of section 6.2. The final time is t = 0.2 and σ = 0, ε = 1. The
simulation failed when using the polygonal scheme (41) (we obtained values of ‖f‖ larger than 4/3, thus
making it impossible to compute the Eddington factor (2). However, the conical scheme (40) proved to be
more stable since the values of ‖f‖ remained smaller than 4/3. Figure 7 shows the results.
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Figure 7: Numerical solution for Nx = Ny = 40 using the conical degenerate (left) and conical parabolic
(right) scheme at t = 0.2 with initial data (86).

6.2 Streaming regime test cases
This regime is charaterised by σ = 0, ε = 1 and ‖f‖ = 1. Then q = 0 and u = f . Periodic boundary
conditions are imposed.

Remark 6. If F = Ea with a constant, ‖a‖ = 1, then (E,F) is solution of the M1 model if and only if E
satisfies :

∂tE + div(Ea) = ∂tE + 〈∇E,a〉 = 0, that is to say : E(t,x) = E(0,x− ta).

In such a case, the scheme (40) reduces to the upwind scheme (94) and : ∀n, Fn = Ena. This property is
used in the first and the second test cases of this section.
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6.2.1 Transport of a step function

This test case comes from [16]. The initial data is :

E(0, x, y) = Fx(0, x, y) =
{

1 si x ∈ [0.4, 0.6],
0.0001 sinon,

Fy = 0, (87)

and σ = 0, ε = 1. The quantities E and F are transported at velocity a = (1, 0). Figure 8 (right) shows the
absolute L1 error on E as a function of the space step ∆x. The number of cells in the y direction, denoted
Ny, is set at 1. The rate of convergence is 0.5, which is expected for a discontinuous solution.

Figure 8: Numerical solution for Nx = 400 and Ny = 1 using the conical degenerate scheme at t = 0.2 (left)
and L1 error on E (right) with initial data (87).

6.2.2 Smooth solution

The initial data of this test case is smooth and writes :

(E,Fx, Fy)(0,x) =
(
g(x), g(x)√

2
,
g(x)√

2

)
, g(x) = 1 + e−γ||x−x0||2 (88)

with : x0 = (0.25, 0.25), γ = 100, and σ = 0, ε = 1. Here E and F are transported with a velocity
a = (1, 1)/

√
2.
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Figure 9: Numerical solution on a cartesian mesh (Nx = Ny = 40) with the polygonal scheme (41) (up left),
conical degenerate (up right), conical parabolic (down left) and exact solution (down right) at times t = 0.05
with initial data (88).
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Figure 9 shows that the conical solution is closer to the exact solution than the polygonal one. Figure 10
shows the L1 error as a function of the space step ∆x = 1/Nx = ∆y = 1/Ny. A first order rate is recovered
for both schemes. A second order rate is also recovered when using the reconstruction described in section
4.2.

Figure 10: L1 error on E with the first order scheme (40) (left), second order reconstruction (right) and with
initial data (88).

6.2.3 Singular solution

This test case comes from [29]. The initial data is :

(E,Fx, Fy)(0, x, y) =
(

1, 0.7− x
0.4 ,

√
E2 − F 2

x

)
if x ∈ ]0.3, 0.7[, 0, elsewhere, (89)

and σ = 0, ε = 1. The exact solution is defined for t < 0.4 :

(E,Fx, Fy)(t, x, y) =
(

0.4
0.4− t , 0.4

0.7− x
(0.4− t)2 ,

√
E2 − F 2

x

)
if x ∈ ]0.3 + t, 0.7[, 0, elsewhere.

Figure 11: Numerical solution (left) computed with the conical degenerate scheme and exact solution (right)
for Nx = 400 and Ny = 1 at t = 0.2 with initial data (89).
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Figure 12 shows the L1 error on E as a function of ∆x = 1/Nx computed with the conical degenerate scheme,
Ny being set at 1. The results of the polygonal scheme are almost identical. The rate of convergence is 0.5,
which is expected for a discontinuous solution.

For this test case, we had to choose rdof
j = rj instead of rdof

j = rdof. Indeed the later lead to values of
the f such that ‖f‖ > 4/3, thus making the Eddington factor (2) ill-defined. We noticed that the choice
rdof
j = rj allowed to overcome that difficulty. One possible explanation is the following. The coefficient rdof

j

is the analogous of the acoustic impedance for the gas dynamic equations (12). It has been studied in [35]
that choosing the value of the acoustic impedance at the centers of the cells (in our case, this corresponds
to rdof

j = rj) makes the CFL condition much less restrictive than in the case where it is computed at the
boundaries (here it corresponds to rdof

j = rdof).

Figure 12: L1 error on E using the conical degenerate scheme with initial data (89)

Remark 7. We used the second order reconstruction 4.2 on this test case. We noticed that if the quantity F
was directly reconstructed then the norm of the dimensionless flux ‖f‖ could be larger than 4/3, thus making
the Eddington factor (2) ill-defined. This is no longer the case when the quantity f is reconstructed.

6.3 Diffusion regime
Here σ = 1, ε is chosen small enough and F(t = 0) = 0. The conical scheme (40) is compared with the
conical diffusion limit scheme (40) and the exact solution of the diffusion equation (the exact solution for F
being 0). The final time is Tf = 0.003.

6.3.1 1D test case

This test case comes from [29]. The initial data is :

E(0, x, y) =
{

1 if x ∈ ]0.4, 0.6[,
10−6 else.

(90)

The exact solution is given by :

E(t, x, y) = 1− 10−6

2

(
erf
(
x− 0.4√

4tκ

)
− erf

(
x− 0.6√

4tκ

))
+ 10−6, κ = 1

3σ ,

Figure 13 shows the numerical solution computed with the conical degenerate scheme with ε = 0.015 and
σ = 1. The curve given in [29] is well recovered. The curves computed with smaller values of ε (10−3, 10−4)
are quite similar.
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Figure 13: Numerical solution computed with the conical degenerate scheme, Nx = 400, Ny = 1, with
ε = 0.015 and initial data (90).

Figure 14 shows the L1 error on E as a function of ∆x = 1/Nx, Ny = 1. The convergence rate is 1 (2 with
the reconstruction step). We only display the results for the conical degenerate mesh since the polygonal
scheme gives almost the same results in this test case.

Figure 14: L1 error on E using the scheme (40) (left), with the reconstruction step (right) with initial data
(90).

6.3.2 Propagation of a Dirac mass in the diffusion limit

The diffusion limit schemes (42) and (43) are compared. The initial data is a Dirac mass and it is given by
(86) and σ = 1. The exact solution is the fundamental solution to the diffusion equatin and it is given by :

E(t,x) = 1
4πtκ exp

(
−‖x− x0‖2

4tκ

)
, κ = 1

3σ , x0 = (0.5, 0.5). (91)

The final time is t = 0.01.
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Figure 15: Solution computed on a cartesian mesh with Nx = Ny = 41 with the polygonal scheme (43)
(up left), conical degenerate (up right), conical parabolic (down left) and conical random (the weights ω are
chosen at random between 0 and 50) at t = 0.01 with initial data (86) and σ = 1.
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Figure 15 (up left) shows a well known drawback of the node-based schemes (cf [16] and [27]). This phe-
nomena is called cross-stencil : the information propagates alongside the diagonals lines. This drawback
disappears when using the conical scheme due to the non-null contribution of the shoulder points. The
energy can thus propagate in cells which share a common edge and the conical solution is much closer to the
exact solution.
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Figure 16: Voronoi type mesh (up left) and solution computed using the polygonal mesh (up right), conical
degenerate (down left) and conical parabolic (down right) at t = 0.01 with initial data (86) and σ = 1.
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As in [27], the results of the polygonal and conical schemes are quite similar on the Voronoi type mesh.

6.3.3 Fundamental solution of the diffusion equation

This test case comes from [16]. We chose σ = 1 and ε = 0.0001. The initial data is the fundamental solution
of the diffusion equation (91) at time t = t0 = 0.01. The exact solution is the fundamental solution of the
diffusion equation at time t = t0 + Tf with Tf = 0.003.
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Figure 17: Numerical solution with the polygonal scheme (up left), conical degenerate (up right), conical
parabolic (down left) and exact solution (down right) with Nx = Ny = 40 on a cartesian mesh with initial
data (91) et ε = 0.0001.
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Figure 18: Numerical solution on a radial polygonal mesh (left) and on a conical one (right) at time t = 0.003
with initial data (91).

The results computed on a cartesian mesh are quite similar (Figure 17). However, we observe a significant
difference on the Figure 18, the results of the conical scheme are much better than those of the polygonal
one. Figure 19 show the L1 error on E on cartesian meshes as a function of ∆x = 1/Nx = ∆y = 1/Ny. The
convergence rate is 1 (2 with the reconstruction step).

Figure 19: L1 error on E using the scheme (40) (left), with the reconstruction step (right) with initial data
(91).
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Figure 20: L1 error on E as a function of Nx = Ny on a radial mesh using the limit scheme (left) and the
reconstruction step (right) with initial data (91) and homogeneous Dirichlet boundary condition.

For the mesh of Figure 21, the timestep is given by ∆t = (∆x)2/100. For the mesh of Figure 20, the timestep
is ∆t = (∆x)2/10000.
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Figure 21: Kershaw type mesh of size 40 × 40 and solution computed with the conical degenerate scheme
(40).
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Figure 22: L1 error on E on the mesh of Figure 21 using the scheme (40) (left), using the reconstruction
step (right) with initial data (91).

Figure 22 displays the convergence analysis on Kershaw type meshes. The missing points on the curves for
the polygonal scheme are due to instabilities : the scheme computed values of ‖f‖ larger than 4/3, while the
conical one did not. This illustrates the fact that the conical scheme is more stable the the polygonal one.

6.4 Comparison with the limit scheme of another model
In this section, we compare the limit schemes of M1 model and P1 model (92) in the diffusion limit. The
later writes : 

∂tE + 1
ε
div F = 0,

∂tF + 1
ε
∇E = − σ

ε2 F,
(92)

A conical scheme for P1 model can be found in [27]. Both models admit the same diffusion limit, thus we
compare here two schemes that discretise the same PDE. We set σ = 1 and we use the following Kershaw
type mesh :
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Figure 23: Kershaw type mesh of size 100× 100.

For this test case, the timestep is given by ∆t = (∆x)2/1000.
Figure 24 shows the numerical solutions with a smooth initial data (91). The results of the two schemes are
quite similar.
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Figure 24: Solution computed with the polygonal P1 scheme (up left), polygonal M1 (up right), conical
degenerate P1 (down left) and conical degenerate M1 (down right) with initial data (91).
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Figure 25 shows the solution with a discontinuous initial data given by :

E(0, x, y) =
{

1 if x ∈ ]0.4, 0.6[,
10−12 else.

(93)
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Figure 25: Solution computed with the polygonal P1 scheme (up left), polygonal M1 (up right), conical
degenerate P1 (down left) and conical degenerate M1 (down right) with initial data (93).
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One can notice that the P1 limit scheme does not guarantee the positivity of the solution, while theM1 limit
scheme does.

7 Conclusion
In this work, we adapted a numerical scheme defined for the M1 model on polygonal meshes to conical
meshes. We numerically observed that the good properties of the original scheme were preserved (positive
energy, limited flux and AP property ). We also proposed a rigorous proof of the convergence of the scheme
toward the diffusion limit scheme (this is the AP property). The test cases from [29] and [16] have been
reproduced. We also highlighted some drawbacks of the polygonal scheme and we showed that they disappear
when using the conical scheme. Moreover, we adapted a high order reconstruction procedure and obtained
a second order convergence in space for different values of σ and ε (cf sections 6.2.2 and 6.3.3), contrary to
[16]. Eventually, in most of the cases, we noticed a decreasing of the error between the numerical and exact
solutions thanks to the use of the conical scheme regardless of σ, ε and the order of the space reconstruction
step (cf sections 6.2.2 et 6.3.3).
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8 Annex
8.1 Upwind scheme for the transport equation
We consider the following conservative linear transport equation :

∂tf + div(fa) = 0,

In order to make the algebra clearer, the unkown f(t,x) is a scalar function. The velocity a only depends
on the space variable x. The upwind scheme is defined by (cf [28]) :

|Ωj |∂tfj +
∑
R+

j

〈C̃dof
j ,adof〉fdof

j +
∑
R−

j

〈C̃dof
j ,adof〉fk(dof) = 0, (94)

where fdof
j is the value of f at degree of freedom dof in cell j computed with some arbitrary reconstruction

step (which can be of order one, that is to say : fdof
j = fj), and :

R+
j = {dof, 〈C̃dof

j ,adof〉 > 0}, R−j = {dof, 〈C̃dof
j ,adof〉 < 0},

and for a given dof :

fk(dof) = 1∑
I+

dof
〈adof, C̃dof

i 〉

∑
I+

dof

〈adof, C̃dof
i 〉fdof

i , (95)

with :

I+
dof = {i, 〈adof, C̃dof

i 〉 > 0}, I−dof = {i, 〈adof, C̃dof
i 〉 < 0}.

Remark 8. In a 1D framework, the scheme (94) reduces to the classical 1D upwind scheme.

Proposition 8.1. The scheme is conservative :

∂t

∑
j∗
|Ωj |fj

 = 0 (96)

Proof. Denoting by
∑
j∗ the sum over all the cells of the mesh, and

∑
dof∗ the sum over all the degrees of

freedom of the mesh, on can write, up to the boundary terms :

∂t

∑
j∗
|Ωj |fj

 =
∑
j∗

∑
R+

j

〈adof, C̃dof
j 〉fdof

j +
∑
R−

j

〈adof, C̃dof
j 〉fk(dof)


=
∑
dof∗

∑
I+

dof

〈adof, C̃dof
i 〉fdof

i +
∑
dof∗

∑
I−dof

〈adof, C̃dof
i 〉fk(dof)

=
∑
dof∗

∑
I+

dof

〈adof, C̃dof
i 〉fdof

i +
∑
dof∗

fk(dof)〈adof,
∑
I−dof

C̃dof
i 〉.

Moreover, according to equation (10) :∑
I+

dof

C̃dof
i +

∑
I−dof

C̃dof
i =

∑
i

C̃dof
i = 0,

thus, thanks to (95) :

fk(dof)〈adof,
∑
I−dof

C̃dof
i 〉 = −fk(dof)〈adof,

∑
I+

dof

C̃dof
i 〉 = −

∑
I+

dof

〈adof, C̃dof
i 〉fdof

i . (97)
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Therefore, summing equation (97) over all degrees of freedom leads to equation (96).
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