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An asymptotic preserving scheme for the M 1 model on conical meshes

This work focuses on the design of a 2D numerical scheme for the M1 model on conical meshes. This model is nonlinear and approximates the firsts moments of the radiative transfert equation using an entropic closure. Besides, this model admits a diffusion limit as the cross section increases. It is important for the numerical scheme to be consistent with this limit, that is to say, it has to be asymptotic preserving or AP. Such a scheme already exists on polygonal meshes and our work consisted in adapting it to conical meshes. After having introduced conical meshes, we explain the construction of the scheme. It is based on an analogy between the M1 model and the Euler gas dynamic system. We also present a second order reconstruction procedure and we apply it on both polygonal and conical meshes. Moreover, we prove that the scheme converges toward a limit scheme in the diffusion limit. In the last section, some numerical test cases are given so as to compare the polygonal and conical schemes. The limit scheme is studied and we observed numerically that it is consistent with the diffusion equation. Eventually, the limit scheme is compared to a limit scheme coming from another moment model for the radiative transfer equation (namely, the P1 model).

Introduction

In this article, we focus on the following system, called M 1 system:

     ∂ t E + 1 ε div F = 0, ∂ t F + 1 ε div P = - σ ε 2 F, (1) 
where ε is a positive coefficient, σ > 0 is the opacity. The time variable is denoted by t ≥ 0 and the space variable is x ∈ R 2 . The unknowns of system (1) are the radiative energy E(t, x) and the radiative flux F(t, x) ∈ R 2 . The pressure tensor P (t, x) ∈ R 2×2 depends on E and F and writes :

P = E 2 (1 -χ(f )) I 2 + (3χ(f ) -1) f ⊗ f f 2 , χ(f ) = 3 + 4 f 2 5 + 2 4 -3 f 2 , ( 2 
)
where f = F/E is the dimensionless flux, I 2 is the identity matrix of size 2 and χ(f ) is called the Eddington factor. Furthermore the model satisfies E(t, x) > 0, f (t, x) ≤ 1 and as ε goes to 0, the radiative flux F vanishes and E converges toward the solution of the diffusion equation :

∂ t Ẽ -div 1 3σ ∇ Ẽ = 0. ( 3 
)
This can be seen using a standard Hilbert expansion in powers of ε. A rigorous proof is given in the 1D case in [START_REF] Goudon | Analysis of the m1 model: Well-posedness and diffusion asymptotics[END_REF]. It is important for a numerical scheme that discretises system (1) to be consistent with this diffusion limit. Such a scheme is called asymptotic preserving (AP ).

Figure 1: Definition of an AP scheme.

Figure 1 illustrates this property. The discretisation parameter is denoted by h, ε is the physical parameter aimed at vanishing and which reflects the convergence of the model P ε toward the limit model P 0 . A scheme P ε h consistant with P ε is said to be asymptotic preserving is the scheme P 0 h computed in the limit ε → 0 is consistent with the limit model P 0 .

Originally, the M 1 model was derived and studied in [START_REF] Dubroca | Étude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif[END_REF]. We refer to [START_REF] Coulombel | Diffusion approximation and entropybased moment closure for kinetic equations[END_REF][START_REF] Goudon | Analysis of the M 1 model: well-posedness and diffusion asymptotics[END_REF] (see also [START_REF] Berthon | Numerical approximation of the M 1 -model[END_REF]) for its mathematical properties, and to [START_REF] Hauck | Convex duality and entropy-based moment closures: characterizing degenerate densities[END_REF][START_REF] Guisset | Limits of the M 1 and M 2 angular moments models for kinetic plasma physics studies[END_REF] for related modelling considerations. As we already mentioned, the M 1 model is based on the radiative transfer equation. Taking the two first moments of this equation with respect to the velocity, we find system [START_REF] Goudon | Analysis of the m1 model: Well-posedness and diffusion asymptotics[END_REF], where the matrix P is a priori not known. Then, assuming that I is the minimum entropy distribution with first moments equal to E and F, allows for an explicit expression of I, hence of P , as functions of E and F , namely [START_REF] Dubroca | Étude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif[END_REF]. In [START_REF] Dubroca | Étude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif[END_REF], numerical tests were given in dimension 1, with an HLL-type scheme. Such a discretization is in general not asymptotic preserving [START_REF] Shi | Numerical schemes for hyperbolic conservation laws with stiff relaxation terms[END_REF]. In [START_REF] Buet | Asymptotic preserving and positive schemes for radiation hydrodynamics[END_REF], an AP finite volume scheme was proposed for this model, in dimension 1, using an upwind discretization, together with ideas of [START_REF] Buet | Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models[END_REF]. In [START_REF] Berthon | Numerical approximation of the M 1 -model[END_REF][START_REF] Berthon | An HLLC scheme to solve the M 1 model of radiative transfer in two space dimensions[END_REF][START_REF] Berthon | A free streaming contact preserving scheme for the M 1 model[END_REF], modifications of HLL-type fluxes were proposed to derive an AP scheme in dimension 2 on cartesian grids. A discontinuous Garlerkin approach satisfying positivity and flux limitation in dimension 1 was also considered in [START_REF] Olbrant | A realizability-preserving discontinuous Galerkin method for the M1 model of radiative transfer[END_REF]. In [START_REF] Buet | An asymptotic preserving scheme with the maximum principle for the M 1 model on distorded meshes[END_REF][START_REF] Franck | Asymptotic preserving finite volumes discretization for non-linear moment model on unstructured meshes[END_REF] (see also [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF]), an AP scheme on deformed meshes in dimension 2 was proposed, based on nodal Riemann solvers [START_REF] Després | Lagrangian gas dynamics in two dimensions and lagrangian systems[END_REF][START_REF] Maire | A cell-centered lagrangian scheme for 2d compressible flow problems[END_REF] and the method of Jin and Levermore [START_REF] Shi | Numerical schemes for hyperbolic conservation laws with stiff relaxation terms[END_REF]. This method is our starting point for deriving an asymptotic preserving scheme on conical meshes. Some recent works have also focused on higher order AP schemes for the M 1 model, as for instance [START_REF] Chidyagwai | A comparative study of limiting strategies in discontinuous Galerkin schemes for the M 1 model of radiation transport[END_REF], with a Discontinuous Galerkin approach. The method of entropy minimum closure has also been extended, first in the radiation setting, by including more moments (this gives the so-called M N model). Note however that only N = 1 allows for an explicit expression of the closure. In all other cases, the closure must be performed through a numerical method, inducing an additional numerical cost and loss of accuracy. For these aspects, we refer to [START_REF] Alldredge | A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension[END_REF][START_REF] Garrett | Optimization and large scale computation of an entropy-based moment closure[END_REF] and the references therein. The case of rarefied gas (in which the underlying kinetic equation is the linearized Boltzmann equation instead of -here-the radiative transfer equation) was considered in [START_REF] Guisset | Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations[END_REF], and the case of electronic M1 model was studied in [START_REF] Chalons | An antidiffusive HLL scheme for the electronic M 1 model in the diffusion limit[END_REF][START_REF] Guisset | An admissible asymptoticpreserving numerical scheme for the electronic M 1 model in the diffusive limit[END_REF][START_REF] Guisset | Asymptotic-preserving well-balanced scheme for the electronic M 1 model in the diffusive limit: particular cases[END_REF]. The M 1 model ( 1), together with its generalizations M N , are known to exhibit unphysical shocks. This is why a modified version of the M N models have been proposed in [START_REF] Frank | Perturbed, entropy-based closure for radiative transfer[END_REF], with a discontinuous Galerkin discretization.

The paper is organised as follows. In section 2, we define conical meshes and give some useful properties. Once the model is reformulated (section 3), the design of the numerical scheme is described (section 4). Some properties are given and a second order recontruction procedure is proposed. Section 5 is devoted to the theoretical analysis of the scheme : we prove that the energy remains positive under a CF L condition. We also give a rigorous proof of the AP property of the scheme (we mention here that the previous proofs were formal and used a standard Hilbert expansion). Eventually, some numerical tests are presented in section 6. The present scheme is compared to the polygonal scheme and its properties (positivity, convergence) are illustrated by numerical simulations.

In order to make the algebra clearer, vectors are denoted in bold in the rest of the paper.

Conical meshes

In this section, we define conical meshes. We follow the presentation of [START_REF] Blanc | Asymptotic preserving schemes on conical unstructured 2d meshes[END_REF] [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF]. Important geometrical properties are presented and a quadrature formula is given in order to compute the integral of a smooth function on a conical cell.

Rational quadratic Bezier curve

A rational quadratic Bezier curve is a curve {M ω (q), q ∈ [0, 1]} such that :

M ω (q) = (1 -q) 2 M 0 + 2ωq(1 -q)M 1 + q 2 M 2 (1 -q) 2 + 2ωq(1 -q) + q 2 , ( 4 
)
where M 0 and M 2 are the extremities, M 1 is the control point and ω ≥ 0 a scalar weight. The curve is said to be :

• degenerate if ω = 0, • elliptic if ω ∈ ]0, 1[, • parabolic if ω = 1, • hyperbolic if ω > 1.
In the first case (ω = 0), the curve is equal to the segment [M 0 , M 2 ]. Note that the control point M 1 almost never belongs to the curve (except in some very particular cases). This is the main drawback of this parametrisation. This is why we prefer to parametrise the curve in a different way, using a point that lies on the curve. The point is named the shoulder point and is defined by : 

S = M ω (0.5) = 1 2 (Q 0 + Q 2 ), Q 0 = 1 1 + ω (ωM 1 + M 0 ), Q 2 = 1 1 + ω (ωM 1 + M 2 ). M 0 (M 1 , ω) M 2 ω = 0 ω = +∞ ω = 0.5 ω = 1 ω = 3 M 0 (M 1 , ω) M 2 M ω (q) Figure 2: Rational quadratic Bezier curve. M 0 (M 1 , ω) M 2 S Q 0 Q 2 Figure 3: Shoulder point.

Computing the area of a conical cell

Let Ω j be a conical cell which center is denoted by x j . The area of Ω j can be computed using the following formula :

|Ω j | = Ωj dx = 1 2 ∂Ωj x(s) -x j , N(x(s)) ds, (5) 
where N(x(s)) is the unit normal vector to the edge at the curvilinear coordinate s ∈ ∂Ω j and ds is the surface measure on ∂Ω j . In order to clarify the algebra, we define the following notation :

• (x r ) r the coordinates of the vertices of the cell j,

• (M 1,r+1/2 ) r+1/2 the coordinates of the control points of the cell j,

• (x r+1/2 ) r+1/2 the coordinates of the shoulder points of the cell j,

• r g r j : sum over all the vertices of the cell j of the quantity g (g r j being the evaluation of the function g on the vertex r in cell j),

• r+1/2 g r+1/2 j
: sum over all the shoulder points of the cell j of the quantity g,

• dof g dof j = r g r j + r+1/2 g r+1/2 j
: sum over all the degrees of freedom (dof ) of the cell j of the quantity g,

• N dof = i 1 : number of cells that contains the given degree of freedom dof ,

•

i g dof i : sum, for a given degree of freedom, over all the cells that contains this degree of freedom,

• i∈Vj g i : sum, for a given cell j, over the neighboring cells (those which share a dof with j, note that j ∈ V j ),

• j * g j : sum over all the cells of the mesh,

• dof * g dof : sum over all the degrees of freedom (nodes and shoulder points) of the mesh.

The integral (5) can be computed exactly using the coordinates of the vertices (x r ) r and the control points (M 1,r+1/2 ) r+1/2 (cf [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF]) :

|Ω j | = 1 2 r C r j , x r -x j + 1 2 r+1/2, control points C r+1/2 j , M 1,r+1/2 -x j , (6) 
it can also be expressed in terms of (x r ) r and (x r+1/2 ) r+1/2 (cf [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF]) :

|Ω j | = 1 2 r Cr j , x r -x j + 1 2 r+1/2, shoulder points Cr+1/2 j , x r+1/2 -x j = 1 2 dof Cdof j , x dof -x j . ( 7 
)
The coefficients C r j , C r+1/2 j , Cr j and Cr+1/2 j depend on the geometry of the cell and are given by :

C r j = 1 2 (1 -f (ω r-1/2 ))N r-1,r + (1 -f (ω r+1/2 ))N r,r+1 + f (ω r-1/2 )N r-1/2,r + f (ω r+1/2 )N r,r+1/2 , C r+1/2 j = f (ω r+1/2 ) 2 (N r,r+1/2 + N r+1/2,r+1
),

Cr j = 1 2 (1 -h(ω r-1/2 )) Ñr-1,r + (1 -h(ω r+1/2 )) Ñr,r+1 + h(ω r-1/2 ) Ñr-1/2,r + h(ω r+1/2 ) Ñr,r+1/2 , ( 8 
)
and :

Cr+1/2 j = h(ω r+1/2 ) 2 ( Ñr,r+1/2 + Ñr+1/2,r+1 ),
with :

h(ω) = f (ω) 1 + ω ω , f (ω) =                  2ω 1 -ω 2 1 √ 1 -ω 2 arctan 1 -ω 1 + ω - ω 2 if ω ∈ [0, 1[, 2 3 if ω = 1, ω ω 2 -1 ω + 1 √ ω 2 -1 log ω -ω 2 -1 if ω > 1. ( 9 
)
M r+1 S ω r+1/2 M r S ω r-1/2 M r-1 Ñr + 1 , r
Ñr , r -1

Ñr + 1 / 2 , r + 1
Ñr, The following properties are satisfied :

r+ 1/ 2 Ñr-1/ 2, r Ñr -1 , r -1 / 2 Cr + 1 / 2 , ω j Cr, ω j C r -1 / 2 , ω j Ω j
• for any cell j :

dof Cdof j = 0,
• for any inner degree of freedom dof :

i Cdof i = 0. ( 10 
)
As a conclusion, for any given scalar valued function g and any vector valued function g, we approximate :

         Ωj ∇g = ∂Ωj gN ≈ dof g dof j Cdof j , Ωj div g = ∂Ωj g, N ≈ dof g dof j , Cdof j , ( 11 
)
where g dof j and g dof j are the values of the functions g and g at the degree of freedom dof in the cell j. Formulas [START_REF] Berthon | An HLLC scheme to solve the M 1 model of radiative transfer in two space dimensions[END_REF] are equalities if g and g are affine functions.

Reformulation of the model

Using the ideas from [START_REF] Buet | A gas dynamics scheme for a two moments model of radiative transfer[END_REF] and [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF], system (1) can be written under the form of the gas dynamic system. This system writes :

                     ∂ t ρ + 1 ε div(ρu) = 0, ∂ t (ρu) + 1 ε div(ρu ⊗ u) + 1 ε ∇q = 0, ∂ t (ρe) + 1 ε div(ρeu) + 1 ε div(qu) = 0, ∂ t (ρs) + 1 ε div(ρsu) ≥ 0, (12) 
where the density ρ, the velocity u, the massic energy e and the massic entropy s are the unknowns of the system. The pressure q is a function of e and u.

In order to relate the M 1 model (1) (2) to system (12), we define :

q := 1 -χ(f ) 2 E, u := 3χ(f ) -1 2 f 2 f = 2 3 -χ(f ) f , k := 3 -χ(f ) 2 E.
The following relations hold :

(E + q)u = F, F = ku, P = qI 2 + F ⊗ u.
Eventually system (1) can be written in the following form :

     ∂ t E + 1 ε div(Eu) + 1 ε div(qu) = 0, ∂ t F + 1 ε div(F ⊗ u) + 1 ε ∇q = - σ ε 2 F. ( 13 
)
The structure of system ( 13) is quite similar to the one of system [START_REF] Berthon | A free streaming contact preserving scheme for the M 1 model[END_REF], for which numerical methods exist (see [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF] and [START_REF] Després | Lagrangian gas dynamics in two dimensions and lagrangian systems[END_REF]). We use similar ideas to define a numerical solution for system [START_REF] Olbrant | A realizability-preserving discontinuous Galerkin method for the M1 model of radiative transfer[END_REF]. The major differences are that the velocity u and the pressure q depend on the unknowns E and F and that there is no density ρ.

Numerical method

In this section we introduce the numerical scheme : it is an adaptation of the method of [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF] to conical meshes. We give here the details of its construction. We want it to satisfy the following properties :

• positivity of the radiative energy : E > 0,

• limitation of the flux : f ≤ 1,

• asymptotic preserving : the scheme obtained when ε vanishes is consistant with the limit diffusion equation (3).

Our numerical scheme is based on the reformulation of the M 1 model that is described in section 3. System (13) is integrated over cell Ω j . We denote by E j and F j the averages of E and F over cell Ω j , thus leading to :

         |Ω j | ∂ t E j + 1 ε ∂Ωj E u, N + 1 ε ∂Ωj q u, N = 0, |Ω j | ∂ t F j + 1 ε ∂Ωj u, N F + 1 ε ∂Ωj q N = - σ ε 2 Ωj F. (14) 
First, we adapt the Gosse and Toscani method [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF] to the M 1 model and we use the ideas from [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF]. The source term is discretised using the node values :

Ωj F ≈ dof β dof j F dof = dof β dof j k dof u dof , ( 15 
)
since F = ku. The matrix β dof j is given by :

β dof j = Cdof j ⊗ (x dof -x j ). ( 16 
)
The advection terms (div(Eu) and div(F ⊗ u)) are discretised using an upwind scheme (94) :

             Ωj div(Eu) = ∂Ωj E u, N ≈ R + j u dof , Cdof j E j + R - j u dof , Cdof j E k(dof) , Ωj div(F ⊗ u) = ∂Ωj u, N F ≈ R + j u dof , Cdof j F j + R - j u dof , Cdof j F k(dof) ,
with :

R + j = {dof, u dof , Cdof j > 0}, R - j = {dof, u dof , Cdof j < 0}.
The remaining integrals in [START_REF] Buet | An asymptotic preserving scheme with the maximum principle for the M 1 model on distorded meshes[END_REF] are approximated using formula [START_REF] Berthon | An HLLC scheme to solve the M 1 model of radiative transfer in two space dimensions[END_REF] :

         ∂Ωj q u, N ≈ dof q dof j u dof , Cdof j , ∂Ωj q N ≈ dof q dof j Cdof j .
In the end, the scheme associated to [START_REF] Buet | An asymptotic preserving scheme with the maximum principle for the M 1 model on distorded meshes[END_REF] writes :

                   |Ω j | ∂ t E j + 1 ε    R + j u dof , Cdof j E j + R - j u dof , Cdof j E k(dof)    + 1 ε dof q dof j u dof , Cdof j = 0, |Ω j | ∂ t F j + 1 ε    R + j u dof , Cdof j F j + R - j u dof , Cdof j F k(dof)    + 1 ε dof q dof j Cdof j = - σ ε 2 dof β dof j k dof u dof .
(17) Note that scheme [START_REF] Després | Lagrangian gas dynamics in two dimensions and lagrangian systems[END_REF] is similar to the JLb scheme from [START_REF] Blanc | Asymptotic preserving schemes on conical unstructured 2d meshes[END_REF]. The computation of u dof and q dof j is described below. Coefficient k dof is given by :

k dof = 1 N dof i k i , k i = 3 -χ(f i ) 2 E i , ( 18 
)
where N dof is the number of cells that contains the degree of freedom (N dof = 2 for a shoulder point that is not on the boundary).

Now we apply the ideas used in [START_REF] Buet | A gas dynamics scheme for a two moments model of radiative transfer[END_REF] for developing a 1D solver. We impose the following relation between the pressures and the velocities at the degree of freedom and at the center of the cell :

q dof j + r dof j u dof , ñdof j = q j + r dof j u j , ñdof j ( 19 
)
where :

ñdof j = 1 Cdof j Cdof j , q j = 1 -χ(f j ) 2 E j , u j = 2 3 -χ(f j ) f j . ( 20 
)
Several definitions of r dof j are possible :

r dof j = r j = 4 √ 3 
E j 3 + u j 2 , or : r dof j = r dof = 1 N dof i r i . ( 21 
)
Equation ( 19) is equivalent to :

q dof j Cdof j = q j Cdof j + r dof j α dof j (u j -u dof ), with : α dof j = Cdof j ⊗ ñdof j . ( 22 
)
The flux is modified using the Jin-Levermore [START_REF] Shi | Numerical schemes for hyperbolic conservation laws with stiff relaxation terms[END_REF] method. The equilibrium state obtained by setting to 0 the time derivatives and the transport terms is given by ∇q = -(σk/ε)u. It is then added to the fluxes :

q dof j + (∇q) dof , x j -x dof Cdof j = q j Cdof j + r dof j α dof j (u j -u dof
), which can be written :

q dof j - σ ε k dof u dof , x j -x dof Cdof j = q j Cdof j + r dof j α dof j (u j -u dof ).
Thus we define, using definition [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF] :

G dof j := q j Cdof j + r dof j α dof j (u j -u dof ) - σ ε β dof j k dof u dof . ( 23 
)
The scheme eventually writes :

                   |Ω j | ∂ t E j + 1 ε    R + j u dof , Cdof j E j + R - j u dof , Cdof j E k(dof)    + 1 ε dof u dof , G dof j = 0, |Ω j | ∂ t F j + 1 ε    R + j u dof , Cdof j F j + R - j u dof , Cdof j F k(dof)    + 1 ε dof G dof j = - σ ε 2 dof β dof j k dof u dof . ( 24 
)
The second line of system (24) can be simplified using [START_REF] Chalons | An antidiffusive HLL scheme for the electronic M 1 model in the diffusion limit[END_REF] :

1 ε dof G dof j + σ ε 2 dof β dof j k dof u dof = 1 ε dof q j Cdof j =0 + 1 ε dof r dof j α dof j (M dof u j -u dof ) (25) + 1 ε dof r dof j α dof j - dof r dof j α dof j M dof u j ,
where M r is defined by :

M r = i r r i α r i + σ ε k r β r i -1 i r r i α r i , ( 26 
)
and M r+1/2 is defined below, see [START_REF] Frankel | Flux formulation of hyperbolic heat conduction[END_REF]. The semi-discrete system writes :

                               |Ω j |∂ t E j + 1 ε    R + j u dof , Cdof j E j + R - j u dof , Cdof j E k(dof)    + 1 ε dof u dof , G dof j = 0, |Ω j |∂ t F j + 1 ε    R + j u dof , Cdof j F j + R - j u dof , Cdof j F k(dof)    + 1 ε dof G dof * j = - 1 ε 1 k j dof r dof j α dof j (I -M dof ) F j , (27) 
with :

G dof * j = r dof j α dof j (M dof u j -u dof ). (28) 
We impose, for every inner degree of freedom dof :

i G r i = i G r+1/2 i = 0. (29) 
Equation ( 29) ensures the conservativity of the scheme. It allows also to compute u dof for some given (q i ) i , (r i ) i and (u i ) i . Using definition [START_REF] Chalons | An antidiffusive HLL scheme for the electronic M 1 model in the diffusion limit[END_REF], it writes :

i r dof i α dof i + σ ε k dof β dof i u dof = i q i Cdof i + r dof i α dof i u i . ( 30 
)
We have, for any inner node r :

i r r i α r i + σ ε k r β r i u r = i q i Cr i + r r i α r i u i . ( 31 
)
The proof of the invertibility of the matrix i r i α r i + σ ε k r β r i is given below. However, for an inner shoulder point, the matrix is not invertible. Denoting by i the unique cell different from j that contains the shoulder point r + 1/2, we have :

Cr+1/2 j + Cr+1/2 i = 0,
and the matrix of equation ( 30) simplifies into :

r r+1/2 i α r+1/2 i + r r+1/2 j α r+1/2 j + σ ε k r+1/2 (β r+1/2 i + β r+1/2 j ) = Cr+1/2 j ⊗ D r+1/2 , ( 32 
)
with :

D r+1/2 = (r r+1/2 j + r r+1/2 i )ñ r+1/2 j + σ ε k r+1/2 (x i -x j ). (33) 
Therefore, the matrix of ( 32) has rank 1. The right hand side of ( 30) can be written under the form b r+1/2 Cr+1/2 j , with :

b r+1/2 = q j -q i + ñr+1/2 j , r r+1/2 j u j + r r+1/2 i u i . ( 34 
)
Using ideas from [START_REF] Blanc | Asymptotic preserving schemes on conical unstructured 2d meshes[END_REF], u r+1/2 is computed using the following formulas :

u r+1/2 , D r+1/2 = b r+1/2 , u r+1/2 , (D r+1/2 ) ⊥ = 1 2 u r + u r+1 , (D r+1/2 ) ⊥ , ( 35 
)
where, for any ξ ∈ R 2 :

ξ = ξ 1 ξ 2 , ξ ⊥ = -ξ 2 ξ 1 , (ξ ξ ⊥ ) = ξ 1 -ξ 2 ξ 2 ξ 1 . ( 36 
)
The linear system solved by u r+1/2 can be written under the form :

A r+1/2 + σ ε B r+1/2 u r+1/2 = y r+1/2 ,
with :

A r+1/2 = (r r+1/2 j + r r+1/2 i ) ñr+1/2 j ñr+1/2 j ⊥ T , B r+1/2 = k r+1/2 x i -x j (x i -x j ) ⊥ T , ( 37 
)
y r+1/2 = b r+1/2 1 2 u r + u r+1 , D ⊥ r+1/2 , ( 38 
)
thus allowing us to define M r+1/2 by :

M r+1/2 = A r+1/2 + σ ε B r+1/2 -1 A r+1/2 . ( 39 
)
Remark 1. As noted in [START_REF] Blanc | Asymptotic preserving schemes on conical unstructured 2d meshes[END_REF] and [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF], if the mesh is conical degenerate (all the weights ω are set to 0), the scheme under study is not equal to the classical polygonal scheme. Indeed, the contribution of the shoulder points is nonzero and the two schemes may produce quite different results. This remark is highlighted by the test cases below. Indeed, a parasite mode is observed with the classical polygonal node solver, but it is no longer present with the conical degenerate scheme.

Remark 2. The definition of M dof in ( 26) and ( 39) is arbitrary. Indeed, equation ( 25) is satisfied for any choice of the matrix M dof . However, as mentioned in [START_REF] Buet | Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes[END_REF], this particular choice [START_REF] Frank | Perturbed, entropy-based closure for radiative transfer[END_REF] allows to recover the Gosse-Toscani scheme [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF] in the 1D case.

Partially implicit time discretisation

Only the source term in ( 27) is chosen implicit. The obtained scheme is thus easy to implement and its stability condition is not too restrictive.

                               |Ω j | E n+1 j -E n j ∆t + 1 ε    R + j u n dof , Cdof j E n j + R - j u n dof , Cdof j E n k(dof)    + 1 ε dof u n dof , G dof j n = 0, |Ω j | F n+1 j -F n j ∆t + 1 ε    R + j u n dof , Cdof j F n j + R - j u n dof , Cdof j F n k(dof)    + 1 ε dof G dof * j n = - 1 ε dof r dof j n α dof j (I -M n dof ) 1 k n j F n+1 j . ( 40 
)
The polygonal scheme depends only on the values located at the nodes of the mesh (cf [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF]) :

                           |Ω j | E n+1 j -E n j ∆t + 1 ε   r,ljr u n r ,njr >0 l jr u n r , n jr E n j + r,ljr u n r ,njr <0 l jr u n r , n jr E n k(r) + r u n r , G r j n   = 0, |Ω j | F n+1 j -F n j ∆t + 1 ε   r,ljr u n r ,njr >0 l jr u n r , n jr F n j + r,ljr u n r ,njr <0 l jr u n r , n jr F n k(r) + r G r * j n   = - 1 ε r r r j n αr j (I d -M n r ) 1 k n j F n+1 j , (41) with : 
n jr = 1 2l jr y r+1 -y r-1 x r-1 -x r+1 , l jr = 1 2 ||x r+1 -x r-1 ||, αr j = l jr n jr ⊗ n jr .

Second order reconstruction

In this section, we explain how to modify the scheme (40) so as to make it second order in space while ensuring that the reconstructed values of the energy are positive and that the reconstructed flux is limited.

To this aim, we adapt the ideas of [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF]. Only the advection terms are modified (that is to say div(Eu) and div(F ⊗ u)). Writing them as functions of E and f , system (13) becomes :

     ∂ t E + 1 ε div(Eu) + 1 ε div(qu) = 0, ∂ t (Ef ) + 1 ε div(Ef ⊗ u) + 1 ε ∇q = - σ ε 2
Ef . For the sake of clarity, we will consider the following linear transport equations :

∂ t E + div(Ea) = 0, ∂ t (Ef ) + div(Ef ⊗ a) = 0,
where the velocity a is given. A first order scheme (such as the upwind scheme (94)) approximates the solution with some piecewise constant function. Here the approximation is built using piecewise affine functions :

P 1 j (x, E) = E j + (∇E) j , x -x j , P 1 j (x, F) = F j + (∇F) j • (x -x j ).
The exponent 1 means that the polynomial has degree 1. Then the gradient of E is limited so as to have : P 1 j (x, E) ≥ 0, thus we write :

P 1 j (x, E) = E j + ( ∇E) j , x -x j = E j + α j,E (∇E) j , x -x j
, where α j,E is the limiter (see [START_REF] Dukowicz | Accurate conservative remapping (rezoning) for arbitrary lagrangian-eulerian computations[END_REF]). Therefore we have P 1 (x, E) ≥ 0. Moreover, using the Leibniz formula, one can write :

P 1 j (x, F) = F j + (∇F) j • (x -x j ) = E j f j + E j (∇f ) j • (x -x j ) + ∇E j , x -x j f j .
The dimensionless flux f is thus approximated by : R 1 j (x, f ) =

P 1 (x, F) P 1 (x, E) = f j + E j P 1 (x, E) (∇f ) j • (x -x j ),
the letter R reminds that f is approximated by some rational fraction. The jacobian of f is then limited so as to have R 1 j (x, f ) ≤ 1 :

R 1 j (x, f ) = f j + E j P 1 (x, E) α j,f (∇f ) j • (x -x j ),
where α j,f may be a matrix or scalar limiter (its computation is based on convex hulls, cf [START_REF] Hoch | A frame invariant and maximum principle enforcing secondorder extension for cell-centered ALE schemes based on local convex hull preservation[END_REF]). Finally, F is approximated by :

P 1 j (x, F) = P 1 j (x, E)R 1 j (x, f ).
Therefore, values of the unknowns at the degrees of freedom can be computed : F). These values are then used instead of the cell-centered values :

E dof j = P 1 j (x dof , E), F dof j = P 1 j (x dof ,
|Ω j |∂ t E j + R + j a dof , Cdof j E dof j + R - j a dof , Cdof j E k(dof) = 0,
with :

E k(dof) = 1 I + dof a dof , Cdof i I + dof a dof , Cdof i E dof i ,
and the same values are computed for F.

Remark 3. Another method would consist in directly limiting the jacobian of F so as to verify P 1 j (x, F) ≤ P 1 j (x, E). However the first method gives much better results in practice. Indeed, the limiter of the vector quantity (F or f ) is based on the computation of the convex hulls of the values in the neighboring cells. Therefore it is easier to ensure f ≤ 1 (since the bound is constant) than F ≤ E (since the value of E in one cell does not necessarily lie in the convex hull of the values of the neighboring cells).

Diffusion limit scheme

In this section we describe the limit scheme, that is to say the scheme that is obtained as ε goes to 0 in [START_REF] Antonio | Regularity of solutions of the anisotropic hyperbolic heat equation with nonregular heat sources and homogeneous boundary conditions[END_REF]. It reads as :

|Ω j | E n+1 j -E n j ∆t +    R + j u n dof , Cdof j E n j + R - j u n dof , Cdof j E n k(dof)   + dof E n j 3 Cdof j - 4σ 3 E n dof β dof j u n dof , u n dof = 0, (42) with E n dof = i E n i /N dof and : i β r i u n r = 1 4σE n r i E n i Cr i ,        u n r+1/2 , (x i -x j ) = E n j -E n i 4σE n r+1/2 , u n r+1/2 , (x i -x j ) ⊥ = 1 2 u n r + u n r+1 , (x i -x j ) ⊥ .
It is an extension to conical meshes of the limit scheme of [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF] :

                     |Ω j | E n+1 j -E n j ∆t + r,ljr u n r ,njr >0 l jr u n r , n jr E n j + r,ljr u n r ,njr <0 l jr u n r , n jr E n k(r) + E n j 3 r l jr u n r , n jr - 4σ 3 r E n r β r j u n r , u n r = 0, β r u n r = 1 4σE n r i E n i l ir n ir . ( 43 
)
In addition, it is proved in [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF] that the scheme ( 43) is consistent with the diffusion equation (3). In the next section, we give a rigorous proof of the convergence of the scheme (40) toward the limit scheme [START_REF] Boutin | Extension of ALE methodology to unstructured conical meshes[END_REF] as ε vanishes. In the previous works (such as [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF]) this AP property was formally proved using a standard Hilbert expansion.

5 Theoretical study of the scheme

Notation

We denote by J the number of cells of the mesh. The numerical solution at iteration n is denoted by E n,ε = (E n,ε j ) j<J and F n,ε = (F n,ε j ) j<J . The scheme [START_REF] Antonio | Regularity of solutions of the anisotropic hyperbolic heat equation with nonregular heat sources and homogeneous boundary conditions[END_REF] can be written as :

E n+1,ε , F n+1,ε = z(ε, E n,ε , F n,ε ), where z : ]0, 1] × D → R J × R 2 J
is a function defined by :

E (1) , F (1) = z(ε, E, F) = (z 1 (ε, E, F), z 2 (ε, E, F)), D = {(E, F) ∈ R J × R 2 J , ∀j < J, E j > 0, F j ≤ E j }
and :

E (1) j = [z 1 (ε, E, F)] j = E j - ∆t |Ω j |        R + j 1 ε u dof , Cdof j E j + R - j 1 ε u dof , Cdof j E k(dof) advection terms + 1 ε dof u dof , G dof j        , ( 44 
)
Ãj F

(1)

j = Ãj [z 2 (ε, E, F] j = Y j , (45) 
with :

Y j = F j - ∆t |Ω j |        R + j 1 ε u dof , Cdof j F j + R - j 1 ε u dof , Cdof j F k(dof) advection terms + 1 ε dof G dof * j        , ( 46 
)
and :

Ãj = I + ∆t ε|Ω j |k j dof r dof j α dof j (I -M dof ). ( 47 
)
Moreover, equation [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF] writes :

A dof + σ ε B dof u dof = y dof , 1 ε u dof = (εA dof + σB dof ) -1 y dof , (48) 
with, for a given vertex r :

A r = i r r i α r i , B r = k r β r , β r = i β r i , y r = i q i Cr i + r r i α r i u i , ( 49 
)
and for a given shoulder point r + 1/2 :

A r+1/2 = (r r+1/2 j + r r+1/2 i ) ñr+1/2 j ñr+1/2 j ⊥ T , B r+1/2 = k r+1/2 x i -x j (x i -x j ) ⊥ T , y r+1/2 = b r+1/2 1 2 u r + u r+1 , D ⊥ r+1/2
, where β r i , α r i , q i , r dof i , u i , k dof , b r+1/2 and D r+1/2 are respectively defined in ( 16), ( 22), ( 20), ( 18), ( 34) and [START_REF] Dukowicz | Accurate conservative remapping (rezoning) for arbitrary lagrangian-eulerian computations[END_REF].

The coefficients u dof , G dof j , G dof * j and M dof depend on ε, E and F. For a given (E, F) ∈ D, we denote by E min and E max the extrema of E.

Eventually, we assume periodic boundary conditions are imposed. Lemma 5.1. Let (E, F) ∈ D and σ ≥ 0 and ε > 0, then the following properties are satisfied :

j * dof u dof , G dof j = dof * i u dof , G dof i = 0.
Besides, the advection part of the scheme being conservative (cf section 8.1), the scheme is conservative :

j * |Ω j |E (1) j = j * |Ω j |E j .
Here we choose : r dof j = r dof and thus, for any vertex r :

A r = r r α r , α r = i α r i .
This choice allows us to prove the following results.

Lemma 5.2.

There exists a universal positive constant denoted by C 5.2 such that, for any (E, F) ∈ D and any ε > 0, the following inequalities hold true :

E j -C 5.2 ∆t σh 2 + εh i∈Vj E i ≤ E (1) j ≤ E j + C 5.2 ∆t σh 2 + εh i∈Vj E i , Remark 4.
A sufficient condition condition for ensuring the positivity of the energy therfore write :

∆t < 1 C 5.2 (σh 2 + εh) min j E j i∈Vj E i . Lemma 5.3.
There exists a universal positive constant denoted by C 5.3 such that, for any (E, F) ∈ D and any ε > 0, the following inequality holds true :

Y j ≤ E j + C 5.3 ∆t σh 2 + εh i∈Vj E i
The following lemma proves that the scheme is well defined.

Lemma 5.4.

There exists a constant C 5.4 > 0 such that, for any ε > 0, σ ≥ 0 and (E, F) ∈ D, if ∆t satisfies :

∆t < C 5.4 ε σh + ε σ min j E j i∈Vj E i , then the matrix Ãj in (47) is invertible.
The following lemma is more interesting since it proves the invertibility of the matrix in the diffusion regime (ε 1) for a given timestep ∆t.

Lemma 5.5. There exists a universal positive constant C 5.5 such that, for any (E, F) ∈ D, any σ ≥ 0 and for ε > 0 such that :

εC 5.5 h ∆t   1 + ∆t σh 2 + εh 1 E j i∈Vj E i   < 1,
the matrix Ãj in ( 45) is invertible and the following inequalities hold true :

F (1) j ≤ C 5.5 εh ∆t   E j + ∆t σh 2 + εh i∈Vj E i   , f (1) j 
≤ C 5.5 εh ∆t

E j + ∆t σh 2 +εh i∈Vj E i E j -∆t σh 2 +εh i∈Vj E i .
Lemma 5.6. For δ ≥ 0 we define :

D δ = {(E, F) ∈ R J × R 2 J , ∀j < J, E j > δ, F j ≤ E j }.
For any δ > 0, there exists

ε δ min > 0 such that z is continuous on [0, ε δ min [×D δ .
Theorem 5.7. Let N ∈ N be the number of iterations and (E n,ε , F n,ε ) n<N ∈ D N be the solution to [START_REF] Antonio | Regularity of solutions of the anisotropic hyperbolic heat equation with nonregular heat sources and homogeneous boundary conditions[END_REF] for a given ε > 0. Assume that, for ε > 0 small enough :

∃δ > 0, ∀n < N, (E n,ε , F n,ε ) ∈ D δ , ( 50 
)
and that the initial conditions is of the form :

E 0,ε = E(t = 0) (independent of ε), F 0,ε = 0.
We define the limit scheme (E n,0 ) n<N by :

∀n < N, E n+1,0 = z 1 (0, E n,ε , 0).
Then, for any n < N :

F n,ε ---→ ε→0 0, E n,ε ---→ ε→0 E n,0
and (E n,0 ) n<N is the solution to [START_REF] Boutin | Extension of ALE methodology to unstructured conical meshes[END_REF].

Remark 5. We do not know a priori if assumption (50) is satisfied in general. However, if we assume that :

∀n < N, ∆t ≤ 1 2 C 2 5.2 (σh 2 + εh) E n min E n max , ( 51 
)
and that C 5.2 is chosen large enough so as to ensure : i∈Vj E i ≤ C 5.2 E max for any cell j and any E, then (50) holds true. Note however that this assumption is very restrictive (see below). Indeed, according to lemma 5.2, if (51) is true then :

∀j < J, ∀n < N, 1 2 E n min ≤ E n+1 j ≤ 3 2 E n max .
Since the scheme is conservative and the energy is positive, there exists a constant C 4 > 0 such that : E n max ≤ C 4 for all n. Therefore :

E n min E n max ≥ 2 -n C -1 4 E 0 min E 0 max .
So a way to ensure (51) is to impose :

∆t ≤ C4 (σh 2 + εh) E 0 min E 0 max 2 -N , C4 = C 2 5.2 2C 4 (52)
Reminding that the timestep ∆t, the number of iterations N and the final time T are such that : T = ∆tN then (52) reads as :

∆t2 T ∆t ≤ C4 (σh 2 + εh) E 0 min E 0 max .
The left-hand side is minimal in ∆t for ∆t = T ln(2) and thus :

T ≤ 2 -1 ln(2) 1 ln(2) C4 :=C 4 (σh 2 + εh) E 0 min E 0 max .
In other words, for a given h > 0, we can only reach a time T ≤ C 4 (σh 2 + εh)E 0 min /E 0 max .

Assumptions on the mesh

First we need some assumptions on the regularity of the mesh. We denote by h the characteristic length of the mesh (h = ∆x for a cartesian mesh). We assume that there exists a numerical constant C 1 > 0 independent of h such that, for any cell j, any dof , any node r and any shoulder point r + 1/2 :

|Ω j | ≤ C 1 h 2 , 1 |Ω j | ≤ C 1 h 2 , N dof ≤ C 1 , Card(V j ) ≤ C 1 , (53) 
Cdof j ≤ C 1 h, α dof j ≤ C 1 h, β dof j ≤ C 1 h 2 , (54) 
and :

β -1 r ≤ C 1 h 2 , x i -x j (x i -x j ) ⊥ -1 ≤ C 1 h . ( 55 
)
Therefore we have :

β -1 r Cr j ≤ C 2 1 h , β -1 r α r j ≤ C 2 1 h , ( 56 
)
Without loss of generality, we assume that C 1 is large enough and simplify :

β -1 r Cr j ≤ C 1 h , β -1 r α r j ≤ C 1 h , (57) 
We also assume that β r is positive definite for any vertex r and :

∀ξ ∈ R 2 , ξ, β r ξ ≥ 1 C 1 h 2 ξ 2 , ξ, α r ξ ≥ 1 C 1 h ξ 2 , ( 58 
)
and for any shoulder point r + 1/2 :

∀λ ≥ 0, ñr+1/2 j + λ(x i -x j ) ≥ 1 C 1 (1 + λh), ( 59 
)
where j and i are the indices of the cells that contain the shoulder point r + 1/2.

Proof of lemma 5.2

First step

Using 1/3 ≤ χ(f j ) ≤ 1 and the definitions ( 18) and ( 20), it can be proved that there exists a constant C1 > 0 independent of (ε, E, F) such that, for any cell j and any dof :

q j ≤ C1 E j , u j ≤ C1 , r j ≤ C1 E j , k j ≤ C1 E j , k dof ≤ C1 i E i , (60) 
and :

q j ≤ C1 k j , 1 C1 k j ≤ r j ≤ C1 k j , 1 C1 k dof ≤ r dof ≤ C1 k dof . ( 61 
)
Without loss of generality, we assume C1 = C 1 .

Second step

In this part we prove an estimate on u dof of the form :

u dof ≤ C 62 ε σh + ε , ( 62 
)
for some universal constant C 62 > 0. To this aim, we show an estimate of the form :

(εA dof + σB dof ) -1 ≤ C 63 h m dof (ε + σh) 1 i E i , ( 63 
)
for some universal constant C 63 > 0, with m dof = 1 if dof is a vertex, 0 if it is a shoulder point. Here i E i stands for the sum of all the cells containing the degree of freedom dof . The proof uses the facts that the matrices A dof and B dof satisfy :

A dof ≤ C 3 1 h m dof i E i , B dof ≤ C 3 1 h m dof +1 i E i . ( 64 
)
First case : the vertices We define :

Ãr = 1 h i E i A r , Br = 1 h 2 i E i B r , then : 1 h(σh + ε) i E i (εA r + σB r ) = ε σh + ε Ãr + σh σh + ε Br , ( 65 
)
and, due to (58) and (61):

x, Ãr x ≥ 1 C 2 1 x 2 , x, Br x ≥ 1 C 2 1 x 2 ,
Therefore (65) writes as a convex combination of Ãr and Br and we have, for any node r :

∀λ ∈ [0, 1], λ Ãr + (1 -λ) Br ∈ M | M ≤ C 3 1 , min x =1 x, M x ≥ 1 C 2 1 := M,
Since M is a compact subset of the set of invertible matrices and since the mapping that gives the inverse of a matrix is a continuous mapping, there exists a constant C M > 0 such that :

∀λ ∈ [0, 1], ∀r, (λ Ãr + (1 -λ) Br ) -1 ≤ C M ,
which proves (63) in the case of vertices.

Second case : the shoulder points One has :

εA r+1/2 + σB r+1/2 = ε D r+1/2 D ⊥ r+1/2 .
Since D r+1/2 D ⊥ r+1/2 / D r+1/2 is a rotation matrix, it is invertible and there exists a universal constant C 2 > 0 such that :

D r+1/2 D r+1/2 D ⊥ r+1/2 -1 ≤ C 2 ,
and using (59) one can write :

D r+1/2 = r r+1/2 ñr+1/2 j + k r+1/2 σ ε (x i -x j ) ≥ r r+1/2 1 C 1 1 + k r+1/2 r r+1/2 σ ε h ,
and thus :

D r+1/2 ≥ 1 C 2 1 i E i 1 + σh ε , εA r+1/2 + σB r+1/2 -1 ≤ C 2 1 C 2 1 σh + ε 1 i E i .
Therefore (63) is proved. Moreover, on can easily check that : y r ≤ C 2 1 h i E i . Therefore, using equation (48), we have :

1 ε u r ≤ C M C 2 1 ε + σh ,
and using the definition of y r+1/2 [START_REF] Le | A second order in space combination of methods verifying a maximum principle for the discretization of diffusion operators[END_REF], one eventually has :

y r+1/2 ≤ C 2 1 i E i , 1 ε u r+1/2 ≤ C 4 1 C 2 ε + σh .

Conclusion of the proof

The fluxes are defined by :

G dof j := q j Cdof j + r dof α dof j u j -r dof α dof j u dof - σ ε β dof j k dof u dof ,
therefore, according to (60), ( 54) and ( 62), there exists a constant C 66 > 0 such that :

G dof j ≤ C 66   E j h + i∈Vj E i h + i∈Vj E i h ε σh + ε + σ ε h 2 i∈Vj E i ε σh + ε   ≤ C 66 h i∈Vj E i , ( 66 
)
hence, thanks to (62) :

1 ε u dof , G dof j ≤ C 62 C 66 h σh + ε i∈Vj E i .
The advection terms in [START_REF] Maire | Multi-scale Godunov type method for cell-centered discrete lagrangian hydrodynamics[END_REF] can also be bounded from above by C h i∈Vj E i /(σh + ε), for some universal constant C > 0, thus the right hand side of (44) can be bounded from above by :

E j + C 5.2 h σh + ε i∈Vj E i ∆t h 2 ,
thus leading to :

E j -C 5.2 ∆t σh 2 + εh i∈Vj E i ≤ E (1) j ≤ E j + C 5.2 ∆t σh 2 + εh i∈Vj E i , ( 67 
)
and a sufficient condition for keeping the energy positive writes :

∆t < 1 C 5.2 (σh 2 + εh) min j E j i∈Vj E i . ( 68 
)

Continuity of u dof /ε

The previous computation shows that the mapping ]0, +∞[×D (ε, E, F) → u dof /ε admits a continuous extension on [0, +∞[×D.

Proof of lemma 5.3

Let (E, F) ∈ D. Using the definition of M dof (26) (39), one can write :

1 ε M dof = (εA dof + σB dof ) -1 A dof . ( 69 
)
According to ( 63) and ( 64), there exists a constant C 70 > 0 such that :

M dof ≤ C 70 ε σh + ε . ( 70 
)
In addition, using the definition of G dof * j [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF], one can prove the existence of a constant C 71 > 0 such that :

G dof * j ≤ C 71 εh σh + ε i∈Vj E i . ( 71 
)
The advection terms in [START_REF] Roynard | Extension du schéma vofire aux maillages à bords coniques[END_REF] are also bounded from above by C h i∈Vj E i /(σh + ε), thus the right hand side of (45) Y j satisfies :

Y j ≤ E j + C 5.3 ∆t σh 2 + εh i∈Vj E i .

Proof of lemma 5.4

According to equation (47), we can write Ãj as :

Ãj = I + ∆tA j , A j = 1 ε|Ω j |k j dof r dof α dof j (I -M dof ), (72) 
In addition, one has :

I -M dof = σ (εA dof + σB dof ) -1 B dof .
According to (63) and ( 64), there exists a constant C 73 > 0 such that :

I -M dof ≤ C 73 σh σh + ε . ( 73 
)
and therefore there exists a constant C 74 > 0 such that :

A j ≤ C 74 1 ε σ σh + ε i∈Vj E i E j , ( 74 
)
thus if : ∆t C 74 ε σ σh + ε i∈Vj E i E j < 1, ( 75 
)
then Ãj is invertible.

Moreover, under the condition (75), one can prove the following inequalities :

Ã-1 j ≤ 1 1 -C 74 ∆t ε σ σh+ε 1 Ej i∈Vj E i , F (1) j ≤ 1 1 -C 74 ∆t ε σ σh+ε 1 Ej i∈Vj E i   E j + C 5.3 ∆t σh 2 + εh i∈Vj E i   ,
and :

f (1) j ≤ 1 1 -C 74 ∆t ε σ σh+ε 1 Ej i∈Vj E i E j + C 5.3 ∆t i∈Vj E i 1 σh 2 +εh E j -C 5.3 ∆t i∈Vj E i 1 σh 2 +εh

Proof of lemma 5.5

First we prove that the matrix Ãj of ( 45) is invertible if ε is small enough, for a given ∆t. We can write it as :

Ãj = 1 ε (A j + εH j ) , A j = ∆t |Ω j |k j dof r dof α dof j , H j = I - ∆t |Ω j |k j dof r dof α dof j M dof ε . ( 76 
)
For (E, F) ∈ D, note that :

C 2 1 i∈Vj E i E j ≥ r dof k j ≥ 1 C 2 1 .
Moreover, the matrix A j is symmetric positive definite and :

∀ξ ∈ R 2 , ξ, A j ξ ≥ 1 C 2 1 ∆t h 2 ξ, dof α dof j ξ ≥ 1 C 3 1 ∆t h ξ 2 ,
and thus A j is invertible and there exists a universal constant C 77 such that :

A -1 j ≤ C 77 max λ∈Sp(Aj ) 1 λ ≤ C 77 C 3 1 h ∆t . ( 77 
)
Moreover, one can write :

Ãj = 1 ε (A j + εH j ) = 1 ε A j I + εA -1 j H j , ( 78 
)
and H j satisfies :

H j ≤ C 79   1 + ∆t σh 2 + εh 1 E j i∈Vj E i   . ( 79 
)
Therefore, if :

ε C 80 h ∆t   1 + ∆t σh 2 + εh 1 E j i∈Vj E i   < 1, C 80 = C 79 C 77 C 3 1 , ( 80 
)
then I + εA -1 j H j is invertible and so is Ãj (using equation ( 78)). In addition one can write :

I + εA -1 j H j -1 = +∞ l=0 (-ε) l A -1 j H j l ,
and if :

εC 79 C 77 C 3 1 h ∆t   1 + ∆t σh 2 + εh 1 E j i∈Vj E i   ≤ 1 2 , then : I + εA -1 j H j -1 ≤ +∞ l=0 2 -l = 2.
Eventually :

Ã-1 j ≤ 2C 77 C 3 1 εh ∆t ,
and using lemma 5.3, we have :

F (1) j ≤ C 81 εh ∆t   E j + ∆t σh 2 + εh i∈Vj E i   , ( 81 
)
The dimensionless flux f

(1) j = F

(1)

j /E

(1) j can therefore be bounded by :

f (1) j ≤ C 81 εh ∆t E j + ∆t i∈Vj E i 1 σh 2 +εh E j -C 5.2 ∆t i∈Vj E i 1 σh 2 +εh
, which is smaller than 1 if ε is small enough.

Proof of lemma 5.6

Since the scheme is conservative and the energy is positive (by assumption), there exists a constant C 5.6 > 0 such that, for any cell j :

i∈Vj E i ≤ C 5.6 E 0 L 1 h 2 , with : E 0 L 1 = j * |Ω j | E 0 j = j * |Ω j |E 0 j . ( 82 
)
hence :

1 E j i∈Vj E i ≤ C 5.6 E 0 L 1 δh 2 .
Define :

ε δ min := ∆t C 80 h 1 + ∆t σh 2 + εh C 5.6 E L 1 δh 2 -1
.

Equations ( 69) and ( 76) show that M dof /ε and Ã-1 j admit continuous extensions on [0, ε δ min [×D δ . The other coefficients (q j , u j etc) are also continuous with respect to (E, F), thus z is continuous on [0, ε δ min [×D δ .

Proof of theorem 5.7

Let (E n,ε , F n,ε ) n≤N be a numerical solution (N being the number of iterations) that is to say :

∀n < N, (E n+1,ε , F n+1,ε ) = z(ε, E n,ε , F n,ε ),
which can be writen :

∀n < N, E n+1,ε = z 1 (ε, E n,ε , F n,ε ) F n+1,ε = z 2 (ε, E n,ε , F n,ε ).
According to (82, one has, for all n < N and j < J and ε > 0 :

E n,ε j ≤ C 5.6 E 0 L 1
h 2 , and according to lemma (5.4), there exists a constant C 5.7 depending on the mesh, on δ and σ such that :

∀n < N, ∀j < J, F n,ε j ≤ C 5.7 ε, leading to : (F n,ε ) n≤N ---→ ε→0 0.
The diffusion limit (E n,0 ) n≤N is defined by :

∀n < N, E n+1,0 = z 1 (0, E n,ε , 0). ( 83 
)
Then, since z and z 1 are continuous :

E 1,ε = z 1 (ε, E(t = 0), 0) ---→ ε→0 z 1 (0, E(t = 0), 0) (84) 
Thus, by induction :

E n,ε ---→ ε→0 E n,0 . (85) Indeed, if E n,ε ---→ ε→0
E n,0 then :

E n+1,ε = z 1 (ε, E n,ε →E n,0 , F n,ε →0 ) ---→ ε→0 z 1 (0, E n,0 , 0) = E n+1,0 .
As a conclusion, property (85) is true for any n ≤ N .

In addition, by assumption , there exists a constant δ > 0 such that :

∀ε ∈]0, ε δ min [, ∀n ≤ N, ∀j < J, E n,ε j ≥ δ.
Thus :

∀n ≤ N, ∀j < J, E n,0 j ≥ δ.
Therefore E n,0 does not vanish and :

q n,ε j ---→ ε→0 E n,0 j 3 , k n,ε dof ---→ ε→0 4E n,0 dof 3 = k n,0 dof , u n,ε j ---→ ε→0 0, y n,ε r ---→ ε→0 1 3 i E n,0 i Cr i = y n,0 r y n,ε r+1/2 ---→ ε→0 (E n,0 j -E n,0 i )/3 σk n,0 r+1/2 u n,0 r + u n,0 r+1 , (x i -x j ) ⊥ /2 = y n,0 r+1/2 , 1 ε u n,ε dof ---→ ε→0 (B n,0 dof ) -1 y n,0 dof = u n,0 dof ,
which writes, for a given node r :

σk n,0 r β r u n,0 r = 1 3 i E n,0 i Cr i ,
and for a given shoulder point r + 1/2 :

         u n,0 r+1/2 , (x i -x j ) = E n,0 j -E n,0 i 3σk n,0 r+1/2 , u n,0 r+1/2 , (x i -x j ) ⊥ = 1 2 u n,0 r + u n,0 r+1 , (x i -x j ) ⊥ .
As a conclusion, (E n,0 ) n≤N is solution to (42).

Invertibility of the matrix β r

In this section, we give some suffisant conditions to ensure that the matrix β r = i β r i , with β r j = Cr j ⊗ (x r -x j ), is invertible. In [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF], this result is proved, under some conditions on the mesh, for the polygonal scheme. Here we prove this result for a conical degenerate mesh (ω = 0) and thus the result still holds true for ω small enough since the determinant is a continuous mapping. For ω = 0 the coefficient Cr j writes, according to equation ( 8) :

Cr j = 1 2 (1 - π 2 ) Ñr-1,r + (1 - π 2 ) Ñr,r+1 + π 2 Ñr-1/2,r + π 2 Ñr,r+1/2
where Ñr-1,r is the normal vector to [x r , x r+1 ] and Ñr,r+1/2 is the normal vector to [x r , x r+1/2 ]. Since the shoulder point is given by S r+1/2 = (M r + M r+1 )/2 then :

Ñr-1/2,r = 1 2 Ñr-1,r , Ñr,r+1/2 = 1 2
Ñr,r+1

and :

Cr j = 1 2 1 - π 4 Ñr-1,r + Ñr,r+1 = 1 - π 4 1 2 (x r+1 -x r-1 ) ⊥ = 1 - π 4 C r j polygonal thus β r = (1 -π/4)β polygonal r is invertible.

Numerical results

This section is dedicated to several numerical test cases. First we show some examples for which the conical scheme [START_REF] Antonio | Regularity of solutions of the anisotropic hyperbolic heat equation with nonregular heat sources and homogeneous boundary conditions[END_REF] gives much better results than the polygonal one. We also describe two particular regimes of the M 1 model for which exact solutions can be computed : the streaming regime (section 6.2) and the diffusion regime (section 6.3). These examples allow to compute the convergence rate of the scheme. In some test cases, the radiative energy can be 0, then we define f as :

f =    F E if E > 0, 0 else. 
When no other precision is given, the timestep is chosen as : ∆t = (∆x) 2 /10, with ∆x = 1/N x , N x being the number of cells in abscissa. The number of cells in the y direction is denoted by N y .

For the 1D test cases (the solution does not depend on y) (sections 6.2.1, 6.2.3 and 6.3.1), the solutions are computed using the conical degenerate (ω = 0) scheme only. We observed very few differences with the polygonal scheme.

In practice, conical meshes are computed in the following ways :

• for cartesian, Kershaw type [START_REF] Garrett | Optimization and large scale computation of an entropy-based moment closure[END_REF] and Voronoi type ( 16) meshes, a control point is added to each edge at a distance worth 20% of its length,

• for a radial mesh [START_REF] Maire | A cell-centered lagrangian scheme for 2d compressible flow problems[END_REF], a control point is added to each edge and the weights ω of the edges are chosen so the edges are circles center at (0.5, 0.5) (cf [START_REF] Blanc | Asymptotic preserving schemes on conical unstructured 2d meshes[END_REF]).

Propagation of a Dirac mass

The initial data is a Dirac mass for E (86) on a cell j located at the center of the domain and we compare the polygonal and conical schemes on several meshes.

E(0, x, y) =    1 |Ω j | if (x, y) ∈ Ω j , 0 else, F(t = 0) = 0. ( 86 
)
This model is close to the streaming regime of section 6.2. The final time is t = 0.2 and σ = 0, ε = 1. The simulation failed when using the polygonal scheme (41) (we obtained values of f larger than 4/3, thus making it impossible to compute the Eddington factor (2). However, the conical scheme [START_REF] Antonio | Regularity of solutions of the anisotropic hyperbolic heat equation with nonregular heat sources and homogeneous boundary conditions[END_REF] proved to be more stable since the values of f remained smaller than 4/3. Figure 7 shows the results. 

Streaming regime test cases

This regime is charaterised by σ = 0, ε = 1 and f = 1. Then q = 0 and u = f . Periodic boundary conditions are imposed.

Remark 6.

If F = Ea with a constant, a = 1, then (E, F) is solution of the M 1 model if and only if E satisfies :

∂ t E + div(Ea) = ∂ t E + ∇E, a = 0, that is to say : E(t, x) = E(0, x -ta).
In such a case, the scheme [START_REF] Antonio | Regularity of solutions of the anisotropic hyperbolic heat equation with nonregular heat sources and homogeneous boundary conditions[END_REF] reduces to the upwind scheme (94) and : ∀n, F n = E n a. This property is used in the first and the second test cases of this section.

Transport of a step function

This test case comes from [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF]. The initial data is :

E(0, x, y) = F x (0, x, y) = 1 si x ∈ [0.4, 0.6],
0.0001 sinon,

F y = 0, (87) 
and σ = 0, ε = 1. The quantities E and F are transported at velocity a = (1, 0). Figure 8 (right) shows the absolute L 1 error on E as a function of the space step ∆x. The number of cells in the y direction, denoted N y , is set at 1. The rate of convergence is 0.5, which is expected for a discontinuous solution.

Figure 8: Numerical solution for N x = 400 and N y = 1 using the conical degenerate scheme at t = 0.2 (left) and L 1 error on E (right) with initial data (87).

Smooth solution

The initial data of this test case is smooth and writes : Figure 9 shows that the conical solution is closer to the exact solution than the polygonal one. Figure 10 shows the L 1 error as a function of the space step ∆x = 1/N x = ∆y = 1/N y . A first order rate is recovered for both schemes. A second order rate is also recovered when using the reconstruction described in section 4.2.

(E, F x , F y )(0, x) = g(x), g(x) √ 2 , g(x) √ 2 , g(x) = 1 + e -γ||x-
Figure 10: L 1 error on E with the first order scheme (40) (left), second order reconstruction (right) and with initial data (88).

Singular solution

This test case comes from [START_REF] Buet | A gas dynamics scheme for a two moments model of radiative transfer[END_REF]. The initial data is : Figure 12 shows the L 1 error on E as a function of ∆x = 1/N x computed with the conical degenerate scheme, N y being set at 1. The results of the polygonal scheme are almost identical. The rate of convergence is 0.5, which is expected for a discontinuous solution.

For this test case, we had to choose r dof j = r j instead of r dof j = r dof . Indeed the later lead to values of the f such that f > 4/3, thus making the Eddington factor (2) ill-defined. We noticed that the choice r dof j = r j allowed to overcome that difficulty. One possible explanation is the following. The coefficient r dof j is the analogous of the acoustic impedance for the gas dynamic equations [START_REF] Berthon | A free streaming contact preserving scheme for the M 1 model[END_REF]. It has been studied in [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF] that choosing the value of the acoustic impedance at the centers of the cells (in our case, this corresponds to r dof j = r j ) makes the CF L condition much less restrictive than in the case where it is computed at the boundaries (here it corresponds to r dof j = r dof ).

Figure 12: L 1 error on E using the conical degenerate scheme with initial data (89) Remark 7. We used the second order reconstruction 4.2 on this test case. We noticed that if the quantity F was directly reconstructed then the norm of the dimensionless flux f could be larger than 4/3, thus making the Eddington factor (2) ill-defined. This is no longer the case when the quantity f is reconstructed.

Diffusion regime

Here σ = 1, ε is chosen small enough and F(t = 0) = 0. The conical scheme (40) is compared with the conical diffusion limit scheme [START_REF] Antonio | Regularity of solutions of the anisotropic hyperbolic heat equation with nonregular heat sources and homogeneous boundary conditions[END_REF] and the exact solution of the diffusion equation (the exact solution for F being 0). The final time is T f = 0.003.

1D test case

This test case comes from [START_REF] Buet | A gas dynamics scheme for a two moments model of radiative transfer[END_REF]. The initial data is :

E(0, x, y) = 1 if x ∈ ]0.4, 0.6[, 10 -6 else. ( 90 
)
The exact solution is given by :

E(t, x, y) = 1 -10 -6 2 erf x -0.4 √ 4tκ -erf x -0.6 √ 4tκ + 10 -6 , κ = 1 3σ ,
Figure 13 shows the numerical solution computed with the conical degenerate scheme with ε = 0.015 and σ = 1. The curve given in [START_REF] Buet | A gas dynamics scheme for a two moments model of radiative transfer[END_REF] is well recovered. The curves computed with smaller values of ε (10 -3 , 10 -4 ) are quite similar. Figure 14 shows the L 1 error on E as a function of ∆x = 1/N x , N y = 1. The convergence rate is 1 (2 with the reconstruction step). We only display the results for the conical degenerate mesh since the polygonal scheme gives almost the same results in this test case.

Figure 14: L 1 error on E using the scheme (40) (left), with the reconstruction step (right) with initial data (90).

Propagation of a Dirac mass in the diffusion limit

The diffusion limit schemes ( 42) and ( 43) are compared. The initial data is a Dirac mass and it is given by (86) and σ = 1. The exact solution is the fundamental solution to the diffusion equatin and it is given by :

E(t, x) = 1 4πtκ exp - x -x 0 2 4tκ , κ = 1 3σ , x 0 = (0.5, 0.5). (91) 
The final time is t = 0.01. Figure 15 (up left) shows a well known drawback of the node-based schemes (cf [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF] and [START_REF] Blanc | Asymptotic preserving schemes on conical unstructured 2d meshes[END_REF]). This phenomena is called cross-stencil : the information propagates alongside the diagonals lines. This drawback disappears when using the conical scheme due to the non-null contribution of the shoulder points. The energy can thus propagate in cells which share a common edge and the conical solution is much closer to the exact solution. The results computed on a cartesian mesh are quite similar (Figure 17). However, we observe a significant difference on the Figure 18, the results of the conical scheme are much better than those of the polygonal one. Figure 19 show the L 1 error on E on cartesian meshes as a function of ∆x = 1/N x = ∆y = 1/N y . The convergence rate is 1 (2 with the reconstruction step). For the mesh of Figure 21, the timestep is given by ∆t = (∆x) 2 /100. For the mesh of Figure 20, the timestep is ∆t = (∆x) 2 /10000. Figure 22 displays the convergence analysis on Kershaw type meshes. The missing points on the curves for the polygonal scheme are due to instabilities : the scheme computed values of f larger than 4/3, while the conical one did not. This illustrates the fact that the conical scheme is more stable the the polygonal one.

Comparison with the limit scheme of another model

In this section, we compare the limit schemes of M 1 model and P 1 model (92) in the diffusion limit. The later writes :

     ∂ t E + 1 ε div F = 0, ∂ t F + 1 ε ∇E = - σ ε 2 F, (92) 
A conical scheme for P 1 model can be found in [START_REF] Blanc | Asymptotic preserving schemes on conical unstructured 2d meshes[END_REF]. Both models admit the same diffusion limit, thus we compare here two schemes that discretise the same PDE. We set σ = 1 and we use the following Kershaw type mesh : For this test case, the timestep is given by ∆t = (∆x) 2 /1000. Figure 24 shows the numerical solutions with a smooth initial data (91). The results of the two schemes are quite similar. One can notice that the P 1 limit scheme does not guarantee the positivity of the solution, while the M 1 limit scheme does.

Conclusion

In this work, we adapted a numerical scheme defined for the M 1 model on polygonal meshes to conical meshes. We numerically observed that the good properties of the original scheme were preserved (positive energy, limited flux and AP property ). We also proposed a rigorous proof of the convergence of the scheme toward the diffusion limit scheme (this is the AP property). The test cases from [START_REF] Buet | A gas dynamics scheme for a two moments model of radiative transfer[END_REF] and [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF] have been reproduced. We also highlighted some drawbacks of the polygonal scheme and we showed that they disappear when using the conical scheme. Moreover, we adapted a high order reconstruction procedure and obtained a second order convergence in space for different values of σ and ε (cf sections 6.2.2 and 6.3.3), contrary to [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF]. Eventually, in most of the cases, we noticed a decreasing of the error between the numerical and exact solutions thanks to the use of the conical scheme regardless of σ, ε and the order of the space reconstruction step (cf sections 6.2.2 et 6.3.3).

Annex

Upwind scheme for the transport equation

We consider the following conservative linear transport equation :

∂ t f + div(f a) = 0,
In order to make the algebra clearer, the unkown f (t, x) is a scalar function. The velocity a only depends on the space variable x. The upwind scheme is defined by (cf [START_REF] Bernard-Champmartin | Stabilité locale et montée en ordre pour la reconstruction de quantités volumes finis sur maillages coniques non-structurés en dimension 2[END_REF]) :

|Ω j |∂ t f j + R + j Cdof j , a dof f dof j + R - j Cdof j , a dof f k(dof) = 0, (94) 
where f dof j is the value of f at degree of freedom dof in cell j computed with some arbitrary reconstruction step (which can be of order one, that is to say : f dof j = f j ), and : R + j = {dof, Cdof j , a dof > 0}, R - j = {dof, Cdof j , a dof < 0}, and for a given dof :

f k(dof) = 1 I + dof a dof , Cdof i I + dof a dof , Cdof i f dof i , (95) 
with :

I + dof = {i, a dof , Cdof i > 0}, I - dof = {i, a dof , Cdof i < 0}.
Remark 8. In a 1D framework, the scheme (94) reduces to the classical 1D upwind scheme.

Proposition 8.1. The scheme is conservative :

∂ t   j * |Ω j |f j   = 0 (96)
Proof. Denoting by j * the sum over all the cells of the mesh, and dof * the sum over all the degrees of freedom of the mesh, on can write, up to the boundary terms : 
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 52 Figure 5: Normal vector from a degree of freedom defined on boundary cell Ω j . Two types : endpoints M r denoted by Cr j or shoulder point denoted by Cr+1/2 j
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 7 Figure 7: Numerical solution for N x = N y = 40 using the conical degenerate (left) and conical parabolic (right) scheme at t = 0.2 with initial data (86).

  x0|| 2 (88) with : x 0 = (0.25, 0.25), γ = 100, and σ = 0, ε = 1. Here E and F are transported with a velocity a =
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 9 Figure 9: Numerical solution on a cartesian mesh (N x = N y = 40) with the polygonal scheme (41) (up left), conical degenerate (up right), conical parabolic (down left) and exact solution (down right) at times t = 0.05 with initial data (88).
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 2 E, F x , F y )(0, x, y) = 1, 0.7 -x 0.4 , E 2 -F if x ∈ ]0.3, 0.7[, 0, elsewhere,(89)and σ = 0, ε = 1. The exact solution is defined for t < 0.4 :(E, F x , F y )(t, x, y) = 0.4 0.4 -t , 0.4 0.7 -x (0.4 -t) 2 , E 2 -F 2 x if x ∈ ]0.3 + t, 0.7[, 0, elsewhere.
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 11 Figure 11: Numerical solution (left) computed with the conical degenerate scheme and exact solution (right) for N x = 400 and N y = 1 at t = 0.2 with initial data (89).
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 13 Figure 13: Numerical solution computed with the conical degenerate scheme, N x = 400, N y = 1, with ε = 0.015 and initial data (90).
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 15 Figure15: Solution computed on a cartesian mesh with N x = N y = 41 with the polygonal scheme (43) (up left), conical degenerate (up right), conical parabolic (down left) and conical random (the weights ω are chosen at random between 0 and 50) at t = 0.01 with initial data (86) and σ = 1.
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 16 Figure16: Voronoi type mesh (up left) and solution computed using the polygonal mesh (up right), conical degenerate (down left) and conical parabolic (down right) at t = 0.01 with initial data (86) and σ = 1.
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 18 Figure 18: Numerical solution on a radial polygonal mesh (left) and on a conical one (right) at time t = 0.003 with initial data (91).
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 19 Figure 19: L 1 error on E using the scheme (40) (left), with the reconstruction step (right) with initial data (91).
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 20 Figure 20: L 1 error on E as a function of N x = N y on a radial mesh using the limit scheme (left) and the reconstruction step (right) with initial data (91) and homogeneous Dirichlet boundary condition.

Figure 21 :

 21 Figure 21: Kershaw type mesh of size 40 × 40 and solution computed with the conical degenerate scheme (40).

Figure 22 :

 22 Figure 22: L 1 error on E on the mesh of Figure 21 using the scheme (40) (left), using the reconstruction step (right) with initial data (91).
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 23 Figure 23: Kershaw type mesh of size 100 × 100.

Figure 24 :

 24 Figure24: Solution computed with the polygonal P 1 scheme (up left), polygonal M 1 (up right), conical degenerate P 1 (down left) and conical degenerate M 1 (down right) with initial data (91).

Figure 25 showsFigure 25 :

 2525 Figure25shows the solution with a discontinuous initial data given by :E(0, x, y) = 1 if x ∈ ]0.4, 0.6[,10 -12 else. (93)

  thus, thanks to (95) :f k(dof) a dof , I - dof Cdof i = -f k(dof) a dof ,

As in [START_REF] Blanc | Asymptotic preserving schemes on conical unstructured 2d meshes[END_REF], the results of the polygonal and conical schemes are quite similar on the Voronoi type mesh.

Fundamental solution of the diffusion equation

This test case comes from [START_REF] Franck | Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés[END_REF]. We chose σ = 1 and ε = 0.0001. The initial data is the fundamental solution of the diffusion equation (91) at time t = t 0 = 0.01. The exact solution is the fundamental solution of the diffusion equation at time t = t 0 + T f with T f = 0.003.