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Abstract: Agricultural practices are heterogeneous among farmers in the face of climate hazards.
Structural and material resources as well as risk preferences explain some of this heterogeneity, but
little is known about how psychological factors associated with the decision-making process may
explain differences in practices among farmers. The aim of this study was to understand whether
decision-making process factors help explain the heterogeneity of a specific practice—the date of
first irrigation—among maize farmers, along with material and structural factors. We conducted
semi-directed interviews with 35 farmers who irrigated maize in southwestern France. We analyzed
discriminating factors of the decision-making process, such as reactivity (i.e., capacity to change
plans), deliberation (i.e., level of internal information used to make decisions) and assistance (i.e., level
of external information used to make decisions). We used two complementary statistical methods
(linear regression and regression trees) to analyze the database. Our study confirms the influence
of material and structural factors, and also reveals the strong influence of decision-making process
factors. A high level of reactivity is associated with adaptive behavior. Moreover, using decision-
support tools and technologies helps farmers to manage the use of water resources. These elements
could be used by advisors and public policy-makers in the agriculture sector to improve adaptation.

Keywords: adaptation; water scarcity; adaptive capacity; decision-making; irrigation practices;
maize-cropping system

1. Introduction

Farmers today are facing climate hazards such as floods, droughts and/or frost. In
central and southern Europe, farmers are experiencing an increase in the frequency of
droughts, with negative impacts on crop productivity [1]. In France, 2011 has been one
of the ten driest years in 50 years so far, with a hydric deficit mean of more than 10%
and a mean temperature exceeding the reference by 2.6 ◦C (1971–2000) [2]. The context of
agricultural production has become increasingly volatile and unpredictable [3]. Farmers
need to adapt to a changing environment with new constraints, such as water scarcity [4].
Their decisions regarding irrigation strategies directly influence the quantity and quality of
natural resources [5]. The impact of droughts is particularly severe for summer-irrigated
plants, such as maize (Zea mays L.).

In France, grain maize is the second most frequently produced cereal after wheat
(Triticum aestvum), with a national production of 13.5 million t in 2020 [6] over an area of just
over 1 million ha, 35% of which was irrigated [7]. The decrease in rainfall directly affects
maize yield since it is sensitive to hydric deficit, especially at reproductive development
stages. Adaptation strategies, such as changing the amount, timing and frequency of
irrigation, can avoid yield losses and make it possible to save water [8,9]. The start of the
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irrigation season is a key element for crop development and is a milestone that should
not be missed; it will make it possible to target high yields and ensure the continuation of
irrigation practices. Focusing on the date of first irrigation is therefore a major challenge for
farmers in terms of water management. The date of first irrigation for maize usually varies
with the region. However, it may also vary from farm to farm in a similar context of water
availability. Understanding explicative factors of this heterogeneity is key to enhancing
adaptation in agriculture.

Many studies have sought to explain the heterogeneity of farmers’ practices. Most of
them considered structural and material factors such as farm characteristics and agricultural
practices. Several studies attempted to understand farming system management based on
the level of resources [10], intensity of agricultural practices [11,12], equipment and socio-
economic aspects [13]. However, practices remain heterogeneous even when farmers have
similar production situations [14]. For example, differences in chemical input practices
have been explained in part by farmers’ personal characteristics and their production
situation [15,16]. Moreover, farmers’ decisions are not completely based on structural and
material factors [17]. Recent studies have hypothesized that, in addition to structural and
material factors, psychological factors could also explain the heterogeneity of practices
among farmers [18]. It appears that two types of psychological factors can explain such
heterogeneity: risk preference (i.e., a farmer’s degree of reluctance to perform potentially
risky practices [19,20]), and decision-making process factors (i.e., psychological factors
specific to the decision-making process). The decision-making process is the process by
which an individual commits to following a choice when alternatives exist, even when
these alternatives are not known or analyzed [21]. Few studies have focused on the
influence of decision-making process factors on the heterogeneity of practices [22–25].
Some studies modeled the decision-making process in order to better understand farmers’
behavior [18,25,26]. Daydé (2017) developed a conceptual model of the decision-making
process and hypothesized that the heterogeneity of the process among farmers explained
the heterogeneity of practices. His case study focused on fungicide doses applied to wheat.
In Daydé’s (2017) model, the farmer’s decision-making process was based on three decision-
making process factors: reactivity (i.e., the farmer’s capacity to change his plans), assistance
(i.e., amount of external information used by the farmer), and deliberation (amount of
internal information used by the farmer).

Our study aimed to explain the heterogeneity of the date of first irrigation of maize
farmers in southwestern France. Our objectives were to study the role of structural and
material factors as well as psychological factors through risk preferences and the three
decision-making process factors (reactivity, assistance and deliberation). Our study was
based on semi-directed interviews with maize farmers. We begin by describing the concep-
tual framework, survey design and the methods for analyzing the survey data. We then
present and discuss the main results, with particular focus on psychological factors specific
to the decision-making process and their influence on farmers’ decisions to start irrigating.

2. Materials and Methods
2.1. Conceptual Framework

Irrigation practices can be explained by the context within which the farm is exposed.
The changing context (price and climate variability) often leads to changes in practices.
Price and climate variability are external factors that constitute the main driving forces.
However, within the same context, farmers can have different practices. The adoption of
practices can also be explained by internal factors, i.e., factors directly linked to the farming
system and the farmer (e.g., structure of soil, age of the farmer). The conceptual framework
(Figure 1) is based on the association of material, structural and psychological factors
previously identified as potential factors that explained the heterogeneity of practices. It
assumes that both observable and non-observable factors contribute to the heterogeneity
of practices.
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Figure 1. The conceptual framework used to analyze the observable and non-observable factors that a farmer uses to choose
the date of first irrigation of an irrigated grain maize crop.

Observable factors (i.e., structural and material; [27]) are categorized into four groups:
farm characteristics, agronomic practices, irrigation practices and farmers’ personal charac-
teristics (i.e., age, education level, experience as a maize grower). For the non-observable
factors, we used the conceptual framework developed by Martin-Clouaire (2017), which
considers risk preferences and decision-making process factors. Daydé’s (2017) three
decision-making process factors are defined as follows:

1. Deliberation: the amount of internal information used by the farmer for decision-making;
2. Assistance: the amount of external information used by the farmer for decision-making;
3. Reactivity: to the farmer’s capacity to change his plans in response to new information.

2.2. Implementation of the Conceptual Framework
2.2.1. Survey Design

One challenge of the survey design (Figure 2) was to identify ways to obtain subjective
data related to non-observable factors. To do this, we used a variety of elicitation methods
in the survey questionnaire [28]: a lottery game to assess the level of risk aversion, scenarios
to assess the level of reactivity, and a mind map and role-playing to assess the level of
deliberation. The level of assistance was assessed using direct elicitation of information by
asking a variety of questions. Observable factors were also assessed using direct elicitation
of information. We asked about financial data at the end of the interview, when the farmer
was more comfortable and more inclined to provide important and confidential data.
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2.2.2. Structural and Farming Practice Data

Structural and material factors can be directly measured using closed Likert scales
and multiple-choice questions. We captured farm characteristics using indicators such as
area, soil type and slope. We also asked about general agronomic practices such as crop
sequences, the type of maize grown, percentage of maize in the crop sequence and the
use of tillage. We recorded farmers’ personal characteristics using indicators such as age,
level of education and experience with maize production. Finally, we focused on irrigation
practices, including the equipment used, duration of irrigation and the volume of water
per irrigation period. Indeed, we assumed that these elements could influence the date of
first irrigation. For example, if there is little equipment, irrigation time would be extended,
and the farmer would therefore need to start the irrigation campaign earlier. To identify
the date of first irrigation, we developed a maize-cropping scenario for a typical year in the
temperate climate of the Occitanie region of France and without water restrictions. The
interviewer showed temperature, rainfall and evapotranspiration graphs to the farmers
and asked them which day they would start irrigating.

2.2.3. Psychological Data

As mentioned, we used the lottery game, role-playing and scenarios as elicitation
methods to assess psychological factors. We used a variety of inquiry methods to obtain
redundant and complementary data, which minimizes each method’s bias and offsets its
limits by using other methods, based on the principle of data triangulation [28].

To assess risk preferences, we used a lottery game developed in experimental eco-
nomics [19]. We asked the farmers to choose one of nine lottery games to play (Appendix A).
Each lottery game involved two possible outcomes. The game they chose revealed their
level of risk aversion. We then used different approaches to assess the three decision-
making process factors (Table 1).

Table 1. Elicitation techniques and indicators for assessment of the three decision-making process factors: deliberation,
reactivity and assistance. Assistance is divided into professional assistance, networking assistance and digital assistance.

Decision-Making Process Factors Indicator for Assessment Elicitation Technique

Deliberation Number of pieces of information used to
make a decision

Two elicitation techniques: (i) a mind map to
obtain a list of information that the farmer
used to choose the date of first irrigation; (i) a
role-playing activity [29] consisting of placing
the farmer in a situation that required making
a decision with no information at the outset.
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Table 1. Cont.

Decision-Making Process Factors Indicator for Assessment Elicitation Technique

Reactivity
Number of intention changes (i.e., the
number of times an individual changes
his choice)

Farmers were asked to express their intentions
in scenarios in which water availability could
have major impacts on their objectives. We
designed four scenarios based on annual
weather conditions (temperate year vs. dry
year) and on the potential restriction of the
water quota (none vs. 25% restriction).

Professional assistance Number of advisors Direct questions

Networking assistance Number of other maize farmers with
whom the farmer interacted Direct questions

Digital assistance
Number of technologies; the use of sensors,
decision tools or weather stations; and the
number of weather sources.

Direct questions

2.3. Case Study

The case study was based in southwestern France (Figure 3). Maize has high economic
and cultural value in southwestern France but requires more water in summer than many
other field crops. Maize farms in this region use an average of 54,000 m3 of water per year.
Most of the maize-growing area is irrigated (i.e., 90%, for farms specialized in field crops).
The increase in droughts in summer leads to a greater need for irrigation of maize, making
these farms economically dependent on irrigation in six out of ten years on average [30].
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Figure 3. Location of the Tarn, Gers and Haute-Garonne departments in the Midi-Pyrénées sub-region of the Occitanie
region of France.

To recruit participants for the survey, the regional Chamber of Agriculture gave us
contact information for 69 farmers who grew irrigated maize (waxy, popcorn, grain or
seed). We contacted them and 35 farmers responded positively. Their farms were located
in the administrative departments of the Tarn (nine farms), the Gers (14 farms) and the
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Haute-Garonne (11 farms) (Figure 3). Interviews were conducted in April, May, September
and October 2019. Each interview lasted 1–4 h.

2.4. Data Processing and Analysis

The data (quantitative and qualitative) collected in the surveys were entered in a
Microsoft Excel® file (35 rows (farmers) × 184 columns (variables)) for further analysis.
Before analyzing the data, we cleaned the data in several steps (Figure 4). Step 5 con-
sisted of sorting the 44 variables into the eight groups of observable and non-observable
factors: farmers’ characteristics, farm characteristics, agronomic practices, irrigation prac-
tices, risk preferences, reactivity, assistance and deliberation. When variables in a group
remained correlated (R2 > 0.4 for quantitative variables and p-value < 0.05 for qualitative
variables), we selected no more than three variables with the greatest influence on the date
of first irrigation. Keeping a few variables in each group allowed us to represent each
group fairly, and this final step left one response variable (the date of first irrigation) and
24 explanatory variables.
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Two statistical models were then used to model the influence of these explanatory
variables on the date of first irrigation: linear regression and a regression tree (Table 2).
The linear regression was performed using stepwise selection (forward and backward).
We selected and tested several combinations of the 24 variables to find the best set of
explanatory variables. Since linear regression models consider variables additively, without
considering non-additive effects, combined effects or interactions, we built a regression
tree [31].). Regression trees thus consider local interactions among variables.

Statistical analyses were performed using R software ([32]. We used a classification
approach (ClustOfVar package ([33]) and the FAMD function (of the FactoMineR package)
to compare all variables and identify redundant information.
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Table 2. Characteristics of the two statistical models: linear regression and regression tree.

Regression Tree Linear Regression

Definition
The regression tree sequentially divides responses
according to the most relevant explanatory variable
(i.e., minimizes the locally explained variance)

Linear regression creates many combinations of variables by
adding or removing them until it finds the best combination.

Parameters
Stopping rules (minimum number of observations to
separate a node (minsplit) = 10, minimum number of
observations, into a leaf (minbucket) = 3)

Use of the Akaike Information Criterion to minimize
over-fitting. Tests on residuals were performed to check
independence (Durbin-Watson test), normality
(Shapiro-Will test) and homogeneity (Breusch-Pagan test).

R functions Rpart function in the rpart package of R (based on
the CART model) Lm and step functions of R

3. Results and Discussion
3.1. Farm Characteristics

Our sample was representative of French farms (Table 3) in terms of the mean age of
farmers, legal status and water sources. However, farms in our sample had more utilized
agricultural area (UAA) and mean irrigable area than the mean of the Midi-Pyrénées
(Midi-Pyrénées is part of the new Occitanie region) region. Having larger farms explained
the bigger equipment needed for irrigation (center pivot) and the use of a larger volume
of water. Nineteen farmers have received post-secondary education (at least 2 years).
Most of the farmers grew grain maize (24/34), did not till the soil (24/34) and did not
irrigate at sowing (20/34). Although our sample is not entirely representative of the
Occitanie region, potential results of the study can provide knowledge about maize farming
systems in Occitanie, in particular, for large farms in terms of surface area and irrigation
water consumption.

Table 3. Characteristics of surveyed and reference farms. Reference data are at the regional scale, when available (former
Midi-Pyrénées region, corresponding to the western Occitanie region), or the country scale (France). UAA: utilized
agricultural area.

Characteristic Sample Reference Scale Source

Mean (±SD) age (years) 49.8 (±12.0) 49.3 France, all types of farms [34]
Legal status Limited-liability farm (13/34) Limited-liability farm France, field crops [35]

Mean (±SD) UAA (ha) 171 (±77) 83 Midi-Pyrénées, field crops [36]
Mean (±SD) irrigable UAA (ha) 87 (±58) 28 Midi-Pyrénées, field crops [36]

Water sources
Watercourses (rivers, canals)
(21/34) and water storage
(hillside lakes) (14/34)

Watercourses and
water storage Midi-Pyrénées [36]

Irrigation materials Sprinkler trolleys (19/34) and
center pivots (15/34)

More sprinkler trolleys than
center pivots Midi-Pyrénées [36]

Mean water volume (m3/ha/year) 2302 1725 Midi-Pyrénées [37]

3.2. Description of the Variables

The date of the first irrigation ranged from 29 May to 20 July, with a median of 21 June
(Figure 5). With a range of 52 days, the date of first irrigation had high heterogeneity. Most
dates of first irrigation ranged from 17–28 June (25/34).

Of the 24 explanatory variables selected, those for structural and material factors
were mainly farm characteristics (5) and agronomic practices (5), followed by irrigation
practices (4) and farmer’s characteristics (3). In comparison, the variables for psychological
factors were mainly assistance (4), followed by reactivity (2), deliberation (2) and risk
preferences (1) (Table 4).
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Farmer’s characteristics
years-maize Mean = 32 Number of years of experience with maize production

education-level PS: 19, P: 14, O: 1 Level of education (PS: post-secondary, S: secondary, O: other)

Farm characteristics

department G: 14, HG: 11, T: 9 Administrative department where the farm is located (G:
Gers, HG: Haute-Garonne, T: Tarn)

UAA Mean = 171 Utilized agricultural area (ha)

soil-boulb Yes: 14, No: 20 “boulbène” soil (vernacular name for sandy-clay Luvisol)
or not (yes, no)

soil-water-storage Low: 11, Moderate: 20, High: 3 Level of soil water-holding capacity (low to high)

slope-level Low: 22, Moderate: 1, High: 11 Slope (low to high) (The five initial modalities (score from 1
to 5) were converted to three levels (low, moderate, high))

Agronomic practices

maize-type p: 6, g: 23, s: 3, f: 1, w: 1 Type of maize (g: grain, s: seed, p: popcorn, w: waxy, f: fodder)

maize-main Yes: 14, No: 20 Whether or not maize is the main crop (yes, no)

tillage Yes: 11, No: 23 Whether or not the farmer practices tillage (yes, no)

sow-date Early: 23, Middle: 4, Late: 7 Date of sowing (early to late)
29 May ≤ Early < 16 June ≤ Middle < 4 July ≤ Late < 20 July

Irrigation practices

sow-irrigat Yes: 14, No: 20 Whether the farmer practices irrigation at sowing or not
(yes, no)

n-days-cycle Mean = 6 days Number of days in the irrigation cycle

volume Mean = 230 mm Volume of water used for irrigation (mm)

equip-irrig Pivot: 15, Trolley: 19 Type of equipment used for irrigation (pivot, trolley)
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Table 4. Cont.

Group of Variables Variable Name Response (Mean or by Class) Description

Risk preferences risk-level Low: 6, Moderate: 16, High: 12
Level of risk aversion (low to high) (The nine Initial
modalities (score from 1 to 9) were converted to three levels
(low, moderate, high))

Reactivity
n-intentions Mean = 4 Number of intention changes when deciding the date of

first irrigation in different scenarios

irrigation-gap Mean = 34 days Interval between the earliest and latest date the farmer
would start irrigating

Assistance

n-maize-farmers Mean = 8 Number of other maize farmers with whom the farmer
shares irrigation information

weather-station Yes: 16, No: 18 Whether or not the farmer has a weather station (yes, no)

n-weather-sources Mean = 2.5 Number of weather information sources the farmer consults

n-technologies Mean = 1.1 Number of technologies the farmer uses to obtain
weather information

Deliberation
n-info-question Mean = 2.4 Number of pieces of information the farmer uses to make

irrigation decisions (direct question)

n-info-role play Mean = 4.2 Number of pieces of information the farmer uses to make
irrigation decisions (role-playing)

3.3. Influence of Structural, Material and Psychological Factors
3.3.1. Regression Models Converged for Six Major Variables

The linear regression model selected 12 of the 24 variables to explain the date of
first irrigation (Table 5), while the regression tree contained six variables for agronomic
practices, irrigation practices, reactivity and assistance. Three of the six variables selected
by the tree were decision-making process factors. All variables in the regression tree were
also in the linear regression model.
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Table 5. Statistical results of the two types of regression models that explain the date of first irrigation. Only variables
selected for at least one of the two methods are shown (see Table 3 for a description of the variables). Significance codes: 0 <
p < 0.001: ***; 0.001 < p < 0.01: **; 0.01 < p < 0.05: *.

Group of
Variables

Variable and
Response

Linear Regression Model
Position in the

Regression Tree
Convergence of
the Two ModelsSignificance

Influence on
the Date of

First Irrigation

St
ru

ct
ur

al
an

d
m

at
er

ia
lf

ac
to

rs Farmer’s
characteristics years-maize 0.00612 ** + N/A

Farm
characteristics

Department_HG 0.00336 ** + N/A
Department_T 0.01607 * + N/A

Agronomic
practices

maize-type_g 0.04933 * + 3a confirmed
maize-type_p 0.00114 ** + 3a confirmed
maize-type_s ns + 3a
maize-type_w ns + 3a

Tillage _yes ns + 2

Irrigation
practices

Sow-irrigat_yes 0.04764 * + N/A
Volume 0.01508 * − 4 inversed

Equip-irrig_pivot ns − N/A

Ps
yc

ho
lo

gi
ca

l
fa

ct
or

s

Risk
preferences

risk-level_high 0.00863 ** − N/A
risk-level_moderate Ns − N/A

Reactivity n-intentions 6.72 × 10−6 *** + 1 confirmed

Assistance
n-maize-farmers 0.01128 * − 3b confirmed

weather-station_yes 0.01065 * + N/A
n-technologies ns − 5 inversed

In the linear regression model, the date of first irrigation was significantly influenced
by the number of years of experience with maize production, level of risk aversion, de-
partment, type of maize grown, irrigation at sowing, total volume of water used during
irrigation, number of intention changes, number of other maize farmers with whom the
farmer interacted, and number of weather stations (Table 3). In comparison, the variables
in the regression tree, presented by decreasing influence, were the number of intention
changes, tillage, maize type, number of other maize farmers with whom the farmer in-
teracted, total volume of water used during irrigation, and number of technologies used
to obtain weather information. The first branch of the regression tree, the mean date of
first irrigation for farmers with high reactivity, is earlier than the sample mean (9 July vs.
24 June). On the other hand, among farmers with low reactivity, tillage application tends
to advance the date of first irrigation. Moreover, farmers with big networks tend to irrigate
earlier than others (Figure 6).

To offset the limits of each model (e.g., linearity and distribution hypotheses, multi-
collinearity, complex interactions, local effects), we compared the results of the models
before determining how influential each variable was. The variables selected by both
models were the type of maize grown, total volume of water used during irrigation, number
of intention changes and number of other maize farmers with whom the farmer interacted.
As expected, structural and material factors influenced the date of first irrigation, but
decision-making process factors (levels of reactivity and assistance) also had an influence
in both models. Notably, reactivity was the variable with the most significant influence in
the regression tree and the linear regression model (p < 0.001).

The linear regression model explained 77% of the variance (adjusted R2 = 0.77). The
tests of residuals of independence (Durbin–Watson test), normality (Shapiro–Will test) and
homogeneity (Breusch–Pagan test) were satisfactory, as was the reliability of the regression
tree model, probably due to the choice of a conservative stopping rule (minsplit = 10) to
minimize the error.
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Figure 6. The regression tree model that explained the date of first irrigation. Information on lines includes thresholds or decision
variables. Letters in parentheses are variable classes (C: agronomic practices; D: irrigation practices; F: reactivity; G: assistance).

3.3.2. Influence of Structural and Material Factors

All groups of structural and material factors influenced the date of first irrigation in at
least one model. The farmer’s experiences (Farmer’s characteristics) influenced the date of
first irrigation in the linear regression model. Experience increases the ability to observe
changes in the environment and to rapidly and efficiently make decisions [26,38,39]. The
more experienced the farmer was, the later the farmer started irrigating.

The department (Farm characteristics) also influenced the date of first irrigation in
the linear regression model. Farmers in the Tarn and Haute-Garonne departments tended
to start irrigating later than those in the Gers (mean of +6 and +10 days, respectively).
Differences in soil and climate conditions, such as a drier spring season in the Gers (40 mm
less rainfall on average), could explain the heterogeneity of the date of first irrigation.

Agronomic practices are of primary interest. In both models, the type of maize had
a strong influence on the date of first irrigation. For example, popcorn maize, which
has a less dense canopy [40], was associated with a later date of first irrigation in both
models. According to the regression tree, seed maize was irrigated later than grain or
fodder maize. Later sowing dates for seed maize can explain these later dates of first
irrigation. Conversely, fodder maize was associated with an earlier start of irrigation since
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it is harvested immature and irrigated to optimize early vegetative growth. The influence
of grain maize differed between the models due to differences in their mathematical
functioning. Maize grain was significantly (p = 0.0493) associated with a later date of
first irrigation in the linear regression model but with an earlier date of first irrigation
in the regression tree. We considered the regression tree to be more relevant since the
influence of maize type was based on interactions with previously chosen variables (e.g.,
tillage, psychological factors). Since the type of maize was significantly correlated with the
department (p = 0.005), soil and climate conditions in the department could also explain
indirect effects.

Tillage, another agronomic practice, was associated with a later date of first irrigation
in the regression tree (a mean of +8 days) but not in the linear regression model. Direct
effects of tillage on water availability for a crop are complex and depend on local conditions
and practices since tillage can decrease water infiltration into the soil as well as increase
evaporation [41,42]. Tillage can also have an indirect effect since it strongly influences other
influential variables in the models, such as cover crop and irrigation at sowing. Tillage
was negatively correlated with the variable cover crop (p = 0.010) since tillage is performed
mainly in autumn in this area and, conversely, was positively correlated with irrigation at
sowing (p = 0.007).

Irrigation at sowing (irrigation practices) was positively correlated with the date of
first irrigation and was significant in the linear regression model. Farmers who irrigated
at sowing started irrigation later. Irrigation at sowing provides additional water for the
maize, which decreases the need for irrigation later.

In both models, the volume of water used for irrigation significantly influenced the
date of first irrigation, but the direction of the effect differed. In the linear regression model,
increasing volume was associated with an earlier date of first irrigation; the more water the
farmer has, the earlier he will irrigate because he does not need to save water since there is
no risk of being water-limited later. Conversely, in the regression tree, decreasing volume
was associated with an earlier date of first irrigation. Since the volume variable appeared
at the end of the tree, only a few of the farmers were concerned by this result, including
those who grew fodder maize, who irrigate earlier.

We thus confirmed the influence of farmers’ experience, farm location and agro-
nomic practices. The influence of structural and material factors was consistent with the
literature [10,11,13,18].

3.3.3. Influence of Psychological Factors

As expected, farmers’ risk aversion was negatively correlated with the date of first
irrigation: a farmer with greater risk aversion tended to start irrigating earlier. A farmer
who is risk-averse will deliberate over a decision as much as possible and will start
irrigating earlier to avoid the risk of hydric stress on maize plants before it occurs. Several
studies have demonstrated the influence of risk aversion on decision-making [19,26,43,44].

A major result for decision-making process factors was the key influence of the level
of reactivity (i.e., number of intention changes). Thus, the more reactive the farmer was, the
later the farmer started irrigating. In a previous study of factors that influence fungicide
applications on soft wheat [25], a high level of reactivity was associated with adaptive
behavior. Similarly, Rodriguez et al. (2011) showed that reactivity (or plasticity) provided
greater resilience to change than anticipation (or rigidity) when facing uncertainty since it
improved adaptive behaviors and strategies [45].

The level of assistance also had a significant influence. The number of other maize
farmers with whom the farmer interacted was negatively correlated with the date of first
irrigation in both models. This suggests a mimetic effect: interacting with a larger network
of farmers increases the likelihood that one of the farmers in the network will have started
irrigating. Several studies indicate that the size of the social network increases the adoption
of adaptive behaviors [22,46].
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Unlike human factors, technological assistance variables were positively correlated
with the date of first irrigation. Farmers who had a weather station or used multiple
information technologies were more likely to start irrigating later. The weather-station
variable was also significantly correlated with the use of decision-making tools (p = 0.03) or
weather sensors (p = 0.03). We concluded that all types of tools that provide accurate and
specific information about the weather could postpone the date of first irrigation. In the
same way, Berthold et al. [47] also showed that the use of irrigation tools make it possible
to optimize water by making informed decisions. These opposite effects of different types
of assistance variables are noteworthy; they suggest that human assistance advances the
date of first irrigation, while technological assistance postpones it. In either case, assistance
leads to adaptive behaviors.

No variable related to deliberation appeared in either model; thus, unlike reactivity and
assistance, deliberation did not influence the date of first irrigation. This result differs from that
of Daydé (2017) for whom deliberation increased the adoption of more sustainable practices.

3.3.4. Synthesis of Results

Figure 7 summarizes results regarding factors that influence the decision of the date
of first irrigation.
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3.4. Advantages and Disadvantages of the Method

The use of different inquiry methods allowed us to identify robust indicators to
describe the decision-making process. We removed the subjectivity of personal statements
by using methods such as role-playing and different scenarios with farmers.

Preselecting variables based on correlation and agronomic expertise was important to
minimize the types of bias that collinear variables can create in linear regression models:
high variance in predictors, large or unstable regression coefficients, and coefficient signs
that run counter to intuition [48] Because predictors change when explanatory variables
are strongly correlated, we preselected only independent variables. However, we could not
eliminate all complex interactions and correlations that can disturb linear regression models.
To obtain a relatively equal distribution of variables among the groups, variables were
excluded only if they were simultaneously in the same group and had high correlations
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between each other (i.e., p < 0.05 for qualitative variables, and Pearson correlation >0.4
for quantitative variables). We used a regression tree to offset these limits of the linear
regression model, but it was subject to more local effects since it divided observations into
groups and sub-groups until the stopping rule was activated. In particular, variables at
the end of the tree must be carefully interpreted because, in this study, they were based
on 3–4 individuals. Deep learning from our database was challenging due to its small
sample size.

We obtained more robust results by using two types of regression models that have
complementary advantages and disadvantages. Although linear regression and regression
trees are based on different statistical approaches, each yielded similar results, particularly
the strong influence of decision-making process factors (assistance and reactivity) on the
date of first irrigation. However, the models sometimes yielded different results due to
their functioning or initial descriptions of the data. For example, regression trees can
highlight local effects of variables, such as the volume of irrigation water, which obscure
the overall influence of these variables for the entire sample. The linear regression model
always considered all observations of the sample. However, when two variables were
strongly correlated, it selected only the one that best explained the date of first irrigation,
and this approach can ignore the influence of the second variable.

The main disadvantage of this study is its relatively small sample size (34 farmers).
Since the sample is not entirely representative of the region, the results cannot be considered
generic. However, they provide knowledge about the adaptive capacity of large maize
farming systems. Moreover, our goal was not to describe or predict behaviors of farmers in
the region, but to test the hypothesis that decision-making process factors can influence
irrigation practices. We met this goal since we revealed the strong influence of reactivity
and assistance on the heterogeneity of the date of first irrigation. For example, the linear
model selected the number of intention changes because it had the largest influence on the
date of first irrigation, but it ignored the number of technologies because it was redundant.

We studied the influence of multiple factors on the date of first irrigation, which is
only one aspect of farmers’ irrigation practices. Thus, it could be interesting to study other
aspects such as irrigation equipment or duration, which would make it possible to test the
influence of decision-making process factors on the entire irrigation strategy. However, the
current study did not include multiple factors due to time, means and budget limitations.

3.5. Improving Adaptive Capacity

Although adaptation strategies are studied in the agricultural extension literature,
farmers do not always adopt them. According to Öhlmér et al. [49], adaptive capacity can
explain the difficulty that farmers experience when implementing new practices recom-
mended by experts. Adaptive capacity is defined as the capacity of actors to implement
new adaptation strategies, which leads to resilience [50]. Farmers’ behaviors can explain
much about their adaptive capacity [51]. In particular, the decision-making process needs
to be studied to improve adaptations [52]. Thus, a better understanding of the influence of
farmers’ decision-making mechanisms on the adoption of practices could improve their
adaptive capacity through the design of specific supports and policies.

Understanding farmers’ adaptive processes is crucial for improving adaptation strate-
gies. Behavior models that model the decision process using decision-making process
factors, such as that of Daydé [23], help explain the heterogeneity of practices and, thus, the
reasons for adopting practices. Our study reveals that farmers adopt practices in part due
to their decision-making process. For agricultural water management, levels of assistance
and reactivity strongly influence the date of first irrigation.

Reactivity could improve the adaptive capacity of farmers since a reactive decision-
making process is associated with changes in irrigation practices (i.e., later date of first
irrigation). The more reactive farmers are, the more they are able to postpone the date of
first irrigation if necessary. Therefore, if farmers are facing a heatwave forecast, they would
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be able to change their date of first irrigation in order to find a balance between saving
water and avoiding water stress.

Better support of maize farmers in southwestern France could encourage them to
become more reactive. One way to increase reactive behavior is to encourage greater consid-
eration of new information, increase the ability to observe changes in the environment and
make better use of past experiences. One starting point is for farmers to share experiences
and re-frame self-criticism of past decisions in discussion groups.

Encouraging access to specific information tools such as weather stations and new
technologies is a way to obtain more adaptive behaviors, which may help to optimize
water use for irrigation. Communicating with and educating farmers about the use of
decision-support tools and technologies could increase adaptation practices. In addition,
financial support from agricultural policies for farmers to invest in these tools would
be relevant.

Future research should focus on a better understanding of decision-making strategies
and the identification of relevant methods to measure them. Research should also focus on
understanding how to improve adaptive behaviors. A key element of the decision-making
strategy is the information received by the farmer and the farmer’s ability to process
information. Helping farmers find, access and understand information, compare sources,
and rapidly select the relevant information according to the context are initial elements
required to improve adaptive behaviors.

Our study contributes to research on adaptations by highlighting the important role
of farmers’ decision-making strategies. We revealed the need to improve reactive and
assistance behaviors to increase adoption of adaptation practices, and to provide ways to
improve these adaptive behaviors. These elements should be considered by advisors and
included in public policies.

4. Conclusions

To explain the heterogeneity of the date of first irrigation among farmers, we surveyed
35 maize farmers. Our results confirm the role of structural, material and risk-aversion
factors. They also highlight the strong influence of decision-making process factors on the
date of first irrigation. Reactivity influenced the date of first irrigation more than any other
variable. A high level of reactivity is associated with adaptive behaviors. Assistance from
decision support tools and technologies also helps farmers adopt more adaptive behaviors.
Conversely, other types of assistance such as social networks decrease adaptive capacity.
However, assistance always influenced the date of first irrigation, whether it advanced
it or postponed it. Advisors and public policies in the agriculture sector could consider
these elements as ways to improve adaptation. In the context of water scarcity, our findings
could help agricultural advisors to assist maize farmers with their water management
practices. Future studies of farmers’ irrigation practices could focus on exploring the
influence of decision-making process factors on other key explanatory variables such as
equipment, irrigation sources or water volumes. Their results would help us to understand
the extent to which decision-making process factors influence the irrigation strategies of
maize farmers.
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