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In this paper, we mainly study error bounds for a single convex inequality and semi-infinite convex constraint systems, and give characterizations of stability of error bounds via directional derivatives. For a single convex inequality, it is proved that the stability of local error bounds under small perturbations is essentially equivalent to the non-zero minimum of the directional derivative at a reference point over the unit sphere, and the stability of global error bounds is proved to be equivalent to the strictly positive infimum of the directional derivatives, at all points in the boundary of the solution set, over the unit sphere as well as some mild constraint qualification. When these results are applied to semi-infinite convex constraint systems, characterizations of stability of local and global error bounds under small perturbations are also provided. In particular such stability of error bounds is proved to only require that all component functions in semi-infinite convex constraint systems have the same linear perturbation. Our work demonstrates that verifying the stability of error bounds for convex inequality constraint systems is, to some degree, equivalent to solving convex minimization problems (defined by directional derivatives) over the unit sphere.

Introduction

Our main goal in this paper is to study error bounds of a single convex inequality and semi-infinite convex constraint systems and to provide characterizations of stability of local and global error bounds under perturbations. Theory of error bounds can be traced back to the pioneering work by Hoffman [START_REF] Hoffman | On approximate solutions of systems of linear inequalities[END_REF] for systems of affine functions in which it has been proved that for a given matrix A and a vector b, the distance from x to the polyhedral set where we use the convention inf ∅ = +∞. We denote by bdry(D) and int(D) the boundary and the interior of D, respectively. Let f ∈ Γ 0 (R m ) and x ∈ dom(f ). For any h ∈ R m , we recall that the directional derivative f (x, h) of f at x along the direction h is defined as

f (x, h) := lim t→0 + f (x + th) -f (x) t . ( 1 
)
It is known from [START_REF] Rockafellar | Convex Analysis[END_REF] that the function

t → f (x + th) -f (x) t
is nonincreasing as t → 0 + and thus

f (x, h) = inf t>0 f (x + th) -f (x) t . ( 2 
)
We denote by ∂f (x) the subdifferential of f at x which is defined by

∂f (x) := {x * ∈ R m : x * , x -x ≤ f (x) -f (x) for all x ∈ R m }.
It is known from [START_REF] Moreau | Étude locale d'une fonctionnelle convexe[END_REF][START_REF] Rockafellar | Convex Analysis[END_REF] that

∂f (x) = {x * ∈ R m : x * , h ≤ f (x, h) for all h ∈ R m } (3) 
and if f is continuous at x, one has f (x, h) = max{ x * , h :

x * ∈ ∂f (x)}. ( 4 
)
We conclude this section with the following lemma which is used in our analysis.

Lemma 1. Let f ∈ Γ 0 (R m ) and x ∈ dom(f ) be such that inf h =1 f (x, h) < 0. Then

-inf h =1 f (x, h) = d(0, ∂f (x)). (5) 
Proof. We denote α := inf h =1 f (x, h).

If α = -∞, then one has ∂f (x) = ∅ by (3) and thus [START_REF] Azé | On the sensitivity analysis of Hoffman constants for systems of linear inequalities[END_REF] holds. Next, we consider the case α > -∞. Note that α < 0 and thus 0 ∈ ∂f (x). Let r := d(0, ∂f (x)). For any ε > 0, we can select u * ε ∈ (r + ε)B m ∩ ∂f (x). Then for any h ∈ R m with h = 1, one has

f (x, h) ≥ u * ε , h ≥ -(r + ε)
and consequently inf

h =1 f (x, h) ≥ -(r + ε).
By letting ε → 0 + , it follows that d(0, ∂f (x)) ≥ -α. Suppose now that d(0, ∂f (x)) > -α > 0. Then x is not a global minimizer of f . We claim that there exists y ∈ R m such that f (y) -f (x) < α y -x . [START_REF] Azé | Characterizations of error bounds for lower semicontinuous functions on metric spaces[END_REF] Indeed, suppose on the contrary that

f (x) -f (x) -α x -x ≥ 0, ∀x ∈ R m .
This implies that ϕ(x) = min x∈R m ϕ(x),

where ϕ(x) := f (x) -f (x) -α x -x and thus 0 ∈ ∂ϕ(x). Then according to the subdifferential sum rule formula, there exist x * ∈ ∂f (x) and u * ∈ B R m such that

x * -αu * = 0.

This yields d(0, ∂f (x)) ≤ x * = -α, a contradiction with d(0, ∂f (x)) > -α.

Using the convexity of f , when t > 0 is sufficiently small, one has

f x + t y-x y-x -f (x) t ≤ f (y) -f (x) y -x < α and thus f x, y -x y -x < α,
which contradicts the assumption d(0, ∂f (x)) > -α > 0. This means that (5) holds. The proof is complete. 

Stability of Error Bounds for a Single Convex Inequality

In this section, we mainly study the local and global error bounds for a single convex inequality, and provide characterizations of stability (in terms of directional derivatives) of error bounds. We first recall the definition of error bounds for a single convex inequality. For a given f ∈ Γ 0 (R m ), we consider the set of solutions of a single convex inequality:

S f := {x ∈ R m : f (x) ≤ 0}. (7) 
Recall that convex inequality ( 7) is said to have a global error bound if there exists a constant τ ∈ (0, +∞) such that

d(x, S f ) ≤ τ [f (x)] + ∀x ∈ R m , (8) 
where [f (x)] + := max{f (x), 0}. We denote by τ min (f ) := inf{τ > 0 : [START_REF] Beck | Convergence rate analysis and error bounds for projection algorithms in convex feasibility problems[END_REF] holds} the global error bound modulus of S f . For x ∈ bdry(S f ), convex inequality ( 7) is said to have a local error bound at x if there exist constants τ, δ ∈ (0, +∞) such that

d(x, S f ) ≤ τ [f (x)] + ∀x ∈ B(x, δ). ( 9 
)
We denote by τ min (f, x) := inf{τ > 0 : there exists δ > 0 such that (9) holds} the local error bound modulus of S f at x. The following theorem gives characterizations of global and local error bounds. We refer the readers to [START_REF] Azé | On the sensitivity analysis of Hoffman constants for systems of linear inequalities[END_REF] for more details. This result is needed in the sequel.

Theorem 3. Let f ∈ Γ 0 (R m ). Then (i) S f has a global error bound if and only if η(f ) := inf{d(0, ∂f (x)) : x ∈ R m , f (x) > 0} > 0. More precisely, τ min (f ) = [η(f )] -1 . (ii) S f has a local error bound at x ∈ bdry(S f ) if and only if η(f, x) := lim inf x→x,f (x)>0 d(0, ∂f (x)) > 0. More precisely, τ min (f, x) = [η(f, x)] -1 . (iii)
The following equality holds:

τ min (f ) = sup x∈bdryS f τ min (f, x)
For a mapping φ : X → Y between two normed linear spaces X, Y , we denote by Lip(φ) the Lipschitz constant which is defined by

Lip(φ) := sup u,v∈X,u =v φ(u) -φ(v) u -v .

Stability of Local Error bounds

In this subsection, we mainly study local error bounds for a single convex inequality and aim to provide equivalent criterion for the stability of local error bounds for convex inequality [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF]. We first give a sufficient condition for the local error bound of convex inequality [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF].

Proposition 4. Let f ∈ Γ 0 (R m ) and x ∈ S f such that inf h =1 f (x, h) = 0.
Then convex inequality [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF] has a local error bound at x and moreover

τ min (f, x) ≤ 1 inf h =1 f (x, h) . ( 10 
)
Proof. Let β(f, x) := inf h =1 f (x, h). Suppose that β(f, x) > 0.
Then for any x = x, by [START_REF] Auslender | Global regularity theorems[END_REF], one can verify that

f (x) -f (x) = f x + x -x x -x x -x -f (x) ≥ f x, x -x x -x x -x ≥ β(f, x) x -x ≥ β(f, x)d(x, S f ).
This means that τ min (f, x) ≤ [β(f, x)] -1 . Suppose that β(f, x) < 0. Then Lemma 1 implies that d(0, ∂f (x)) = -β(f, x) and by virtue of Theorem 3, one has

τ (f, x) ≤ 1 -β(f, x)
.

Hence [START_REF] Burke | Weak sharp minima revisited. I. Basic theory[END_REF] holds. The proof is complete.

Remark 5. Close analysis of the proof of Proposition 3 shows that the solution set S f will reduce to the singleton {x} if inf h =1 f (x, h) > 0 and f (x) = 0, which means that x is the sharp (or strong) minimizer of f . Further, it should be noted that the condition inf h =1 f (x, h) = 0 is only sufficient for the existence of a local error bound of [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF]. Indeed, let f (x) ≡ 0 for all x ∈ R. Then S f = R has a global error bound, while inf h =1 f (x, h) = 0 for all x ∈ R.

The following theorem shows that the condition inf h =1 f (x, h) = 0 can be used to give characterizations of stability of the local error bound for the convex inequality [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF]. For the sake of completeness, we provide a self-contained proof of this theorem. Theorem 6. Let f ∈ Γ 0 (R m ) and x ∈ R m be such that f (x) = 0. Then the following statements are equivalent:

(i) inf h =1 f (x, h) = 0; (ii) There exist constants c, ε > 0 such that for all g ∈ Γ 0 (R m ) satisfying x ∈ S g and lim sup x→x |(f (x) -g(x)) -(f (x) -g(x))| x -x ≤ ε, ( 11 
)
one has τ min (g, x) ≤ c; (iii) There exist constants c, ε > 0 such that for all u * ∈ R m with u * ≤ 1, one has τ min (g u * ,ε , x) ≤ c, where

g u * ,ε (x) := f (x) + ε u * , x -x for all x ∈ R m . Proof. Let β(f, x) := inf h =1 f (x, h). (i) ⇒ (ii): Take any ε > 0 such that ε < |β(f, x)| and let c := (|β(f, x)| -ε) -1 .
For any g ∈ Γ 0 (R m ) such that x ∈ S g and (11) holds. If β(f, x) > 0, then for any h ∈ R m , one has

g (x, h) ≥ f (x, h) -ε,
and thus inf h =1 g (x, h) ≥ inf h =1 f (x, h) -ε ≥ β(f, x) -ε.
This and Proposition 3 imply that τ min (g, x)

≤ [β(f, x) -ε] -1 = c.
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If β(f, x) < 0, then for any h ∈ R m , one has

g (x, h) ≤ f (x, h) + ε,
and thus inf

h =1 g (x, h) ≤ inf h =1 f (x, h) + ε ≤ β(f, x) + ε.
By using Proposition 3 again, one yields that τ min (g, x) ≤ [-β(f, x) -ε] -1 = c. Hence (ii) holds. Note that the implication (ii) ⇒ (iii) is clear and it remains to prove (iii) ⇒ (i).

Let ε > 0. Suppose on the contrary that there exists a sequence {h k } in R m with h k = 1 such that

α k := f (x, h k ) → 0.
Without loss of generality, we can assume that |α k | < ε for all k (considering sufficiently large k if necessary) and consider the function

g ε (x) := f (x) + ε h k , x -x for all x ∈ R m . From β(f, x) = 0, one can verify that f (x) ≥ f (x) for any x = x.
By the definition of directional derivative, there exists a sequence {δ k } decreasing to 0 such that

f (x + δ k h k ) < f (x) + (ε + α k )δ k = inf x∈R m f (x) + (ε + α k )δ k . ( 12 
)
By virtue of the Ekeland variational principle, we can select

z k ∈ R m such that z k -(x + δ k h k ) < δ k 2 , f (z k ) ≤ f (x + δ k h k ) and f (x) + 2(ε + α k ) x -z k > f (z k ), ∀x = z k . ( 13 
)
This implies that

z k → x, g ε (x) = f (x) = 0 and g ε (z k ) = f (z k ) + ε h k , z k -x ≥ f (x) + ε h k , z k -x = ε h k , z k -x -δ k h k + εδ k > εδ k - 1 2 εδ k = 1 2 εδ k > 0. We claim that inf h =1 g ε (z k , h) < 0. ( 14 
) (Otherwise, inf h =1 g ε (z k , h) ≥ 0 and then one has g ε (z k ) = inf x∈R m g ε (x), which contradicts g ε (x) = 0).
For any h ∈ R m with h = 1 and any t > 0, by ( 13), one has

g ε (z k + th) -g ε (z k ) t = f (z k + th) -f (z k ) t + ε h k , h ≥ -2(ε + α k ) h -ε = -5ε and consequently 0 ≥ inf h =1 g ε (z k , h) ≥ -5ε.
Thanks to Lemma 1 and Proposition 3, one can obtain that τ min (g ε , x) ≥ 1 5ε , which contradicts (iii) as ε is arbitrary. The proof is complete.

Remark 7. (a) From [START_REF] Kruger | Perturbation of error bounds[END_REF][START_REF] Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF], the condition [START_REF] Burke | Weak sharp minima revisited. II. Application to linear regularity and error bounds[END_REF] means that g is an ε-perturbation of f near x, and the condition inf h =1 f (x, h) = 0 is proved to be equivalent to the stability of this ε-perturbation of local error bounds. Further, it has been shown in Theorem 6 that the stability of such ε-perturbation is essentially equivalent to that of ε-linear perturbation.

(b) Theorem 6 can be regarded as the equivalent version of [START_REF] Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF]Theorem 2] since one can prove that

inf h =1 f (x, h) = 0 ⇐⇒ 0 ∈ bdry(∂f (x)).
Indeed, suppose that 0 ∈ bdry(∂f (x)). For the case that 0 ∈ int(∂f (x)), there is r > 0 such that rB m ⊆ ∂f (x). This and (4) imply that inf

h =1 f (x, h) ≥ r > 0.
For the case that 0 ∈ ∂f (x), by the separation theorem, there exists

h 0 ∈ R m with h 0 = 1 such that 0 > sup{ x * , h 0 : x * ∈ ∂f (x)} = f (x, h 0 )
and consequently inf

h =1 f (x, h) ≤ f (x, h 0 ) < 0.
On the other hand, if 0 ∈ bdry(∂f (x)), then inf h =1 f (x, h) ≥ 0 and for any ε > 0, we can select

u * ε ∈ εB m \∂f (x) and x ε = x such that u * ε , x ε -x > f (x ε ) -f (x).
By [START_REF] Auslender | Global regularity theorems[END_REF], for any t ∈ (0, 1), one has

f (x + t(x ε -x)) -f (x) t ≤ f (x ε ) -f (x) < u * ε , x ε -x and thus f x, x ε -x x ε -x ≤ u * ε , x ε -x x ε -x ≤ ε. This means that inf h =1 f (x, h) ≤ ε → 0 + and so inf h =1 f (x, h) = 0.

Stability of Global Error Bounds

This subsection is devoted to the study of stability of global error bounds for a single convex inequality, and the aim is to give sufficient and/or necessary conditions for the stability via directional derivatives. The following theorem gives a criterion for the stability of global error bounds.

Theorem 8. Let f ∈ Γ 0 (R m ) be such that bdry(S f ) ⊆ f -1 (0). Consider the following statements:

(i) There exists τ ∈ (0, +∞) such that

inf inf h =1 f (x, h) : x ∈ bdry(S f ) > τ. ( 15 
)
(ii) There exist constants c, ε ∈ (0, +∞) such that for all g ∈ Γ 0 (R m ) satisfying

S f ⊆ S g and Lip(f -g) < ε, ( 16 
)
one has τ min (g) ≤ c. (iii) There exist constants c, ε ∈ (0, +∞) such that for all g ∈ Γ 0 (R m ) satisfying bdry(S f ) ∩ g -1 (0) = ∅ and Lip(f -g) < ε, ( 17 
)
one has τ min (g) ≤ c.

Then (iii) ⇒ (i)⇒ (ii).
Proof. (i) ⇒ (ii): If there is some x ∈ bdry(S f ) such that inf h =1 f (x, h) > 0, then the implication follows by Remark 4 and the proof of Theorem 6.

We next consider the case inf h =1 f (x, h) ≤ 0 for all x ∈ bdry(S f ). By virtue of [START_REF] Cuong | Error bounds revisited[END_REF] and Theorem 3, one can verify that S f has a global error bound with the constant 1 τ ; that is,

d(x, S f ) ≤ 1 τ [f (x)] + , ∀x ∈ R m . ( 18 
)
Take any ε ∈ (0, τ ). Suppose that g ∈ Γ 0 (R m ) satisfies [START_REF] Deng | Perturbation analysis of a condition number for convex inequality systems and global error bounds for analytic systems[END_REF]. Let x ∈ R m be such that g(x) > 0. Then f (x) > 0 as

S f ⊆ S g . We claim that inf h =1 f (x, h) ≤ -τ. ( 19 
)
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Granting this, by Lip(f -g) < ε in [START_REF] Deng | Perturbation analysis of a condition number for convex inequality systems and global error bounds for analytic systems[END_REF], one can prove that

inf h =1 g (x, h) ≤ inf h =1 f (x, h) + ε ≤ -(τ -ε).
This and Theorem 3 imply that τ min (g) ≤ (τ -ε) -1 . We next prove the claim [START_REF] Gfrerer | First order and second order characterizations of metric subregularity and calmness of constraint set mappings[END_REF]. Take z ∈ bdry(S f ) such that x -z = d(x, S f ) and ( 18) implies that

f (x) ≥ τ d(x, S f ) = τ x -z .
Then for any t ∈ (0, 1), one has

f (x + t(z -x)) ≤ tf (z) + (1 -t)f (x)
and thus

f (x + t(z -x)) -f (x) t ≤ -f (x) ≤ -τ x -z .
This means that inf

h =1 f (x, h) ≤ f x, z -x x -z ≤ -τ
Hence [START_REF] Gfrerer | First order and second order characterizations of metric subregularity and calmness of constraint set mappings[END_REF] holds. (iii) ⇒ (i): Suppose that there exists a sequence {x k } ⊆ bdry(S f ) such that

α k := inf h =1 f (x k , h) → 0 -(as k → ∞).
Let ε > 0 be arbitrary and k be sufficiently large such that

3 2 α k + ε 2 > 0. (20) 
Note that for any x = x k , one has

f (x) -f (x k ) x -x k = f x k + x -x k • x-x k x-x k -f (x k ) x -x k ≥ f x k , x -x k x -x k ≥ α k and thus f (x) -α k x -x k ≥ f (x k ), ∀x ∈ R m . ( 21 
)
Choose

h k ∈ R m with h k = 1 such that f (x k , h k ) < α k + ε 2 . ( 22 
)
Then we can take

r k → 0 + (as k → ∞) such that f (x k + r k h k ) < f (x k ) + (α k + ε)r k . ( 23 
)
This and ( 21) imply that

f (x k + r k h k ) -α k x k + r k h k -x k < inf x∈R m (f (x) -α k x -x k ) + εr k .
Applying the Ekeland variational principle, we can select y k ∈ R m such that

y k -(x k + r k h k ) < r k 2 , f (y k ) -α k y k -x k ≤ f (x k + r k h k ) -α k r k , ( 24 
)
and

f (x) -α k x -x k + 2ε x -y k > f (y k ) -α k y k -x k , ∀x = y k . ( 25 
)
This implies that

y k -x k > r k - r k 2 = r k 2 and y k -x k < r k + r k 2 = 3 2 r k ,
and thus y k = x k . Let us consider a function g ε ∈ Γ 0 (R m ) defined by

g ε (x) := f (x) + ε h k , x -x k for all x ∈ R m .
By virtue of ( 20), ( 21), ( 22) and ( 25), one has

g ε (y k ) = f (y k ) + ε h k , y k -x k = f (y k ) + ε h k , y k -(x k + r k h k ) + εr k ≥ α k y k -x k -ε y k -(x k + r k h k ) + εr k ≥ α k • 3 2 r k + ε 2 r k > 0.
If inf h =1 g ε (y k , h) ≥ 0, then for any x = y k , one has

g ε (x) -g ε (y k ) ≥ g ε y k , x -y k x -y k x -y k ≥ inf h =1 g ε (y k , h) x -y k ≥ 0.
This and g ε (y k ) > 0 imply that S gε = ∅, and thus τ min (g ε ) = +∞, which contradicts (iii).

Next, we consider the case inf h =1 g ε (y k , h) < 0. For any h ∈ R m with h = 1 and t > 0, by [START_REF] Ioffe | Metric regularity-a survey[END_REF], one has

g ε (y k + th) -g ε (y k ) t = f (y k + th) -f (y k ) t + ε h k , h ≥ 1 t α k y k + th -x k -α k y k -x k -2ε y k + th -y k + ε h k , h ≥ α k -2ε -ε and consequently 0 > inf h =1 g ε (y k , h) ≥ α k -2ε -ε ≥ -4ε.
Thanks to Lemma 1 and Theorem 3, we obtain τ min (g ε ) ≥ 1 4ε , which contradicts (iii) as ε is arbitrary. The proof is complete. (b) It should be noted that the condition (15) is not sufficient for the stability of global error bounds as in (iii) of Theorem 8, and the assumption S f ⊆ S g for the stability as said in (ii) of Theorem 8 is crucial. To see this, let us consider the following example:

Example 10. Let f (x) := e x -1 for all x ∈ R. Then S f = (-∞, 0], bdry(S f ) = {0} and | inf |h|=1 f (0, h)| = 1 > 0.
However, for any ε ∈ (0, +∞), let us consider the function g ε (x) := f (x) -εx for all x ∈ R. Then one can verify that g ε has two different zero points which are denoted by x 1 := x < 0 and x 2 := 0 and S gε = [x, 0]. Thus S f ⊆ S gε and for any x < x, one has d(x, S gε )

g ε (x) = x -x e x -1 -εx → 1 ε as x → -∞.
This implies that

τ min (g ε ) ≥ 1 2ε ,
and consequently the global stability (for f ) as said in (iii) of Theorem 8 does not hold as ε > 0 is arbitrary.

Further, a natural question arises from the above example:

Does there exist some type of stability of global error bounds that can be characterized by condition (15)?

We do not have an answer to this question. However, if the answer is affirmative, we conjecture that such global stability should be strictly stronger than that of (ii) and weaker than that of (iii) in Theorem 8.

The following theorem gives characterizations of the stability of global error bounds for a convex inequality as said in (iii) of Theorem 8.

Theorem 11. Let f ∈ Γ 0 (R m ) be such that bdry(S f ) ⊆ f -1 (0). Then the following statements are equivalent:

(i) There exists τ ∈ (0, +∞) such that [START_REF] Cuong | Error bounds revisited[END_REF] holds and the following qualification condition is satisfied:

(QC) For any sequence {z k } ⊆ S f \bdry(S f ), one has

lim inf k→∞ inf h =1 f (z k , h) > τ (26)
if there is a sequence

{x k } ⊆ bdry(S f ) satisfying lim k→∞ f (z k )-f (x k ) z k -x k = 0. (ii)
There exist constants c, ε ∈ (0, +∞) such that for all g ∈ Γ 0 (R m ) satisfying [START_REF] Dontchev | The radius of metric regularity[END_REF], one has τ min (g) ≤ c; (iii) There exist constants c, ε > 0 such that for any x ∈ bdry(S f ) and u ∈ R m with u ≤ 1, one has τ min (g u,ε ) ≤ c, where g u,ε (x) := f (x) + ε u, x -x for all x ∈ R m .

Proof. (i) ⇒ (ii): Based on Remark 4 and the proof of Theorem 8, we only need to consider the case inf

h =1 f (x, h) ≤
0 for all x ∈ bdry(S f ). We first prove the following claim:

Claim: There exists ε 0 > 0 such that for all x 0 ∈ bdry(S f ), one has

inf inf h =1 f (z 0 , h) : z 0 ∈ R m , f (z 0 ) ≥ -ε 0 z 0 -x 0 ≥ τ. ( 27 
)
Suppose on the contrary that there exist

ε k → 0 + , x k ∈ bdry(S f ) and z k ∈ R m such that f (z k ) ≥ -ε k z k -x k and inf h =1 f (z k , h) < τ for all k. ( 28 
)
Then f (z k ) ≤ 0 for all k (otherwise, similar to the proof of ( 19), one can prove that inf h =1 f (z k , h) > τ , a contradiction). By [START_REF] Cuong | Error bounds revisited[END_REF], one has z k ∈ S f \bdry(S f ) and it follows from (28) that

0 ≥ f (z k ) -f (x k ) z k -x k = f (z k ) z k -x k ≥ -ε k .
This and the qualification condition in (i) imply that lim inf

k→∞ inf h =1 f (z k , h) > τ,
which contradicts [START_REF] Iusem | On the convergence properties of Hildreth's quadratic programming algorithm[END_REF]. Hence the claim is proved.

Let ε > 0 be such that ε < min{ε 0 , τ }. Suppose that g ∈ Γ 0 (R m ) satisfies [START_REF] Dontchev | The radius of metric regularity[END_REF]. Take any x ∈ bdry(S f )∩g -1 (0). Then for any x ∈ R m with g(x) > 0, one has

f (x) ≥ g(x) + (f (x) -g(x)) -ε x -x > -ε x -x .

Using (27), one obtains inf

h =1 f (x, h) < -τ and thus inf h =1 g (x, h) < inf h =1 f (x, h) + ε < -(τ -ε).
By virtue of Lemma 1 and Theorem 3 we derive the inequality τ min (g) ≤ 1 τ -ε . Note that (ii) ⇒ (iii) follows immediately and it remains to prove (iii) ⇒ (i).

Suppose on the contrary that (i) does not hold. Based on (iii) ⇒ (i) in Theorem 8, we only consider the case that there exist z k ∈ S f \bdry(S f ) and

x k ∈ bdry(S f ) such that lim k→∞ f (z k ) -f (x k ) z k -x k = 0 and α k := inf h =1 f (z k , h) → 0 -. ( 29 
)
Let ε > 0 be arbitrary. Without loss of generality, we can assume that z k -x k z k -x k → h 0 (considering subsequence if necessary). Then h 0 = 1. Suppose that k is sufficiently large such that

α k + ε > 0 and f (z k ) -f (x k ) z k -x k + ε h 0 , z k -x k z k -x k > 0. ( 30 
)
Let us consider a function g h0,ε ∈ Γ 0 (R m ) defined by [START_REF] Klatte | Asymptotic constraint qualifications and global error bounds for convex inequalities[END_REF] and thus

g h0,ε (x) := f (x) + ε h 0 , x -x k for all x ∈ R m . Then g h0,ε (z k ) = f (z k ) + ε h 0 , z k -x k > 0 by
0 > inf h =1 g h0,ε (z k , h) ≥ inf h =1 f (z k , h) -ε = α k -ε > -2ε.
This together with Lemma 1 and Theorem 3 implies that τ min (g h0,ε ) ≥ 1 2ε , which contradicts (iii) as ε is arbitrary. The proof is complete.

Remark 12. Note that condition (QC) in ( 26) is necessary for the stability of global error bounds. Consider Example 9 given in Remark 8 again. Let f (x) := e x -1 for all x ∈ R. Then the stability of global error bounds for f as said in (iii) of Theorem 8 does not hold. Further, for any z k → -∞, one can verify that

inf |h|=1 f (z k , h) = e z k → 0 as k → ∞,
which means that (QC) (for f ) in ( 26) fails.

Stability of error bounds for Semi-infinite Convex Constraint Systems

In this section, we study local and global error bounds for semi-infinite convex constraint systems, and mainly provide characterizations of stability of error bounds by directional derivatives. We first recall the definition of error bounds for semi-infinite convex constraint systems.

For semi-infinite convex constraint systems in R m , we mean the problem of finding x ∈ R m satisfying:

f i (x) ≤ 0 for all i ∈ I, ( 31 
)
where I is a compact, possibly infinite, Hausdorff space, f i : R m → R, i ∈ I, are given convex functions such that i → f i (x) is continuous on I for each x ∈ R m . It is known from [START_REF] Rockafellar | Convex Analysis[END_REF]Theorem 7.10] that in this case, (i, x)

→ f i (x) is continuous on I × R m . Let F ∈ C(I × R m , R
) be defined by F (i, x) := f i (x) for all (i, x) ∈ I × R m . We denote the solution set of system [START_REF] Kruger | Error bounds and Hölder metric subregularity[END_REF] by

S F := {x ∈ R m : f i (x) ≤ 0 for all i ∈ I}. ( 32 
)
For any x ∈ R m , we set

f (x) := max{f i (x) : i ∈ I} and I f (x) := {i ∈ I : f i (x) = f (x)}. (33) 
Recall that system (31) is said to have a global error bound if there exists a constant τ ∈ (0, +∞) such that

d(x, S F ) ≤ τ [f (x)] + ∀x ∈ R m . ( 34 
)
We denote by τ min (F ) := inf{τ > 0 : [START_REF] Kruger | Hölder error bounds and Hölder calmness with applications to convex semi-infinite optimization[END_REF] holds} the global error bound modulus of S F . For x ∈ bdry(S F ), system (31) is said to have a local error bound at x if there exist constants τ, δ ∈ (0, +∞) such that

d(x, S F ) ≤ τ [f (x)] + ∀x ∈ B(x, δ). ( 35 
)
We denote by τ min (F, x) := inf{τ > 0 : there exists δ > 0 such that (35) holds} the local error bound modulus of S F at x. We first study stability of local error bounds for semi-infinite convex constraint system [START_REF] Kruger | Error bounds and Hölder metric subregularity[END_REF] and aim to provide characterizations of the stability of local error bounds for system [START_REF] Kruger | Error bounds and Hölder metric subregularity[END_REF]. To this aim, we need the following proposition which is of independent interest.

Proposition 13. Let x ∈ R m . Then for any h ∈ R m , one has f (x, h) = max i∈I f (x) f i (x, h). ( 36 
)
Proof. Let h ∈ R m . Take any i ∈ I f (x). Then for any t > 0, one has

f i (x + th) -f i (x) t ≤ f (x + th) -f (x) t and thus f i (x, h) ≤ f (x, h). This implies that f (x, h) ≥ max i∈I f (x) f i (x, h). ( 37 
)
By virtue of ( 4), one has

f (x, h) = max x∈∂f (x)
x * , h , and thus there is

z * ∈ ∂f (x) such that f (x, h) = z * , h . ( 38 
)
Note that the subdifferential of the function f at a point x ∈ R m is given by (see Ioffe & Tikhomirov [START_REF] Ioffe | Theory of Extremal Problems[END_REF])

∂f (x) = co i∈I f (x) ∂f i (x)
where "co" denotes the convex hull of a set. Then by [START_REF] Luo | On a global error bound for a class of monotone affine variational inequality problems[END_REF], there exist

λ 1 , • • • , λ N ≥ 0, i 1 , • • • , i N ∈ I f (x) and z * k ∈ ∂f i k (x), k = 1, • • • , N such that N k=1 λ k = 1 and z * = N k=1 λ k z * k .
This and (38) imply that

f (x, h) = z * , h = N k=1 λ k z * k , h ≤ N k=1 λ k f i k (x, h) ≤ max i∈I f (x) f i (x, h).
Hence [START_REF] Lewis | Error bounds for convex inequality systems[END_REF] follows from [START_REF] Luke | Implicit error bounds for Picard iterations on Hilbert spaces[END_REF] and the above inequality. The proof is complete.

The following theorem gives characterizations (by directional derivatives) of stability of local error bounds for system [START_REF] Kruger | Error bounds and Hölder metric subregularity[END_REF]. Theorem 14. Let x ∈ R m be such that f (x) = 0. Then the following statements are equivalent:

(i) inf h =1 f (x, h) = 0. (ii) There exist constants c, ε > 0 such that if G ∈ C(I × R m , R), g i (x) := G(i, x), g i is convex; g(x) := max i∈I g i (x), I g (x) := {i ∈ I : g i (x) = g(x)}; g(x) = 0; I g (x) ⊆ I f (x) whenever inf h =1 f (x, h) < 0; I f (x) ⊆ I g (x) whenever inf h =1 f (x, h) > 0; lim sup x→x |fi(x)-gi(x)-(fi(x)-gi(x))| x-x ≤ ε, ∀i ∈ I f (x) ∩ I g (x),
then one has τ min (G, x) ≤ c. (iii) There exist constants c, ε > 0 such that for all u * ∈ R m with u * ≤ 1, one has τ min (G, x) ≤ c, where

G ∈ C(I × R m , R) is defined by G(i, x) := f i (x) + ε u * , x -x for all (i, x) ∈ I × R m . ( 39 
)
Proof. We set

β(f, x) := inf h =1 f (x, h).
(i) ⇒ (ii): Suppose that β(f, x) > 0. Then one can verify that S F = {x} by Remark 4. Choose any ε ∈ (0, β(f, x)). Suppose that G, g i and g satisfy all conditions said in (ii). Then for any i ∈ I f (x) ⊆ I g (x), one has

g i (x, h) ≥ f i (x, h) -ε
and it follows from Theorem 13 that inf

h =1 g (x, h) = inf h =1 max i∈Ig(x) g i (x, h) ≥ inf h =1 max i∈I f (x) g i (x, h) ≥ inf h =1 max i∈I f (x) f i (x, h) -ε = inf h =1 f (x, h) -ε = β(f, x) -ε > 0 (thanks to I f (x) ⊆ I g (x)
). Applying Proposition 3, we derive the inequality

τ min (G, x) = τ min (g, x) ≤ 1 β(f, x) -ε .
Suppose that β(f, x) < 0. Choose any ε > 0 such that β(f, x) + ε < 0. Then for any i ∈ I g (x) ⊆ I f (x), one has

g i (x, h) ≤ f i (x, h) + ε
and it follows from Theorem 13 that inf

h =1 g (x, h) = inf h =1 max i∈Ig(x) g i (x, h) ≤ inf h =1 max i∈Ig(x) (f i (x, h) + ε) ≤ inf h =1 max i∈I f (x) f i (x, h) + ε = inf h =1 f (x, h) + ε = β(f, x) + ε < 0
(thanks to I g (x) ⊆ I f (x)). Applying Proposition 3 again, we obtain the inequality

τ min (G, x) = τ min (g, x) ≤ 1 -β(f, x) -ε .
(ii) ⇒ (iii): The implication follows immediately as I f (x) = I g (x). (iii) ⇒ (i): Let u * ∈ R m with u * ≤ 1 and G ∈ C(I × R m , R) be defined as [START_REF] Luo | Perturbation analysis of a condition number for linear systems[END_REF]. Note that

g i (x) = G(i, x) = f i (x) + ε u * , x -x and thus g(x) = max i∈I g i (x) = max i∈I (f i (x) + ε u * , x -x ) = f (x) + ε u * , x -x .
This means that the implication follows from (iii) ⇒ (i) as in Theorem 6. The proof is complete.

Remark 15. (a) Theorem 14, given in terms of directional derivatives, can be regarded as an equivalent version and a supplement of [START_REF] Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF]Theorem 4] in which a subdifferential characterization of stability of local error bounds for system [START_REF] Kruger | Error bounds and Hölder metric subregularity[END_REF] was established. Further, in contrast with [START_REF] Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF]Theorem 4], the stability of local error bounds for system [START_REF] Kruger | Error bounds and Hölder metric subregularity[END_REF] only requires that all component functions in system [START_REF] Kruger | Error bounds and Hölder metric subregularity[END_REF] have the same ε-linear perturbation.

(b) It should be observed that the condition I f (x) ⊆ I g (x) or I g (x) ⊆ I f (x) in Theorem 14 is crucial. To see this, we consider the following two examples:

Let f i : R 2 → R be defined by f i (x) := |x i |, i = 1, 2 for all x = (x 1 , x 2 ) ∈ R 2 , x = (0, 0), F := (f 1 , f 2 ) and f := max{f 1 , f 2 }. Then I f (x) = {1, 2} and inf h =1 f (x, h) = √ 2 2 > 0.
However, for each ε > 0, we define functions g 1,ε and g 2,ε by

g 1,ε (x) := |x 1 | + ε|x 2 |, g 2,ε (x) := |x 2 | -ε, for all x = (x 1 , x 2 ) ∈ R 2 .
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We set G ε := (g 1,ε , g 2,ε ) and g ε := max{g 1,ε , g 2,ε }. Then one can verify that I g (x) = {1} and thus I f (x) ⊆ I g (x). Note that S Gε = {x} and Lip(f 1 -g 1,ε ) ≤ ε.

For any δ ∈ (0, ε -1 ), we set z

δ := (0, δ) ∈ R 2 . Then d(z δ , S Gε ) = δ and g ε (z δ ) = εδ, which implies that τ min (G ε , x) ≥ 1 ε . Let f 1 , f 2 : R 2 → R be defined by f 1 (x) := x 1 and f 1 (x) := -x 1 + |x 2 | -1 for all x = (x 1 , x 2 ) ∈ R 2 , x = (0, 0), F := (f 1 , f 2 ) and f := max{f 1 , f 2 }. Then I f (x) = {1} and inf h =1 f (x, h) = inf h =1 f 1 (x, h) = -1 < 0.
However, for each ε > 0, we define functions g 1,ε and g 2,ε as

g 1,ε (x) := x 1 + ε|x 2 |, g 2,ε (x) := -x 1 + ε|x 2 |, for all x = (x 1 , x 2 ) ∈ R 2 .
We set G ε := (g 1,ε , g 2,ε ) and g ε := max{g 1,ε , g 2,ε }. Then one can verify that I g (x) = {1, 2} and thus

I g (x) ⊆ I f (x). Note that S Gε = {x} and Lip(f 1 -g 1,ε ) ≤ ε. For any δ ∈ (0, ε -1 ), set z δ := (0, δ) ∈ R 2 . Then d(z δ , S Gε ) = δ and g ε (z δ ) = εδ. This means that τ min (G ε , x) ≥ ε -1 .
We now turn our attention to the stability of global error bounds for semi-infinite constraint system (31) and mainly give equivalent criterion for such stability. Based on Theorem 11, the following theorem establishes equivalent conditions for the stability of global error bounds for the system [START_REF] Kruger | Error bounds and Hölder metric subregularity[END_REF].

Theorem 16. The following statements are equivalent:

(i) There exists τ ∈ (0, +∞) such that

inf inf h =1 f (x, h) : x ∈ bdry(S f ) > τ, ( 40 
)
and (QC) as in Theorem 11 is satisfied. (ii) There exist constants c, ε > 0 such that if G, g i (x), g(x) and I g (x) as said in (ii) of Theorem 13 ;

z ∈ bdry(S f ) : f i (z) = g i (z) for all i ∈ I = ∅; sup i∈I Lip(f i -g i ) < ε; I g (x) ⊆ I f (x) whenever inf h =1 f (x, h) < 0; I f (x) ⊆ I g (x) whenever inf h =1 f (x, h) > 0, then one has τ min (G) ≤ c. (iii) There exist constants c, ε > 0 such that for all x ∈ bdry(S f ) and u * ∈ R m with u * ≤ 1, one has τ min (G) ≤ c, where G ∈ C(I × R m , R) is defined by G(i, x) := f i (x) + ε u * , x -x for all (i, x) ∈ I × R m . ( 41 
)
Proof. (i) ⇒ (ii): Thanks to Remark 4 and the proof of Theorem 13, we only need to consider the case inf h =1 f (x, h) ≤ 0 for all x ∈ bdry(S f ). By virtue of the claim given in the proof of Theorem 11, there exists ε 0 > 0 such that for all x 0 ∈ bdry(S f ), one has inf inf

h =1 f (x, h) : x ∈ R m , f (x) ≥ -ε 0 x -x 0 ≥ τ. ( 42 
)
Take any ε > 0 such that ε < min{ε 0 , τ }. Suppose that G, g i and g satisfy all conditions said in (ii). Let x ∈ R m be such that g(x) > 0. We claim that inf

h =1 f (x, h) ≤ -τ. ( 43 
)
Granting this, one has

inf h =1 g (x, h) = inf h =1 max i∈Ig(x) g i (x, h) ≤ inf h =1 max i∈Ig(x) f i (x, h) + ε ≤ inf h =1 max i∈I f (x) f i (x, h) + ε = inf h =1 f (x, h) + ε ≤ -(τ -ε)
(thanks to sup i∈I Lip(f i -g i ) < ε and I g (x) ⊆ I f (x)). Applying Lemma 1 and Theorem 3, we derive the inequality τ min (G) ≤ 1 τ -ε . It remains to prove relation [START_REF] Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF]. For the case that f (x) > 0, similar to the proof of [START_REF] Gfrerer | First order and second order characterizations of metric subregularity and calmness of constraint set mappings[END_REF], one can verify that (43) holds. Thus we only need to consider the case that f (x) ≤ 0.

From the second condition in (ii), there is z 0 ∈ bdry(S f ) such that f i (z 0 ) = g i (z 0 ) for all i ∈ I. Then for any i ∈ I g (x) ⊆ I f (x), one has f i (x) ≥ g i (x) -(f i (z 0 ) -g i (z 0 )) -ε x -z 0 = g(x) -ε x -z 0 > -ε x -z 0 and thus f (x) > -ε 0 x -z 0 . This and [START_REF] Ng | Error bounds for lower semicontinuous functions in normed spaces[END_REF] imply that (43) holds.

(ii) ⇒ (iii): The implication follows immediately since I f (x) = I g (x) for all x ∈ R m . (iii) ⇒ (i): Let x ∈ bdry(S f ), u * ∈ R m with u * ≤ 1 and G ∈ C(I × R m , R) be defined as [START_REF] Moreau | Étude locale d'une fonctionnelle convexe[END_REF]. Note that

g i (x) = G(i, x) = f i (x) + ε u * , x -x and consequently g(x) = max i∈I g i (x) = max i∈I (f i (x) + ε u * , x -x ) = f (x) + ε u * , x -x .
Thus, the implication follows from (iii) ⇒ (i) as in Theorem 11. The proof is complete

Conclusions

This paper is devoted to the study of the stability of local and global error bounds for convex inequality constraint systems including a single convex inequality and semi-infinite convex constraint systems. The main results provide characterizations (in terms of directional derivatives) of the stability of local and global error bounds for a single convex inequality (see Theorem 6 and Theorem 11). When these results are applied to error bounds for semi-infinite convex constraint systems, characterizations of the stability of local and global error bounds are also established in terms of directional derivatives (see Theorem 14 and Theorem 16). These results show that the stability of error bounds for convex inequality constraint systems can be equivalent to solving convex optimization/minimization problems defined by directional derivatives on the unit sphere.

For a subset D

  of R m , we denote by d(x, D) the distance from x to D which is defined by d(x, D) := inf{ x -y : y ∈ D},

Remark 2 .

 2 Note that Lemma 1 follows also from Zălinescu [54, Proposition 3.2] or [55, Proposition 3.10.5.].

Remark 9 .

 9 (a) Compared with[43, Theorem 7] in which a subdifferential characterization of stability of global error bounds was established with the aid of the so-called asymptotic qualification condition, Theorem 8 studies the stability of global error bounds via directional derivatives without additional hypothesis. It is known from Theorem 8 that the condition (15) is sufficient for the stability of global error bounds as said in (ii) of Theorem 8, and is necessary for the stability as in (iii) of Theorem 8.
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