

Territorial scent-marking effects on vigilance behavior, space use, and stress in female Columbian ground squirrels

Jeffrey D Roth, F. Stephen Dobson, Peter Neuhaus, Asheber Abebe, Thibaut Barra, Rudy Boonstra, Phoebe D Edwards, Manuel A Gonzalez, Tracey L Hammer, Erwan Harscouet, et al.

▶ To cite this version:

Jeffrey D Roth, F. Stephen Dobson, Peter Neuhaus, Asheber Abebe, Thibaut Barra, et al.. Territorial scent-marking effects on vigilance behavior, space use, and stress in female Columbian ground squirrels. Hormones and Behavior, 2022, 139, pp.105111. 10.1016/j.yhbeh.2022.105111. hal-03538717

HAL Id: hal-03538717 https://hal.science/hal-03538717

Submitted on 21 Jan2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Published in ''Hormones and Behavior''
2	Territorial scent-marking effects on vigilance behavior, space use,
3	and stress in female Columbian ground squirrels
4	Jeffrey D Roth ¹ , F Stephen Dobson ^{1,2,3} , Peter Neuhaus ⁴ , Asheber Abebe ⁵ , Thibaut Barra ² ,
5	Rudy Boonstra ⁶ , Phoebe D Edwards ⁴ , Manuel A Gonzalez ⁴ , Tracey L Hammer ^{2,4} , Erwan
6	Harscouet ² , Laura K McCaw ⁶ , Maria Mann ⁴ , Rupert Palme ⁷ , Mathilde Tissier ² , Pierre
7	Uhlrich ² , Claire Saraux ² & Vincent A Viblanc ^{2*}
8	
9	¹ Department of Biological Sciences, Auburn University, Auburn, AL, USA
10	² Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
11	³ University of Strasbourg, Institute of Advanced Sciences (USIAS), 5 allée du Général
12	Rouvillois, 67083 Strasbourg, France
13	⁴ Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
14	⁵ Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA
15	⁶ Department of Biological Sciences, University of Toronto Scarborough, ON M1C 1A4,
16	Canada
17	⁷ Department of Biological Sciences, University of Veterinary Medicine, Vienna, Austria
18	
19	*Correspondance vincent.viblanc@iphc.cnrs.fr
20	
21	Author contributions
22	Designed the study: VAV, PN and FSD; collected the data; VAV, JDR, PN, TB, FC, MAG,
23	TLH, EH, MM, CS, MT, PU and FSD; did the laboratory work: PDE, LMC and RB;
24	provided antibodies and expertise on FCM measurement: RP; analyzed the data: VAV, JDR,

AA, CS, and FSD; wrote the manuscript: VAV, JDR and FSD; all authors commented on themanuscript.

27 Abstract

28 Social environments can profoundly affect the behavior and stress physiology of group-living 29 animals. In many territorial species, territory owners advertise territorial boundaries to 30 conspecifics by scent marking. Several studies have investigated the information that scent 31 marks convey about donors' characteristics (e.g., dominance, age, sex, reproductive status), 32 but less is known about whether scents affect the behavior and stress of recipients. We 33 experimentally tested the hypothesis that scent marking may be a potent source of social 34 stress in territorial species. We tested this hypothesis for Columbian ground squirrels 35 (Urocitellus columbianus) during lactation, when territorial females defend individual nest-36 burrows against conspecifics. We exposed resident lactating females, on their territory, to the 37 scent of other lactating females. Scents were either from unfamiliar females, kin relatives (a 38 mother, daughter, or sister), or their own scent (control condition). We expected resident 39 females to react strongly to novel scents from other females on their territory, displaying 40 increased vigilance, and higher cortisol levels, indicative of behavioral and physiological 41 stress. We further expected females to be more sensitive to unfamiliar female scents than to 42 kin scents, given the matrilineal social structure of this species and known benefits of co-43 breeding in female kin groups. Females were highly sensitive to intruder (both unfamiliar and 44 kin) scents, but not to their own scent. Surprisingly, females reacted more strongly to the 45 scent of close kin than to the scent of unfamiliar females. Vigilance behavior increased 46 sharply in the presence of scents; this increase was more marked for kin than unfamiliar 47 female scents, and was mirrored by a marked 131% increase in free plasma cortisol levels in 48 the presence of kin (but not unfamiliar female) scents. Among kin scents, lactating females 49 were more vigilant to the scent of sisters of equal age, but showed a marked 318% increase in

50	plasma free cortisol levels only in response to the scent of older and more dominant mothers.
51	These results suggest that scent marks convey detailed information on the identity of
52	intruders, directly affecting the stress axis of territory holders.
53	
54	Keywords: glucocorticoids, HPA axis, kin selection, olfaction, resource holding
55	potential, territoriality
56	
57	
58	

59 **INTRODUCTION**

60 Many species use scent as a form of chemosensory communication in a variety of social 61 contexts (Ralls 1971; Johnson 1973; Bel et al. 1999). Scent-marking occurs via the deposition 62 of secretions from exocrine scent glands or via odorous marks deposited in urine and feces, 63 on strategic substrate locations. Both time and energy investments are needed to produce 64 olfactory secretions and maintain volatile compounds active in the environment (Radwan et 65 al. 2006). However, this form of social communication allows territory owners, in their 66 absence, to advertise their quality to tentative mates (Johansson and Jones 2007; Boulet et al. 67 2010), and/or resource holding potential to tentative competitors, while minimizing active 68 resource-defense. This circumvents escalation of risky contests over resources, such as 69 territories or mates (Hurst and Rich 1999; Gosling and Roberts 2001; Stockley et al. 2013).

70 As scent-marking is thought to convey honest information on the identity, condition, 71 and social status of the bearer, numerous studies have focused on unraveling the attributes 72 signaled by odorous secretions. Scents reflect information on individual sex and age (Kean et 73 al. 2011; Vaglio et al. 2016), familiarity (Hare 1994), genetic similarity and kinship (Mateo 74 2003; Leclaire et al. 2013), genetic dissimilarity or compatibility (Wedekind et al. 1995; 75 Charpentier et al. 2008), reproductive status (Harris and Murie 1984; Scordato and Drea 76 2007), health and immune status (Zala et al. 2004; López and Martín 2005), hormonal status 77 and stress levels (Lumley et al. 1999; Yamaguchi et al. 2005; Shimozuru et al. 2006), and 78 social rank (Scordato and Drea 2007; Vaglio et al. 2016). The complexity of odor signals has 79 also been found to increase with social complexity (e.g. in Eulemur species; delBarco-Trillo 80 et al. 2012), indicating the importance of scent communication in social species.

Despite this wealth of studies on the physiological/individual determinants of scentmarking, fewer studies have considered the effects that scent-marks have on the behavior and physiology of recipients. Those that have done so have mostly focused on inter-specific 84 relationships, e.g., the effect of predator scents on prey stress responses via modulation of the 85 hypothalamo-pituitary-adrenal (HPA) axis function and secretion of glucocorticoid (stress) 86 hormones by the adrenal glands (Apfelbach et al. 2005; Fletcher and Boonstra 2006; Monclús 87 et al. 2006; but see Zuri et al. 1998). However, if scent-marking is used to effectively 88 advertise social dominance or ownership of resources, one might expect scent-marks to have 89 potent effects on the receiver's behavior and stress physiology in social contexts (Roberts 90 1998; Zuri et al. 1998). This should especially be the case in species where social systems are 91 characterized by shifting spatio-temporal territories that require both active defense and 92 regular up-keep of ownership advertisement by scent-marks. For instance, many sciurids rely 93 on scents to mark the boundaries of territories defended during critical time periods of the 94 annual cycle of mating, gestation, lactation, and weaning of offspring (Steiner 1974; Ouellet 95 and Ferron 1988; Ferron and Ouellet 1989; Brady and Armitage 1999). The boundaries of 96 those territories are likely to shift both within and over seasons, depending on the age, 97 dominance rank, and reproductive status of the territory holder.

98 We tested the hypothesis that scent marking constitutes a source of social stress in 99 territorial species, using Columbian ground squirrels (Urocitellus columbianus) as a model 100 system. Columbian ground squirrels are sciurid rodents characterized by a matrilineal social 101 system where related females share adjacent and overlapping territories over generations 102 (King and Murie 1985; King 1989; Arnaud et al. 2012) and males are the dispersing sex 103 (Wiggett and Boag 1989; Neuhaus 2006). Resident males show strong patterns of 104 territoriality during the mating season (Murie and Harris 1978), allowing preferential access 105 to females that share their territory (Manno and Dobson 2008). After reproduction, male 106 territoriality subsides and females become more territorial during the subsequent gestation 107 and lactation periods (Festa-Bianchet and Boag 1982; Murie and Harris 1988). Both males 108 and females display scent-marking behavior, particularly during mating, gestation, and 109 lactation (Steiner 1974; Betts 1976). Scents are deposited by rubbing apocrine glands located 110 at the oral angles of the mouth (Kivett et al. 1976; Kivett 1978), the anogenital area and a 111 dorsal-glandular area of the body (Steiner 1974) against the substrate. There is clear evidence 112 that scent is an important means of social communication in this species, either related to 113 mating behavior (determination of female reproductive status from vaginal scent marks; 114 Harris and Murie 1984); fear (anal gland pulsating during hostile encounters; Steiner 1970; 115 Steiner 1974); or the discrimination of familiar and unfamiliar conspecifics (oral scents; 116 Harris and Murie 1982; Hare 1994). In an experimental study of Columbian ground squirrels, 117 Raynaud & Dobson (2011) found that females were more attentive to the scent of other 118 females than males: Presented with conspecific scents, females invested more time re-119 marking female than male scent marks. These authors hypothesized that this behavior 120 reflected female territory advertisement and protection of the litter, which may be especially 121 important during lactation. During this period, infanticide by other, mostly unrelated, 122 lactating females is known to occur (Balfour 1983; Dobson 1990; Hare 1991; Stevens 1998).

123 Here, we exposed lactating focal females on their territories to the scents of other 124 lactating females, and tested the consequences of this exposure on the behavior and stress 125 physiology of territory owners. We collected lactating female scents on acrylic cubes (by 126 rubbing the cubes on the angulo-oral glands) (see Harris and Murie 1982; Raynaud and 127 Dobson 2011). The scented cubes were then placed around the nest burrow of a focal female, 128 testing her behavioral and physiological (HPA) response to the scent of either (i) an 129 unfamiliar female, (ii) a kin female, or (iii) herself. If scent marking indeed constitutes a 130 source of social stress, we expected to observe marked behavioral and HPA responses of 131 females to the presence of novel scents on their territory. After exposure to conspecific 132 scents, compared to her own scent or no scent conditions, we expected focal females to 133 devote an increased proportion of time to vigilance behavior, and to show heightened HPA 134 activity measured through increased levels of blood cortisol and fecal cortisol metabolites 135 (Bosson et al. 2009). We also expected females to display increasing amounts of scent 136 marking behavior on their territory, to interact more with scented cubes, and to spend more 137 time exploring their territorial boundaries seeking out the intruder. Because female 138 Columbian ground squirrels are more tolerant of close female kin (King & Murie 1985; King 139 1989; Viblanc et al. 2016), we expected the effects of scent marks to be stronger for 140 unfamiliar than for kin scents. However, because mothers appear to be dominant over 141 daughters in this species (Harris & Murie 1984; Wigget & Boag 1992; Viblanc et al. 2016; 142 Sosa et al. 2020), we also expected females' behavioral and physiological stress responses to 143 be stronger when exposed to the scent of their mother than to the scent of a daughter or 144 littermate sister. Differences in terms both of behavioral and physiological reactions to 145 different scent marks would indicate that subtle social information on identity was conveyed 146 by chemical signals.

147

148 MATERIAL AND METHODS

Data collection and study site

150 The study was conducted during the 2017 and 2018 breeding seasons. We studied lactating 151 females in three neighboring colonies of Columbian ground squirrels (Meadow B, Meadow C 152 and DOT) that were actively monitored as part of long-term studies on the behavior and 153 ecology of those animals. The colonies are located in the Sheep River Provincial Park, 154 Alberta, Canada (Meadow B: 50° 38' 10.73" N; 114° 39' 56.52" W; 1524 m; 2.0 ha; Meadow C: 50° 37' 44.2" N; 114° 41' 18.4" W; 1555 m; 1.5 ha; and DOT: 50° 38' 59.74" N; 114° 39' 155 156 41.79" W; 1545 m; 3.0 ha). In each year, females were followed throughout reproduction 157 from emergence from hibernation in early April to the weaning of offspring in early to mid-158 July (Neuhaus 2000; Dobson et al. 2020). Female mating dates were determined from visual observations of above ground consortships with males and inspection of genitalia upon
trapping (presence of a copulatory plug or sperm in vaginal smears or fur; Murie 1995; Raveh
et al. 2010). Gestation lasts ~24 days, upon which females give birth to an average of three
(one to seven) altricial offspring in a specially constructed nest burrow (Dobson & Murie
1987; Murie 1995). Lactation lasts ~27 days, after which, weaned offspring first emerge
above ground (Murie & Harris 1982; Dobson et al. 1992).

165

166 Scent collection

167 We collected female ground squirrel scents following the protocol developed through 168 previous investigations on Columbian ground squirrels (Harris & Murie 1982; Raynaud & Dobson 2011). We used 3.7 cm³ acrylic cubes to collect oral gland scents by rubbing the 169 170 cubes (3 times per side) on the oral angles of ground squirrels that were either female kin 171 (littermate sister, daughter, or mother), an unfamiliar female (from other monitored 172 populations), or the focal female being tested. We focused on collecting only female scents in 173 this study, since previous results had indicated that females are more attentive to the scent of 174 other females than males during gestation and lactation (Raynaud & Dobson 2011). We 175 ensured that each face of the cube was properly marked, confirmed by the presence of an oily 176 streak mark and characteristic smell. Scent cubes were prepared in the afternoon preceding 177 the experimental trial (see below) and kept in an airtight Ziploc® bag at 4°C overnight until 178 use. After each trial, the cubes were washed with soap and water, rinsed with boiling water, 179 and rinsed a final time with 90% ethanol, before being air dried and stored in an airtight 180 Ziploc[®] bag until further scent collection.

181

182 **Experimental trial**

183 Nest burrows were identified during gestation by field observations of females stocking them
184 with dry grass material from the meadow (McLean 1978). The experimental trial proceeded
185 in 3 phases:

186 Phase 1, 'Habituation': On the date of expected parturition (day 0), 3 unscented cubes 187 were deployed around a focal female's nest burrow in an equilateral triangle at a 30-cm 188 distance from the nest entrance. Cubes were deployed on small metal pins at ~5-cm height off 189 the ground and left for a period of 4 days to allow the female to habituate to the presence of 190 these novel objects.

191 *Phase 2 'Control = unscented cubes'*: On day 4, an observer arrived at the colony 192 early in the day (~6:00 am) before the female had emerged from her nest burrow. Cubes were 193 replaced with fresh unscented cubes and the observer took position on a 3-m tall observation 194 bench, which were generally located some 10 to 30 m from the nest burrows of interest. 195 Replacing the cubes by fresh unscented cubes insured that we captured the behavior of 196 individual females before they were exposed to a given scent, each female thus serving as her 197 own control during the experiment. Upon morning emergence of the female from her nest 198 burrow, the observer scored her behavior and location for a period of 30 minutes (see below). 199 The observer was unaware of the type of scent provided, so that observations were blind. 200 Depending on the year, either the female was captured ~7 hours following her emergence 201 from the nest burrow and a fecal sample collected (in 2017, see below), or the female was 202 captured immediately following the 30-min observation period and a blood sample collected 203 usually within 3 minutes of capture (in 2018, see below).

- 204 *Phase 3 'Treatment = scented cubes'*: On day 5, the procedure for day 4 was repeated
 205 but this time replacement cubes were either marked with the scent of a kin female, the scent
 206 of an unfamiliar female, or the focal female's own scent (control).
- 207

208 Our sample size for the different groups were 32 focal females tested for kin scents 209 (15 in 2017 and 17 in 2018), 35 focal females tested for unfamiliar female scents (14 in 2017) 210 and 21 in 2018), and 29 females tested for their own scent (13 in 2017 and 16 in 2018). All 211 females were tested only once (*i.e.*, with one type of scent) within a given year, but some 212 females were tested repeatedly in different years, and so we controlled for female identity in 213 statistical analyses (see below). On average, the age distribution of females was fairly 214 balanced between groups (female age in kin scent group: mean (\pm SD) = 4.1 \pm 1.9 y.o., range = 2 - 9 y.o; female age in unfamiliar scent group: mean $= 4.3 \pm 2.0$ y.o, range = 2 - 9 y.o; 215 216 female age in own scent group: mean = 4.1 ± 1.8 , range = 1 - 8). Within the kin group, 217 females exposed to the scent of a daughter were slightly older (mean = 6.3 ± 1.3 y.o., range = 218 4-9 y.o.) than those exposed to the scent of a mother (mean = 3.0 ± 0.9 y.o., range = 2-5219 y.o.) or a sister (mean \pm SD = 3.7 \pm 1.6 y.o., range = 2 - 7 y.o.). We thus controlled for 220 female age as a covariate in subsequent analyses to account for potential age effects on 221 behavioral and physiological variables.

222

223 Behavioral observations

Behavioral observations were carried out during lactation, from the 18th of May to the 8th of 224 June in 2017, and from the from the 23rd of May to the 7th of June in 2018. Each female was 225 226 observed by the same observer during the entire experimental trial (phases 2, and 3). This 227 required 1-7 observers daily in 2017 and 1-8 observers in 2018. We used fixed-interval point 228 sampling of behaviors (Martin & Bateson 2021). Females were observed every minute, for 229 30-min periods. Only the behavior on the minute mark was checked on a pre-defined 230 behavioral spread sheet. Each minute, the observer also recorded the exact position of the 231 animal on a cartesian 10 x 10 m grid, delimited by colored flags placed throughout the study 232 site. Thus, the position of the animal could be estimated to within about a 1-m resolution 233 during the observation period. Scored behaviors included: vigilance, locomotion, foraging, 234 grooming, resting, alarm calling, aggressive (chases and fights) and amicable (sniffing) 235 interactions. Vigilance behavior was scored whenever the animal was sitting still on its hind 236 legs or on all four paws, its head pointing away from the ground, scanning the environment. 237 If an animal was temporarily out of sight (e.g., behind a tree or rise in the ground, in a 238 burrow, etc.), an "out of sight" category was scored. In cases where the animal was lost for an 239 extended period of time, observations were discarded. In addition to the above behaviors 240 scored on the minute mark, we recorded and summed all occurrences of (1) cube interactions 241 (licking, biting, scratching or sniffing a cube) and (2) scent marking (scratching and/or 242 rubbing the ground with the cheek or the lateral side of the body, rubbing the cubes with the 243 cheek) during the 30-minute observation period. Because cube interactions were very rare 244 (Appendix 1), we pooled our observations into a binomial variable (interaction vs. no 245 interaction with cubes) for further analyses (see below).

246

247 Feces and blood sampling

248 In 2017, we collected fecal samples to measure fecal cortisol metabolites (FCMs) as 249 an integrative measure of female stress. Females were captured approximately 7 hours 250 following control observations (phase 2) or first exposure to the scent (phase 3), 251 corresponding to the time required for glucocorticoid plasma changes to be reflected in FCM 252 changes (Bosson et al. 2009). Fecal samples were collected into 2-mL sterile vials as females 253 defecated during handling, or from the floor of the trap. In the latter case, the female was 254 always observed defecating in the trap and the feces collected immediately. The traps were 255 systematically cleaned before being deployed to ensure fecal samples corresponded to 256 targeted individuals. We insured that no fecal sample was contaminated by urine. Samples 257 were immediately stored on ice packs in the field and transferred to a -20°C freezer within 30 258 min of collection.

259 In 2018, we collected blood samples to measure female's blood cortisol levels 260 immediately after the 30 min of control (phase 2) and exposure to a scent (phase 3). A few 261 females (N = 12) were also bled in 2017, in which case they were not sampled for feces, so as 262 to not bias results with stress from the capture. Following the 30-min observation period, 263 females were trapped and a 0.5 mL blood sample was collected from the saphenous vein 264 using a 27-G needle fitted to a 1 mL heparinized syringe. An observer would set a trap on the 265 female's territory, and keep watch until the targeted female entered the trap, in general within 266 minutes of deployment and within 30 minutes maximum. As soon as the trap-door shut, a 267 stop watch was started and the time until the animal bled was completed was timed. We 268 aimed to sample blood within 3-min of trapping (mean \pm SD = 2.75 \pm 0.97 minutes, min = 269 1.40, max = 7.00) to capture baseline CORT levels. Although 20 samples out of 93 were 270 acquired after 3 min (on average at 4.44 ± 1.12 minutes, min = 3.05, max = 7.00), we decided 271 to keep those in our analyses, as total (Pearson's r = 0.11, P = 0.33) and free (r = 0.03, P =272 0.80) cortisol levels were not significantly correlated to sampling time in our data (Appendix 273 2). Syringes were kept on ice packs in a cooler box in the field. Blood was centrifuged 274 (3,000g for 10 min) within 30 min of collection, plasma and blood cells were separated and 275 frozen at -20°C until the end of the field season.

276

Both fecal and blood samples were shipped at the end of the season on dry ice to the 277 University of Toronto Scarborough (Canada), and were kept frozen at -80°C until analyses.

278

279 **Stress hormone analyses**

280 *Fecal cortisol metabolites (FCMs)* 281 FCMs represent the fraction of metabolized GCs that are excreted in the feces and reflect 282 biologically active free levels of plasma GCs (Bosson et al. 2009; Sheriff et al. 2010; Fauteux 283 et al. 2017). Lyophilized fecal samples were frozen in liquid nitrogen, and pulverized with a 284 small grinding pestle. We extracted FCMs from $0.054 \pm (s.d.) 0.003$ g of pulverized-sample 285 by vortexing it (30 min at 1450 rpm) in 1 mL of 80% methanol (v/v). FCMs (ng/g dried 286 feces) were determined with a 5α -pregnane- 3β ,11 β ,21-triol-20-one enzyme immunoassay 287 (EIA), designed to measure metabolites with a 5α -3 β ,11 β -diol structure (see Touma et al. 288 2003 for cross-reactivities of the antibody), which has been previously validated for use in 289 Columbian ground squirrels (Bosson et al. 2009). We ran all samples in duplicate. Sample 290 pools of low (~ 70% binding) and high (~ 30% binding) values were used as controls and run 291 on all plates. Intra-assay coefficients of variation based on the pools were 17.38 % (low pool) 292 and 8.03 % (high pool), and the mean inter-assay coefficient of variation based on the pools 293 was 13.93 % (low pool) and 3.94 % (high pool). All sample duplicates had a coefficient of 294 variation of 15% or less.

295

296 Plasma total cortisol

297 We measured plasma total cortisol levels by radioimmunoassay (RIA) using a commercially available kit (ImmuChemTM Coated Tube Cortisol ¹²⁵I RIA Kit; MP Biomedicals, LLC, 298 299 Orangeburg, NY, USA). The antibody has a cross-reactivity of 5.5% to corticosterone and 300 less than 3% to other naturally occurring steroids. Preliminary validation to ensure 301 parallelism was done using different cortisol concentrations in CGS plasma (Bosson & 302 Boonstra; unpublished data). We used the following modifications compared to the kit 303 protocol. Each plasma sample was analyzed in duplicate with 10 µl of plasma being added per RIA tube along with 1 mL of Cortisol-¹²⁵I, 20 µl NH₄OH (to saponify triglycerides), and 304 305 40µl double-distilled H₂O prior to incubation. Samples were run against a 6-point standard 306 curve (0-100 ng/mL) on an automatic gamma counter (Wizard² 2470, PerkinElmer, Waltham, 307 MA, USA). This method has a mean recovery of $102.4 \pm 2.54\%$ (N=10, range 91–117%) and 308 a detection limit of 17 pg/10 µl. The mean intra-assay coefficient of variation was 12.55% 309 (low pool) and 11.40% (high pool), and the mean inter-assay coefficient of variation was 310 7.20% (low pool), and 9.72% (high pool). All duplicate samples had a coefficient of variation 311 of 8% or less.

312 We determined how much plasma cortisol was free and not bound to its main carrier 313 protein, corticosteroid-binding globulin (CBG). For this, we measured CBG for each sample 314 as the maximum corticosteroid-binding capacity (MCBC) with the saturated ligand method 315 described in McDonald et al. (1981) and then calculated the free cortisol. We followed the 316 MCBC protocol outlined in Delehanty and Boonstra (2009) with slight modifications. 317 Cortisol (Sigma Aldrich, St. Louis, MO, USA) was diluted to 20 ng/10 µl EtOH, and 10 µl 318 was added to 12 x 75 mm polypropylene tubes and dried under filtered air. Once dry, 319 duplicate 10 µl of plasma were added to the tubes, followed by 100 µl of cortisol [1,2,6,7-320 ³H(N)] (7.21 pg/tube; PerkinElmer). Next, 400µl phosphate buffer (pH 7) was added to each 321 tube and allowed to equilibrate at room temperature for 30 minutes, and left overnight at 4°C. 322 The following morning, 200 µl of dextran-coated charcoal was added to separate bound and 323 free hormone. After a 10-minute incubation at 4°C, the samples were centrifuged at 2800 rpm 324 for 10 minutes, and 500 µl of supernatant was added to 3.5 mL of scintillation fluid (Gold 325 Star, Meridian Biotechnologies Ltd., Surrey, ENG, UK), vortexed, and left to equilibrate in 326 the dark for at least 4 hours before being read in a scintillation counter (Tri-Carb 3110 TR, 327 PerkinElmer). The intra- and inter-assay coefficients of variation based on the pools were 328 7.57% and 9.67%, respectively. All duplicate samples had a coefficient of variation of 11% 329 or less.

We calculated free cortisol following Tait and Burstein (1964), using the obtained MCBC values, a value for albumin, and the CBG equilibrium dissociation constant (K_d). We assumed the albumin concentration and proportion of cortisol bound to albumin were comparable to the values calculated for Arctic ground squirrels (2.54 g albumin/100 mL plasma; proportion bound = 0.19) in Boonstra and McColl (2000), and we used a K_d value of 5.1 nM calculated in Delahanty et al. (2015).

336

337 Statistical analyses

All statistical analyses were performed using R v. 4.0.2 (R Core Team 2020). To understand how exposure to scents might have influenced female stress, we focused on behaviors relevant to territoriality including: (1) the time devoted to vigilance vs. foraging or vs. other behaviors, (2) the amount of territorial marking performed (3) the occurrence of interactions with scented cubes, and (4) exploration behavior; and on two aspects relevant to the HPA axis functioning: (5) FCM levels, and (6) plasma cortisol levels.

344

345 *Vigilance behavior*

346 Female vigilance behavior in response to the scents was analyzed using multinomial logistic 347 regression (MLR; package 'mlogit' in R), accounting for repeated measures on females in 348 separate years. The multinomial response outcomes (dependent variable) included 349 'vigilance', 'foraging', and 'other' behaviors (<7.5% of total observations). We ran separate 350 regressions for each scent category (unfamiliar, kin or own scents - and within the kin 351 category: for mother, daughter, or sister scents) and specified treatment (unscented vs. 352 scented cubes) as the independent variable. Thus, we tested how female vigilance behavior 353 changed in proportion relative to foraging or other behaviors when females were exposed to a 354 scent compared to the no scent situation (no scent fixed as reference level). Results are given

as odds ratios along with 95% confidence intervals. Significant odds ratios have confidence
intervals not overlapping 1 and can be interpreted as the odds of increasing (>1) or decreasing
(<1) vigilance relative to foraging or other behaviors for a transition from no-scent to scent
condition.

359

360 Territorial marking and interactions with cubes

361 The number of occurrences recorded for territorial scent markings and cube interactions 362 during the 30-min observations was heavily zero-inflated (Appendix 1). Thus, we first 363 analyzed the likelihood to engage in scent marking or to interact with cubes as a binomial 364 response (0/1). For this, we ran separate generalized linear mixed effects models (GLMM; 365 binomial error structure, 'lme4' package in R) for unfamiliar, kin or own scents categories 366 (and within the kin category: for mother, daughter, or sister scents) with the likelihood to 367 engage (1) or not (0) in a scent marking or cube interactions specified as the dependent 368 variable, and treatment (no-scent vs. scented cubes) as the independent variable. We 369 originally included year and female ID as random effects in the models to account for year effects and repeated observations on individuals, but removed them if models did not 370 371 converge and their associated variance could not be estimated.

372 Second, for scent marking only (too few occurrences of cube interactions, see 373 Appendix 1), we focused on the number of scent marks actually performed for individuals 374 that scent-marked (*i.e.*, all data > 0). For this, we ran separate GLMMs (Poisson error 375 distribution), with the number of scent marks as the dependent, and treatment (no-scent vs. 376 scented cubes) as the independent variable for each of our scent treatments (unfamiliar, kin or 377 own scents). Here also, we included year and female ID as random effects in the models, but 378 removed them if models did not converge and their associated variance could not be 379 estimated. When working at the kin level (mother, daughter, or sister scents), because of low

sample size N < 5 in some of the categories, we tested the difference between control (noscent cubes) and treated (scented cubes) using exact permutation tests ('lmp' function from the 'lmPerm' package in R; Wheeler & Torchiano 2016).

383

384 *Exploration behavior*

385 To evaluate the effects of scent marks on female exploration behavior, we quantified: (1) the 386 overall size of the area (in m^2) used over the 30-min observation period, and (2) how far a 387 female ventured from her nest burrow within the 30-min. First, we calculated the area used 388 during the observations using Minimum Convex Polygons (MCP, 'adehabitatHR' package in 389 R). Since our objective was to evaluate the maximal area covered by females over the 30-min 390 observation period, we considered all observation coordinates (MCP 100%) corresponding to 391 spatial coordinates recorded by the observers on the minute mark. We then ran separate linear 392 mixed models (LMM) for own, kin and unfamiliar scent categories (and within kin for 393 mother, sister or daughter scent categories) to test for the effects of treatment (no-scent vs. 394 scented cubes) on area use (dependent variable). We included year and female ID as random 395 effects in the models, but removed them if models did not converge and their associated 396 variance could not be estimated.

397 Second, we calculated the distance a female ventured from her nest burrow (her 398 starting location) at each minute of the 30-min observation period. We then ran separate 399 Generalized Additive Mixed Models (GAMM, 'mgcv' and 'gaam4' packages in R) for own, 400 kin and unfamiliar female scent categories (and within kin for mother, sister or daughter scent 401 categories) to determine how this distance varied with time in control (no-scent cubes) and 402 treatment (scented cubes) conditions. Differences between conditions were assessed using 403 overlaps in 95% confidence intervals of the GAMMs. The estimated degree of freedom (edf) 404 of GAMMs' smoothing function are reported.

406 Physiological stress

Female fecal cortisol metabolites (FCM; obtained in 2017; 7 hours after the exposure 407 408 to unscented or scented cubes) and plasma cortisol levels (CORT; obtained in 2017 and 2018; 409 immediately after the exposure to cubes) were analyzed using separate LMMs. FCM and 410 CORT levels (either total CORT, free CORT or MCBC) were specified as dependent 411 variables in the separate models for own, kin and unfamiliar scent categories and the 412 treatment (no-scent vs. scented cubes) specified as an independent variable. Here also, female 413 ID (and year for the plasma CORT data) were entered as random variables for LMMs, but 414 removed if their associated variance could not be estimated. Again, when working at the kin 415 level, because of low sample size of N < 5 in some of the categories, we tested the difference 416 between control (no-scent cubes) and treated (scented cubes) using exact permutation tests 417 ('lmp' function from the 'lmPerm' package in R; Wheeler & Torchiano 2016).

418

419 Ethics

This study was approved by the Auburn University Institutional Animal Care and Use Committee, with additional approval by the University of Calgary. Permits for conducting research and collecting samples in the Sheep River Provincial Park were obtained from Alberta Environment and Parks (research permits n° 58954, n° 58955) and Alberta Tourism, Parks, and Recreation (research and collection permit n° 17-046 and n°18-448)

425

426 **RESULTS**

427 Vigilance behavior

428 Controlling for age and compared to the no-scent condition, females exposed to either 429 unfamiliar or kin scents, but not those exposed to their own scent, engaged in significantly 430 more vigilance than foraging or other behaviors over the 30-minute period (Fig 1A). For 431 females exposed to unfamiliar scents, the odds of engaging into vigilance rather than foraging 432 or other behaviors increased by 1.40 and 1.59, respectively, compared to no-scent conditions 433 (multinomial; z = 2.98 and 3.77, P = 0.003 and P < 0.000). For females exposed to kin scents, 434 these odds increased by 1.82 and 1.91 (z = 4.63 and 4.54, both P < 0.000) compared to no-435 scent conditions, whereas the odds did not change significantly (odds ratios = 1.24 and 1.00; 436 z = 1.60 and 0.02, P = 0.11 and 0.99) for females exposed to their own scents vs. no-scent 437 conditions.

438 Controlling for age, significant increases in vigilance compared to foraging or other 439 behaviors were evident among females exposed to scents of female kin (Fig 1B). For females 440 exposed to the scent of a sister, the odds of engaging in vigilance rather than foraging or other 441 behaviors increased by 1.86 and 2.99, respectively, compared to no-scent conditions (z = 3.12) 442 and 5.04, P = 0.002 and P < 0.000). For females exposed to the scent of a daughter, these 443 odds increased by 2.29 and 1.50, respectively, compared to no-scent conditions (z = 3.09 and 444 1.35, P = 0.002 and 0.18). Finally, for females exposed to the scent of their mother these odds increased by 1.62 and 1.21, respectively, compared to no-scent conditions (z = 2.08 and 0.76, 445 446 P = 0.04 and 0.45).

447

448 Territorial scent-marking and interactions with cubes

449 Territorial scent-marking

We observed territorial scent-marking by resident females in 42% of our observation periods. Controlling for age, the probability for females to scent-mark (GLMM; binomial 1/0) during the 30-min observation period did not differ between scent (treatment) and no-scent (control) conditions, regardless of the scent considered (own scent: 27% vs. 34% for marking probability in the scent vs. no-scent condition, respectively; odds ratio = 0.72, $CI_{95} = [0.23,$ 455 2.24], z = -0.57, P = 0.57; kin scent: 57% vs. 38%, odds ratio = 2.16, CI₉₅ = [0.69, 6.82], z =1.32, P = 0.19; unfamiliar scent: 44% vs. 40%, odds ratio = 1.18, CI₉₅ = [0.38, 3.68], z =456 457 0.29, P = 0.77) (Fig 2A). Controlling for age, when considering the kin group only, females 458 exposed to the scent of a sister had a higher probability of scent-marking in the presence than 459 in the absence of scent (53% vs. 13%; odds ratio = 7.95, $CI_{95} = [1.45, 66.28], z = 2.20, P =$ 460 0.03). This was not the case, however, for females exposed to the scent of their mother (70% 461 vs. 81%; odds ratio = 0.52, $CI_{95} = [0.05, 5.24], z = -0.55, P = 0.58)$. For females exposed to 462 the scent of a daughter, age was removed from the analysis since the model would not 463 converge. Females exposed to the scent of a daughter had a similar probability of scent-464 marking when exposed to a scent or not (50% vs. 50%; odds ratio = 1.00, $CI_{95} = [0.09,$ 465 11.30], *z* = 0.00, *P* = 1.00) (Fig 2B).

466 For females that did engage in scent-marking, controlling for age, the number of 467 scent-marks performed was 48% lower in the treated condition (scent present) for the kin group (GLMM; Poisson, count data; estimate = -0.48; CI₉₅ = [-0.83, -0.14], z = -2.72, P =468 469 0.007), but did not differ significantly between unscented and scented conditions for other 470 groups (own scent: estimate = -0.13, CI_{95} = [-0.74, 0.42], z = -0.45, P = 0.65; unfamiliar scent: estimate = 0.24, CI_{95} = [-0.07, 0.56], z = 1.53, P = 0.13) (Fig 3A). However, this 471 472 appeared to be the result of one female that spent a substantial amount of time scent marking. 473 When this female was removed from the analysis, the effect was still negative (i.e., females 474 exposed to a kin scent decreased territorial marking by 25%, on average, in the presence of 475 the scent) but no longer significant (estimate = -0.23, $CI_{95} = [-0.65, 0.18]; z = -1.10, P =$ 476 0.27). Within the kin group (Fig 3B), we found no significant difference in the number of 477 scent marks performed regardless of whether females were exposed to the scent of a daughter 478 (Exact permutation tests; P = 0.27), a sister (P = 0.45), or a mother (P = 0.69).

481 Resident females were observed interacting with cubes in 11% of our observation periods. 482 Controlling for age, females exposed to unfamiliar scents interacted significantly more with 483 cubes in the scent vs. no-scent condition (16% vs. 0.01%; odds ratio = 22.01, $CI_{95} = [1.67, 1.67]$ 484 290.73], z = 2.35, P = 0.02) (Fig 4). Females also interacted significantly more with cubes 485 when a kin scent was present vs. no-scent, though the predicted probabilities of interaction 486 were, overall, extremely low (0.0005% vs. 0.000003%; odds ratio = 184.32, CI₉₅ = [1.38, 487 24699.21], z = 2.09, P = 0.04). In contrast, females did not interact significantly more with 488 cubes in the 'own' condition, regardless of whether a scent was present or not (3% vs. 7%; 489 odds ratio = 2.08, $CI_{95} = [0.19, 46.23], z = 0.58, P = 0.56$). The low number of cube 490 interactions precluded us from meaningful analyses of the data within the kin category.

491

492 **Exploration behavior**

493 Space use

494 Controlling for age, no significant difference was found in the areas covered by females 495 during the 30-min observation period between the no-scent and scent conditions for females 496 exposed to unfamiliar scents (LMM; estimate = -17.85; CI₉₅ = [-134.00, 98.30], t = -0.30, P =497 0.76), to kin scents (estimate = 59.46; $CI_{95} = [-39.45, 158.37]$, t = 1.18, P = 0.24), or to their 498 own scent (estimate = -75.06; CI_{95} = [-170.10, 19.98], t = -1.55, P = 0.12) (Fig 5a). On 499 average, the area covered by females was similar for all 3 groups (unfamiliar female scent: area = $260.32 \pm 30.34 \text{ m}^2$; kin scent: $240.68 \pm 26.66 \text{ m}^2$; own scent: $226.62 \pm 31.76 \text{ m}^2$), and 500 501 not significantly different (LMM and Tukey HSD; all P > 0.73). Similarly, when considering 502 the kin group only, we found no significant differences in the areas covered by females 503 during the 30-min observation between the no-scent and scent condition, regardless of whether the scent originated from a daughter (LMM; estimate = -47.03; CI₉₅ = [-243.48, 504

505 140.41], t = -0.49, P = 0.62), a mother (estimate = 32.79; CI₉₅ = [-124.72, 190.31], t = 0.41, P506 = 0.68), or a littermate sister (estimate = 132.25; CI₉₅ = [-24.47, 288.97], t = 1.65, P = 0.10) 507 (Fig 5b). Here also, on average, the area covered by females was similar for all 3 groups 508 (daughter scent: area = 232.52 ± 52.21 m²; mother scent: 199.80 ± 40.65 m²; sister scent: 509 269.56 ± 43.54 m²), and not significantly different (LMM and Tukey HSD; all P > 0.62).

510

511 *Distance to nest burrows*

512 Controlling for age, the distance a female travelled from her nest burrow generally increased 513 in a non-linear fashion in all groups over the 30-minute observation period (GAMMs; 2.30 < 514 edf < 4.69, 10.00 < F < 46.80, all P < 0.001; Fig 6). In all groups and treatments, females 515 rapidly distanced themselves from their nest burrow upon emergence, reaching 10m within 516 the first 9-10 minutes of observation. The distance from the nest increased more 517 progressively (or plateaued out) after that. The overall overlap between 95% CI suggested no 518 marked difference between experimental conditions (with or without scent) (Fig 6). 519 Interestingly however, in the mother and sister scent group, females tended to travel further 520 from their nest burrows towards the end of the observation period when the scent was present 521 compared to the no-scent condition.

522

523 Physiological stress

524 Fecal cortisol metabolites (FCMs)

In response to the scent application, controlling for age, females exhibited a significant 36% increase in FCM levels when exposed to their own scent compared to the no scent condition (LMM; estimate = 747.5 ± 301.0, t = 2.48, P = 0.03; Fig 7A). No significant change was observed in the two other conditions (kin scent: estimate = 513.7 ± 327.6, t = 1.57, P = 0.14; unfamiliar female scent: estimate = 557.5 ± 277.7, t = 2.01, P = 0.07) (Fig 7A). Within kin categories, females exhibited 118% higher FCM when exposed to the scent of their mother (Exact permutation test; P = 0.07), but not when exposed to the scent of a sister (P = 0.78) or their daughter (P = 0.34) (Fig 7B).

533

534 Plasma cortisol

535 In response to kin scents, controlling for age, females showed a significant 39% increase in 536 total cortisol levels (LM; estimate = 38.17 ± 15.42 , t = 2.47, P = 0.02, Fig 8A). Their MCBC 537 levels (Fig 8B) did not differ significantly from the control levels (LM; estimate = $1.54 \pm$ 538 10.85, t = 0.14, P = 0.89), resulting in a 35% (non-significant) increase in free cortisol levels 539 (LM; estimate = 0.89 ± 1.10 , t = 0.81, P = 0.43). However, in this treatment, one female had 540 inexplicably high free cortisol levels (over 4 standard deviations, sampling time = 2.82 min) 541 (see Fig 8C). Once this data point was removed from the analyses, females showed a 542 significant 131% increase in free cortisol levels in the presence of kin-scented cubes 543 compared to the no scent control situation (LM; estimate = 1.91 ± 0.55 , t = 3.47, P = 0.002). 544 Own-scent and unfamiliar female-scent categories did not differ significantly between control 545 and scented cubes in terms of total cortisol (LMMs; own scent: estimate = 12.84 ± 15.33 , t = 546 0.83, P = 0.42; unfamiliar female scent: estimate = 2.30 ± 9.59, t = 0.24, P = 0.81), MCBC 547 (LMMs; own scent: estimate = -0.83 ± 12.43 , t = -0.07, P = 0.95; unfamiliar female scent: 548 estimate = -23.63 ± 14.64 , t = -1.61, P = 0.12), or free cortisol (LMMs; own scent: estimate = 549 $0.69 \pm 0.60, t = 1.17, P = 0.26$; unfamiliar female scent: estimate = $0.48 \pm 0.29, t = 1.65, P =$ 550 0.12).

551 Within kin (Fig 8, D-E), controlling for age, female total plasma cortisol levels 552 increased by 76% when they were exposed to the scent of their mother (Exact permutation 553 test; P = 0.03), but not to the scent of a sister (P = 0.10) or a daughter (P = 0.84) (Fig 8D). 554 MCBC levels did not differ significantly between control (unscented cubes) and treated (scented cubes) situations for either group (Exact permutation tests; 0.23 < P < 0.91) (Fig 8E). As a result, females exhibited a significant 318% increase in free cortisol levels in response to the scent of their mother (Exact permutation test; P = 0.002) once the outlier was removed (24% with the outlier) (Fig 8F). Free cortisol levels did not differ significantly between control and treated cubes for daughter or sister scents (Exact permutation tests; 0.09 < P < 0.54) (Fig 8E).

561

562 **DISCUSSION**

563 Resident female Columbian ground squirrels were highly sensitive to the scent marks of other 564 lactating females deposited next to their nest burrows, exhibiting overall increases both in 565 vigilance behavior and baseline glucocorticoid levels compared to control conditions (*i.e.*, the 566 absence of scents, or the presence of the female's own scent). Our results suggest that scent 567 marking of both familiar and unfamiliar animals around the nest burrows of focal females 568 was stressful, leading to increased vigilance behavior and heightened HPA axis activity 569 (higher baseline cortisol levels). Lactating females did not significantly increase or decrease 570 space use in response to the treatment, suggesting they did not actively seek-out simulated 571 intruders by increasing exploration behavior on their territories, nor did they remain close to 572 their nest burrow to defend offspring. This is somewhat surprising since female ground 573 squirrels exclude conspecifics forcefully from around their nest burrows, although daily 574 foraging home ranges overlap substantially (e.g., Murie and Harris 1988; King 1989; Arnaud 575 et al. 2012). However, lactating females significantly increased the proportion of time spent 576 in vigilance behavior compared to foraging or other behavioral categories, both when 577 exposed to unfamiliar or kin scents, but not when exposed to their own scent. Contrary to our 578 expectation, females were more vigilant in the presence of kin female scents on their 579 territories than the scents of unfamiliar females. For example, females presented with kin 580 scents had 42% points higher odds of engaging in vigilance rather than foraging, than females 581 presented with unfamiliar scents. The increase in vigilance towards kin was mirrored in the 582 stress axis: females experienced a significant 131% increase in plasma free cortisol levels 583 (but not FCMs) compared to the no-scent condition when exposed to kin scents, but not when 584 exposed to unfamiliar or their own scents. The presence of an unfamiliar individual near a 585 female's nest burrow should also be a stressful event, especially since female ground 586 squirrels are more tolerant of kin than unrelated individuals (King 1989a; Viblanc et al. 587 2016). Yet, neither FCM nor free cortisol levels were increased by our treatment that 588 introduced the scents of potentially dangerous strangers. Given that vigilance was 589 significantly increased by the same treatment, it seems that evidence of foreign individuals is 590 acknowledged by increased observance, but without an associated increase in stress. The 591 presence of close relatives, by comparison, is a more stressful situation.

592 The observation that kin scents elicited a stronger physiological stress response than 593 unfamiliar female scents is surprising. The "dear-enemy" hypothesis proposes that territory 594 holders should react more strongly to unknown tentative usurpers than to territorial neighbors 595 of known resource holding potential (e.g., Fisher 1954; Temeles 1994; Christiansen and 596 Radford 2018). At first glance, our results might appear to reject the "dear enemy" 597 hypothesis, since unfamiliar female scents were collected on neighboring meadows, and were 598 therefore foreign and novel stimuli to resident females (Hare 1994). However, resident 599 females also interacted more (licking, sniffing or attacking) with unfamiliar-scented than kin-600 scented cubes, suggesting that they were more responsive to novel than familiar scents (see 601 also Raynaud & Dobson 2011), as would be predicted by the "dear-enemy" hypothesis. In 602 addition, previous studies have found that female Columbian ground squirrels are less 603 aggressive toward their female kin than unrelated individuals (King 1989a; Viblanc et al. 604 2016). Thus, one explanation of our results is that lactating females may have a fine knowledge of the territorial boundaries of their close female kin. They treat markings of relatives on their territories as territorial shifts, and evaluate those as a greater threat (as evidenced by increased glucocorticoid levels) than the scents of female squirrels not recognized as direct neighbors.

609 An alternative explanation may be that heightened HPA axis activity in response to 610 close kin scents occurs as resident females prepare for increased metabolic activity associated 611 with cooperation among relatives (Soares et al. 2010; but see Santema et al. 2013). Although 612 Columbian ground squirrels are not known to engage into active cooperation, close kin are 613 more tolerant of one-another (King 1989a; Viblanc et al. 2016), and kin females may engage 614 in chasing intruders together at the border of adjacent territories (VAV, personal 615 observations). In addition, our study used unfamiliar scents from females that originated in 616 other populations. Yet, familiar scents from known non-kin female neighbors inhabiting the 617 same colony may well prove more stressful than kin scents, a hypothesis that remains to be 618 tested. In line with this idea, juvenile Columbian ground squirrels show similar levels of 619 cohesive and agonistic behavior, and similar interindividual distances in staged dyadic 620 interactions with conspecific juvenile colony members, but decreased cohesion, increased 621 agonism, and greater inter-individual distances in staged interactions with juvenile 622 conspecifics from neighbouring colonies (Hare 1992).

In the presence of artificial scent marks that mimicked territorial intrusions, the absence of territorial scent marking by lactating females might indicate that core territories of these females were already sufficiently saturated with their scent. Alternatively, if a female's scent were concentrated near her nest burrow, it might serve as an attractant to potential perpetrators of infanticide (Balfour 1983; Dobson 1990; Hare 1991; Stevens 1998). Females are indeed known to conceal their nest burrows by plugging them with soft soil and litter, possibly to deter infanticial conspecifics (McLean 1978). This might explain why female 630 cortisol levels generally increased when their own scent was experimentally introduced
631 around their nest burrows (compared to the no-scent situation), divulging their secretive
632 location.

633 Interestingly, different kin scents elicited different reactions from resident females. 634 Lactating resident females were most vigilant to the scent of their sisters, then daughters, and 635 finally mothers. Surprisingly, however, the stress axis told a different story. Females reacted 636 strongly to the scent of their mothers, but not to that of their daughters or sisters. They 637 exhibited a significant 318% increase in free cortisol levels when exposed to their mother's 638 scent compared to the no-scent condition, and a 118% (P = 0.06) increase in FCM levels. 639 Thus, whereas lactating females were more vigilant towards sisters' scents, their stress was 640 actually higher when presented with mother scents. Mothers are known to behave cohesively 641 to yearling daughters, but aggressively to yearling immigrants, when resources were not 642 limiting (Wigget & Boag 1992). Relinquishment of breeding sites occurs in favor of yearling 643 daughters (Harris & Murie 1984). Because mothers favor the establishment of yearling (but 644 not older) daughters (Neuhaus et al. 2004), it is possible that the scent of a mother is 645 perceived as a potential threat to an older daughter because of the possibility of a mother 646 relinquishing a former territory to a yearling daughter. The glucocorticoid differences found 647 here are consistent with our previous findings (Sosa et al. 2020): when compared to females 648 that had no co-breeding kin present in the population, lactating female having only a daughter 649 or a sister present in the population showed decreased FCM levels, whereas females having 650 only their mother presented similarly elevated FCM levels as females having no close kin 651 around.

To our knowledge, surprisingly few studies have investigated the effects of scent marking on receivers' stress physiology in territorial species. In solitary blind mole rats (*Spalax ehrenbergi*), long-term exposure to scent-marks of intruders resulted in 655 hypoglycemia, increased neutrophil/lymphocyte ratios, and partial ulceration of the liver and 656 spleen, ultimately leading to death (Zuri et al. 1998). These effects were clearly indicative of 657 over-activation of the adrenal function, impaired immunity, and chronic stress (Zuri et al. 658 1998; see review by Davis et al. 2008). Interestingly, in solitary blind mole rats, it is 659 specifically the long-term exposure to scents that was associated with increased mortality 660 rates. This may indicate how profound the effects of scent-induced social stress may be when 661 territory owners cannot retreat from scents, chase-away territory usurpers, or shift territories 662 in response to intruders. Our study used an acute 30-min exposure to invader scents in a 663 territorial species, and the stress response in terms of glucocorticoid secretion and HPA axis 664 activation was substantial over this short time period. Whether longer exposure to scents 665 might result in chronic stress in our species, or cause females to shift territories, remains to be 666 tested. Nonetheless, it appears clear that, besides encoding specific information on the 667 identity of the donor, social scent communication via territorial marking had pronounced 668 effects on the receiver's behavior and physiology. We suggest that integrating the olfactory 669 landscape related to social stress together with predation risk within "the ecology of fear" concept (Clinchy et al. 2013) should prove valuable to a proper understanding of behavioral 670 671 and physiological consequences of habitat choice in territorial species.

672

673

674 ACKNOWLEDGMENTS

We are grateful to M. Holmes and P.D. Edwards for inviting us to contribute to this special issue, and to J.F. Hare and an anonymous reviewer for constructive and helpful comments on the paper. We are grateful to Alberta Parks, and Alberta Environment, Fish & Wildlife for granting us access to the study sites and support with the long-term research. The University of Calgary Biogeoscience Institute provided housing at the R. B. Miller field station during 680 data collection in Sheep River Provincial Park (AB, Canada). We are especially grateful to E. 681 Johnson (Director), A. Cunnings (Station Manager) and K. Ruckstuhl (Faculty Responsible) 682 for providing us with field camp and laboratory facilities, and to K. Rucktuhl for her 683 continued support in the field. We thank F. Criscuolo for his help and helpful comments on 684 the manuscript. The IPHC-CNRS contributed to resources needed for data analysis. J. O. 685 Murie initiated the long-term study on Columbian ground squirrels and provided helpful 686 comments on the manuscript. As always, we are indebted for his continued advice and 687 friendly support in our endeavors.

688

689 **COMPETING INTERESTS**

690 The authors declare no competing or financial interests.

691

692 FUNDING

The research was funded by a CNRS Projet International de Coopération Scientifique grant (PICS-07143) and a research grant from the Fondation Fyssen to V.A.V., by a USA National Science Foundation grant (DEB-0089473) to F.S.D., and a fellowship grant from the Institute of Advanced Studies of the University of Strasbourg to F.S.D. and V.A.V. F.S.D. thanks the Région Grand Est and the Eurométropole de Strasbourg for the award of a Gutenberg Excellence Chair.

699

700 **REFERENCES**

1. Apfelbach R, Blanchard CD, Blanchard RJ, Hayes RA, McGregor IS. 2005. The effects

of predator odors in mammalian prey species: A review of field and laboratory studies.

703 Neurosci Biobehav Rev. 29(8):1123–1144.

2. Arnaud CM, Dobson FS, Murie JO. 2012. Philopatry and within-colony movements in

- 705 Columbian ground squirrels. Mol Ecol. 21(3):493–504.
- 706 3. Balfour D. 1983. Infanticide in the Columbian ground squirrel, *Spermophilus*707 *columbianus*. Anim Behav. 31(3):949–950.
- 4. Bateson M, Martin P. 2021. Measuring behaviour: an introductory guide. CambridgeUniversity Press.
- 5. Bel MC, Coulon J, Sreng L, Allainé D, Bagnères AG, Clément JL. 1999. Social signals
- involved in scent-marking behavior by cheek-rubbing in alpine marmots (*Marmota marmota*). J Chem Ecol. 25(10):2267-2283.
- 6. Betts BJ. 1976. Behaviour in a population of Columbian ground squirrels, *Spermophilus columbianus columbianus*. Anim Behav. 24(3):652–680.
- 715 7. Bosson CO, Palme R, Boonstra R. 2009. Assessment of the stress response in Columbian
 716 ground squirrels: laboratory and field validation of an enzyme immunoassay for fecal
 717 cortisol metabolites. Physiol Biochem Zool. 82(3):291–301.
- 8. Boulet M, Crawford JC, Charpentier MJE, Drea CM. 2010. Honest olfactory
 ornamentation in a female-dominant primate. J Evol Biol. 23(7):1558–1563.
- 9. Brady KM, Armitage KB. 1999. Scent-marking in the yellow-bellied marmot (*Marmota flaviventris*). Ethol Ecol Evol. 11(1):35–47.
- 10. Charpentier MJE, Boulet M, Drea CM. 2008. Smelling right: the scent of male lemurs
 advertises genetic quality and relatedness. Mol Ecol. 17(14):3225–3233.
- 11. Christensen C, Radford AN. 2018. Dear enemies or nasty neighbors? Causes and
 consequences of variation in the responses of group-living species to territorial intrusions.
 Behav Ecol. 29(5):1004–1013.
- 12. Clinchy M, Sheriff MJ, Zanette LY. 2012. Predator-induced stress and the ecology of
 fear. Funct Ecol. 27(1):56–65.
- 13. delBarco-Trillo J, Sacha CR, Dubay GR, Drea CM. 2012. Eulemur, me lemur: the

- evolution of scent-signal complexity in a primate clade. Philos Trans R Soc B Biol Sci.
 367(1597):1909–1922.
- 14. Davis AK, Maney DL, Maerz JC. 2008. The use of leukocyte profiles to measure stress in
 vertebrates: a review for ecologists. Funct Ecol. 22(5):760–772.
- 734 15. Dobson FS. 1990. Environmental influences on infanticide in Columbian ground
 735 squirrels. Ethology. 84(1):3–14.
- 736 16. Dobson FS, Badry MJ, Geddes C. 1992. Seasonal activity and body mass of Columbian
 737 ground squirrels. Can J Zool. 70(7):1364-1368.
- 738 17. Dobson FS, Murie JO, Viblanc VA. 2020. Fitness estimation for ecological studies: an
 739 evaluation in Columbian ground squirrels. Front Ecol Evol. 8:216.
- 740 18. Ferris CF, Axelson JF, Shinto LH, Albers HE. 1987. Scent marking and the maintenance
 741 of dominant/subordinate status in male golden hamsters. Physiol Behav. 40(5):661–664.
- 742 19. Ferron J, Ouellet J-P. 1989. Behavioural context and possible function of scent marking
- by cheek rubbing in the red squirrel (*Tamiasciurus hudsonicus*). Can J Zool. 67(7):1650–
 1653.
- 745 20. Fletcher QE, Boonstra R. 2006. Do captive male meadow voles experience acute stress in
 746 response to weasel odour? Can J Zool. 84(4):583–588.
- 747 21. Gosling LM, Roberts SC. 2001. Scent-marking by male mammals: Cheat-proof signals to
- competitors and mates. In: Advances in the Study of Behavior. vol 30, Academic Press.
- 749 22. p. 169–217.
- 23. Hare JF. 1991. Intraspecific killing of preweaned young in the Columbian ground
 squirrel, *Spermophilus columbianus*. Can J Zool. 69(3):797-800.
- 752 24. Hare JF. 1994. Group member discrimination by Columbian ground squirrels via
 753 familiarity with substrate-borne chemical cues. Anim Behav. 47(4):803-813.
- 25. Harris MA, Murie JO. 1982. Responses to oral gland scents from different males in

- 755 Columbian ground squirrels. Anim Behav. 30(1):140–148.
- 26. Harris MA, Murie JO. 1984. Inheritance of nest sites in female Columbian ground
 squirrels. Behav. Ecol. Sociobiol. 15: 97–102.
- 758 27. Harris MA, Murie JO. 1984. Discrimination of oestrous status by scent in Columbian
 759 ground squirrels. Anim Behav. 32(3):939–940.
- 28. Hurst JL, Rich TJ. 1999. Scent marks as competitive signals of mate quality. In:
 Advances in Chemical Signals in Vertebrates. Boston, MA: Springer US. p. 209–225.
- 762 29. Johansson BG, Jones TM. 2007. The role of chemical communication in mate choice.
- 763 Biol Rev. 82(2):265–289.
- 30. Johnson RP. 1973. Scent marking in mammals. Anim Behav. 21(3):521–535.
- 31. Johnston RE. 2003. Chemical communication in rodents: From pheromones to individual
 recognition. J Mammal. 84(4):21.
- 32. Jojola SM, Rosell F, Warrington I, Swenson JE, Zedrosser A. 2012. Subadult brown
 bears (*Ursus arctos*) discriminate between unfamiliar adult male and female anal gland
 secretion. Mamm Biol. 77(5): 363–368.
- 33. Kean EF, Müller CT, Chadwick EA. 2011. Otter scent signals age, sex, and reproductive
 status. Chem Senses. 36(6):555–564.
- 34. King, WJ. 1989. Spacing of female kin in Columbian ground squirrels (*Spermophilus columbianus*). Can J Zool. 67(1):91–95.
- 35. King ,WJ. 1989. Kin-differential behaviour of adult female Columbian ground squirrels.
- 775 Anim Behav. 38(4):354–356.
- 36. King WJ, Murie JO. 1985. Temporal overlap of female kin in Columbian ground squirrels
 (*Spermophilus columbianus*). Behav Ecol Sociobiol. 16(4):337–341.
- 778 37. Kivett VK. 1978. Integumentary glands of Columbian ground squirrels (Spermophilus
- *columbianus*): Sciuridae. Can J Zool. 56(3):374–381.

- 38. Kivett VK, Murie JO, Steiner AL. 1976. A comparative study of scent-gland location and
 related behaviour in some northwestern nearctic ground squirrel species (*Sciuridae*): an
 evolutionary approach. Can J Zool. 54(8):1294–1306.
- 783 39. Leclaire S, Nielsen JF, Thavarajah NK, Manser M, Clutton-Brock TH. 2013. Odour-
- based kin discrimination in the cooperatively breeding meerkat. Biol Lett. 9(1):20121054.
- 40. López P, Martín J. 2005. Female Iberian wall lizards prefer male scents that signal a
 better cell-mediated immune response. Biol Lett. 1(4):404–406.
- 41. Lumley L., Sipos M., Charles R., Charles R., Meyerhoff J. 1999. Social stress effects on
 territorial marking and ultrasonic vocalizations in mice. Physiol Behav. 67(5):769–775.
- 42. Manno TG, Dobson FS. 2008. Why are male Columbian ground squirrels territorial?
 Ethology. 114(11):1049–1060.
- 43. Mateo JM. 2003. Kin Recognition in Ground Squirrels and Other Rodents. J Mammal.
 84(4):1163–1181.
- 44. Mateo JM. 2006. The nature and representation of individual recognition odours in
 Belding's ground squirrels. Anim Behav. 71(1):141–154.
- 45. Mateo JM. 2009. The causal role of odours in the development of recognition templatesand social preferences. Anim Behav. 77(1): 115–121.
- 46. McLean IG. 1978. Plugging of nest burrows by female *Spermophilus columbianus*. J
 Mammal. 59(2): 437-439.
- 47. Monclús R, Rödel HG, Palme R, Holst D Von, Miguel J de. 2006. Non-invasive
 measurement of the physiological stress response of wild rabbits to the odour of a
 predator. Chemoecology. 16(1):25–29.
- 48. Murie JO. 1995. Mating behavior of Columbian ground squirrels. I. Multiple mating by
 females and multiple paternity. Can J Zool. 73(10):1819–1826.
- 49. Murie JO, Harris MA. 1978. Territoriality and dominance in male Columbian ground

- squirrels (*Spermophilus columbianus*). Can J Zool. 56(11):2402–2412.
- 50. Neuhaus P, Broussard D, Murie J, Dobson FS. 2004. Age of primiparity and implications
 of early reproduction on life history in female Columbian ground squirrels. J Anim Ecol
 73:36–43
- 51. Neuhaus P. 2006. Causes and consequences of sex-biased dispersal in Columbian ground
 squirrel, *Spermophilus columbianus*. Behaviour. 143(8):1013–1031.
- Scoullet J-P, Ferron J. 1988. Scent-marking behavior by woodchucks (*Marmota monax*). J
 Mammal. 69(2):365–368.
- 53. Radwan J, Chadzińska M, Cichoń M, Mills SC, Matuła B, Sadowska ET, Baliga K,
- 814 Stanisz A, Łopuch S, Koteja P. 2006. Metabolic costs of sexual advertisement in the bank
- 815 vole (*Clethrionomys glareolus*). Evol Ecol Res. 8:859–869.
- 816 54. Ralls K. 1971. Mammalian scent marking. Science. 171(3970):443–449.
- 55. Raveh S, Heg D, Dobson FS, Coltman DW, Gorrell JC, Balmer A, Neuhaus P. 2010.
- 818 Mating order and reproductive success in male Columbian ground squirrels (*Urocitellus*
- 819 *columbianus*). Behav Ecol. 21(3):537–547.
- 56. Raynaud J, Dobson SF. 2011. Scent communication by female Columbian ground
 squirrels, *Urocitellus columbianus*. Behav Ecol Sociobiol. 65(2):351–358.
- 822 57. Roberts SC. 1998. Behavioural responses to scent marks of increasing age in klipspringer
 823 *Oreotragus oreotragus*. Ethology, 104(7), 585-592.
- 58. Santema P, Teiltel Z, Manser M, Bennet N, Clutton-Brock T. 2013. Effects of cortisol
 administration on cooperative behavior in meerkat helpers. Behav. Ecol. 24(5):1122-
- 826 1127.
- 59. Scordato ES, Drea CM. 2007. Scents and sensibility: information content of olfactory
 signals in the ringtailed lemur, *Lemur catta*. Anim Behav. 73(2):301-314.
- 829 60. Shimozuru M, T K, Takeuchi Y, Mori Y. 2006. Social-defeat stress suppresses scent-

- 830 marking and social-approach behaviors in male Mongolian gerbils (*Meriones*831 *unguiculatus*). Physiol Behav. 88(4–5):620–627.
- 832 61. Sillero-Zubiri C, Macdonald DW. 1998. Scent-marking and territorial behaviour of
 833 Ethiopian wolves *Canis simensis*. J Zool. 245(3):351–361.
- 62. Soares MC, Bshary R, Fusani L, Goymann W, Hau M, Hirschenhauser K, Oliveira R.
 2010. Hormonal mechanisms of cooperative behaviour. Phil. Trans. R. Soc. B. 365:2737
 836 2750.
- 63. Sosa S, Dobson FS, Bordier C, Neuhaus P, Saraux C, Bosson C, Palme R, Boonstra R,
 Viblanc VA. 2020. Social stress in female Columbian ground squirrels : densityindependent effects of kin contribute to variation in fecal glucocorticoid metabolites.
 Behav Ecol Sociobiol. 74:50
- 64. Steiner AL. 1970. Étude descriptive de quelques activités et comportements de base de *Spermophilus columbianus columbianus* (Ord). II. Vie de groupe. Rev Comport Anim.
 4:23–42.
- 844 65. Steiner AL. 1974. Body-rubbing, marking, and other scent-related behavior in some
 845 ground squirrels (*Sciuridae*), a descriptive study. Can J Zool. 52(7):889–906.
- 846 66. Stevens SD. 1998. High incidence of infanticide by lactating females in a population of
 847 Columbian ground squirrels (*Spermophilus columbianus*). Can J Zool. 76(6):1183–1187.
- 848 67. Stockley P, Bottell L, Hurst JL. 2013. Wake up and smell the conflict: Odour signals in
 849 female competition. Philos Trans R Soc B Biol Sci. 368(1631):20130082.
- 850 68. Thonhauser KE, Raveh S, Hettyey A, Beissmann H, Penn DJ. 2013. Scent marking
 851 increases male reproductive success in wild house mice. Anim Behav. 86(5): 1013–1021.
- 852 69. Vaglio S, Minicozzi P, Romoli R, Boscaro F, Pieraccini G, Moneti G, Moggi-Cecchi J.
- 853 2016. Sternal gland scent-marking signals sex, age, rank, and group identity in captive
- 854 mandrills. Chem Senses. 41(2):177–86.

- 70. Viblanc VA, Pasquaretta C, Sueur C, Boonstra R, Dobson FS. 2016. Aggression in
 Columbian ground squirrels: relationships with age, kinship, energy allocation, and
 fitness. Behav Ecol. 27(6): 1716-1725.
- 858 71. Waterman JM, Archibald AJ. 2019. Both familiarity and kinship influence odour
 859 discrimination by females in a highly social African ground squirrel. Anim Behav.
 860 148:145–151.
- 72. Wedekind C, Seebeck T, Bettens F, Paepke AJ. 1995. MHC-dependent mate preferences
 in humans. Proc R Soc London Ser B Biol Sci. 260(1359):245–249.
- 863 73. Wheeler B, Torchiano M. 2016. lmPerm: permutation tests for linear models. R package
 864 version 2.1.0. https://CRAN.R-project.org/package=lmPerm
- 74. Wigget DR, Boag DA. 1992. The resident fitness hypothesis and dispesal by yearling
 female Columbian ground squirrels. Can J Zool. 70: 1984-1994.
- 867 75. Wiggett DR, Boag DA. 1989. Intercolony natal dispersal in the Columbian ground
 868 squirrel. Can J Zool. 67(1):42–50.
- 76. Yamaguchi H, Kikusui T, Takeuchi Y, Yoshimura H, Mori Y. 2005. Social stress
 decreases marking behavior independently of testosterone in Mongolian gerbils. Horm
 Behav. 47(5):549–555.
- 77. Zala SM, Potts WK, Penn DJ. 2004. Scent-marking displays provide honest signals of
 health and infection. Behav Ecol. 15(2):338–344.
- 874 78. Zidat T, Dufour A-B, Meiffren G, Gabirot M, Comte G, Allainé D. 2018. Anal scent
- gland secretions inform on sexual maturity, sex and social status in the Alpine marmot,
- 876 *Marmota marmota* (Rodentia: Sciuridae): a role in intrasexual competition in cooperative
- 877 breeders? Biol J Linn Soc. 125(2):229–239.
- 878 79. Zuri I, Gottreich A, Terkel J. 1998. Social stress in neighboring and encountering blind
- mole-rats (*Spalax ehrenbergi*). Physiol Behav. 64(5):611–620.

881 FIGURES

882

884 885

Fig 1. Changes in female vigilance behavior in reference to foraging or other behaviors during the 30-min observation period for female Columbian ground squirrels exposed to the scent of (A) an unfamiliar female, a kin female, or their own scent; and (B) within kin scents; the scent of their mother, a sister, or a daughter. Changes are expressed as odds ratio \pm 95% CI. An odds ratio > (or <) 1 indicates an increase (or a decrease) in vigilance behavior relative to foraging or other behaviors when a scent is presented. Significant changes occur for 95% CI not overlapping 1 and are indicated by an asterisk.

- 893
- 894
- 895
- 896
- 897
- 898

Fig 2. Probability of a female ground squirrel engaging in scent marking during the 30-min observation period. Females were exposed to either no scent (\circ) or the scent (\bullet) of (A) an unfamiliar female, a kin female, or their own scent. (B) within kin scents; the scent of their mother, a sister, or a daughter. Values are given as means ± 95% CI. Sample size is given in brackets. Significant differences (P < 0.05) between (\circ) and (\bullet) conditions are indicated by an asterisk.

- 911
- 912
- 913
- 914

917 Fig 3. Number of scent marks deposited by a female ground squirrel during the 30-min observation period. Females were exposed to either no scent (white boxplots) or the scent (grey boxplots) of (A) an unfamiliar female, a kin female, or their own scent. (B) within kin scents; the scent of their mother, a sister, or a daughter. Box plots show the median of the data distribution (bold line) along with first and third quartiles (25th and 75th percentiles) of the data distribution corresponding to the lower and upper hinges of the boxes. The upper and lower whisker extend, respectively, to the largest and smallest value of the data set, no further than 1.5 x IQR (where IQR is the inter-quartile range). Data beyond the end of the whiskers are plotted individually. Significant differences (P < 0.05) between treatments are indicated by an asterisk. Note that this statistically significant difference disappears when an outlier in the kin group is removed from the analyses (see text).

Fig 4. Probability of a female ground squirrel interacting with a scent cube during the 30-min observation period. Females were exposed to either no scent (\circ) or the scent (\bullet) of an unfamiliar female, a kin female, or their own scent. Values are given as means \pm 95% CI. Significant differences (*P* < 0.05) between (\circ) and (\bullet) conditions are indicated by an asterisk. Sample size is given in brackets.

945 Fig 5. Area (m^2) covered over the 30-min observation period by female Columbian squirrels. 946 The area was calculated from Cartesian coordinates recorded every minute, starting as soon 947 as a female emerged from her nest burrow in the morning. Females were exposed to either no 948 scent (white boxplots) or the scent (grey boxplots) of (A) an unfamiliar female, a kin female, 949 or their own scent. (B) within kin scents; the scent of their mother, a sister, or a daughter. Box 950 plots show the median of the data distribution (bold line) along with first and third quartiles (25th and 75th percentiles) of the data distribution corresponding to the lower and upper hinges 951 952 of the boxes. The upper and lower whisker extend, respectively, to the largest and smallest 953 value of the data set, no further than 1.5 x IQR (where IQR is the inter-quartile range). Data 954 beyond the end of the whiskers are plotted individually.

955

Fig 6. Distance of a female ground squirrel from her nest burrow at every minute of the 30-min observation period. The distance was calculated from Cartesian coordinates recorded every minute, starting as soon as a female emerged from her nest burrow in the morning. Values are presented from minute 1 though 29 (minute 0 was the emergence from nest burrow, and the distance by definition 0 m). Females were exposed to either no scent (black values) or the scent (blues values) of an unfamiliar female, a kin female, or their own scent (top row). Within the kin group, females were exposed to the scent of their mother, a littermate sister, or a daughter (bottom row). Values are given as means \pm SE. The grey and blue bands represent the 95% CI of the GAMMs.

990 Fig 7. Fecal cortisol metabolite levels of female Columbian squirrels either exposed to no 991 scent (white boxplots) or the scent (grey boxplots) of (A) an unfamiliar female, a kin female, 992 or their own scent; (B) within kin scents; the scent of a daughter, a sister, or their mother. 993 Box plots show the median of the data distribution (bold line) along with first and third quartiles (25th and 75th percentiles) of the data distribution corresponding to the lower and 994 995 upper hinges of the boxes. The upper and lower whisker extend, respectively, to the largest 996 and smallest value of the data set, no further than 1.5 x IQR (where IQR is the inter-quartile 997 range). Data beyond the end of the whiskers are plotted individually. Significant differences 998 (P < 0.05) between the treatments are indicated by an asterisk.

- 999
- 1000 1001

1003

Fig 8. (A-C) Plasma levels of total cortisol (maximum cortisol binding capacity (MCBC) and free cortisol) of female Columbian squirrels exposed to no scent (white boxplots) or the scent (grey boxplots) of an unfamiliar female, a kin female or their own scent. (D-E) Within kin scents, plasma levels of total cortisol, MCBC and free cortisol after exposure to no scent or the scent of a daughter, a sister, or their mother. Box plots show the median of the data distribution (bold line) along with first and third quartiles (25th and 75th percentiles) of the data distribution corresponding to the lower and upper hinges of the boxes. The upper and lower whisker extend, respectively, to the largest and smallest value of 1009 the data set, no further than 1.5 x IQR (where IQR is the inter-quartile range). Data beyond the end of the whiskers are plotted individually. 1010 Significant differences (P < 0.05) between the treatments, once outliers removed, are indicated by an asterisk.

1011

1013 APPENDICES

1014

1015 Appendix 1 : Distribution of territorial scent marking and interactions with scent cubes

- 1016 during the 30 minute observation period for female Columbian ground squirrels
- 1017

1018 1019

1020 Appendix 2 : Relationships between plasma total cortisol levels (ng/mL) (top) and1021 plasma free cortisol levels (ng/mL) (bottom) and sampling time (min) in female

1022 Columbian ground squirrels

