
First approach of a mixed domain decomposition method
for magnetostatic simulation of rotating machines

A. Ruda1, F. Louf1, P.A. Boucard1 and X. Mininger2
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In this work, a mixed domain decomposition method (LATIN) is proposed to improve the efficiency of magnetostatic simulation
of rotating machines. This strategy relies on a decomposed formulation of the problem considering both primal and dual fields
on the interfaces. From this formulation, the LATIN solver method gives a powerful iterative scheme to build a solution. A first
implementation using the potential vector formulation in 2D is developped and is illustrated on two test cases: a ferromagnetic 2D
bar and a switched reluctance motor.
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I. INTRODUCTION

THERE is an emerging need to design more compact and
efficient machines, which requires the use of numerous

numerical simulations. The Finite Element Method (FEM) is
commonly used for modeling electromagnetic systems, and
particularly rotating machines. It allows through the resolution
of Maxwell’s equations and the consideration of material
behavior laws to simulate, with precision, devices in 2D or
3D [1]. Nevertheless, the 3D simulation of such machines on
a complete rotation remains expensive in computation time and
is often incompatible with an optimization approach [2].

Thus, the objective is to propose an innovative computational
strategy based on a domain decomposition method (DDM),
using the possibilities of computers with parallel architectures.
Some studies have already been conducted in the context of
DDM [3]. Though, unlike the dual and primal methods, the
proposed strategy relies on a DDM based on a mixed writing
of the equations at the interfaces. Thus, complex behaviors
can be described on the interfaces without modification of the
problem treated in the sub-domains. This method has been used
so far mainly in solid mechanics [5] - [4]. Then, we seek to take
advantage of this powerful method in mechanics to simulate
efficiently magnetostatic problems.

II. THE LATIN METHOD

A domain Ω of study is considered and sub-divided into a
number n of sub-domains ΩE . All the interfaces around ΩE

are defined by one entity ΓE . The particularity of the method
proposed in this work is to introduce both primal and dual
fields on the interfaces. In order to simplify the notations, a
vector {X} and a matrix [K] correspond to the concatenation
on all sub-domains of {XE} and [KE ]. Thus, we denote {W}
the restriction on the interfaces of the magnetic vector potential
{A} and {T} the tangential component of the magnetic field
{H} on the interfaces. These fields are built from the sub-
domains using an operator [t].

Then, we use the LATIN method which is an iterative
solver based on three fundamental principles [5]. The first one
consists in separating the equations into two groups: the linear
equations and possibly global within the sub-domains (group
Ad)

Ad :
s = ({W}, {T})

solution of

{
[K]{A} = {J}+ [t]T {T}
{W} = [t]{A} ,

(1)
where {J} comes from the consideration of a current density,
and the local and possibly non-linear equations on the inter-
faces (group Γ), which become considering the continuities

Γ : ŝ = ({Ŵ}, {T̂}) solution of

{
[Od]{Ŵ} = {0}
[Os]{T̂} = {0}

,

(2)
where [Os] is an operator that applies to the fields on each
side of an interface to return the sum. In the same way, [Od]
returns the difference. One advantage of this method is that
the rotation of the rotor can be considered as a behavior on an
interface [6]. Thus, only the equations of this interface would
be impacted.

The second principle relies on the use of a two stage iterative
algorithm, see Algorithm 1. At each stage, partial solutions
si ∈ Ad or ŝi ∈ Γ are successively built according to the
search directions E− or E+ that can be written as

E+ : {T̂} − {T} − [k+]
(
{Ŵ} − {W}

)
= {0}

E− : {T} − {T̂}+ [k−]
(
{W} − {Ŵ}

)
= {0}

. (3)

The complete solution is obtained at the intersection of
the groups Γ and Ad, satisfying all the equations then. A
convergence indicator η based on the distance between two
successive solutions si and ŝi is used to stop the algorithm.

Finally, the third principle advises the use of a reduced order
model (ROM) to solve the linear stage [7]. This last aspect is
not considered for now.



Algorithm 1: LATIN
Input: ŝ0 ∈ Γ (generally set to 0)
while η ≥ criteria do

Linear stage for each sub-domain
knowing ŝi ∈ Γ search for si ∈ Ad ∩ E−

Local stage for each interface
knowing si ∈ Ad search for ŝi+1 ∈ Γ ∩ E+

Convergence indicator compute η
end

III. NUMERICAL EXAMPLE

In this section, the presented method is first validated on a
test case with an analytical solution: a ferromagnetic 2D bar
with Dirichlet conditions on the left and right ends. For a bar
decomposed into two sub-domains, the solution is obtained
in 20 iterations with an relative error of 3 · 10−5 %. In Fig.
1 we highlight that the number of iterations necessary to
reach convergence increases according to the number of sub-
domains that are defined for an identical problem to solve. This
dependency is a classical issue in mono-scale DDM method.
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Fig. 1. Definition of the academical problem and its converged solution, and
evolution of the number of iterations according to the number of sub-domains

This implemented method is tested on an academic case such
as a switched reluctance motor (SRM). The stator consists of
a ferromagnetic structure with a coil wounded around with
a current I = 7 A. A rotor with 4 poles that has a rotational
movement is considered. On external boundaries, the magnetic
vector potential A is set to 0 Wb/m as a boundary condition.
This problem is decomposed into 15 sub-domains as detailed
in Fig. 2.

Fig. 2. Decomposition of the problem and equipotential lines of magnetic
vector potential A for a rotor position

In Fig. 2 the equipotential lines of magnetic vector potential
A are shown for a position of the rotor and obtained for a
convergence criteria η ≤ 10−7. In order to validate this result,
it is compared with a solution built with a global simulation.
In Fig. 3, the magnetic vector potential is plotted on the
circular interface around the rotor for both simulations. This
comparison allows to validate the solution computed with the
LATIN algorithm.

0 50 100 150
10−7

10−5

100

Iterations

C
on

ve
rg

en
ce

in
di

ca
to

r
η

0 90 180 270 360
0

1

2

3

·10−3

Angle (◦)

V
ec

to
r

po
te

nt
ia

l
A

(W
b/

m
)

Global

LATIN

Fig. 3. Evolution of the convergence indicator and comparison of the magnetic
vector potential A around the rotor between a global simulation and a LATIN
simulation

IV. CONCLUSION

We presented a mixed domain decomposition method
adapted for magnetostatic simulation. The implementation of
the LATIN method have been validated in 2D with the study
of a simple rotating machine. This efficient method has the
advantage to be able to integrate nonlinearities without im-
pacting the structure of the algorithm. Furthermore, the LATIN
method is the perfect ground to add ROM strategy. These
areas of improvement will be the subject of upcoming work.
In addition, a mono-scale method is highly dependent on the
number of sub-domains. A multi-scale computational strategy
will be investigated to address this issue.
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