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Abstract

1) Objective: Pulmonary optical endomicroscopy (POE) is an imaging technology in real time. It allows to examine
pulmonary alveoli at a microscopic level. Acquired in clinical settings, a POE image sequence can have as much as
25% of the sequence being uninformative frames (i.e. pure-noise and motion artefacts). For future data analysis, these
uninformative frames must be first removed from the sequence. Therefore, the objective of our work is to develop an
automatic detection method of uninformative images in endomicroscopy images.
2) Material and methods: We propose to take the detection problem as a classification one. Considering advantages of
deep learning methods, a classifier based on CNN (Convolutional Neural Network) is designed with a new loss function
based on Havrda-Charvat entropy which is a parametrical generalization of the Shannon entropy. We propose to use
this formula to get a better hold on all sorts of data since it provides a model more stable than the Shannon entropy.
3) Results: Our method is tested on one POE dataset including 3895 distinct images and is showing better results than
using Shannon entropy and behaves better with regard to the problem of overfitting. We obtain 70% of accuracy with
Shannon entropy versus 77 to 79% with Havrda-Charvat.
4) Conclusion: We can conclude that Havrda-Charvat entropy is better suited for restricted and or noisy datasets due
to its generalized nature. It is also more suitable for classification in endomicroscopy datasets.
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1. Introduction

Pulmonary optical endomicroscopy uses fiber confocal
fluorescence microscopy which can provide diagnostic in-
formation about fibrosis and inflammation of the distal air
spaces associated with lung disease [1]. It is a new, real-
time imaging technology that provides pulmonary alveoli
imagery at a microscopic level. However, acquired in clin-
ical use, a POE image sequence can have a proportion
of more than 25% of the sequence giving uninformative
frames as pure-noise and motion artefacts [2]. For a fu-
ture data analysis, these uninformative frames must be
first removed from the dataset. In clinical examination,
the detection of uninformative frames is actually carried

out manually. This manual operation is time consuming
and laborious. Therefore, automatic detection is necessary
to speed up data analysis and shorten diagnostic time. Our
work aims at developing an automatic detection method to
remove uninformative frames from a sequence of images.
Fig. 1 shows four informative and four non-informative
images. We can observe that textures in these two kinds
of images are very different. Hence, we can consider the
detection problem as a classification one.

Deep learning is an advanced machine learning tech-
nique, showing powerful classification ability. It consists
in estimating the parameters of the activation functions
by minimizing a loss function comparing the output of the
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neural network and the desired output. It has shown to
be outperforming the state-of-the art specialists [3, 4] in
various applications. One class of deep learning techniques
is the supervised deep learning techniques. In supervised
deep learning techniques, the considered data are labeled;
for instance: informative versus uninformative POE. The
loss function evaluates the difference between the esti-
mated labels from the network and the true labels. Pa-
rameters are updated in order to minimize the loss. To
achieve this, we generally use a Convolutional Neural Net-
work (CNN) [5, 6]. Fig. 2 presents the general architecture
of CNNs.

Many methods of classification based on CNN have
been developed in medical image fields [7, 8, 9, 10]. Def-
inition of the loss function for training the network is
important for achieving good performance of accuracy.
Most studies using entropy in deep learning were focused
on most common forms as quadratic metric or Shannon
cross-entropy. Quadratic metric is generally used when
the desired ouput is deterministic; for instance in image
segmentation. Cross-entropy loss functions are generally
used for probabilistic decision; for instance in classifica-
tion. Shannon entropy is the most well-known entropy
and the derived cross-entropy can be easily interpreted as
a “distance” between probabilities [11]. Moreover, Shan-
non entropy is more relevant when the data follows a Gibb-
sian distribution (ie. exponential of the opposite of a con-
vex energy function). Unlike Shannon’s entropy, Havrda-
Charvat entropy [12, 13, 14, 15, 16] doesn’t require a spe-
cific distribution of data in order to keep its specificity
and accuracy. In this paper, we propose to implement a
CNN with a loss function derived from Havrda-Charvat’s
entropy to classify the studied frames in their proper cat-
egories (informative/uninformative) and to compare the
results with a Shannon-based cross-entropy and find out
what improvement can be achieved.

Figure 1: A sequence of images from a patient. First row: two
informative, then two uninformative frames. Second row: two unin-
formative frames then two informative ones

2. Related Works

2.1. Data classification

There exists many methods for classifying data. Some
methods as Support Vector Machines (SVM) are geomet-
rical [17]. SVM is inspired by the Hahn-Banach theorem
[18] and is a supervised learning method consisting in sep-
arating two convex subsets by an hyperplan. SVM has
been generalized in non-linear case by the way of the in-
troduction of a metric kernel [19] and [20] proposes to esti-
mate the kernel via Bayesian inference. The decision tree
method [21] constructs classifiers by tree both in regres-
sion and in classification. So a tree is built by gradually
dividing a population into two sub-populations in order
to optimize the homogeneity of populations according to
their label. Decision trees have been generalized into ran-
dom forests [22] which group together a multitude of in-
dependent decision trees. These are built from the same
learning base using different random processes. The fact
of combining several decision trees makes it possible to re-
duce the influence of noisy data during the learning phase.
Random forests have been used successfully in classifica-
tion; for instance in radiomics [23]. Other classification
methods are statistical. Amongst statistical methods, lo-
gistic regression [24] consists in learning parameters of the
logistic classification function from annoted data. In likeli-
hood maximization [25], a probabilistic model representing
the probability of each class in function of the observation
is given; the decision consists in choosing the most likely
class. Such likelihood maximization is also used in the
more recent Conditional Random Fields (CRF) for image
segmentation [26] and for classification [27]. Another kind
of statistical methods are the Bayesian methods in which
we have a prior knowledge about the belonging to a class.
Bayesian methods [28, 29] have been widely used in im-
age segmentation [30] and data classification [31]. More
recently, the deep-learning methods are more and more
used. Amongst applications of deep learning in data clas-
sification, one can quote text recognition [32], face recogni-
tion [33] or spams detection [34]. The most classical deep-
learning method for supervised classification is based on
Convolutional Neural Networks (CNN). Generally, a CNN
is composed of two sets of layers. The first one applies
convolution maps in order to reduce the data and the sec-
ond one is a fully connected network. There are different
CNN-based architectures. Amongst them, the LeNet ar-
chitecture [6] is the first successful CNN used for classify
digits; AlexNet [35] was the first CNN applied to com-
puter vision and was submitted to the ImageNet ILSVRC
challenge in 2012; ZFNet is an improvement of AlexNet
proposed in [36]. Many applications of deep learning for
classification of optical images have already been made in
[37, 38, 39].

2.2. Generalized entropies and its application

In a technical point of view, there are several ways to
generalize the classical Shannon entropy and the different
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metrics and divergences as summarized in [40]. There is
two main ways to generalize the Shannon entropy: the
first one consists in replacing the integrated functional
in the expression of the Shannon entropy and the sec-
ond one according to an axiomatic [41]. As underlined in
[4], Havrda-Charvat and Shannon entropies are the only
ones which satisfy the strong recursivity property. Even
if generalization of Shannon entropy as Havrda-Charvat
is not recent; most applications of them is clustering [4,
11, 13, 16] or coding theory [42]. In [41], a weakened
recursivity property is studied and generalization of the
Havrda-Charvat satisfying this property is proposed. This
property makes its use easier in case of multi-label classi-
fication as, for instance, for gene expression analysis [4].
In [12], results of mammogram image classification are
compared while using different parameterized entropies:
Rényi, Havrda-Chravat, Tsallis and Kapur’s entropy. It
appears that Tsallis entropy gives the best results as part
of their study. However, Tsallis entropy has two parame-
ters whereas Havrda-Charvat has only one parameter and
gives slightly less well performing results. Havrda-Charvat
entropy has also been used for clustering in [13] by re-
placing the Shannon entropy in the Jensen-Shannon diver-
gence. In [14], a functional equation from which Havrda-
Charvat, Shannon and Tsallis entropies are derived is pro-
posed. Moreover, the stability in the sense of Hyers-Ulam
[43] of this functional equation is studied.

3. Method

In this section, we present the neural network that we
use for the classification of the optical images.
We use a supervised method for the classification of op-
tical images of lungs into two classes: informative class
and non-informative class. The method that we use is a
Convolutional Neural Network (CNN) whose architecture
is represented in Fig. 2. The loss functions we use for the
supervised learning are entropy-based functions. These
loss functions compare two probability laws. The first one
is the output of the CNN and represents the estimated
probability of the input image belonging to informative
class. This estimated probability is computed by the sig-
moid stage of the CNN. The second probability is a Dirac
probability whose value is 1 if the image is informative
one and 0 otherwise. A entropy-based loss function is con-
structed by choosing an entropy function and a divergence
for comparing the entropies of the two distributions. The
first entropy is the classical Shannon entropy and the sec-
ond one is the Havrda-Charvat entropy which generalizes
the Shannon entropy.

3.1. Supervised classification of optical images

In this paper, we focus on classifying optical images
into two classes informative and non informative images.
The set of possible states is Ω = {0, 1} where 1 corre-
sponds to the event “informative image” and 0 to “non

Figure 2: Architecture of the CNN for supervised learning

informative image”. In supervised classification, we train
the network from an annotated database. Let N be the
number of annotated images. At the n-th image, we asso-
ciate the following Dirac probability:

qn(1) =

{
1 if the image is informative

0 otherwise
(1)

Let pn the output of the CNN for the n-th image. The
loss function to be minimized is:

L(q, p) =

N∑
n=1

H(qn, pn), (2)

where H is the chosen entropy-divergence.
The two following paragraphs detail how one can gener-
alize the Shannon entropy and how an entropy-divergence
can be built from an entropy.

3.2. Generalized entropies

An entropy function is a concave function from a subset
of probability densities to the real line. The most known
entropy function is the Shannon entropy, for discrete prob-
abilities (i.e. probabilities defined on a countable space Ω,
this one is defined by:

Hν(p) = −
∑
ω∈Ω

log(p(ω))p(ω)ν(ω), (3)

where ν is a measure on Ω; in practice, ν is taken to be
the counting measure but can also represents a prior in-
formation on the state ω.
As explained in [40], there are several ways to generalize
the Shannon entropy. A classical way to define generalized
entropy is:

Hν(p) = −
∑
ω∈Ω

h(p(ω))ν(ω) (4)

where h is a convex function defined on R.
In this paper, we propose to utilise the Havrda-Charvat
entropy [41] which belongs to a parametric family whose
convex functional is given by:

hα(p) =
pα − p
α− 1

, (5)
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where α > 1. By studying the limit at α = 1, we find
h1(p) = p log(p) back. As a consequence, the Havrda-
Charvat whose parameter is equal to 1 coincides with the
Shannon entropy.
By replacing h by hα in (4), we deduce the expression of
the Havrda-Charvat entropy:

Hα,ν =
1

α− 1

∑
ω∈Ω

[p(ω)− p(ω)α] ν(ω) (6)

and if ν is the counting measure:

Hα,ν =
1

α− 1

(
1−

∑
ω∈Ω

p(ω)α

)
(7)

3.3. Entropy-divergences and cross-entropy

There exist several ways to construct a loss function
from a given entropy. In this paper, we consider the cross-
entropy, as it is the most used in deep-learning when the
entropy is the Shannon entropy. This one is defined as:

H(q, p) = −
∑
ω∈Ω

h(p(ω))
q(ω)

p(ω)
(8)

In the case where h(p) = p log(p), we can find the classical
cross-entropy:

H1(q, p) = −
∑
ω∈Ω

q(ω) log(p(ω)) (9)

and for hα(p) = pα−p
α−1 , the Havrda-Charvat cross-entropy

is defined by:

Hα(q, p) =
1

α− 1
×

(
1−

∑
ω∈Ω

(p(ω))α−1q(ω)

)
(10)

In this paper, we compare classification results for several
loss functions: Havrda-Charvat-based loss function with α
ranging from 1 to 2.

4. Results and analysis

4.1. Data

In this study, the dataset consists of different kinds
of illnesses. The potential diseases are: asbestosis, pul-
monary idiopathic fibrosis, hypersensitivity pneumopathy,
sclerodermia and some healthy people as the control group.
we have used 3895 images where 2313 were informative
and 1582 were uninformative images. These frames were
obtained from images sequences given by the CHU (Uni-
versitary Central Hospital) of Rouen, Normandy. The size
of images are between 512x512 and 500x500 pixels, de-
pending on the sequence. We proposed to normalize all
images in a 128x128 resolution, in order to train the CNN
with a reasonable resolution by considering a balance be-
tween the image size and processing time. The data were
obtained as video sequences and turned into frames for the
analysis.

4.2. Implementation

We proposed to go for a simple CNN architecture. The
two main kind of layers in a CNN are the following:

� 1) The first layers are the Convolutional layers. Their
function is to reduce the input to its most promi-
nent features, in order to retain the most important
information while reducing the dimensions of the in-
put image. These layers are often associated with an
activation function, which is used to determine the
value of the output, and eventually a MaxPooling,
that aims to increase even further the reduction of
dimensions and the extraction of features.

� 2) The second layers are Fully Connected layers,
whose role is to establish a decision rule that leads,
on the last layer, to the classification of the input
image.

We implemented the following layers: five convolutional
layers , each having a convolution filter of dimensions (3,3)
and using the activation method Rectified Linear Unit
(ReLU) of decreasing size (128, 64, 32, 16 and 8 neurons),
and then four dense layers of decreasing size (128, 64, 32
and 16 neurons). The total number of trainable param-
eters in this architecture was around 6,6 millions. The
validation split of this network was set at 70/30, i.e. that
means 70% served as a training set, and the remaining
30% were used as a validation set in order for the CNN
to improve. The batch size, the number of data simulta-
neously passed through the CNN, was 64. We also added
Dropout layers after the first three Dense ones. These lay-
ers force the network to drop certain links, reducing the
phenomenon of overfitting.

4.3. Learning conditions

We use balanced datasets, with about half images being
uninformative and half being informative. This way we
have prevented the availability bias that would’ve oriented
the model toward the most available kind of data. Such
bias can potentially skewer data where nothing like that
can be explained by data distribution. We used the Python
language with the Keras library which is a powerful easy-
to-use Python library for developing and evaluating deep
learning models.

The criteria of evaluation were those implemented with
the CNN, i.e the amount of correct identification over the
total length of the dataset.

4.4. Experimentation

A comparison study between different entropies is car-
ried out in function of the number of epochs to define
their accuracy (see TABLE 1). N represents the number
of epochs set in the network’s training, and α is the coef-
ficient of identical name in the Havrda-Charvat’s formula.
The following table was made for a 3895 images dataset
(2313 informative / 1582 uninformative):
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N α
1.0 1.1 1.3 1.5 2.0

30 0.59 0.68 0.73 0.59 0.59
40 0.70 0.79 0.77 0.76 0.59

Table 1: Quantitative comparison of accuracy with different en-
tropies. Sh.: Shannon, H-CH.: Havrda-Charvat

To help assert our observations, we also computed the
specificity and sensitivity for the same values of α for 40
epochs.

α 1.0 1.1 1.3 1.5 2.0
Specificity 0.87 0.91 0.92 0.78 0.99
Sensitivity 0.71 0.79 0.78 0.75 0.59

Table 2: Comparison of sensitivity and specificity for several values
of α with N=40 epochs

We can observe that the number of epochs has moder-
ate influence on the end results. Except, of course, when
the number of epochs is deliberately too small to prop-
erly reach convergence. Then, by increasing the number
of epoch, we make sure that the network reaches conver-
gence.

The values of sensitivity and specificity allow to rule
out the following value of α: 2.0. These results concur with
the previous ones. The remaining values are satisfactory
regarding the model’s accuracy.

When increasing the number of epochs beyond 40, we
obtained very high training accuracy, including with Shan-
non’s entropy. This can be explained by the fact that our
sample remains small in comparison to what a Neural Net-
work might need, and its learning can turn into overfitting,
which is the network learning so well to recognize the pat-
terns it has been given that it will be unable to recognize
other ones, provided it differs too much from the train-
ing sets. As a rule of thumbs, the more epoch the better,
but if a network seems to have reached a stability after a
certain number of epochs, the following ones tend to only
improve them by a short amount, and that’s when the net-
work enters the domain of overfitting, which is not to be
encouraged. That’s why we need to carefully study how
the network converges and prevent it from doing so for too
long.

The best results for the supervised elements were 79%
(77%) of correct classification when using Havrda-Charvat
with alpha=1.1 (1.3) and 40 epochs. It’s a slight, yet no-
ticeable improvement from Shannon’s entropy. Moreover,
for 40 epochs, the respective results for Shannon’s entropy
and Havrda-Charvat(α = 1.1) are 70% and 79 % of accu-
racy for the first experiment and 70% and 77% for Shannon
and Havrda-Charvat(α = 1.3) for the second experiment,
which makes the later a huge improvement over Shannon.
It demonstrates that Havrda-Charvat’s formula can be an
improvement when it comes to classification and the loss

function that comes from it is a better alternative to the
more common one.

As a trend, we’ve noticed that the Havrda-Charvat for-
mula yielded better results than Shannon’s. It can be ex-
plained by the fact that Shannon’s entropy needs data of
a certain type to be totally relevant, i.e data that can
be distributed on the exponential of a convex function,
in other words it needs a single extremum to safely move
toward it. If the data are not meeting this requirement,
Shannon’s entropy cannot be considered as completely re-
liable. Havrda-Charvat is a generalized version of Shan-
non’s entropy, not needing any specific conditions for the
data. The choice of the parameter α in Havrda-Charvat
can be fixed depending on data or estimated. Considering
non any prior information about the nature of our data,
this more generalized entropy can thus give better perfor-
mance.

We can also observe that the factor α is not to be in-
creased to high values. When we got close from 2, quickly,
after 20 epochs, we noticed that our network stopped im-
proving and was stuck to accuracy values close to 0.60.
The interval of α for good results is between 1.1 and 1.5
in both experiments. We will study how to automatically
estimate this value in upcoming work.

4.5. Validation loss study

We notice, thanks to figure 3, that for α = 1.1, α = 1.3,
and α = 1.0, training and validation errors decrease at the
same pace for N=40. Regarding Shannon’s entropy, where
the two losses are higher than for the two Havrda-Charvat-
based models. We can deduce that, despite slightly de-
creasing too, Shannon’s entropy is less relevant and trust-
worthy.
We can deduce that our results for 40 epochs regarding
α = 1.1 are coherent with the tests. However, for a number
of epochs N greater than 40, the phenomenon of overfitting
starts to appear. We tested the models for N=100 epochs
and the overfitting phenomenon appears and increases as
the epochs happen. For the size of the studied dataset, 40
epochs can be considered as sufficient, but as the dataset’s
size increases, a greater number of epochs will be available
without triggering any overfitting.
As a sum-up, for further study, the value α = 1.1 seems
to be the most promising and an improvement over the
commonly used Shannon’s entropy.
Regarding the other value, we can notice that, after 40 to
50 epochs, the validation loss tends to increase, while the
training loss reaches its low. If this value was to be used,
one would have to consider that for a dataset of compa-
rable size, epochs should be kept below 50, or adapted to
reflect this level of fitting, since increasing epochs beyond
this point would soon lower the adaptability of the net-
work due to overfitting.

We notice that the validation error tends to increase
far from the training one when N becomes superior to 30.
This phenomenon tends to increase the further the epochs
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Figure 3: Evolution of Training and Validation Losses for alpha=1.0
(top), alpha=1.1 (middle) and alpha=1.3 (bottom) and 40 epochs

do so. Again, we can notice that epochs are not to be
increased beyond 40, as the two losses seem to grow further
away from one another at a rapid rate.

Moreover, we notice that the phenomenon becomes
greater when using Shannon’s entropy than with Havrda-
Charvat’s equation, which is another element in favor of
the new loss function over the more commonly used Shannon-
based loss. It is already starting at N=40 epochs for
Shannon-based loss, as depicted in figure 3, hence the
lesser reliability of the results achieved thanks to it, in-
cluding sensitivity and specificity.

4.6. Images classification

Among the correctly classified images, we find those
with obvious, clearly identified structures that the network
identifies as informative:

Conversely, the obviously uninformative ones are rec-
ognized by the algorithm and deemed as noise:

Figure 4: Several informative frames rightly classified

Figure 5: Several uninformative frames correctly classified

Despite the encouraging results achieved by the net-
work, some limitations exist.

5. Limitations

5.1. Classification errors

During the experiments, we noticed that several images
were classified in the wrong category. For example, the
following images can be classified as informative although
they were uninformative:

Figure 6: Several uninformative images classified as informative
through the algorithm’s error

As an explanation for the mistake, we can say that the
data are very noisy and that any structure in the image
can pass for an information and thus make the image an
informative one, according to the neural network. Struc-
tures are hard to take in account, since the feature map at
the end of the convolutional layers is flatten to meet the
fully connected layers’ requirements for inputs.

Noise makes it difficult for the algorithm to notice when
an artifact happens, when the patient moves for example
or when the scope sees things that are not relevant to the
current examination, like blood for example.

On the contrary, when the genuine structures become
blurrier or are mixed with a lot of noise, which can re-
sult in the picture being deemed uninformative although
a structure is present:

So, noisy images still presenting informative elements
are susceptible to being considered as being only noise and
thus uninformative, the useful data being lost among the
noise’s values
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Figure 7: Several informative images classified as uninformative
through the algorithm’s error

A possible solution would be to pre-process the data
with smoothing filters in order to reduce the noise’s influ-
ence in the signal.

5.2. Data Scarcity and Overfitting

As presented in the previous part, there’s a phenomenon
of overfitting the more we increase the number of epochs.
This phenomenon comes from the small dataset that we
use. Usually, the more epochs the better, but with smaller
databases, the network tends to learn too well its training
set, and become unable to adapt to any other data. This
is why, for further research, we’ll need more labeled data.

Another option regarding overfitting is to lower the
complexity of the network by reducing the number of neu-
rons in existing layers or by deleting some layers without
altering the global structure of the network.

Regarding the labeled data scarcity, the solution is to
create algorithms that are less impacted by small datasets,
or that can work without labels on bigger sets of images.

5.3. Balanced dataset

In the foreword of this paper, we described the unin-
formative data as being about 25% of the available frames
of endomicroscopy videos. But, to make the learning less
biased, we proposed to make each category (uninforma-
tive/informative)be closer to half the training dataset.
These data were chosen in order to be closer from a bal-
anced dataset, but without cutting a sequence of frames.
To make sure the dataset is completely representative of
the real acquired data, further work should proceed with
25% of the frames being uninformative to see if the re-
sults are similar. Unbalance in dataset is responsible for
biases that make the algorithm determine that, since one
class has a greater probability to occur than the other,
then any analyzed frame will naturally be more prone to
be categorized as such, regardless of its characteristics, as
it’s an issue of availability.

5.4. Hyperparameter α

In this study, we proposed to set the parameter α to
predetermined values, and have obtained the correspond-
ing results. We noticed that, depending on the data avail-
able, the best value of the hyperparameter tended to vary.
This is why we can assume that there may exist values
of α yielding better results in the considered interval. In
order to further improve our findings, the algorithm needs
to be modified in order to automatically test the values of
α and provide the value which gave the best results.

6. Conclusion

In this paper, we design a CNN classifier with a new
loss function based on Havrda-Charvat entropy. Most of
CNN classifier use Shannon entropy, while Havrda-Charvat
entropy is a generalized Shannon entropy. Therefore, it
can outperform it if the nature of data cannot satisfy
certain conditions. Our application aims to classify pul-
monary optical endomicroscopy images in which informa-
tive images and non-informative images are not easy to
distinguish. The proposed classifier can achieve an ac-
curacy of 79% (77% for the second set), better than the
one obtained by Shannon’s entropy. In future work, we
will analyze the endomicroscopy after removing the non-
informative images for helping pathological diagnostic.
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