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ABSTRACT 34 

 Alert Distance (AD) and Flight Initiation Distance (FID) are popular measures used to 35 

explore the reaction of prey to approaching predators, and thus the economics that underlie 36 

optimal escape strategies. AD likely mirrors the effort invested into vigilance, while FID provides 37 

an estimate of the perceived risk of an approaching threat. Although individual variation in AD 38 

and FID is influenced by environmental factors such as variation in predation pressure and human 39 

disturbance, the repeatabilities of these traits (especially AD), and therefore their designation as a 40 
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personality trait, remain under investigated. Here, we studied the repeatability of AD, FID, and 41 

the decision to flee in a flightless, ground-breeding seabird, the king penguin (Aptenodytes 42 

patagonicus). A single experimenter approached three times over three consecutive days 47 43 

incubating king penguins from two different colonies with varying human disturbance levels. We 44 

explored the effects of weather, time of day, and approach speed of the experimenter on these 45 

behaviors. Weather had an effect on all three behaviors. In warm, sunny weather AD increased, 46 

while in rainy, windy weather birds were more likely to flee yet waited longer before initiating 47 

flight. Faster approach speeds between AD and FID increased FID. Weather conditions and speed 48 

of approach affected repeatability estimates, highlighting the need to consider external sources of 49 

variation when refining such estimates. FID and the decision to flee were significantly and 50 

moderately repeatable (r = 0.26 and 0.57 respectively), while AD was not. There was no evidence 51 

of habituation or sensitization due to colony.  52 

Key words: Aptenodytes patagonicus, personality, human disturbance, optimal escape decisions, 53 

predation risk,  54 

  55 
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INTRODUCTION 56 

Understanding how wild animals react to threats - especially predators - and the 57 

economics underlying (optimal) escape decisions, is a central topic in behavioral ecology that has 58 

been widely studied by evaluating Alert (AD) and Flight Initiation (FID) Distances (Tätte et al., 59 

2018; Blumstein, 2019; reviewed in Frid & Dill, 2002). AD and FID can be defined as the 60 

distances at which a focal animal interrupts its normal behaviour to become alert (AD) or begin to 61 

flee (FID) from an approaching predator. AD provides us with a surrogate of the amount of time, 62 

and possibly energy, invested by the focal individual into surveying its surrounding; i.e., the 63 

degree of vigilance (Fernández-Juricic and Schroeder, 2003; Beauchamp, 2015; Uchida et al., 64 

2019; but see Tätte et al., 2019). Meanwhile, variation in FID informs us on the perceived 65 

predation-risk of the focal individual (Blumstein, 2006, 2019; Møller et al., 2008).  66 

In practice, the decisions that prey undertake when approached by a predator (AD and 67 

FID) can be simulated by performing non-lethal approaches by human experimenters (Frid and 68 

Dill, 2002; Beale and Monaghan, 2004a).  Animals are expected to respond in much the same 69 

way to human approach stimuli as they would to actual predators since (1) both divert time and 70 

energy that could be otherwise invested in fitness enhancing activities; and (2) animals should be 71 

selected to overestimate rather than underestimate risk due to the cost of miscalculation, i.e., 72 

injury or death (Frid and Dill, 2002). While AD can be hard to observe in some species or 73 

contexts, FID has the advantage of being easily measured and quantified (Tarlow and Blumstein, 74 

2007). Both can be standardized within and across studies (Blumstein, 2006; Møller et al., 2008), 75 

and are species-specific (Blumstein et al., 2003; Møller, 2008; Carette and Tella, 2011; Piratelli et 76 

al., 2015). As a consequence, FID in particular and AD when available, have become popular 77 

measures in conservation biology used in establishing set-back distances and buffer zones to 78 
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minimize stress-related disturbances on wildlife (Rodgers and Schwikert, 2002; Fernández-Juricic 79 

et al., 2005). 80 

Although AD and FID are species-specific, there is fast accumulating evidence that FID 81 

(and to a lesser extent AD) can vary among populations of the same species and between 82 

individuals within the same populations (Edwards et al., 2013). For instance, FID is often shorter 83 

in urban versus rural populations (Piratelli et al., 2015; Carette and Tella, 2017), suggesting either 84 

that these animals have habituated (or developed tolerance) to human disturbance (Burger and 85 

Gochfeld, 1981, 1990; Walker et al., 2006), or that less tolerant individuals have migrated away 86 

from human presence (Ellenberg et al., 2009; Carette and Tella, 2010, 2011). Further, upon 87 

repeated approaches, FID has been shown either to decrease (habituation: Carter et al., 2012; 88 

Petelle et al., 2013; Arroyo et al., 2017), or increase (sensitization: Dill, 1974; Wheeler et al., 89 

2009), demonstrating within-individual plasticity. FID can display consistent inter-individual 90 

(repeatable) variation over time (Carette and Tella, 2010; Carter et al., 2012; van Dongen et al., 91 

2015). The same cannot be said of AD, which remains to be explored; however, vigilance 92 

behavior has often been found to be mildly repeatable (Couchoux and Cresswell, 2012; Roche 93 

and Brown, 2013). Repeatable behavioral traits measured over time are a prerequisite for the 94 

characterization of individual personality or temperament traits (Dingemanse & Wright, 2020), 95 

and might suggest genetic or early environmental constraints shaping individual risk-taking 96 

behavior. In fact, due to its repeatability, FID is frequently used as a metric to explore boldness 97 

(Atwell et al., 2012; Petelle et al., 2013; Highcock and Carter, 2014; Young et al., 2015), one of 98 

the five main personality traits defined by Réale et al., (2007), which is associated with risk-99 

assessment and risk-taking, particularly in the context of predation and disturbance.  100 

AD and FID should be strongly selected in prey species, in a way that balances the 101 

survival benefits of escaping approaching predators with the costs of abandonning other fitness-102 
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enhancing activities such as reproduction (Ydenberg and Dill, 1986). Consequently FID is known 103 

to vary with the perceived risk of predator approaches (Frid and Dill, 2002; reviewed in 104 

Stankowich and Blumstein, 2005) including the size or number of predators (Beale and 105 

Monaghan, 2004a; Geist et al., 2005), directness of approach (Smith-Castro and Rodewald, 2010; 106 

Sreekar and Quader, 2013; but see Fernández-Juricic et al., 2005), speed of approach (Bateman 107 

and Fleming, 2011; Samia et al., 2016; but see Lafferty, 2001), and predator intent (i.e., predator 108 

suddenly turning towards the prey or maintaining a purposeful gaze; Cooper, 2003; Bateman and 109 

Fleming, 2011; Sreekar and Quader, 2013). FID has also been shown to vary with the time of day 110 

(Patelle et al., 2013; Piratelli et al., 2015, Ferguson et al., 2019), can be reduced when prey have 111 

low energy reserves (Beale and Monaghan, 2004b; Piratelli et al., 2015), are in a large group 112 

(dilution effect; Ydenberg and Dill, 1986; Burger and Gochfeld, 1991, Santoyo-Brito et al., 113 

2020), or are in close proximity to refuge (Cooper and Whiting, 2007). AD has not been explored 114 

to the same extent as FID, but evidence suggests that vigilance behaviour is also modified by time 115 

of day (Edwards et al., 2013), weather conditions (Couchoux and Cresswell, 2012), conspecific 116 

interactions (Hess et al., 2016), sex and reproductive status (Burger and Gochfeld, 1994), and 117 

group size (Díaz and Asensio, 1991; Carter et al., 2009; Boujja-Miljour et al., 2018). 118 

The cost-benefit fitness trade-off of fleeing a tentative predator should be particularly 119 

strong for ground-laying birds tied to vulnerable nesting sites, such as penguins. Penguins commit 120 

a high amount of time and energy to reproduction (obligate bi-parental care, long-term fasting, 121 

prolonged breeding cycle and chick development; Williams, 1995), and face a strong fitness 122 

trade-off between the survival costs of defending their brood against predators (i.e., injuries and 123 

potential death for the adult) and the reproductive costs of abandoning their current reproduction 124 

but surviving to breed another year (Montgomerie and Weatherhead, 1988; Frid and Dill, 2002; 125 

Dowling and Bonier, 2018). Accordingly, penguins are usually highly territorial and defensive of 126 
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their brood (Viñuela et al., 1995; Amat et al., 1996; Côté, 2000), though within species there is 127 

clear variation on the degree of territoriality and aggression depending on brood value (Amat et 128 

al., 1996; Côté, 2000), the type of threat considered (Lee et al., 2017), and bird personality 129 

(Traisnel & Pichegru, 2018). Surprisingly, few studies have investigated how variable AD and 130 

FID to approaching predators are in penguins, nor the factors affecting those traits, despite their 131 

importance in shaping breeding decisions, and despite the fact that several studies have 132 

documented marked effects of disturbance (e.g. ecotourism) on penguin behavior (vigilance and 133 

locomotory behavior, time budgets; Holmes et al., 2005, 2006; Burger and Gochfeld, 2007), 134 

physiological stress (Ellenberg et al., 2006, 2012, 2013; Viblanc et al., 2012; Carroll et al., 2016), 135 

or reproduction (Giese, 1996; McClung et al., 2004; Ellenberg et al., 2006; reviewed in Bateman 136 

and Fleming, 2017). 137 

Here, we investigated the variability of both AD and FID in breeding king penguins 138 

(Aptenodytes patagonicus). King penguins are large, ground-laying, flightless birds that form 139 

extensive colonies on the subantarctic shorelines. Breeding pairs incubate their single egg or 140 

young chick on top of their feet (Stonehouse, 1960), therefore limiting their mobility. They are 141 

subject to on-land predation mostly by giant petrels, Macronectes halli and Macronectes 142 

giganteus, and brown skuas, Catharacta lonnbergi (Hunter, 1991; Descamps et al., 2005). Giant 143 

petrels and skuas especially target eggs and chicks, but petrels are also known to prey on injured 144 

adults (Hunter, 1991). These predators will harass incubating and brooding adults sometimes 145 

causing them to flee and abandon their eggs. Breeding adults have three choices: first to stay and 146 

fight, risking potentially fatal injuries; second to flee slowly cumbersomely with the egg on top of 147 

their feet clustering closer to neighbouring breeders; or finally, to flee entirely, guaranteeing 148 

survival but abandoning their current reproduction.  149 
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We calculated individual repeatabilities for AD and FID which were measured several 150 

times on incubating adults, and assessed the potential influences of approach speed, weather 151 

conditions, and time of day on AD and FID as these may impact the levels of vigilance and 152 

responsiveness to a threat. Specifically, we expected AD and FID to vary in a quadratic function, 153 

increasing at dawn and dusk, and coinciding with highest predation risk for chicks (giant petrel 154 

activity is highest at early and late hours of the night; Le Bohec et al., 2003; Descamps et al., 155 

2005). We further tested whether individuals sensitized or habituated to repeated approaches by a 156 

human experimenter by examining bird responses in two different colonies; one close to human 157 

settlements and one relatively unexposed to human disturbance. King penguins have been shown 158 

to express significantly lower heart rate stress responses to human approaches in disturbed areas 159 

vs. undisturbed colony areas (Viblanc et al., 2012). Thus, we expected individuals measured in 160 

the colony close to human settlements to show habituation to approaching experimenters 161 

(decreased AD and FID compared to the undisturbed colony).  162 

 163 

METHODS 164 

Study sites 165 

This study was conducted in mid-to-late January during the Austral summer of 2010-166 

2011. Birds were selected from two colonies of king penguins located on Possession Island in the 167 

Crozet Archipelago, namely the colonies “La Baie du Marin” (BDM, 46°25’S – 51°52’E) and 168 

“Jardin Japonais" (JJ, 46°21’S – 51°43’E). BDM is home to ca. 22 000 breeding pairs (Barbraud 169 

et al., 2020) and is located on the east side of Possession Island in close proximity to a 170 

permanently inhabited research station built in 1961. This colony has been exposed throughout 171 

the year for the past 50 years to the daily presence of scientists and non-scientists in or close to 172 
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the colony (Viblanc et al., 2012). During this time, birds in BDM have been regularly exposed to 173 

humans including tourist visits, censuses, population counts, and systematic monitoring. 174 

Meanwhile, JJ is home to ca. 39 000 breeding pairs (Barbraud et al., 2020) and is located on the 175 

north side of the island some 13 km from BDM. JJ is a relatively undisturbed colony, far from the 176 

research station and visited by scientists only a few times every year for population count and 177 

census information. 178 

 179 

Approach protocol 180 

We repeatedly approached a total of 47 incubating birds in the two colonies (23 birds 181 

from JJ and 24 birds in BDM). Each individual was approached once per day over three 182 

consecutive days between the hours of 8:00 and 19:00 (from Jan. 11 - 13 in JJ, and from Jan. 30 - 183 

Feb. 1 in BDM). It was not possible to find all birds on the subsequent days and so two birds in 184 

BDM were only approached once, and one bird each in JJ and BDM were only approached twice. 185 

Following egg-laying, king penguin partners alternate incubation duties, allowing their partner to 186 

forage at sea while they fast on land (Stonehouse, 1960). The male takes the first incubation shift, 187 

and the egg hatches some 53 days later, usually during shift four when the female has possession 188 

of the egg (Weimerskirch et al., 1992).  189 

Following the STRANGE guidelines (Webster & Rutz 2020), we provide hereafter 190 

details on how incubating birds were selected and highlight potential biases related to the 191 

selection of our study subjects. Birds were selected haphazardly while incubating their eggs, and 192 

therefore we had no individual information on their sex, age, incubation shift, or previous 193 

experience with humans. Chosen individuals visually appeared in good physical condition, based 194 

on their plumage (shiny) and morphological (fat) appearance, and thus had not been fasting for 195 
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extended periods of time. Individuals were selected at distance, and not after being approached or 196 

captured. Therefore, we expected no strong initial sampling bias in relation to how individuals 197 

were responding to human approaches (but see discussion).  198 

Selected individuals were marked from a distance (roughly 1 m) at the end of the first 199 

approach using a dot of non-permanent pressurized spray animal dye (Porcimark®, Kruuse, 200 

Lageskov; Denmark) on the belly for identification during subsequent approaches. All approaches 201 

were performed by the same observer (BG) dressed in the same clothing. Individuals were only 202 

approached if they were resting upon arrival of the observer (i.e., not engaged in aggressive, 203 

preening, or sleeping behaviours). The approach started after having observed the bird resting for 204 

at least one full minute before approaching it. During this time, the experimenter hid out of line of 205 

sight. Each approach had a set starting distance of 18 m, as measured with a laser telemeter 206 

(Leica DISTO
TM

 D5 Lasermeter, Leica Geosystems AG, Hexagon, Sweden), which we 207 

standardized due to the known influence of starting distance on FID (Blumstein, 2003, 2010; 208 

Dumont et al., 2012). We chose a starting distance of 18 m based on preliminary observations of 209 

59 king penguins, including courting (paired) and incubating birds (a sample representative of the 210 

various life-history stages in the colony, excluding moulting and chick-brooding birds), that 211 

showed the maximal distance at which birds exhibited signs of vigilance towards an experimenter 212 

was 12.45 m and the minimal distance was 3.03 m (mean  SD = 6.85  1.87 m). We used a 213 

starting distance 1.5 times greater than the maximal detection distance recorded in the preliminary 214 

study to ensure starting distance far exceeded maximum alert distance (see also Fleming and 215 

Bateman, 2017). 216 

The approaching observer followed a direct trajectory toward the focal individual, in 217 

plain line of sight, always starting from outside the colony. The experimenter walked until the 218 
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first sign of alert was detected (the bird tilting its head or stretching its neck in the direction of the 219 

experimenter). At this distance, termed the Alert Distance (AD), the experimenter took a 220 

standardized one-minute pause to record AD and time. The time from the start of the approach 221 

until the bird became vigilant was recorded with a stopwatch and the remaining distance to the 222 

selected bird measured with a laser telemeter (closest cm). The approach was then resumed until 223 

the bird showed the first signs of fleeing (slowly walking away with its egg resting on its feet) – 224 

termed Flight Initiation Distance, FID. Some birds never showed signs of flight while being 225 

approached, right up until close (FID = 0 m) (see also Bateman and Fleming, 2011, for similar 226 

results in ibises). FID had therefore a zero-inflated distribution (see supporting information S1), 227 

suggesting this measure reflected two different processes: i) the decision to flee or not (0/1); and 228 

ii) the distance at which flight (escape) should occur if birds decide to flee. Hereafter, we 229 

analysed these two processes separately. We calculated the speed of approach (m/s) prior to the 230 

occurrence of AD and FID as the distance walked (m) divided by the duration of approach (s). 231 

The mean speed  SE of approach prior to AD was 0.61  0.09 m/s (range = 0.44 – 0.86 m/sec) 232 

and the mean  SE speed of approach between AD and FID was 0.57  0.10 m/s (range = 0.35 – 233 

0.90 m/s). Walking speed varied slightly due to topography, entering the colony, and breeder 234 

density. 235 

At the start of each approach, we recorded air temperature to the nearest 1°C, and we 236 

scored wind speed, solar levels, and rain on a scale from 0 to 2, with half levels (i.e., 0.5) being 237 

allowed. A value of 0 indicated no wind or rain, or full cloud cover (no sun). A value of 2 238 

indicated heavy wind or rain or full sun. Mean temperature was 10 °C (range = 7 – 13 °C). As air 239 

temperature, wind speed, rain, and solar levels were naturally correlated, we used a Principal 240 

Components Analysis (PCA) to summarize all weather variables (package “FactoMineR”, Lê et 241 

al., 2008). This approach had the advantage of capturing climatic variation on a continuous scale 242 
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through two independent and orthogonal axes, and avoided strong collinearity (VIFs >30) issues 243 

if ‘raw’ meteorological variables are used in the analyses. We kept the first two principal 244 

component (PC1 and PC2) which together explained over 84% of the variation in climate data. 245 

Increasing PC1 (64.86% of variation) values were mainly associated with higher sun scores 246 

(correlation = +0.939) and higher temperature (+0.918), and to a lesser extent higher wind scores 247 

(+0.639), and lower rain scores (-0.686). In contrast, increasing PC2 (19.77% of variation) values 248 

were mainly associated with higher wind scores (+0.702), higher rain scores (+0.543), but not 249 

with sun scores (-0.010) or temperature (-0.061). Thus, increasing PC1 values described sunnier, 250 

warmer days while increasing PC2 values described windier, rainier days. On average, the 251 

climate conditions varied during our three approaches in both colonies (see supporting 252 

information S2), highlighting the need to control for climatic variation in further analyses. 253 

 254 

Statistical analyses 255 

All statistical analyses were performed in R 3.6.1. (R Development Core Team, 2020). 256 

Results are presented as means  SE. We investigated the sources of variation in AD (gaussian 257 

distribution), the decision to flee or not (FID: 0/1, binomial distribution), and the distance at 258 

which flight was taken for birds that did decide to flee (FID > 0; gaussian distribution) using 259 

linear mixed models (LMM) and generalized linear mixed models (GLMM) with the appropriate 260 

error distribution. In all the models, we entered individual ID as a random factor to control for 261 

repeated measures, and we included as fixed effects the time of day, weather (PC1 and PC2), 262 

approach speed, approach order (three levels: first, second, or third approach), and the colony 263 

(two levels: BDM vs JJ). To test whether birds differed in their behavior at different times of day, 264 

and whether habituation or sensitisation to human approaches occurred differently between 265 
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colonies, we also included second order interaction colony x approach order and time of day x 266 

time of day (viz., time
2
) in our starting models. Second order interactions were dropped from the 267 

final model if not significant. Models were run using the lmer and glmer functions in the package 268 

“lme4” (Bates et al., 2015). The significance of the fixed effects was tested with the anova 269 

function (type 3) from the package “lmerTest” (Kuznetsova et al., 2017) using F tests with 270 

Satterthwaite estimation for the denominator degree of freedom for models with a gaussian 271 

distribution. Pseudo-R
2
 for the models were calculated using methods developed in Nakagawa 272 

and Schielzeth (2013). Prior to analysis, time of approach was converted to decimal time, and 273 

non-zero FIDs were log-transformed (natural log) to normalize the distribution of the residuals. 274 

Independent variables were checked for collinearity using Variance Inflation Factors (VIF) (Zuur 275 

et al., 2010). A few VIFs were above 3 (see results), but those were considered acceptable as they 276 

represented different categorical levels of the same factor (e.g. approach order). All variables 277 

were scaled and centered prior to inclusion in the models to compare effect sizes (Schielzeth, 278 

2010). Where appropriate, we insured model residuals were normally distributed by visual 279 

inspection of density distributions, Q-Q plots, cumulative distribution functions, and P-P plots 280 

using the “fitdistrplus” package in R (Delignette-Muller and Dutang, 2015).  281 

Repeatabilities and their confidence intervals were calculated using the functions rpt for 282 

AD, and FID and rptBinary for the decision to flee or not, from the “rptR” package in R (Stoffel 283 

et al., 2017). Repeatability was calculated as the ratio of among-individual variance in AD or FID 284 

(σ
2
α) over total phenotypic variance (equal to the sum of among-individual variance and within-285 

individual variance, σ
2
ε), so r = σ

2
α / σ

2
α + σ

2
ε (Nakagawa and Schielzeth, 2010). We first 286 

calculated agreement repeatability, also called uncorrected repeatability, r, which is simply based 287 

on the among- and within-individual variance in AD or FID. Afterwards, significant effects from 288 



14 
 

the above models, which influenced the expression of AD and FID, were controlled for when 289 

calculating adjusted repeatability radj, (also called corrected repeatability) (Wilson, 2018).  290 

 291 

Ethics statement 292 

No animal was caught or handled over the course of this study. The research was 293 

approved by the Ethical Committee of the Institut Polaire Français – Paul-Emile Victor. 294 

Authorization to enter the colony and approach birds was obtained from Terres Australes et 295 

Antarctiques Françaises. The observations complied with the current laws of France. No eggs or 296 

chicks were abandoned during the course of this study. 297 

 298 

RESULTS 299 

Alert Distance (AD) 300 

On average, focal individuals became alert when the experimenter came to a distance of 301 

6.94  0.18 m; (range = 1.89 – 13.14 m) (Fig. 1A and 1B). The interaction between approach x 302 

colony and time of day
2
 did not have a significant effect influencing AD (F2,111.0=0.22, P=0.802 303 

and F1,90.9=0.02, P=0.896, respectively), were sequentially removed from the model in that order 304 

(least significant term removed first). The final model with time of day, weather PC1, weather 305 

PC2, speed of approach prior to AD, approach order and colony, as fixed effects explained 13% 306 

(marginal R
2
) of the total variation, and including individual as a random effect explained 22% 307 

(conditional R
2
) of the total variation in AD (LMM, n=133 observations, N=47 individuals, 1.63 308 

< VIFs < 3.68, among-individual  2
 = 0.37; residual  2

 = 3.63). We found no evidence that AD 309 

was significantly affected by the time of day (F1,92.2=2.00, P=0.160), speed of approach 310 
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(F1,120.0=1.25, p=0.267), weather PC2 (F1,98.8=2.90, p=0.092), colony (F1,84.0=0.00, P =0.982), or 311 

approach order (F2,106.0=2.14, P=0.123) (Fig 2A). However, AD was significantly influenced by 312 

weather PC1 (F1,102.1=7.29, P=0.008) with individuals showing lower AD during warm and sunny 313 

conditions (Fig. 2B). 314 

AD was not significantly repeatable when analysed on its own (r=0.103; CI95=[0, 0.290]; 315 

P=0.146), but repeatability was close to significant after adjusting for weather (PC1) as a fixed 316 

effect (radj=0.145; CI95=[0, 0.313]; P=0.062). Although some individuals appeared to be 317 

repeatable, many others displayed large variability in their AD (Fig. 1A and 1B). Post-hoc power 318 

analyses (see Online Supplementary Material OSM 3) revealed that significant repeatability 319 

(power 0.8) for AD may be achieved for a sample size of 6 approaches on 47 birds – or 3 320 

approaches on 140 birds. 321 

 322 

Flight Initiation  323 

Out of the 47 selected individuals, 41 (87.2%) decided to flee (i.e., move away with their 324 

egg on their feet) during at least one of their approaches (20 birds in JJ, and 21 birds in BDM): 23 325 

individuals always fled, 12 individuals fled twice in three approaches, 6 fled once in three 326 

approaches, and 6 did not flee at all. This corresponded to 42 approaches out of a total of 135 327 

(31%) that resulted in no FID. The FID of the individuals that decided to flee at least once was 328 

2.83  0.16 m (range = 0.68 – 8.58 m) (Fig. 1C and 1D). 329 

Time of day
2
 and the interaction between approach x colony did not significantly 330 

influence the odds of fleeing (1) or not (0) during the approach (GLMMs; binomial,  2
=2.35, 331 

P=0.125 and  2
=4.97, P=0.083), and were sequentially removed from the model in that order 332 

(least significant term removed first). The final model with time of day, speed of approach 333 
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between AD and FID, weather PC1 and weather PC2 explained 23% (marginal R
2
) of the total 334 

variation, and including individual as a random effect explained 73% (conditional R
2
) of the total 335 

variation in the odds of fleeing (GLMM, n=133 observations, N=47 individuals, 1.18 < VIFs < 336 

5.36, among-individual  2
 = 3.29; residual  2

 = 6.11). The odds of fleeing were not significantly 337 

influenced by weather PC1 ( 2
=0.24, P=0.626), time of day ( 2

=1.19, P=0.275), speed of 338 

approach ( 2
=1.86, P=0.172), approach order ( 2

=4.98, P=0.083) or colony ( 2
=3.09, P=0.079). 339 

(Fig. 3A). However, the probability of birds to flee increased significantly with increasing 340 

weather PC2 ( 2
=4.51, P=0.034), birds being more likely to flee from the approaching 341 

experimenter in windy and rainy conditions (Fig. 3A and 3B). The decision to flee was 342 

significantly repeatable before (original-scale: r=0.504; CI95= [0.084, 1.724]; P<0.001) adjusting 343 

for weather, and increased slightly (r=0.573; CI95= [0.110, 1.686]; P<0.001) after accounting for 344 

the significant effect of weather PC2. 345 

For those birds that decided to flee, time of day
2
 and the interaction between approach x 346 

colony did not significantly influence FID during the approach (LMMs; F1,66.5=0.15, P=0.704 and 347 

F2,67.8=0.48, P=0.619, respectively), and were sequentially removed from the model in that order 348 

(least significant term removed first). The final model with time of day, speed of approach 349 

between AD and FID, weather PC1 and weather PC2 explained 37% (marginal R
2
) of the total 350 

variation, and including individual as a random effect explained 62% (conditional R
2
) of the total 351 

variation in FID (LMM, n=91 observations, N=41 individuals, 1.19 < VIFs < 5.56, among-352 

individual  2
 = 0.13; residual  2

 = 0.09). We found no evidence that FID was significantly 353 

affected by the time of day (F1,79.3=0.122, P=0.727), weather PC1 (F1,67.5=2.16, p=0.146), colony 354 

(F1,47.2=0.77, P =0.384), or approach order (F2,63.8=2.17, P=0.123) (Fig 4A). However, FID 355 

increased significantly with the speed of the approach (F1,71.8=31.64, P<0.001, Fig. 4A and 4B) 356 

and decreased significantly with increasing weather PC2 (F1,60.6=5.17, P=0.027, Fig. 4A and 4C). 357 
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In other words, FID decreased in windy and rainy conditions. Agreement FID repeatability was 358 

low and not significant (r=0.102; CI95 = [0.00, 0.339]; P=0.248), but increased significantly when 359 

approach speed and weather PC2 were adjusted for in the model (radj=0.258; CI95=[0.010, 0.511]; 360 

P<0.022).  361 

 362 

DISCUSSION 363 

Our study showed that, in king penguins, both the decision to flee and FID were 364 

significantly and moderately repeatable, whereas AD was not. Climatic conditions had marked 365 

effects on AD, FID and the probability for birds to flee, affecting repeatability estimates, and 366 

highlighting the need to consider external sources of variation in refining such estimates in the 367 

wild (discussed below). 368 

 369 

Between- and within-individual variation in flight initiation 370 

Incubating king penguins showed significant (adjusted) repeatability both in the decision to flee 371 

from an approaching observer (0.57), and in the distance at which they initiated flight (0.26). In 372 

both cases, it is important to note that repeatability values increased when accounting for weather 373 

effects on behavior, which is not surprising since birds experienced different local climate 374 

conditions when they were approached. Notwithstanding, this underlines the importance of 375 

considering heterogeneity in individual habitats and timing of measures when establishing 376 

repeatability estimates from behavioral measures in the wild. Our repeatability values are 377 

comparable, albeit slightly lower, to those reported on FID in other studies: black swans, Cygnus 378 

atratus (r=0.61, van Dongen et al., 2015), juvenile yellow-bellied marmots, Marmota flaviventris 379 
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(r=0.40, Petelle et al., 2013), Namibian rock agama, Agama planiceps (r=0.71, Carter et al., 380 

2012), and burrowing owl, Athene cunicularia (r=0.88, Carrete and Tella, 2010), and generally 381 

moderate as would be expected for behavioral traits (Bell et al., 2009). The repeatability of both 382 

the decision to flee, and the distance at which flight was initiated, suggest that these behavioural 383 

traits could constitute good candidates for personality traits in breeding king penguins. This 384 

remains to be further explored however, since our power to detect behavioral plasticity in AD and 385 

FID occurring over longer periods was limited by the fact that birds in our study were only 386 

measured over a short period of time (3 consecutive days), and were not previously known 387 

individuals. Separating the repeatable and plastic aspects of alert and flight behavior to 388 

approaching predators in king penguins would benefit from further studies on individually 389 

monitored population where simple measures such as AD and FID are incorporated into 390 

monitoring schemes allowing to test for repeatability and plasticity over the lifetime of 391 

individuals (Dingemanse et al., 2010; Dingemanse & Wright, 2020). Logistically, this would 392 

require permanent marking of individuals in order to follow them through a longer period of time 393 

and through different contexts. In addition, FID (and AD, see below) are likely to vary according 394 

to factors such as individual age, sex, stress responsiveness, or body condition (e.g. Seltman et al., 395 

2012; Kalb et al., 2019). Testing for such factors in future studies should allow refining 396 

repeatability estimates, with repeatability increasing as more residual variation is accounted.  397 

Repeatability estimates of individual propensity to flee and FID increased as extrinsic 398 

factors were accounted for in the models. This is not surprising, but highlights contrasting climate 399 

effects acting both on the propensity to flee (1/0) and on the distance at which birds initiated 400 

flight. Interestingly, weather PC2 (wind and rain) had opposite effects on these behavioral traits. 401 

As conditions were windier and rainier, birds were more likely to flee, but those that fled had 402 

lower FID. This suggests that birds that fled waited until the last moment before they did so, 403 
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which could be explained by the fact that they were less likely to detect the incoming threat in 404 

windy and rainy conditions. Wind speed has been shown to have contrasting effects on animal 405 

vigilance and escape behavior, from no effect to marked effects depending on the species and 406 

taxa (e.g., no effect: birds; Clucas and Marzluff, 2011, Nordell et al., 2017, Petrelli et al., 2017; 407 

reptiles; McGowan et al., 2014; wind effects: birds; Reynolds et al., 2020; mammals; Wolf & 408 

Croft, 2010). Increased wind speed has been shown in 17 of 18 studies to decrease an animal’s 409 

ability to detect an approaching predator by masking sounds, smells and visual cues (Cherry and 410 

Barton, 2017). Wind may also be a source of distraction (Chan et al., 2010; Tätte et al., 2019), 411 

leading to delayed detection of approaching predators. It has been suggested that the magnitude 412 

of FID responses should decrease under harsh weather conditions, as the energy cost of fleeing 413 

increases (Collop et al., 2016). For endotherms wind chill increases thermoregulatory costs, and a 414 

trade-off might exist between investing energy into flight and that into thermoregulation (Collop 415 

et al., 2016, but see also Reynolds et al., 2020). Because penguins rely essentially on fat stores 416 

during incubation on-land (Groscolas & Robin, 2001), and because energy-depleted birds will 417 

abandon reproduction (Groscolas et al., 2000, Gauthier-Clerc et al., 2001), any energy savings – 418 

however small – is critical. Thus, energy savings in harsh climate conditions may contribute in 419 

explaining why birds waited for the last moment to flee. FID also increased with increasing 420 

approach speed of the experimenter. Faster approach speeds after alert may be interpreted as 421 

greater threat by the targeted prey, and thus generating longer FID (Stankowich and Blumstein, 422 

2005; Cooper and Whiting, 2007; Smith-Castro and Rodewald, 2010; Bateman and Fleming, 423 

2011).  424 

It is interesting to note that it was not uncommon for the incubating penguins to stay and 425 

defend their eggs aggressively instead of attempting to flee (there was an FID of 0 m in 42 426 

approaches of 135). For these birds either the perceived risk of the approaching threat (a human) 427 
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was not high enough to elicit a flight response, or the motivation to breed and defend the territory 428 

was stronger than that of attempting to flee. FIDs of 0 m have been observed in other ground 429 

laying birds: yellow-eyed penguins Megadyptes antipodes (Ellenberg et al., 2007, 2009), 430 

humboldt penguin Spheniscus humboldti (Ellenberg et al., 2006), magellanic penguins Spheniscus 431 

magellanicus (Fowler, 1999; Villanueva et al., 2014), and African penguins Spheniscus demersus 432 

(Pichegru et al., 2016). King penguins are special in that they incubate their egg on their feet in a 433 

specialized brood pouch. Thus, fleeing is at any rate limited, and essentially amounts to clustering 434 

close to neighbours in the hope to benefit from confusion, dilution or selfish herd effects. In 435 

addition, fleeing may risk damaging or losing the egg, losing the breeding territory, suffering 436 

from increased aggression by territorial neighbours (Côté, 2000), or disturbing the thermal 437 

incubation environment required for chick development and survival. For instance, exposed eggs 438 

during transitory breeding abandonment in king penguins have been found to lose heat at a rate of 439 

0.19 °C per minute (Groscolas et al., 2000).  440 

 441 

Between- and within-individual variation in AD 442 

In contrast to FID, the repeatability of AD was low (0.10) and not significant, but 443 

improved slightly (0.15) and was close to significant (P = 0.062) when accounting for the effects 444 

of climate (Weather PC1). As far as we are aware, there is no report of the repeatability of AD in 445 

the literature. Rather, researchers have considered vigilance behaviour when aiming to understand 446 

how animals respond to threats. More vigilant individuals are expected to detect predators earlier 447 

and thus become alert at longer distances (Fernández-Juricic and Schroeder, 2003; Beauchamp, 448 

2015; Uchida et al. 2019; but see Tätte et al., 2019). Studies that measured repeatability in 449 

vigilance behaviours also reported low, but significant, repeatability: eastern grey kangaroos, 450 
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Macropus giganteus, (r=0.07-0.14, Edwards et al., 2013); redshanks, Tringa totanus, (r=0.21, 451 

Couchoux and Cresswell, 2012); house sparrows, Passer domesticus, (r=0.13-0.22, Boujja-452 

Miljour et al., 2018); cliff swallows, Petrocheldion pyrrhonota, (r=0.089, Roche and Brown, 453 

2013). As mentioned above, repeatability estimates are likely to increase as some residual 454 

variation is accounted for by including potential factors such as age, sex, or condition, that were 455 

unfortunately not available in this study as individuals were not followed or handled. Dingemanse 456 

and Dochtermannn (2013) determined that for lower repeatabilities, >4 samples per individual 457 

were required if the total number of individuals is <100. Similarly, Wolak et al. (2012) found 458 

fewer samples per individual were required for higher r values (3 samples per individual for an r 459 

of 0.8), but for an r of 0.2, the precision of the estimate continues to increase until up to 10 460 

samples per individual. Because of time and field constraints we were only able to repeatedly 461 

approach 45 individuals 3 times. Yet, post-hoc power analyses revealed that doubling our sample 462 

size to 6 repeated measures per bird would have been sufficient to detect significant repeatability. 463 

At any rate, repeatability was low, indicating that individuals were more flexible in this 464 

behavioral trait than in their decision to flee. Similarly, vigilance levels (and presumably AD) 465 

have been found to be highly flexible (Couchoux and Cresswell, 2012; Edwards et al., 2013) and 466 

sensitive to numerous biological factors such as group position and group size, distance to cover, 467 

predation pressure, season, weather, and time of day (reviewed in Elgar, 1989). In our study, AD 468 

was significantly lower in warm and sunny conditions, suggesting that birds were less vigilant in 469 

good weather conditions. 470 

 471 

Colony disturbance, predation pressure and STRANGE animals 472 
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We expected AD and FID to vary depending on colony and with changes in predation 473 

pressure throughout the day. However, our analyses suggests that neither were major factors 474 

influencing escape decisions in the king penguin. First, on-land predation in king penguin 475 

colonies is highest at dawn and dusk (Le Bohec et al., 2003; Descamps et al., 2005), whereas 476 

most of our measures were done between 8 AM and 6 PM. Extending measurements to early 477 

morning and late evening when predators are most active may allow to better capture potential 478 

effects of predation pressure on penguin behavior. Second, given that the two colonies surveyed 479 

in this study differ markedly in their exposure to human presence throughout the year (BDM is 480 

located next to a research station and breeders have seen humans almost every day for the past 50 481 

years, whereas birds in JJ are rarely exposed to human visitors), we had expected birds in the 482 

BDM (vs. JJ) colony to habituate to approaching humans. However, the lack of difference in 483 

behavioral responses between the colonies is perhaps not so surprising. Previous findings indicate 484 

that birds breeding in more disturbed areas of the BDM colony show lower heart rate stress 485 

responses to an experimenter approaching to 10 m distance than birds in less disturbed areas – 486 

suggesting a potential for habituation to the presence of humans in chronically disturbed areas 487 

(Viblanc et al., 2012). Yet, heart rate responses were similar between the disturbed and 488 

undisturbed areas when birds were approached up to contact and captured (Viblanc et al., 2012). 489 

Although birds were not captured in the present study, they were approached up close (to a few 490 

cm), and the risk assessed was presumably more comparable to a capture than to an observer 491 

standing some 10 m distant.  492 

Previous studies in similar seabirds have shown contrasted responses to human 493 

approaches. For instance, whereas Magellanic (Spheniscus magellanicus), African (S. demersus), 494 

and Gentoo penguins (Pygoscelis papua) show reduced behavioural and/or physiological 495 

responses (heart rate or corticosterone concentrations) to human visitation in high disturbance 496 
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areas (van Heezik and Seddon, 1990; Fowler, 1999; Walker et al., 2005, 2006; Holmes et al., 497 

2006; Villanueva et al., 2012; Pichegru et al., 2016), yellow-eyed penguins (Megadyptes 498 

antipodes) appear to sensitize to human exposure through higher stress responses (Ellenberg et 499 

al., 2007). Taken together, these results highlight two important points: (1) behavioural and 500 

physiological responses to approaching predators (or humans) may tell seemingly different 501 

stories. A proper understanding of prey responses to approaching predators requires the 502 

integrative assessment of both physiological stress responses and behavioural reactions. (2) both 503 

behavioural and physiological responses are fine-tuned mechanisms integrating risk assessment 504 

into optimal escape decisions.  505 

Finally, we must consider how STRANGE were the animals in our study (Webster & 506 

Rutz 2020). We selected birds in the colonies haphazardly, with no knowledge of their sex, age or 507 

past experience. Nonetheless we did not capture and measure bird morphometrics in our study, 508 

but visually targeted birds that appeared in overall good physical condition in order to minimize 509 

the risk of breeding abandonment for energy-depleted birds (Groscolas et al., 2000, Gauthier-510 

Clerc et al., 2001) in this protected species. Our measures on individual birds were done over a 511 

few days during which changes in body condition were likely relatively minor. However, we 512 

might not have captured the full range of behavioral expression of AD and FID, particularly for 513 

birds of low body condition. This is important to consider since individuals in poor body 514 

condition may have enhanced stress and FID responses to approaching experimenters (Seltmann 515 

et al., 2012), and emphasizes the importance of controlling for body condition – where feasible – 516 

in performing repeated measures on wild animals. 517 

As this study only tested the response to repeated approaches in two colonies, which will 518 

have obvious differences in colony size, density, and topography, replicating this study over 519 

additional colonies would help in a better characterisation of the factors shaping escape decisions 520 
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in penguins. In addition to landscape and social differences between colonies, there are also 521 

possible differences in predation pressure and genetic differentiation. Furthermore, the sampling 522 

in the two colonies took place 20 days apart, allowing for possible differences in the reproductive 523 

cycle to manifest. Lastly, sampling only occurred over a span of three days. Further studies 524 

should investigate these factors in more depth, as well as test repeated approaches over a longer 525 

time period – and over the lifetime of individual birds. In particular, these would help in capturing 526 

a greater range of weather conditions, and better understanding the extent of repeatability and 527 

plasticity of these behavioral traits (Dingemanse & Wright, 2020). 528 

The response of a wild population to human disturbance creates special considerations in 529 

a world that is increasingly accessible to humans. Ecotourism and wildlife tourism, or travel to 530 

natural areas to engage in shared experiences with wildlife and whose aim is to conserve the 531 

environment through education and local spending, are increasingly common activities. As a 532 

charismatic anthropomorphic animal, penguins have garnered much attention. In many species, 533 

habituation occurs in response to disturbances caused by tourists (van Heezik and Seddon, 1990; 534 

Fowler, 1999, Holmes et al., 2006; Villanueva et al., 2014). However, even in species that have 535 

habituated to disturbance, human presence can impact natural behaviours, time budgets, heart 536 

rates and stress levels (Holmes et al., 2005; Walker et al., 2005, 2006; Burger and Gochfeld, 537 

2007; Viblanc et al. 2012; Villanueva et al., 2012; Pichegru et al., 2016). For species that cannot 538 

habituate or which have sensitized to disturbance, individuals may experience negative impacts 539 

on their reproductive success ultimately endangering the population as a whole (Giese, 1996; 540 

McClung et al., 2004; Ellenberg et al., 2006, 2007, 2012, 2013; Carroll et al., 2016). Knowledge 541 

of AD and FID may help inform policy makers when deciding appropriate viewing guidelines for 542 

tourists (Ellenberg et al., 2006, French et al., 2019). 543 

  544 
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