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Existing Web services recommendation approaches are based on usage statistics or QoS properties, leaving aside the evolution of the services' ecosystem. These approaches do not always capture new or more recent users' preferences resulting in recommendations with possibly obsolete or less relevant services. In this paper, we describe a novel Web services recommendation approach where the services' ecosystem is represented as a heterogeneous multi-graph, and edges may have different semantics. The recommendation process relies on data mining techniques to suggest services "of interest" to a user.

INTRODUCTION

Recommendation Systems (RS for short) have proved useful to exploit Web consumer behavior in order to recommend an item of interest to a client e.g., a product, a document or a book to cite a few. During the last decade, several Web service recommenders have been proposed in the literature [START_REF] Manikrao | Dynamic Selection of Web Services with Recommendation System[END_REF] [START_REF] Zheng | QoS-Aware Web Service Recommendation by Collaborative Filtering[END_REF][START_REF] Cao | Hybrid Collaborative Filtering algorithm for bidirectional Web service recommendation[END_REF]. Most of those systems are based on both similarities between previously used services, and the assessments of the Quality-of-Service (QoS) combined with collaborative filtering (CF) [START_REF] Breese | Empirical Analysis of Predictive Algorithms for Collaborative Filtering[END_REF]. These approaches rely on static data and hence cannot deal with a continuously evolving Web services ecosystem, which is composed of services, service providers, Mashups and (users) developers. In such eco-system, services can be updated, deleted making the whole ecosystem prone to obsolescence. In addition, most of those services do not provide QoS metadata.

Other approaches consider the exploitation of trusted relationships between services and users or between users themselves [START_REF] Eirinaki | A trust-aware system for personalized user recommendations in social networks[END_REF][START_REF] Deng | Social network-based service recommendation with trust enhancement[END_REF][START_REF] Deng | Trust-based Service Recommendation in Social Network[END_REF]. Trust relationships are established on the basis of similar service invocations or by similar evaluations of Web services by different users. However, in other settings, e.g. a social network, a user might be interested by a service recommended by a friend rather than by other users, even if these users have provided same rankings for a service, or did invoke the same service. In addition, users' information feedback is often missing and user interests may change over time. Random evaluations provided by spam users may be another limitation for these recommendation systems.

Now that the big picture is drawn, why would it be worthy to extend/improve/develop recommendation approaches in the Web services ecosystem?

In this paper, we describe WSR-Track, a novel service recommendation system where (1) the service ecosystem is represented as a heterogeneous multi-graph, (2) nodes represent users (resp. services), and edges represent either trust relationships between users, or usage relationships between a user and a service, and (3) nodes and edges properties are integrated in the service discovery process. Trust relationships are expressed by means of ProgrammableWeb1 tracks. Usage relationships represent a service invocation. The recommendation process takes into account relationships, user records and preferences, invocations, watchlists and mashups.

The rest of the paper is organized as follows; related work is presented in Section 2 and Section 3 describes the WSR-Track recommendation system. Section 4 discusses experimental results and Section 5 concludes the paper.

II. RELATED WORK

Most of Web services RS proposed in the literature are based on Collaborative Filtering or CF [START_REF] Breese | Empirical Analysis of Predictive Algorithms for Collaborative Filtering[END_REF] [START_REF] Su | A survey of collaborative filtering techniques[END_REF]. A CF system proceeds as follows: (1) a user expresses his preferences by rating items. These ratings are considered as user preferences ; (2) the system matches some user ratings against other users' ratings and detects users with the most "similar" preferences; (3) the system recommends the highly-rated items for a user that are not forcibly rated by him. These systems are based on the idea that users with similar rates may have similar interests.

Other approaches were devoted to the use of QoS, ratings and relationships among Web services end-users [START_REF] Zhu | A Privacy-Preserving QoS Prediction Framework for Web Service Recommendation[END_REF].

Both approaches are reviewed below.

A. QoS Aware approaches

QoS properties are often expressed by means of performance indicators such as price, response time, availability, accuracy, etc. Many researches on Web service selection, recommendation and composition use QoS in order to improve the performance of their systems [START_REF] Wang | An Improved Artificial Bee ColonyApproach to QoS-Aware Service Selection[END_REF]. Generally, RS combine QoS evaluations with CF to recommend services [START_REF] Zhu | A Privacy-Preserving QoS Prediction Framework for Web Service Recommendation[END_REF][10] and users [START_REF] Cao | Hybrid Collaborative Filtering algorithm for bidirectional Web service recommendation[END_REF].

In [START_REF] Zhu | A Privacy-Preserving QoS Prediction Framework for Web Service Recommendation[END_REF], the recommendation approach makes use of the QoS ratings given by a user to predict QoS evaluations of other services that she never used.

In [START_REF] Deng | Trust-based Service Recommendation in Social Network[END_REF], authors consider when the user is interested in the QoS evaluations of other users, they will be considered as trustful ones. Similarity between users is expressed as an (Euclidean) distance. First, authors choose a set of services to recommend, and then calculate the degree of user confidence in these services by taking into consideration his preferences in term of services' categories.

In [START_REF] Manikrao | Dynamic Selection of Web Services with Recommendation System[END_REF], a recommendation system with semantic matching is described. The approach is based on CF and users' feedbacks, and helps a user to select a Web service from a list of similar ones. When a user invokes a service, he is asked to evaluate it. But in most cases, users do not provide explicit ratings [START_REF] Claypool | Implicit interest indicators[END_REF].

Xi et al. [START_REF] Chen | RegionKNN: A Scalable Hybrid Collaborative Filtering Algorithm for Personalized Web Service Recommendation[END_REF] studied the impact of user's location in the prediction of QoS. They proposed a novel approach where users are hierarchically grouped according to their location and their QoS evaluations. Consequently, users from the same region are considered as similar. Given a user, the system searches similar users in the same location (region) instead of exploring the set of all users. However, belonging to the same region does not necessary mean having the same preferences.

Authors in [START_REF] Jiang | An Effective Web Service Recommendation Method Based on Personalized Collaborative Filtering[END_REF] consider the impact of personalization of Web service items when computing the degree of similarity between users. That is, more popular services or services with more stable QoS should contribute less to user similarity measurement. Zhang et al. [START_REF] Zhang | Collaborative Filtering Based Service Ranking Using Invocation Histories[END_REF] propose to combine users QoS experiences, environment and user input (query) to predict Web services QoS values. But the environment and the user-input can hardly represent user's opinions/tastes.

B. Trust based approaches

The number of available services and users is increasing and so, some fake feedbacks of malicious users may be introduced as inputs to the RS: as a result, this may affect the quality of recommended services. This issue has been addressed in [2] [4-5] [7] [12-14] [22-23], where authors proposed trust-enhanced recommendation methods. Based on trust relations, trust-based approaches refer only to ratings given by trusted users.

SoCo [START_REF] Maaradji | Social-Based Web Services Discovery and Composition for Step-by-Step Mashup Completion[END_REF] is a Web service recommendation framework based on social networks analysis. SoCo enables the discovery and the composition process by transforming the interactions between users and services into a social network interactions among users represented as a graph. This graph links users according to their common interests; it describes their profiles including their preferences and their previous system usages. Services preferred by trusted workers are recommended.

The work of Deng.et al. [START_REF] Deng | Social network-based service recommendation with trust enhancement[END_REF] is based on the analysis of social networks' contents and users' relationships. Authors propose a Web service recommendation system based on trust relationships that are established either i) explicitly when a user specifies his/her list of trustful connections, from the beginning, or ii) implicitly when the same QoS evaluation is given by two different users. TSR [START_REF] Deng | Social network-based service recommendation with trust enhancement[END_REF] the service recommendation algorithm proposed is based on trusts and calculates the similarity between users via their assessments of public services. TSR also calculates the confidence of the user in a service. This confidence depends on the assessments of similar users. The most confident Web services are recommended.

In [START_REF] Zhang | Web Service Recommendation Based on Watchlist via Temporal and Tag Preference Fusion[END_REF], authors exploit the implicit users' ratings to build a CF-based RS that takes advantages of the user WatchList and preferences in terms of tags. The idea is to transform implicit evaluations into explicit ones to improve the recommendation accuracy. Empirical experiments based on ProgrammableWeb show that compared to CF, the recommendation system (with time preference and tags) provides results that are more accurate and more precise.

As mentioned above, most of RS inputs are users' relationships and similarities among users. In our work, the similarity between users is based on the following assumptions: 1) user A tracks user B, this means that A have similar interests as B in terms of Web services; 2) users tracking a user in common may have similar interests.

Moreover, unlike existing approaches which consider explicit user evaluations of services and QoS rating, we propose to exploit explicit users' relations, established via the track function to detect their services preferences. This information is obtained from their previous tracks. We assume the existence of track relations in ProgrammableWeb that play the role of explicit trust relationships. We can identify the most trusted users and then exploit their (track) records to recommend Web services. This simplifies the work needed to detect trust relations based on similar invocations or evaluations and minimizes the risk of using inconsistent information from spam users.

III. WSR-TRACK RECOMMENDATION SYSTEM

WSR-Track, the system we propose, consists of two main components:

-Graph generation process: Builds a heterogeneous multi-graph where the nodes represent users (resp.

services) and the edges illustrate track relationships among these users and between users and services. -Web services recommendation process: Provides the most adequate Web services for a target user based on his/her history and his/her tracked relations.

In the following we will detail both processes.

A. Graph generation process

The process builds a heterogeneous users/services multigraph by means of ProgrammableWeb track functions. A user can track (follow) either: Web services, mashups, searches or others users (see Figure 1). Hence, in following a user on ProgrammableWeb, one may infer Web services and mashups of interest. Based on these tracking functions, we can connect users and services with track relationships. Users (resp. services) represent the nodes while the track relations are the edges. We refer to this graph as the (users/services') track graph (TG) (cf. Definition 1). Since a user may track Web services and mashups, or create mashups, her/his history is defined by means of her/his followees or the mashups she/he created.

B. Web services recommendation process

The output of this process is the recommendation of a set of relevant Web services to a target user based on his/her history and his/her tracked relations. This process is divided in two steps: i) The first step retrieves data from the track graph by exploiting the users' relationships; ii) The second step merges this data with other information such as the user's history and the quality of services (popularity, usage, etc.) to select the most relevant services.

The first step, considered as a mining step, involves two actions:

• Neighborhoods detection, which consists of detecting user's neighbors in the track users graph to extract theirs recent histories, i.e. previous Web services usages.

• Association rules generation, based on Apriori [START_REF] Piatetsky-Shapiro | Discovery, analysis, and presentation of strong rules[END_REF] to mine "valid" association rules. These rules express correlation amongst used services. The second step, called recommendation step, consists of exploiting these association rules to select relevant Web services and to rank them according to their usage/popularity. In the following, more details will be given for the above mentioned steps.

1) Knowledge mining This step includes mainly two actions: neighborhood detection and association rules generation. a) Neighborhood Detection The recommendation system takes into account relations between users in order to recommend services. If a user u i follows a user u j , it means that u i is interested in services/mashups of u j . Therefore, we recommend services to a user u i , based on the history of his/her neighbors in the track graph (TG).

Once the list of neighbors is obtained from the TG, it is filtered in order to acquire the k most similar users. The similarity between users is measured according to the number of common services in their previous usages. Users deploying several common services may have similar interests and could be considered as similar. The similarity between two users u i and u j is measured using the following function [START_REF] Eirinaki | A trust-aware system for personalized user recommendations in social networks[END_REF].

Sim (u i ,u j )= | ⋂| | | | (1) 
Where Hu i and Hu j are the recent histories of users u i and u j respectively.

b) Association rules generation Association rules (AR) (cf. definition 2) are useful for analyzing and predicting users' behaviors. They play an important role in data analysis, product clustering, product recommendation, etc.

In order to determine the most used and the closest Web services to a user u i , we will integrate the association rules mining method [START_REF] Piatetsky-Shapiro | Discovery, analysis, and presentation of strong rules[END_REF] into our approach. This method aims at discovering the relations of interest between two or more items. The idea is to find frequent items, associations, correlations, or causal structures from a data collection.

For sake of readability, we recall the definition of the main concepts used in the paper. [START_REF] Piatetsky-Shapiro | Discovery, analysis, and presentation of strong rules[END_REF]. Given: (1) a list of items I, and (2) a set of transactions T where each transaction T is composed of a set of items (T ⊆ I), the goal is to find all association rules that express correlation between the presence of an item with the presence of a set of items.

Definition 2. Association rules

For each association rule R i : X, Y Z, we apply two metrics which are the support(R i ) and the confidence(R i ). The support is used to measure the quantity of population concerned by this rule while the confidence is used to evaluate its statistical significance.

Since our recommendation process should only rely on significant and "valid" associations rules, two thresholds, minsupport and minconfidence, will be used respectively for the support and the confidence of each rule. Hence, each association rule R i with support(R i ) ≥ minsupport and confidence(R i ) ≥ minconfidence is extracted, while other associations will be ignored.

These two thresholds are given by the user according to the nature, type of the underlying data, and the objective of the analysis.

The association rules generation consists of two steps: i) frequent itemsets deduction, and ii) AR mining using Apriori [START_REF] Piatetsky-Shapiro | Discovery, analysis, and presentation of strong rules[END_REF]. As a first step, we define a frequent itemset with a minimum support ≥minsupport. All the items of an association rule should be included in the generated itemset i.e., if {AB} a frequent itemset then {A} and {B} are both frequent itemsets.

In a second step, we will apply Apriori on the obtained frequent itemsets. This algorithm uses breadth-first search and a tree data structure to extract candidate itemsets efficiently. It generates candidate itemsets of length k from the itemsets of length k -1. Then it prunes the candidates that have an infrequent subpattern. It determines all frequent itemsets among the candidates set of itemsets and generates the association rules. Most confident rules will be applied to recommend services for users.

The confidence of each rule R i : S 1 S 2 is measured as follows:

Confidence

(R i ) = , (2) 
Where S 1 and S 2 are two Web services, and {S 1, S 2 } a frequent itemset that contains S 1 and S 2 , while {S 1 } is the frequent itemset containing only S 1.

Figure 3. Example of association rules generation

Figure 3 describes the main steps for generating an association rule. Given four users' previous transactions, with a minsupport set to 50% and a minconfidence set to 100%, Apriori generated a valid association rule R 1 : Twitter facebook.

2) Recommendation

The recommendation process (cf. Algorithm 1.) is based on the previously generated association rules. These rules are built up on frequent itemsets of services used by the target user and by his/her neighbors. To recommend a Web service, we need first to process these rules and then to rank them.

a) Association rules Processing Starting from the list of valid rules being generated, a set of candidate Web services to recommend will be selected. This set contains services involved in the consequences of each rule satisfying a friendship condition. A rule is considered to be friendship if and only if it encloses in its antecedents at least one service already used by the target user.

b) Ranking

The final step in the recommendation process consists on ranking the resulted services based on their popularity scores (cf. definition 3). Definition 3. Popularity. The popularity of a service (Pops) denotes the number of previously recorded usages this service has been involved in. A popular service will have a high popularity. 

IV. EVALUATIONS

The main goal of our experimentations is to evaluate the user's satisfaction with recommended services. These recommendations are made based on the tracks relationships between users (resp. services).

Our experiments have been conducted on a real-world dataset. We used Tanagra platform 2 for the generation of Association rules, java with SQL Server 2005. We used a dual Core cpu@2.20G PC with 4G RAM, under Windows 7.

A. Dataset

Firstly we give a description of our dataset. The experimental dataset comes from the public Web service registry where Web services, mashups, member profiles can be searched 2 http://eric.univ-lyon2.fr/~ricco/tanagra/ through its own services. All the data are stored in a database of SQL Server 2005 and released as public dataset file on the Internet 3 .

From the all open data, we selected 1000 users who have more than 1 service in their histories of tracks, and 3138 services (include APIs and mashups) are involved by these users. Our dataset is divided into two parts: a testing set covers 20% of most recent published services in the history of each user, and the remaining 80% is a training set.

B. Evaluation metrics

To evaluate the performance and the effectiveness of our recommendation approach, several statistic metrics measures have been applied. Let's note that PR is the set of pertinent recommended services, R the set of recommended services and P the set of pertinent services.

1) Precision

Recommendation precision refers to a ratio of correctly predicted (satisfying user) services to the number of all recommended services. Precision=

| | | |
(3)

2) Recall

Recall refers to the ratio of correctly predicted services to the number of all the services satisfying the user in the testing set.

Recall=

| | | | (4) 
The recall and precision are standard metrics to discuss the relevance of the recommended services according to the user's satisfaction.

3) RMSE The Root Mean Squared Error (RMSE) is used in evaluating accuracy of predicted rating (r s ). Let r s = 1 if s ∊ P 0 else .

RMSE=$

∑ ( & ' ,'
)

(
Where N is the number of recommended services.

4) Hit-rank

The hit-rank [START_REF] Deshpande | Item-based top-n recommendation algorithms[END_REF] metric is considered to take into account the ranks of returned services.

ℎ*+ --./0 = 2 * |4| ∑ ∑ 5 6 57 ∈9 [START_REF] Zhang | Web Service Recommendation Based on Watchlist via Temporal and Tag Preference Fusion[END_REF] Where h is the number of relevant services occurring at the positions p 1 ,p 2 , …,p h within the recommendation list; m is the total number of the users and L is the length of the recommendation list (|L| = 10).

Hence, services that occur earlier in the top-10 list are weighted higher than the services that occur later in the list. In order to ensure that our results are not sensitive to the particular training test partitioning of each dataset, we performed 10 different runs for each of the experiments, each time using a different random partitioning into training and test sets.

C. Experimental Setup

Our proposed system is mainly based on the Apriori where the number of generated rules depends on the values of both support and confidence parameters. In order to find the "best" parameters values for WSR-Track performance evaluation, we set the support and confidence configurations as follow: • Support: The number of generated association rules is inversely proportional to the support values, e.g. support=0.5 means that for a service to be considered as common, it must be used by 50% of the neighbors of the user. The higher is the support value, the more relevant rules will be generated. According to our experiments, all the support values beyond 0.6 can generate no more than one or two rules. For example, Apriori generates 200 association rules with a minimum support of 0.3. For the below experiments, we set the support value at 0.5. • Confidence : The number of generated rules is inversely to the confidence values (Figure 4). For our experiments we set the value of the support at 0.5 and the confidence value at 0.9. We used a sample of 30 randomly selected users among 1000 initially selected ones, having 1-30 services in their histories. Each test is repeated 5 times to ensure that results do not depend on the used dataset.

D. Experimental results

Four groups of experiments were conducted to evaluate the performance of WSR-Track system. The first one intends to find out the impact of the neighborhood sizes on both precision and recall. The second one assesses the impact of the number of tracked services in users' histories. The third group evaluates the effect of service popularity and the last one compares our system to other recommendation approaches.

1) Neighborhood size effect

To assess the impact of the target user's neighborhood size on the performance of our system and the precision of the generated recommendations, we randomly selected 30 users that tracked between 1 and 30 services. We repeated our tests using different neighborhood size [START_REF] Eirinaki | A trust-aware system for personalized user recommendations in social networks[END_REF]200] by an interval of 10. As illustrated in Figure 5 and Figure 6, the number of neighbors affects the recommendations accuracy in terms of precision, RMSE and recall. When the neighborhood cardinality size increases, the recommendations provided by our system are more precise and the error rate decreases. For example, more than 60% of recommended services are relevant for a user with 20 neighbors, while this number exceeds 80% of recommended services per 30 neighbors. It was observed that when the number of neighbors is less than 20, the precision value decreases. This result can be vindicated by the fact that with a high number of neighbors, Apriori mines several association rules leading to the improvement of the performance of the recommendation process. Thus, neighborhoods' size may have a positive influence on the recommended services precision. We can conclude that users need to follow at least 20 users in order to get relevant recommended services. Figure 7 shows that the neighborhood size brings a significant positive impact on the hit-rank metric values.

From this, we concluded that we obtain more accurate Web services between the top-10 returned services of recommendation lists when the neighborhoods' sizes increase. 2) Histories size effect We evaluated the effect of the users' histories size on the performance of our system. Figure 8 illustrates the precision and the recall values while varying the size of users' histories. It can be noticed that the variation of precision values is less important from 20 neighbors; therefore we can conclude that, users have to follow at least 20 users to get better recommended services. 

3) Service popularity effect

We evaluated the impact of service's popularity on our recommendation system performance. Service's popularity is measured by its number of occurrences in the neighbors' histories.

For each user u, we identified the 5 most popular services in his/her neighborhood. We evaluated his satisfaction when he/she receives these services as recommendations. Figure 9 shows that a user's satisfaction increases when the recommended service is a popular one for his neighborhood. We conclude that the popularity of the service may have a great effect on the quality of recommendations. 

4) Comparaison with others recommendations approaches

We compared the proposed approach WSR-Track with known recommendation approaches in the literature using the librec framework 4 namely, i)TrustSVD [START_REF] Guo | Trustsvd: Collaborative filtering with both the explicit and implicit influence of user trust and of item ratings[END_REF] which is a trust-based matrix factorization technique recommendation system that analyzes the social trust data from real-world data sets. This approach considers both explicit and implicit ratings to recommend; ii) Association Rules [START_REF] Piatetsky-Shapiro | Discovery, analysis, and presentation of strong rules[END_REF](AR) which only applies association rules in order to recommend services and (iii) Recommendation of popular services which is the applied strategy by ProgrammableWeb. It recommends the most popular services on the basis of use in mashups. The most popular service is the most used in mashups.

Figure 10. Comparaison with other recommendations approaches

We fixed the neighborhood size to 20 neighbors and the users' histories size to 30. As illustrated in Figure 10, our recommendation algorithm, which is based on Track relationships, provides the best accuracy values compared to others approaches. TrustSVD that is the closest to our system gives good precision values due to the inclusion of trust relations between users and services. But as all rating based approaches, it is not able to recommend services in the lack of rating values or invocation histories. Unlike TrustSVD, our approach provides good results even when users do not have services in their histories. Furthermore, one may notice that Popular, which is the ProgrammableWeb approach, returns the lowest results compared to TrustSVD and WSR-Track. This is due to the fact that Popular does not take into account users' interests and recommends the same services to all users. The results are not personalized.

To summarize, in our recommender system, the relations between users are established offline (track users graph) and updated periodically. Compared to existing CF methods for service recommendation, ours performs better in most cases.

The neighborhood size and the histories size affect positively the accuracy of our approach.

V. CONCLUSION Web service recommendation is still a challenging research issue due to the proliferation of available Web services in a dynamic environment and a variety of user needs. In this paper, we propose a graph-based recommendation method, which takes into account both users' history of service invocation as well as relationships among users (resp. services) based on track relations extracted from a subset of ProgrammableWeb services. We define a heterogeneous multi-graph of users and services that is exploited as follows: detection of neighbors, association rules generation and finally service recommendation. Experimental results show that our approach recommends more new Web services to the users.

Although using graphs to model the Web services ecosystem is not a new idea, from our perspective, this work is a first step towards building a real graph database, along the line of the Linked Data initiative. In future work, we plan to weight edges in using similarity values between users based on their profiles in order to detect the most similar tracked users. We will improve our approach in taking into account users that have no tracking relationships and we will address the cold start problem as well.

Figure 1 .

 1 Figure 1. Users/services' track graph Definition 1. Track Graph. TG=<V,E> is an oriented heterogeneous multi-graph where V = {v 1 , v 2 , …, v m } is a set of m registered users and services, and E={(v i ,v j )| user v i tracks user v j and/or user v i tracks service v j } is the set of oriented relations.Since a user may track Web services and mashups, or create mashups, her/his history is defined by means of her/his followees or the mashups she/he created.
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