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Abstract

Purpose: Automatic muscle segmentation is critical for advancing our understanding of human 

physiology, biomechanics, and musculoskeletal pathologies, as it allows for timely exploration 

of large multi-dimensional image sets. Segmentation models are rarely developed/validated 

for the pediatric model. As such, auto-segmentation is not available to explore how muscle 

architectural changes during development and how disease/pathology affects the developing 

musculoskeletal system. Thus, we aimed to develop and validate an end-to-end, fully automated, 

deep learning model for accurate segmentation of the rectus femoris and vastus lateral, medialis, 

and intermedialis using a pediatric database.

Methods: We developed a two-stage cascaded deep learning model in a coarse-to-fine manner. In 

the first stage, the U2-Net roughly detects the muscle sub-compartment region. Then, in the second 

stage, the Shape-aware 3D semantic segmentation method SASSNet refines the cropped target 

regions to generate the more finer and accurate segmentation masks. We utilized multi-feature 

image maps in both stages to stabilize performance and validated their use with an ablation study. 

The second stage SASSNet was independently run and evaluated with three different cropped 
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region resolutions: the original image resolution, and images down-sampled 2x & 4x (high, mid, 

and low). The relationship between image resolution and segmentation accuracy was explored. 

In addition, the patella was included as a comparator to past work. We evaluated segmentation 

accuracy using leave-one-out testing on a database of 3D MR images (0.43×0.43×2mm) from 40 

pediatric participants (age 15.3±1.9years, 55.8±11.8kg, 164.2±7.9cm, 38F/2M).

Results: The mid-resolution second stage produced the best results for the vastus medialis, 

rectus femoris, and patella (Dice Similarity Coefficient = 95.0%, 95.1%, 93.7%), whereas the low-

resolution second stage produced the best results for the vastus lateralis and vastus intermedialis 

(DSC = 94.5% and 93.7%). In comparing the low- to mid-resolution cases, the vasti intermedialis, 

vastus medialis, rectus femoris, and patella produced significant differences (p=0.0015, p=0.0101, 

p<0.0001, p=0.0003) and the vasti lateralis did not (p = 0.2177). The high-resolution Stage2 had 

significantly lower accuracy (1.0 to 4.4 Dice percentage points) compared to both the mid- and 

low-resolution routines (p ranged from <0.001 to 0.04). The one exception was the rectus femoris, 

where there was no difference between the low and high-resolution cases. The ablation study 

demonstrated that the multi-feature is more reliable than the single feature.

Conclusions: Our successful implementation of this two-stage segmentation pipeline provides 

a critical tool for expanding pediatric muscle physiology and clinical research. With a relatively 

small and variable dataset, our fully automatic segmentation technique produces accuracies that 

matched or exceeded the current state of the art. The two-stage segmentation avoids memory 

issues and excessive run times by using a first stage focused on cropping out unnecessary data. 

The excellent Dice similarity coefficients improve upon previous template-based automatic and 

semi-automatic methodologies targeting the leg musculature. More importantly, with a naturally 

variable dataset (size, shape, etc.), the proposed model demonstrates slightly improved accuracies, 

compared to previous neural networks methods.
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1.0 Introduction

The ability to define muscular volume and morphology is critical to understanding human 

physiology, biomechanics, and musculoskeletal pathologies. As manual segmentation 

of individual muscles is time consuming, numerous semi- and fully-automatic muscle-

segmentation are rapidly becoming available1–4. However, an interesting, and more 

challenging problem, has remained unanswered. These segmentation routines have rarely 

been developed or validated for the pediatric model5,6. The rapidly changing muscle 

volumes7, muscle-fat ratios8, and potentially shape during childhood development likely 

limits the ability to apply auto-segmentation routines developed for adult muscle to 

pediatric muscle. Thus, auto-segmentation is not available to explore how muscle physiology 

changes9,10 with development nor how disease affects the developing musculoskeletal 

system (e.g., cerebral palsy11,12, brachial plexus palsy13, scoliosis14, etc.). Studies exploring 

the ever-changing 3D pediatric musculoskeletal morphology15 remain challenging and 

pediatric muscle volume is often approximated using surrogates (e.g., muscle cross-sectional 
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area16). When full volumes of individual muscles are quantified, the scope has been 

limited to small databases9,11,12,14,15, examining total limb or muscle group volume9,15, 

and typically to a single muscle14.

Conventional auto- and semi-automatic segmentation methods (Table 1) for the leg 

musculature rely heavily on traditional algorithmic approaches, specifically image 

registration17–22 and atlas-based methods4,23–25. The ambiguous boundaries, caused by 

homogeneity texture appearance, is a key source of error across all these algorithms. 

Even with a standardized imaging protocol, intensity ranges and the spatial location of 

the same anatomical regions can vary. Further, the size and shape of muscles varies across 

individuals and is affected by injury and pathology9,10,13,14. Le et al.25 developed both 

single-atlas and multi-atlas fully-automatic segmentation methodologies based on non-linear 

registrations (e.g., free-form deformation and symmetric diffeomorphic normalization) to 

segment the quadriceps and each of its four individual heads. Baudin et al.18 associated a 

statistical shape atlas and a random walks graph-based algorithm to automatically segment 

the individual quadriceps muscles. Ogier et al.21 proposed semi-automatic segmentation 

of individual quadriceps muscles using automatic propagation on consecutive 2D slices 

through non-linear registration based on initial delineation of mask. This was expanded 

to non-linear registration via both the transversal and longitudinal propagations on water 

contrast MR images26. Prescott et al.22 designed a semi-automated method of segmenting 

the four quadriceps muscles, a template selection method followed by a multi-phase level set 

contour evolution of a contraction phase and an expansion phase on pre-processed images 

to capture anatomical variations in a specific participant. These methodologies demonstrated 

an average Dice similarity score (DSC) of 0.86 (ranging from 0.75 for the rectus femoris23 

to DSC= 0.93 for the vastus lateralis25 and vastus medialis23). Thus, there was still clearly 

room for improvement.

In recent years, convolutional neural networks (Appendix 1, Table 1), such as U-Net27, 

have shown promising results in semantic segmentation for medical imaging. Deep learning 

models vastly improve segmentation accuracy, relative to their predecessors, becoming the 

primary tool in the auto-segmentation of both muscle2,3 and bone28,29 from MR images. 

Ding et al.27 trained and validated a standard 2D U-Net to segment the quadriceps in 

its entirety using fat-water decomposition MRI, similar to earlier techniques30–35. Ni et 

al.3 applied a two-staged cascaded 3-D DCNN36 model on high-resolution MRI with 35 

individual lower limb muscles. They used a two-staged cascaded model. Chen et al.1 

developed a CNN-based 3D U-Net to segment the thigh muscles on B1-corrected 3D 

Dixon fat-water decomposition MR images. Although these two latter routines, produced 

impressive DSC scores (0.93–0.98), these methods are limited in three key area. The dataset 

of Ni et al.3 fostered increased DSC through data uniformity. All data were acquired on 

athletic college students and data from both legs, which have an inherent interdependence, 

were entered as independent samples. Chen et al.1 focused the segmentation on the central 

thigh, avoiding the muscular origins and insertions, which are difficult to segment due the 

smaller muscular areas and the rapidly changing shape and size. Lastly, the overall number 

of testing cases was small.
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One challenge in segmentation is that ground truth labels are typically available for one side 

(either left or right), while the MR images capture both legs (Appendix 1: Figure A1, GT). 

Applying conventional segmentation methods directly on the full-scale images, in general, 

will introduce symmetry errors due to the similar anatomic features on the mirroring side 

(Appendix 1: Figure A1, U-Net, U-Net++, DAF3D). A similar, but different issue is that of 

low-distribution errors when the object of interest is represented in only a small percentage 

of the images. Both of these issues have typically been handled by manually cropping the 

image prior to the auto-segmentation1,3,4,17–22,25,27. Lastly, as the resolution of MR images 

have rapidly improved, GPU bottlenecks have become an increasing problem37.

To address the aforementioned problems, we set out to develop and validate a simple, yet 

effective cascaded U2-Net and SASSNet model for individual quadriceps muscle (in their 

entirety) segmentation on MR images, specifically targeting a pediatric cohort. The model 

is prototyped in a cascaded fashion that generates refined segmentation masks in a coarse-to-

fine manner. The MR data for training and testing are obtained from an inherently diverse 

adolescent population, in terms of developmental stage and health status (i.e., both typically 

developing adolescents38 and adolescents with patellofemoral pain39,40). A leave-one-out 

strategy is used for testing, to maximize the data for training and testing. The segmentation 

includes the patella bone, as a comparator to our past work5 and as a test for the models 

ability to handle low-distribution errors. As part of the validation, we test the stabilization 

effect of multi-feature filters and how alterations in the MR image resolution in the 2nd 

cascade affects accuracy. For a direct comparison to past auto-segmentation results, the same 

leave-one-out testing was conducted using four conventional architectures.

2.0 Methods

2.1 MRI datasets and ground truth segmentation

As part of an IRB-approved (Ethical approval for this study was provided by The University 

of Queensland Institutional Human Research Ethics Committee #2018000159) study on 

patellofemoral data, 40 adolescents (38 females and 2 males) were enrolled into this study. 

Prior to any data collection, all procedures were explained to the adolescents and their legal 

guardian. Written assent and consent were obtained. 3D axial steady state Vibe images 

(0.43mm × 0.43mm × 2.0mm, 1024 × 768 × 140–366 pixels, TR = 9 ms, TE= 2.26 

ms, flip angle = 10⁰) were acquired for each participant (3T, Magnetom Prisma, Siemens 

Healthcare, Germany). The scan area covered both legs from just below the tibial tuberosity 

to just above the anterior iliac spine. The first cohort (n=20, Table 1) were adolescents with 

diagnosed patellofemoral pain (19 F, age 12–18 years, weight 40–94kg, height 150–175cm). 

The 2nd cohort were typically developing adolescents without patellofemoral pain (19 F, age 

12–18 years, weight 42–85kg, height 147–182cm), matched for gender, age, and body mass 

index (the latter two were within 15%).

The senior author (FG), with 20 years of experience creating musculoskeletal models from 

MR data, worked with author MC to define a set of criteria for manual segmentation. Then 

a single research assistant manually delineated the outer boundaries for the vastus lateralis, 

medialis, and intermedius (VL, VM, VI), the rectus femoris (RF), and the patella (PA) in 

a single leg for each participant using Mimics (Materialise, Belgium). The outlines (VOIs 
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– volumes of interest) were reviewed by the senior author. In preparation for the project’s 

training step, we converted each individual VOI into a 3D boundary mask image set. The 

boundary mask and original image set were mirrored at the full-scaled image level without 

cropping for images with the right leg musculature delineated. This created a reference 

(“ground truth”) dataset of all “left” legs, which was the basis for training and evaluating the 

auto-segmentation process.

2.2 Segmentation

2.2a Pipeline Overview—Our automated segmentation of the individual quadriceps’ 

muscles and patella (QM&P) is based on a two-stage cascaded deep learning model (Figure 

1). In the first stage, we localize the individual region of interest (VL, VM, VI, RF, or 

PA) as a coarse segmentation from the entire 3D MR image set. We first down-sample 

the original images into the low-resolution image space27. We utilize the multi-feature 

images (anisotropic diffusion, coherence enhanced diffusion, regularized diffusion, gradient 

magnitude) throughout the two-stage segmentation pipeline to stabilize the performance5. A 

U2-Net41 architecture generates the prediction probability maps and localizes the bounding 

box for the specific VOI. In the second stage, the segmentation crops based on the bounding 

box and integrates the semantic cues with shape aware 3D segmentation for boundary 

refinement42. The segmentation only focuses on the appropriately zoomed or cascaded 

QM&P region and spatial extents generated from the first stage in this second stage. In the 

testing phase, the final predicted high-resolution cropped 3D volumes are converted back 

to the original image space to compare with the ground truth binary masks. The proposed 

method generates boundary-preserving pixel-wise class label maps that result in the final 

segmentation.

2.2b Automatic Data Preparation—The high-resolution 3D volumes used in the 

current study will, in general, exhaust the deep learning model training with overwhelming 

computational overhead on GPUs. In addition, the intensity variation, noise artifacts, 

and low-contrast regions create major obstacles for the MR image segmentation37. For 

example, the edge boundaries might be missing or blended with the surrounding tissues. 

We compensate for this intensity variation by implementing a histogram equalization as an 

automatic preprocessing step in the auto-segmentation pipeline43. Then, we apply four edge 

enhanced filters to the normalized images, generating multi-featured image maps (Figure 

1). This pre-processing step efficiently supports the proposed cascaded model in learning 

the semantic features and stabilizing the performance. To demonstrate the stabilization 

effect of the multi-feature filters, we conducted a leave-one-out cross-validation experiment, 

comparing the segmentation results of a single feature (original image) vs. multi-feature 

image set (Figure 1).

To curb the high 3D volume issue in the first stage, we down-sample each 2D image of the 

3D set by a factor of 4. This creates a uniform dimensionality for all image sets across all 

participants (256 × 192 × 140–366) and allows for feasible multi-featured image processing 

and reasonable training time in the first stage.
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2.2c Stage 1: U2-Net for individual structure localization—Direct segmentation 

of QM&P on the full-scale image is problematic since the symmetric anatomical structure 

of the contralateral limb fosters noisy segmentation (Appendix 1: Figure A1, U-Net, 

U-Net++ and DAF3D, Appendix 1). Conventional deep learning-based object detection 

methods in medical imaging localization may not guarantee that the predicted bounding 

box contains the targeted object with high sensitivities on the pixel-level coverage44. To 

solve this problem, we use a simple, yet powerful deep learning architecture, U2-Net41 

to automatically identify the most attractive region of interest on images. The saliency 

map41 allows us to distinguish the important part of the image at the foreground from the 

background. The output (bounding box VOI for segmentation) from the U2-Net localization 

phase is then fed into a more refined segmentation incorporating a shape-ware representation 

from the 3D semantic segmentation.

The architecture of U2-Net (Figure 2) is a two-level nested U-structure45. At the bottom 

level, a residual U-block (RSU) extracts multi-scale features without reducing the resolution 

of the feature map41. At the top level, the building block is designed with a similar structure 

to U-Net, where each level is filled with RSU blocks. (Figure 2, colored U-Net alike 

structure). The critical difference between RSU and the conventional residual block is that 

RSU replaces the plain, single-stream convolutional with a structure like U-Net and replaces 

the original feature map with a local feature map transformed by a weighted layer. This 

architecture shift empowers the network to extract features from multiple scales directly 

from each residual block.

In the U2-Net architecture, each stage of the encoder-decoder U-Net structure contains 

an RSU block, which is, in fact, a down-sampling/up-sampling encoder-decoder itself41. 

The RSU block uses multi-scale features as residuals, not just the original features, for 

identifying structures of interest. This keeps the fine-grained details and will force the 

network to extract multiple scale feature at every RSU block. The U2-Net generates side 

output probability maps through a plain 3×3 convolution layer, followed by a bilinear 

up-sampling and sigmoid function.

In the training process, the U2-Net uses the deep supervision similar to HED46 to minimize 

the overall training loss41 (ℒ, equations 1 & 2), which is defined as:

ℒ = ∑m − 1
M wside

m ℓside
m + wfuse ℓfuse (1)

41

ℓside
m : the loss of side output saliency map41

ℓfuse: the loss of the final fusion output saliency map41

wside
m  & wfuse: the weights of each loss term.

The fusion loss is imposed after each side-output layer (side loss, Figure 2) to guide the 

side-outputs to minimize the distance between the predictions and the ground truth label 

maps at different multi-scale levels. In most cases of thigh muscle segmentation, minimizing 

Cheng et al. Page 6

Med Phys. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the loss will instantly make the network converge to classifying every pixel as background 

due to the large dominance fraction of background class in the full-scale MR images. 

A class-balanced cross-entropy loss is utilized to combat the significant data imbalance 

between foreground/background pixels for different-sized thigh muscles.

For each term ℓ, a standard binary cross-entropy loss47 is defined as:

ℓ = − ∑ r, c
H, W PG r, c logPS r, c + 1 − PG r, c log 1 − PS r, c (2)

41,47

(r, c): the pixel coordinates

(H, W): the height (H) and width (W) of the cropped image

PG(r, c): the ground truth pixel values

PS(r, c): the predicted saliency probability map41 pixel values

Upon completing Stage 1, the condensed muscle or patella VOI is mapped back to the 

original image space, creating a high-resolution image set covering the finer detailed 

structures and pruning the unnecessary background image volume. The second stage uses 

these cropped high-resolution images to create multi-featured maps, which are then used to 

define the muscle or bone boundary.

To evaluate the impact of image resolution on segmentation accuracy, the 2nd stage 

was trained and tested on three different image sets with in-plane pixels resolutions 

of 0.44×0.44mm, 0.88×0.88mm, and 1.76×1.76mm (high-res, mid-res, and low-res, 

respectively). We assumed the mid-res resolution was our standard algorithm, as the original 

resolution (high-res) had a resolution 2–4 times greater than all, but two, previous studies 

(Table 1).

2.2d Stage 2: Shape aware 3D semantic segmentation—In the second stage we 

use a 3D shape-aware semantic segmentation network (SASSNet42, Figure 3) to refine the 

boundary of each quadriceps muscle and the patella after they have been appropriately 

localized in the first phase. Li et al.42 proposed a similar shape-aware semi-supervised 

3D segmentation model. The motivation is to use shape-aware semi-supervised learning 

strategy42 to leverage abundant unlabeled data42, enforcing a geometric shape constraint 

on the segmentation output48. In our work, we use the shape-aware semantic segmentation 

architecture, to learn the interior and depth maps48 from the tightened individual muscle and 

patella VOI. Object-level interior signed distance map (SDM)42 of object surfaces and the 

shape priors49 among different SDMs (Appendix 2) can provide the intra-level visual cues 

to capture shape-aware features more effectively. Despite the semi-supervised setting with 

unlabeled data, the shape-aware 3D semantic segmentation model serves as a suitable deep 

representation to learning general raw pixel-in and label-out mapping functions44.

The 3D shape aware semantic segmentation network is designed based on three key 

elements: 1) it enforces explicit 3D modeling of the geometric constraints48 on labeled 

and unlabeled data42; 2) it uses a multi-task learning on both the binary segmentation map 
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and the SDM42 predictions; and 3) it imposes implicit shape priors49 among different SDMs 

and global consistency on object shape via adversarial loss50 for semi-supervised volumetric 

segmentation. The 3D shape-aware method42 takes 3D images as input and jointly predicts 

a binary segmentation map and SDM to train the network. The backbone is a 3D V-Net 

architecture51 that consists of an encoder and decoder with two output branches, one for the 

segmentation map and the other for the SDM42.

In addition to the 3D V-Net backbone, the light-weighted SDM head along with the original 

segmentation head act as two parallel prediction branches. The segmentation head generates 

the pixel-wise probability map and the SDM head produces the depth probability map of 

the segmentation target. The SDM head is composed by a 3D convolution block followed 

by tanh activation. The segmentation network uses a 3D image as input and predicts the 

pixel-wise probability map and depth map simultaneously. To handle the unlabeled data, the 

SASSNet leverages a semi-supervised learning strategy, which learns from unlabeled data 

by minimizing the difference between the predicted SDMs on the labeled and unlabeled 

dataset. To enforce the consistency, a discriminator network is used to distinguish the 

predicted SDMs from the labeled set and the ones from unlabeled set. The algorithm 

learns the effective shape-aware features that generalizes well to the unlabeled dataset by 

minimizing an adversarial loss induced by this discriminator. The 3D discriminator (3D 

GAN) is designed to encourage the smooth prediction on the unlabeled data and to improve 

the overall segmentation accuracy when generalized to unseen image datasets. In the 2nd 

stage training phase, we intentionally reduce the number of available ground truth labels to 

enforce the 3D GAN to generate the synthetic pseudo labels during the training process. 

Those pseudo-labels and the given ground truth labels together guide the 3D V-Net to retrain 

the model iteratively until the algorithm converge. This semi-supervised sense of training 

improves the overall generalizability of the trained segmentation model.

The network formulation of the SASSNet semi-supervised learning is constrained with a 

shape-aware regularization term, a multi-task loss52 that consists of a supervised loss (ℒs)
on the labeled set and an adversarial loss50 (ℒa) on the entire set (equations 3 & 4). 

The training set contains N labeled data and M unlabeled data, where N « M. We denote 

the labeled set as Dl = Xn, Y n, Zn n − 1
N  and unlabeled data as Du = Xm m = N + 1

N + M , where 

Xn ∈ ℝH × W × D are the inputs 3D image volumes, Yn ∈ {0, 1}H×W×D are the binary 

segmentation masks42 and Zn ∈ ℝH × W × D are the ground truth SDMs42 derived from Yn.

ℒs θ = 1
N ∑i = 1

N ldice fseg Xi; θ , Y i + α 1
N ∑i = 1

N lmse fsdm Xi; θ , Zi (3)

42

α: balancing factor

fseg(Xi; θ): the predicted segmentation probability map42

fsdm(Xi; θ): the signed depth map42 respectively.

1
N ∑i = 1

N ldice fseg Xi; θ , Y i : the segmentation loss42
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α 1
N ∑i = 1

N lmse fsdm Xi; θ , Zi : the SDM loss42

ℒa is imposed to regularize the model learning with the unlabeled data. It enforces the 

consistency of SDM predictions on the labeled and unlabeled images. A discriminator 

network differentiates the predicted SMDs from labeled and unlabeled image data, 

minimizing the adversarial loss to learn compelling shape-aware features that generalize 

well to the unlabeled images. The discriminator network (D) consists of 5 convolutions 

layers followed by an MLP. The network takes a 3D SDM and corresponding 3D image 

volume as input, fused them through convolution layers, and predicts its class probability 

of being labeled data. Given D, the adversarial learning parameter is denoted as γ and the 

adversarial loss is defined as:

ℒa θ, γ =   1
N ∑n = 1

N log D Xn, Sn; γ + 1
M ∑m = n + 1

N + M log 1 − D Xm, Sm; γ (4)

42

Sn = fsdm (Xn; θ): the predicted SDMs for labeled image data

Sm = fsdm (Xm; θ): the predicted SDMs for unlabeled image data.

The overall training objective function ℱ θ, γ  combines ℒs and the ℒa (equations 3 & 4) 

and the learning task ℱ θ, γ  is written as,

ℱ θ, γ = ℒs θ + βℒa θ, γ (5)

42

β: a weight coefficient to balance the two losses.

Given a fixed discriminator D(·; γ), the objective function minimizes the binary cross 

entropy loss47 induced using equation 3 to train the discriminator.

In the supervised training scenario with labeled image data, a supervised loss function (Eq. 

3 & 4) employs a dice loss for the binary mask-based segmentation map and a mean square 

loss for the SDM based depth map of the multi-task42 segmentation network. Irrespective of 

the loss function, most segmentation errors were located at the proximity of thigh muscle 

boundaries (Appendix 1, Figure A1). Nevertheless, the overall objective function (equation 

5) proposes a simple strategy to penalize segmentation errors at the object boundaries 

utilizing SDM and binary mask with the adversarial mechanism. The proposed 3D V-Net 

backbone and the 3D GAN network are trained with distance-based loss penalty (SDM) and 

dice loss penalty (binary masks) to function as a fine-tuning strategy, effectively mitigating 

segmentation errors at the boundaries.

2.3 Training and testing

We train each cascaded stage separately (Figures 2 & 3). The training starts from scratch, 

as no existing backbone is used in our network to pre-trained model. In this first stage, we 

use the default setting of U2-Net model hyper-parameter setting, batch size (12), learning 

rate (10−3), epsilon (10−7), weight decay (5 × 10−4), number of training iterations (50,000), 
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Adam optimizer. We omit the data augmentation step (i.e., rotation, flipping, transformation, 

and scaling) in the U2-Net, utilizing the multi-feature maps as an alternative to data 

augmentation. In the second stage, the cropped higher-resolution 3D image volumes with 

paired ground truth labels are used to train the SASSNet model. For this stage, the hyper-

parameters settings are: batch size (4), learning rate (10−3), discriminator learning rate 

(10−4), weight decay (0.0002), number of training iterations (6,000). Our experiments are 

conducted on leave-one-out cross-validation of the 40 MR images dataset. In each round of 

cross validation, we employ 39 images as the training set of the cascaded model, leaving one 

image out for testing. The single label-based training and testing scenarios are conducted 

individually with the cross-validation. The training and testing use the low-resolution images 

(resolution: 1.52 × 1.52 × 2 mm, image size: 256 × 192 × 140–366 pixels) in stage 1. 

The second cascade is trained and evaluated separately for three different resolution of the 

cropped images: low-, mid-, and high-res.

Both U2-Net and SASSNet are implemented with PyTorch53. All the pre-processing 

(multi-featured maps), post-processing (3D morphology, transformation), 3D surface 

reconstruction, and 3D visualization are all implemented in the MIPAV43 application.

To compare with the ground truth binary masks for each individual muscle and patella, 

the final predicted cropped 3D image masks from stage 2 are converted back to the 

original image space. The segmentation performance is evaluated with (1) DSC (%), 

(2) Jaccard (IoU, %), (3) Hausdorff distance (HD, mm), (4) average minimum surface-

to-surface distance (ASD, mm), and (5) volumetric similarity coefficient (VSC). All 

metrics are calculated without trimming the ending contours and without cropping data 

to the probability interval (5% – 95% of the average value). Thus, outliers for a distance-

based measure remain in the model. The mask-based performance measure uses the 

EvaluationSegmentation54 tool to compare the ground truth and segmented masks.

To directly compare the current results with previous architectures, four other models 

(U-Net45, DAF3D55, U-Net++56 with data augmentation, and U-Net++ without data 

augmentation56) were developed and validated on the same 40 datasets. We conducted the 

leave-one-out cross validation for all the four previous architectures.

Training the single U2-Net model and single SASSNet model requires 24 hours and 12 

hours, respectively, on the Nvidia p100 GPU card. The cascaded model takes up 2 to 5 

minutes to produce a prediction map for a single image, depending on the size of the 

cropped region and resolution. The multi-feature map generation on the cropped images 

consumes most of the time in the testing phase. Stage 2 training requires 6–12 hours to train 

a single model with 6000 iterations, depending on the resolution (low-res: 6 hours, mid-res: 

8 hours, high-res: 12 hours). In the testing phase, the stage 2 testing takes 10–40 seconds to 

generate the predicted result for a single cropped 3D region (low-res: 10 seconds, mid-res: 

20 seconds, high-res: 40 seconds).

2.4 Statistics

We fit a linear mixed model, employing the participant as a random effect and the resolution 

as a fixed effect to the data to determine if the 3 resolution cases in stage 2 produced 
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different accuracies (DSC scores). A p-value less than 0.05 was considered significant. This 

model was deemed appropriate as the DSC scores met the normality and homoscedasticity 

criteria.

3.0 Results

The DSC scores, based on mid-res stage 2 (Table 2), were quite similar across all muscles 

and the patella, with the RF having the best score (DSC=95.3%) and the VI have the worst 

score (93.2%). When the low-resolution images were used in stage 2, there was a significant, 

but slight increase in accuracy for the VI and a significant, but slight loss in accuracy seen 

in the VM, RF, and patella (Figure 4). Except when compared to the low-res for the RF, the 

high-res stage 2 produced significantly lower accuracies (89.4%-94.1%) than either the low- 

or mid-resolution 2nd stage cases (Figure 4).

Across all participants, the distance between the automatically generated surface and the 

ground truth (Figures 5 & 6), typically fell within the mid-resolution pixel size (±0.88mm). 

The largest disagreements between the ground truth and the automatically segmented 

models were concentrated in the proximal and distal aspects of the muscles, where the 

muscle tapered, rapidly changing shape and size across images (Figures 5 & 6). These end 

regions also had high variability across participants (Figure 7).

The multi-feature approach produced consistently higher DICE scores (Table 3, 3–13 

percentage points) and less variability across image sets (2–7 percentage points). The 

single-feature approach imposes apparent under-segmentation and over-segmentation errors, 

whereas the multi-feature approach does not. (Figure 8).

The four previous architectures were unable to produce the same segmentation accuracy as 

the current model (Figure A1, Appendix 1). U-Net++ without data augmentation was the 

best of these techniques, producing Dice scores 1.7–5.2 percentage points below the current 

method, whereas U-Net was the worst, producing Dice scores 53.6–87.9 percentage points 

below the current (Table 4).

4.0 Discussion

Our successful implementation of this two-stage segmentation pipeline provides a critical 

tool for expanding muscle physiology research into pediatric databases. The two-stage 

segmentation allows for the robustness afforded by high resolution images, but avoids 

memory issues and exorbitant run times by using a first stage with reduced resolution 

images to crop out unnecessary data. Two key findings for future algorithms are that highest 

resolution images did not lead improved results and that the multi-featured image maps 

significantly enhance accuracy by providing multiple boundary definitions. The excellent 

DSC scores clearly improve upon previous template based automatic and semi-automatic 

methodologies targeting the leg musculatures (Table 1). More importantly, with a variable 

pediatric dataset, the methodology also improves accuracies, relative to previous neural 

networks methodologies.
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From the application standpoint, we developed a 2-stage cascaded U2-Net41 and SSASNet 

model as an end-to-end system for MR thigh muscle segmentation. This model tackles 

the general problems of medical imaging segmentation tasks, such as low-scale image 

dataset, highly imbalanced ground truth labels, anatomical constraints, and memory issues. 

CNN-based methods, like the conventional baselines (e.g., U-Net, 3D U-Net, and U-Net+

+), require a reasonably large training dataset to obtain high segmentation accuracy56, 

which can lead to memory issues with the high-resolution images37. Moreover, imbalanced 

medical image data and high variability of target object shapes and locations often lead to 

unexpected segmentation results57. The anatomic symmetry and low distribution errors were 

ignored in previous models by a priori cropping1,3,4,17–22,25,27. The 2nd refinement stage 

alleviates the memory bottleneck by focusing only on the cropped high-resolution volume, 

provided by the low-resolution 1st stage. Ni et al.3 employed a similar two-stage cascaded 

3D U-Net. However, our upgrading to the cascaded U2-Net and SSASNet improved stability 

and performance (Table 4), even with our inherently variable dataset. Previously, general 

data augmentation has provided improved performance, but produces highly correlated data, 

limiting the information it generates. Thus, we exploited the multi-feature maps, instead 

of general data augmentation, throughout the 2-stage cascade model to attain a stable 

performance. A vital component of our current model is the ability of the SASSNet to 

use SDM and adversarial learning in addition to the binary mask to enforce the geometric 

constraint and the generalizability, improving stability. With the 2nd stage mid-resolution 

testing scheme we achieved patellar segmentation accuracies (DSC = 93.75%) on par 

with the muscles, although the patella was only represented in 7% of the image set. This 

demonstrates that the proposed cascaded model can manage the low distribution label issue.

In comparing to previous studies, the current methodology clearly advances our ability 

to automatically segment muscle. After an extensive review of the literature, 15 

manuscripts1–4,17–26 focusing on segmentation of the lower leg musculature were found 

(Table 1). Half are not comparable, as only the central part of the muscle was 

segmented1,17,20,21,23,26. Using just the central muscle belly inflates that accuracy as 

automatic segmentation is most error-prone closest to its origins and insertions, where 

the muscle is rapidly changing size and shape (Figures 5&7). Further, most research 

questions based on muscle segmentation require the segmentation of the entire muscle. 

When comparing directly to previous techniques that segmented the entire muscle, the 

current technique clearly improves accuracy, relative to non-neural network techniques 

(e.g., template22, atlas24, and random walks18). In general, our results were slightly better 

than the remaining study3. Ni et al.3 focused purely on college-age athletes (sex was not 

reported). This similarity in developmental stage and fitness may be associated with less 

variation in muscle-fat ratio, muscle size, and muscle shape across their participants, relative 

to our cohort of 12–18-year-old participants (Figure 7). This research team added further 

homogeneity by incorrectly assuming data from the paired legs of the same participant 

were independent samples. These two sources of uniformity in the previous study likely 

inflated the accuracies. Our direct comparison to four previous architectures (Table 4) 

clearly supports the advanced accuracy of the current, relative to previous models.

A secondary, but key finding, is that higher-resolution images did not always lead to 

improved accuracy. The smaller objects (the rectus femoris and patella) saw the largest 
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accuracy increases between the low-res and med-res stage 2 models, however using the 

high-res did not add to these gains. Thus, future implementations need to be keenly aware 

of the trade-offs between computational time, accuracy, and the inherent size of the object 

being segmented. Conversely, including multi-feature image maps in future models should 

improve prediction performance, based on the current ablation study.

The current results for the patellar segmentation were only slightly worse than our previous 

auto-segmentation of the patella (DSC score = 94.7%, tri-planar segmentation). This 

degraded performance is most likely due to the loss of resolution in the z-direction for 

the current study (2 vs. 1 mm). On average, the patella spanned 7% of the full image set, 

whereas the muscles spanned 57%-62%. Thus, training the current model to this previous 

dataset would likely produce improved results.

This study was limited by two inherent properties in our dataset. First, the data were 

collected for a project focused on the quadriceps musculature in adolescents. Thus, our 

algorithm focused on automatically and completely segmenting each of the 4 quadriceps 

muscles22,25, as only the 4 quadriceps muscles and the patella were manually segmented. 

We were unable to develop an algorithm for the entire thigh or lower limb. As our results 

were a slight improvement from the full lower leg segmentation of Ni et al.3, it is logical 

to assume that our methodology would produce robust results for the entire leg. Although 

our training and testing datasets were larger than nearly all previous studies (Table 1), in 

terms of auto-segmentation, the data set is still relatively small. As such, our results may 

underestimate the true accuracy of the technique.

In conclusion, this work presents a cascade U2-Net and SASSNet model an end-to-end 

system for quadriceps muscle and patella segmentation. In overcoming key obstacles in 

medical imaging segmentation, our model improved segmentations accuracies over previous 

techniques, despite the focus on the novel and variable pediatric database. The proposed 

model alleviates the symmetric anatomy issue and achieves relatively high segmentation 

performance with the low-scale dataset (n=40). The cascaded U2-Net and SSASNet coarse-

to-fine segmentation mechanism effectively tackles the label imbalance problem. These 

contributions advance this work not only based on improved accuracy, but fundamentally 

from an applications perspective. A promising future direction is exploring transfer learning 

to generalize the model from low-scale dataset to large dataset, incorporating meta-learning 

and few-shot learning to further fine-tuning to different datasets.
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Appendix 1: Comparison of conventional neural network architectures

The U-Net45 is the most popular deep learning model for many medical imaging 

segmentation tasks. The U-Net comprises a contracting path (down-sampling encoder) to 

capture contextual information through a compact feature map; and a symmetric expanding 
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path (up-sampling decoder) which allows precise localization to retain spatial information. 

The skip connections in U-Net connect the encoder to the decoder at each multi-scale level 

and fuses only the same-scale feature maps from down-sampling and up-sampling paths. 

The motivation behind the U-Net is to bridge the semantic gap between encoder and decoder 

prior to concatenation.

Adapted the U-Net architecture, the U-Net++56 replaces the direct skip connections in 

U-Net with the nested dense skip connections and generates full resolution feature maps at 

multiple semantic levels. The UNet++ consists of an encoder and decoder connected through 

a series of nested, dense skip pathways. The main idea behind UNet++ is the re-designed 

skip pathways that narrow the semantic gap between the feature maps of the encoder and 

decoder subnetworks. As a result, the U-Net++ can effectively capture fine-grained details 

of the foreground objects when high-resolution feature maps from the encoder and decoder 

networks are semantically similar. In contrast, U-Net uses direct skip connections, in which 

high-resolution feature maps are directly passed from the encoder to the decoder, resulting in 

the fusion of semantically dissimilar feature maps. This architecture-wise change in U-Net+

+ yields significant performance gain over the vanilla U-Net.

DAF3D55 is a 3D feature pyramid network equipped with attention modules to generate the 

deep attentive feature (DAF) for medical image segmentation, such as prostate segmentation 

on transrectal ultrasound (TRUS) images. The DAF3D architecture lands in the completely 

different domain from the U-Net derived architectures. DAF3D is a bit complicated end-to-

end system composed of three modules. The first module utilizes the 3D feature pyramid 

network (3D-FPN) architecture to combine multi-level features via a top-down pathway with 

deep supervision to extract more representative features. The 3D FPN produces multi-level 

single-layer features (SLF) and fused multi-layer features (MLF). The MLF encodes the 

low-level detail information as well as the high-level semantic context. It was also inevitably 

incorporating noise due to the coarse features at deep layers. The 2nd attention module 

leverages the MLF and the SLF as inputs. It produces the refined, attentive feature maps 

for each layer by adding attention gates to disambiguate irrelevant and noises responses 

in the background. The 3rd module employs a 3D atrous spatial pyramid pooling (ASPP) 

to resample attentive features at different scale levels for more accurate segmentation. 

Overall, the DAF3D intends to utilize the 3D attention mechanism to constrain the specific 

segmentation region, filter out the noise from the background, and enhance the boundary 

identification. The key idea is to select the useful complementary information from the 

multi-level features to refine features at each individual layer.

The proposed two phases cascaded model inspired from both U2-Net and SASSNet42 to 

targeting and refining the muscle thigh in a coarse-to-fine manner. As we explained in 

Section 2.2.c, the U2-Net is a novel and simple network architecture with a two-level nested 

U-Shaped structure. In this architecture each stage of encoder-decoder U-Net structure 

contains a the newly proposed Residual U-block (RSU), which is, in fact, a down-sampling 

and up-sampling encoder-decoder itself. The idea behind the RSU block is to use multi-scale 

features as residuals instead of the original features. The nested U-structure will effectively 

maintain the fine-grained details and force the network to extract features from multiple-

scales at every residual block and aggregate multi-level features across levels. SASSNet 
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based on 3D V-Net42 imposes the shape constraint with a multi-task deep networks that 

jointly predict the 3D distance maps and 3D binary masks. A 3D discriminator (3D GAN) 

predicts the adversarial loss between predicted and unlabeled 3D distance maps to capture 

shape-aware features more effectively. In the cascaded model, U2-Net can functionally 

discriminate better features from the nested U-structure and RSU blocks. However, we 

only utilize U2-Net as the coarser segmentation step to mining the synonymous attention 

mechanism to make bold part identification for the thigh muscle. The SASSNet is motivated 

to enhance the finer-grained shape boundary identification into the cropped 3D region as the 

refinement step.

The baseline architectures, U-Net, U-Net++, DAF3D, and U2-Net, all intended to 

capture the fine-grained feature maps via different deep learning pathways mechanisms. 

Systematically, the U2-Net alone should yield comparable, even more, advanced 

segmentation performance than the baseline U-Net and U-Net++. Since the nested U-

structure with RSU blocks is more complicated than the nested with dense skip connections 

in U-Net++. Practically, the proposed cascaded model outperforms the baselines as an 

end-to-end system, shown in Figure A1 (Appendix 1). One primary obstacle of this study 

is the specific problem setting of the thigh muscle segmentation. We are only given a 

single side (left side) ground truth muscle labels with the full-scale images. The anatomical 

symmetry issue in the full-scale images raises the difficulty in this specific segmentation 

task. As demonstrated in Figure A1 (Appendix 1), the baseline U-Net illustrates the 

unstable performance with noise. Some cases are entirely missing interpretation. DAF3D 

can perceptually reduce the background noise; however, over-segmented the thigh muscle 

regions failed to refine the boundary. U-Net++ with data augmentation (flipping, rotation, 

scale, and transform) substantially downgrades the performance due to the symmetric issue. 

U-Net++ (without augmentation) yields perceptually stable performance better than the 

rest baselines. However, some cases are entirely missing the segmentation, consequently, 

lower the Dice score. Overall, the proposed cascaded model obtains the stable Dice score 

performance by surpassing the baseline U-Net++ (with augmentation) from 0.5% to 5%.

Appendix 2: Statistical Shape Modeling

Statistical shape models play an important role in MR image segmentation. Toth et al.58 

extended the traditional active appearance model with principal component analysis (PCA) 

to include intensity and gradient information. They used level-set methods to capture the 

shape statistical model information with a multi-feature landmark-free framework. Aswani 

et al.59 proposed a dual path U-Net based autoencoder with singular value decomposition 

(SVD) as the geometric constraint in latent space optimization for brain tumor segmentation 

from MR images. In addition to the shape-based models, the shape-prior has also emerged as 

an effective method of image segmentation in many medical imaging segmentation contexts. 

Shigwan et al.60 proposed to couple deep neural networks with pointset-based shape prior 

that can be learned effectively despite the training sets having small size and imperfections 

in expert segmentation. The shape prior relies on sparse Riemannian modeling in Kendall 

shape space within the proposed Bayesian inference framework, performs optimal alignment 

of the shape model to object boundary in the image. The proposed method showed improved 

segmentation performance of the thalamus and the caudate on MR images. Kruger et 
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al.61 proposed a probabilistic approach for statistical appearance models in a maximum 

a-posteriori framework to segment the hand shape with 2D hand X-rays. Zheng et al.62 

introduced a semi-supervised adversarial learning model with the Deep Atlas Prior (DAP) to 

segment the liver on CT images. The proposed model encodes a probabilistic shape prior to 

its loss design. He et al.63 proposed an auto-encoder that embeds prior anatomical features 

on the unlabeled dataset to segment the renal artery on abdominal CT images. However, 

most shape priors typically assumes properly aligned input images, which is difficult 

to achieve in practice for objects with large variation in shape. Traditional shape-based 

analysis models, such as PCA and SVD, require a fair amount of computation overhead. 

For example, solving the SVD of a matrix needs a time complexity of O (n3) and the 

processing time increasing dramatically when both number images and image size are large. 

Automated muscle segmentation on MR images is challenging due to the noise and low 

contrasts between different anatomic structures and the large variability of muscle shape64. 

We do not explicitly apply the shape prior with statistical aligned mean shape models to 

thigh muscle segmentation in the proposed work. However, the signed distance map (SDM) 

in the second phase refinement step, assigns values to points according to their distance 

to the boundary curve, is a decent representation of the shape property. Furthermore, the 

SDM combined with binary masks avoids the calculation of SVD or PCA, while the second 

phase adversarial network’s ability to discriminate muscle regions on the shape prior among 

different SDMs is still maintained.
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Figure A1: 
Comparison to previous architectures. The Dice score (DSC) indicates the prediction of each 

patient image, not just for each slice. Abbreviations: VL, VM, VI: vastus lateralis, medialis, 

intermedius; RF: rectus femoris; PA: patella; P#: participant number
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Figure 1. 
Feed-forward path of the segmentation pipeline. The input of the two-stage segmentation 

pipeline is the down-sampled multi-feature slices of the full-scale images and paired binary 

ground truth labels (not shown). These multi-featured image sets are produced by filtering 

the down-sampled MR images using coherence enhanced diffusion (CED), anisotropic 

diffusion (ANISO), regularized anisotropic diffusion (REGISO), and gradient magnitude 

(GM)43. In the 1st stage, the U2-Net architecture generates the coarse level predicted 

probability map. A 3D morphology applies to the coarse predictions to remove noise and 

extract the tightened bounding box. 3D cropping is applied to the high-resolution images to 

generate the multi-featured 3D image volumes centered on the region of interest. In the 2nd 

stage, multi-featured image sets (CED, ANISO, REGISO, GM) are created using with the 

cropped high-resolution images or the cropped down-sampled (2x, 4x) images. In stage 2, 

a 3D V-Net and 3D GAN based SASSNet refines the boundary. The predicted binary mask 

volume transforms back to the original image space as the final result.

Cheng et al. Page 22

Med Phys. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Feed-forward Path of the U2-Net Training Process. The U2-Net conducts the coarse level 

segmentation on the full scaled images. The input of the U2-Net architecture is the full 

scaled multi-featured 2D image slices (Figure 1) with corresponding ground truth labels 

(not shown). The latter is used to supervise the training process. The leading architecture 

is the RSU block (colored blocks), a U-Net like encoder-decoder. The RSU block colors 

reflect the different scale level feature maps. Within each block, the residual connections 

(the thinner black arrow links on top of each colored block) enable focus on local details 

while the overall residual U-Net architecture (inside RSU block) enable fusing these local 

details with global (multiscale) contextual information to improve performance. On the 

encoder path, the convolution generated feature maps are down-sample by a factor of 2 (blue 

arrow) between each multi-scale level. Along the decoder path, the convolution generated 

feature maps are up-sampled by a factor of 2 (red arrow) between each multi-scale level. 

The skip connection (green arrow) propagates the feature map from the encoder to the 

decoder at each multiscale level to enforce the local contextual information passing. Each 

multiscale level also side outputs (white arrow) the predicted feature map. These feature 

maps are up-sampled, concatenated, and fused to the original image size, constituting the 

final segmentation prediction map, and compared with the ground truth label. The predicted 

target object probability map is used to extract the tightened bounding box (centered on the 

predicted binary map) on the high-resolution images. By doing so, it allows the algorithm to 

prune the unrelated background volumes. The predicted output binary mask in this diagram 

is the vastus lateralis.
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Figure 3. 
SASSNet architecture. The input is the multi-features cropped 3D volumes (Figure 1) with 

corresponding binary ground truth map (not shown) and signed distance map (SDM). The 

3D V-Net and 3D Discriminator together emulate the 3D cycle GAN alike structure to 

generate the synthetic images and sign distance map from unlabeled image datasets in a 

semi-supervised manner. The diagram only illustrates the feedforward path of the training 

process. Abbreviations: ℒa: adversarial loss, ℒs: supervised loss. This figure is modified 

from the first figure of Li et al42.
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Figure 4: 
Box and Whiskers comparison of Dice scores. Box and Whiskers comparison of Dice 

scores for the 3 resolution cases (red: low-resolution, blue: mid-resolution, green: high-

resolution in the 2nd stage cascade). Abbreviations: VL, VM, VI: vastus lateralis, medialis, 

intermedius; RF: rectus femoris; PA: patella; * p<0.05; ** p<0.01; ***p<0.001.
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Figure 5. 
Visual evaluation of differences between the auto- and manual segmentation. For each 

muscle, the model having an error that matched the average dice similarity score (Dice, 

Table 2) was selected for display [P02: vastus medialis (VM)=95.2%; P27: vastus 

intermedialis (VI)=93.3%, P02: rectus femoris (RF)=94.4%, and P12: vasti lateralis 

(VL)=94.4%]. The maximum absolute errors for VM, VI, RF, and VL models displayed 

were 2.0, 7.7, 1.7, 4.5 mm. Based these errors, the colormap scale (bottom), displaying the 

distance from the automatically generate surface to the ground truth model, was set from 

−5 (deep blue) to 5mm (deep red). The errors between surfaces typically remained within 

the mid-resolution pixel size (±0.88mm, aqua-blue to orange-yellow). Two viewpoints are 

provided anterior to posterior and posterior to anterior. To demonstrate the curvature around 
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the bone, a slightly oblique view was used in some cases. The grey lines indicate the 

imaging planes used to visualize the accuracy in 2D (Figure 7).
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Figure 6. 
2D Comparison between Segmentation and Ground Truth. The participant data are selected 

as previously (Figure 5). To prevent image selection bias, the image slices are selected at 

the 5%, 25%, 50%, 75%, and 95% of the whole muscle (indicated by grey slice numbers in 

Figure 6). The manual outline (ground-truth) is in red, with the auto-segmentation in green. 

Abbreviations: VL, VM, VI: vastus lateralis, medialis, intermedius; RF: rectus femoris.
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Figure 7. 
Qualitative muscle shape variability. To qualitatively demonstrate the variability is shape and 

size of the muscles across our adolescent study population, the vastus medialis (VM) was 

modeled for the youngest (12 years) and oldest (18 years) participants, the vastus lateralis 

(VL) was modeled for the shortest (147 cm) and tallest (182cm) participants, and the rectus 

femoris (RF) was modeled for the lightest (42kg) and heaviest (94 kg). The muscle for 

each case was picked randomly to show the variation across the muscles. For each pair, 

the models for the oldest, tallest, or heaviest participants were modeled using a mesh, so 

that the models for the youngest, shortest, and lightest participants could be seen through it. 

Each pair is displayed with the same resolution, but the resolution is not consistent across 

pairs. To remove variation due to the relative positioning of the participant in the scanner, 

the smaller model was manually best fit to the largest model and then the best fit algorithm, 

restricted to fine adjustments.
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Figure 8: 
Visual comparison of single-feature vs. multi-feature. The Dice score reflects the 

segmentation accuracy of each case in the 2nd stage testing phase.
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Table 1:

Literature Summary

Population Images Technique Dice

gender type age height weight image
resolution 
(mm) #images F/P Algorithm Train Test RF VI VL VM

Giles19 7M&6F C “young” NR NR MRI 0.78×0.78×(2–
10) 250 full A SSM NR NR NR

Andrews23 20/20 C&P:COPD 64(8)/
68(10) NR NR MRI 0.78×0.78×5 ~100 part SA Atlas 39 40 0.75 0.78 0.86 0.93

Prescott22 53M/50
F P:OA 61(10) NR NR MRI .98×.98×5 17 part A Temp 50 50 0.78 0.79 0.82 0.69

Baudin18 14 
(NR) C NR NR NR MRI 1×1×5 NR NR A RW 13 14 0.92 0.81 0.89 0.90

Andrews17 same as Andrews 2011 part SA SSM 20 20 NR

Karlsson24 4M/7F C 33–54 BMI = 26(4) MRI 1.75×1.75×1.75 NR full A Atlas 10 11 NR

LeTroter25 25 M C 22(1) 178(6) 68(7) MRI 0.38×0.38×12 20 part A Atlas 25 7 0.86 0.78 0.93 0.90

Ogier21 same as Le Trotter part SA Prop NA 25 0.90 0.93 0.94 0.87

Yokota4 20F P:UHD NR NR NR CT 1.4×1.4×(1–10) NR full A Atlas 38 19 0.80 (ave of 19 muscles)

Hiasa2 same as Yokota full A CNN 19 20 0.92 0.95 0.92

Molaie20 10M/12
F C 51(13) NR NR CT ?×?×1.25 200–

240 part SA FRFCM NA 22 0.90 0.92 0.86

Ni3
64 
(NR) A college NR NR MRI 1×1×5 200–

240 full A DCNN 51 13 0.96 0.88 0.94 0.95

Ogier26 12F P:MD 46(12) NR NR MRI 1×1×5 32 part SA Prop NA 10 0.93 0.93 0.96 0.95

Chen1 40 
(NR) C&P:PND NR NR NR MRI 0.6×0.6×3.0 40 part A CNN 23 17 0.93 0.95 0.96 0.98

Ding27 41 NR NR NR NR MRI 0.74×.074×6 40 full A CNN 30 11 .094±0.015

Current 40 C&P:PFP 12–18 147–
182 40–94 MRI 0.43 ×0.43× 2 288 full A Cascade 39 40 0.96 0.94 0.95 0.95

Literature Summary of Semi- and Fully Automatic Segmentation methodologies available for segmenting the individual muscles of the quadriceps 
(at a minimum). Age, height, and weight of participants is provided as an average and standard deviation [ave(sd)] or as a range. Listed earliest 
to latest publication. Abbreviations: male (M), female (F), C (control), not applicable (NA), P (patient), COPD (chronic obstructive pulmonary 
disease), unilateral hip disease (UHD), muscular dystrophy (MD), peripheral nerve disease (PND), patellofemoral pain (PFP), not reported (NR), 
magnetic resonance imaging (MRI), computer tomography (CT), segmentation completed on full or partial muscle (F/P), automatic-segmentation 
(A), semi-automatic segmentation (SA), template (temp), (RW), statistical shape matching (SSM), propagation (Prop), convolutional neural 
networks (CNN), fast and robust fuzzy C-means Clustering (FRCM), deep convolutional neural networks (DCNN), number of training datasets 
(train), number of testing datasets (test), vastus intermedialis, lateralis, & medialis (VI, VL, VM), and rectus femoris (RF).
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Table 2.

Testing phase validation

VL VM

Dice IoU HD ASD VSC Dice IoU HD ASD VSC

mean 94.4% 89.6% 12.1 0.10 99.2% 95.1% 90.7% 9.4 0.07 98.6%

std 0.9% 1.8% 4.2 0.05 0.9% 0.7% 1.2% 3.0 0.03 0.9%

min 91.3% 84.0% 6.5 0.04 96.8% 93.0% 87.0% 4.6 0.03 96.3%

max 96.0% 94.4% 22.9 0.32 100.0% 96.6% 93.4% 16.6 0.21 100.0%

median 94.4% 89.5% 11.2 0.08 99.4% 95.2% 90.8% 8.8 0.07 98.7%

VI RF

Dice IoU HD ASD VSC Dice IoU HD ASD VSC

mean 93.2% 87.3% 14.3 0.12 98.3% 95.3% 91.0% 11.1 0.07 98.3%

std 1.2% 2.0% 4.8 0.06 1.1% 1.0% 1.8% 4.3 0.03 1.1%

min 89.8% 81.5% 6.6 0.07 94.6% 92.1% 85.4% 4.1 0.02 96.4%

max 95.1% 90.6% 29.1 0.32 100.0% 97.1% 94.4% 19.1 0.16 99.9%

median 93.4% 87.7% 13.9 0.11 98.3% 95.3% 91.0% 10.3 0.06 98.4%

PAT

Dice IoU HD ASD VSC

mean 93.8% 88.3% 2.9 0.07 98.3%

std 1.5% 2.7% 1.1 0.02 1.2%

min 87.7% 78.0% 1.4 0.05 94.5%

max 95.4% 91.1% 5.5 0.16 100.0%

median 94.3% 89.3% 2.8 0.06 98.6%

Performance results of the proposed U2-Net+SASSNet method. Abbreviations: Dice (%) dice similarity coefficient; IoU (%): Jaccard index; HD 
(mm): Hausdorff distance; ASD (mm): average minimum surface-to-surface distance; VSC (%): volumetric similarity coefficient; VL, VM, VI: 
vastus lateralis, medialis, intermedius; RF: rectus femoris; and PA: patella.
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Table 3:

DICE-score comparison between single-feature and multi-feature in the second stage.

Mean Dice score test PA (%) RF (%) VL (%) VM (%) VI (%)

single-feature leave-one-out 81.3±8.2 88.0±4.9 88.7±4.9 91.9±2.7 88.2±3.4

multi-feature leave-one-out 93.8±1.5 95.3±1.0 94.4±0.9 95.1±0.7 93.2±1.2

Abbreviations: PA: patella, RF: rectus femoris, VL, VM, VI: vastus lateralis, medialis, intermedialis
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Table 4:

Quantitative comparison to previous architectures

Dice score PA(%) RF(%) VL(%) VM(%) VI(%)

U-Net45 5.9±1.8 26.4±15.3 33.9±14.8 41.5±14.2 33.4±11.5

DAF3D55 50.1±12.9 57.7±6.8 71.5±7.9 66.4±12.7 71.3±13.5

U-Net++ w/data aug56 53.6±4.0 49.5±4.2 72.7±7.8 58.1±7.9 72.9±4.1

U-Net++ w/o data aug56 88.6±7.8 93.1±1.0 90.4±4.1 93.4±2.7 88.4±1.6

current 93.8±1.5 95.2±1.0 94.1±0.9 95.1±0.7 93.2±1.2
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